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SPLIT STRUCTURES IN GENERAL RELATIVITYValentin GladushDepartment of Physis, Dnepropetrovsk State Universityper. Nauhny 13, Dnepropetrovsk, 320625 Ukraine(Reeived May 14, 1998)General approah to deomposition of the tangent bundle of pseudo-Riemannian manifolds, and the assoiated deomposition of geometri ob-jets are onstruted on the basis of the invariantly de�ned split struture.We de�ne the main geometri objets haraterizing deomposition. Invari-ant non-holonomi generalizations of the Gauss�Codazzi�Rii's relationshave been obtained. All the known types of deompositions (used in the-ory of frames of referene for the general relativity, in the Hamiltonianformulation for gravity, in the Cauhy problem, in the theory of stationaryspaes, and so on) follow from the present work as speial ases when �xingthe basis and dimensions of subbundles, and parametrization of a basis ofdeomposition. Method of deomposition have been applied here for therelativisti on�gurations of a perfet �uid. Disussing an invariant formof the equations of motion we have found the invariant equilibrium ondi-tions and their (3+1) deomposed form. The invariant formulation of theonservation law for the url have been obtained.PACS numbers: 02.40.Ky, 04.20.Cv, 04.20.�q1. IntrodutionMost approahes and formalisms in General Relativity are onnetedwith deomposition of spaes into diret sums of subspaes and the asso-iated deomposition of geometrial objets. It means that in addition tousual strutures one should introdue a split struture whih indues thedeomposition of manifolds. This extra struture determines deomposi-tion of all objets and strutures de�ned on a manifold. Among varietiesof formalism of deomposition are the methods aimed to desribe frames ofreferene and observable quantities in the theory of gravity. Similar meth-ods have gained the wide aeptane in a great number of problems. Someof these problems are the anonial formalism and the Cauhy problem in(3)



4 V. GladushGeneral Relativity, the gravitational waves and quantization of the gravita-tional �eld, the theory of stationary and axisymmetri gravitational �eldsand so on.The formalism of the deomposition of spaes in oordinate form is pre-sented in [1�4℄. The invariant split method was onsidered in [5℄ butwithout any onnetion with the previous works on deomposition. Objetsintrodued formally in this work have no lear geometrial meaning.The invariant method of an n+m deomposition for pseudo-Riemannianmanifolds was proposed in [6�9℄. There were most approahes to deom-position uni�ed in these works, and the objets introdued there have learphysial and geometrial meaning. For speial ases of (1+4); (1+3); (2+2),(n+4) deomposition in the oordinate representation these objets redueto known physial harateristis of a system [1�4℄.The general theory of deomposition of the tangent bundle T (M) ofpseudo-Riemannian manifold M into diret sum the non-holonomi sub-bundles �0 and �00 and the assoiated deomposition of geometri objetshas been onstruted in the present work. The (n+m) and (n+1) forms ofinvariant deomposition have been obtained. We de�ne the main geomet-ri objets haraterizing deomposition. Choosing the projetion operatorsand gauges of a basis of deomposition we onstrut various speial ases.The invariant non-holonomi generalization of the Gauss�Codazzi�Rii'srelations has been found as various projetions of the urvature tensor.Method of deomposition have been applied here for the relativisti on-�gurations of a perfet �uid. Disussing an invariant form of the equations ofmotion we have found the invariant equilibrium onditions and their (3+1)deomposed form. The invariant formulation of the onservation law for theurl have been obtained.Note that we do not refer to problems of global geometry, but use its in-variant formulations to onstrut deompositions of spaes. We use, mostly,notations and de�nitions of the works [10�12℄.2. The basi notations and de�nitionsLet M be a pseudo-Riemannian manifold, g a metri on M , T (M)and T �(M) are the tangent and otangent bundles over M . The objetsX;Y;Z; u : : : 2 T (M) and �; �; !; df 2 T �(M) denote ontravariant and o-variant vetor �elds (d is an exterior di�erential). We shall denote by !(X)an inner produt of a one-form ! and vetor X. The salar produt of twovetors X;Y and two forms �; � is determined by the metri gX � Y � (X;Y ) � g(X;Y ) ; < �; � >� g�1(�; �) ; (2.1)where g�1 is the inverse of the metri g.



Split Strutures in General Relativity 5We need to note that for eah vetor �eld u 2 T (M) a dual one-form !is determined uniquely by !(X) = g(X;u); 8X 2 T (M). From now on wejust will write ! = g( : ; u). Then the inverse of the metri g is given byg�1(!; �) = g�1(g( : ; u); �) = �(u) ; 8u 2 T (M); 8� 2 T �(M)so that u = g�1( : ; w).A linear operator L on T (M) is a tensor of type (1; 1) whih ats a-ording to the relations L � X � L(X) 2 T (M);8X 2 T (M). Then(LT � !)(X) = (! � L)(X) � !(L(X));8X 2 T (M) where LT is a trans-pose of the operator L. The produt of two linear operators is de�ned by(L �H) �X = L � (H �X) 2 T (M);8X 2 T (M). An operator H is alled asymmetri one if (H �X;Y ) = (X;H � Y );8X;Y 2 T (M).We shall say that a split struture Hr is introdued on M if r lin-ear symmetri operators Ha (a = 1; 2; : : : r) of a onstant rank with theproperties Ha �Hb = ÆabHb; rXa=1Ha = I ; (2.2)where I is the unit operator (I �X = I; 8X 2 T (M)) are de�ned on T (M).Then bundles T (M) and T �(M) are deomposed into the (n1+n2+: : :+nr)subbundles �a, ��a , so thatT (M) = rMa=1�a; T �(M) = rMa=1��a ;where the sign � denotes the diret sum. The arbitrary vetors, ovetors,and metris are deomposed aording to the sheme:X = rXa=1Xa ; � = rXa=1 �a; g = rXa=1 ga ; g�1 = rXa=1 g�1a ; (2.3)where Xa = Ha �X 2 �a ; Xa �Xb = 0 ; (a 6= b)�a = � �Ha 2 ��a ; �a(Xb) = 0 ; (a 6= b)ga(Xa; Y a) � g(Xa; Y a) ; g�1a (�a; �a) � g�1(�a; �a) : (2.4)In these relations fgag are the metris indued on the subbundles f�agof the tangent bundle T (M). Using this sheme we an obtain the deom-position of more omplex tensors. We assume that all objets with indiesa; b; : : : are de�ned on the orresponding subbundles �a; �b; : : : .



6 V. GladushLet r be an a�ne (symmetri and ompatible with g ) onnetion suhthat rXY �rYX = [X;Y ℄;X(Y �Z) = Z �rXY +Y �rXZ, where [X;Y ℄f =X(Y f) � Y (Xf) is the Lie braket of two vetor �elds X and Y , rXY isthe ovariant derivative of Y in the diretion X. A onsequene of this isthat 2Z � rXY = X(Y � Z) + Y (Z �X)� Z(X � Y )+Z � [X;Y ℄ + Y � [Z;X℄ �X � [Y;Z℄ : (2.5)The ovariant derivative rXT of a tensor T of type (r; s), where s = 0; 1with respet to X is de�ned by(rXT )(Y1; : : : Yr) = rXT (Y1; : : : Yr)� rXi=1 T (Y1; : : : Yi�1;rXYi; Yi+1; : : : Yr) : (2.6)The Lie derivative LXT of a tensor T with respet to a vetor X andthe exterior derivative of an r-form 
 are given by:(LXT )(Y1; : : : Yr) = LX(T (Y1; : : : Yr))� rXi=1 T (Y1; : : : Yi�1;LXYi; Yi+1; : : : Yr) ; (2.7)(d
)(Y0; Y1; : : : Yr) = rXi=0(�1)iYi(
(Y0; : : : ; Ŷi; : : : Yr))+ X0�i<j�r(�1)i+j
([Yi; Yj ℄; Y0; : : : ; Ŷi; : : : ; Ŷj; : : : ; Yr) ; (2.8)where LXY = [X;Y ℄. The symbol � ^� means that the assoiated term isomitted. The urvature tensor is de�ned by the formulaR(X;Y )Z = (rXrY �rYrX �r[X;Y ℄)Z : (2.9)Using a split struture Hr, the deomposition of a r is easily set up:rXY = rXa;b;=1raXbY  ; 8X;Y 2 T (M): (2.10)In this sum the objetsraXaY a � Ha � raXaY a ; 8Xa; Y a 2 �a (a = 1; 2; : : : r) (2.11)



Split Strutures in General Relativity 7de�ne onnetions frag indued on the subbundles f�ag. The objetsraXbY b � Ha � rXbY b � �Ba(Xb; Y b) ; 8Xb; Y b 2 �b (2.12)are tensors of extrinsi non-holonomiity of subbundles �b (a 6= b). One anthink that the objetsraXbY  � Ha � rXbY  � �Qab(Xb; Y ); 8a 6= b 6=  (2.13)de�ne the generalization of the Rii oe�ients of rotation ab [13℄. Ingeneral ase they give the objets of rotation Qab of the subbundles �b; �in the na-dimensional diretion �a. The other omponents an be expressedin terms of the introdued objets. Thus, the omponents raXaY b � Ha �rXaY b and raXbY b � Ha � rXbY b satisfy the relationsZa � raXaY b = Y b �Bb(Xa; Za) (a 6= b) ;Za � raY aZb = Zb � �a(Xb; Y a) +Xb �Bb(Y a; Za) ;�a(Xb; Y ) � Ha � [Xb; Y ℄ (a 6= b 6= ) : (2.14)The tensor of extrinsi non-holonomiity Ba an be expressed as the sumof symmetri and antisymmetri omponentsBa(Xb; Y b) = Sa(Xb; Y b) +Aa(Xb; Y b) ; (2.15)where Sa(Xb; Y b) and Aa(Xb; Y b) de�ne the tensors of extrinsi urvatureand extrinsi torsion of subbundle �b in the diretion of the subbundle �a.For these objets we have2Za � Sa(Xb; Y b) = (LZagb)(Xb; Y b) ; (2.16)2Aa(Xb; Y b) = �Ha � [Xb; Y b℄ : (2.17)It an be shown that the onnetion ra indued on the subbundle �a willbe symmetri and ompatible with the metri ga. The projeting of theurvature tensor into the subbundles �a; �b; : : : gives us nonholonomi gen-eralizations of the Gauss�Codazzi�Rii equations.3. An invariant (n+m) split strutureon a pseudo-Riemannian manifoldIf r = 2, then there are only two subbundles �0 and �00 of the tan-gent bundle T (M) and the previous formulae beome muh simpler. Owingto importane of this ase it was deemed worthwhile to onsider the splitstruture with more details and independently from Se. 2 [8, 9℄.



8 V. GladushLet H 0 be a linear idempotent symmetri operator of a onstant rankwith the property H 0 �H 0 = H 0 : (3.1)We shall say that H 0 de�nes a (n+m) split struture on M ifdim ImH 0 = n ; dim KerH 0 = m ; dim M = n+m; (3.2)where KerH 0 is the kernel of the operator H 0. Sine H 0 is de�ned, therebywe de�ne the operator H 00 suh thatH 00 �H 00 = H 00 ; H 00 �H 0 = H 0 �H 00 = 0 ; H 0 +H 00 = I : (3.3)Therefore H 0 and H 00 are the projetion operators whih determine the splitstruture H2 on M due to the de�nition (2.2). We have T (M) = �0 ��00:X = X 0 +X 00 ; � = �0 + �00 ; g = g0 + g00 ;X 0 = H 0 �X ; X 00 = H 00 �X ; X 0 �X 00 = 0 ;g0(X 0; Y 0) = g(X 0; Y 0) ; g00(X 00; Y 00) = g(X 00; Y 00) : (3.4)A onnetion r is deomposed into the following omponents: a onnetionon �0, and the tensor of extrinsi non-holonomiity of the subbundle �0,respetively r0X0Y 0 = H 0 � rX0Y 0 ; (3.5)B00(X 0; Y 0) = �r00X0Y 0 = �H 00 � rX0Y 0 : (3.6)Other omponents of r an be expressed in terms of the omponents (3.5),(3.6) and the Lie derivatives of two vetor �eldsX 0 � r0Y 0Z 00 = Z 00 �B00(Y 0;X 0) ; (3.7)X 0 � r0Y 00Z 0 = X 0 � LY 00Z 0 + Y 00 �B00(Z 0;X 0) : (3.8)The rest of the omponents of r fr00X00Y 00; r0X00Y 00; r00X00Y 0; r00X0Y 00gmay be written out by substituting X 0; Y 0; B0;H 0; : : : for X 00; Y 00; B00;H 00; : : :and vie versa in formulae (3.5)�(3.8). This ompletes the set of all the eightpossible projetions of the onnetion.The tensor B00 may be expressed as the sum of its symmetri and anti-symmetri parts: B00(X 0; Y 0) = S00(X 0; Y 0) +A00(X 0; Y 0) ; (3.9)2Z 00 � S00(X 0; Y 0) = (LZ00g0)(X 0; Y 0) ; (3.10)2A00(X 0; Y 0) = �H 00 � [X 0; Y 0℄ ; (3.11)



Split Strutures in General Relativity 9where S00 and A00 are the tensors of extrinsi urvature and torsion respe-tively. If A00 = 0, the subbundle �0 will be holonomi (one of the variantsof Frobenius theorem).Using the de�nition of the urvature tensor (2.9) one an �nd everypossible projetion of the urvature tensorR(X 0; Y 0)Z 0 � V 0 = R0(X 0; Y 0)Z 0 � V 0 +B00(X 0; Z 0) � B00(Y 0; V 0)�B00(Y 0; Z 0) �B00(X 0; V 0) + 2A00(X 0; Y 0) � B00(Z 0; V 0) ; (3.12)R(X 0; Y 0)Z 0 � V 00 = V 00 � f(r00Y 0B00)(X 0; Z 0)� (r00X0B00)(Y 0; Z 0)g+2Z 0 � B0(A00(X 0; Y 0); V 00) ; (3.13)R(X 0; Y 00)Z 0 � V 00 = (Z 0 � (r0X0B0)+ < X 0 �B0; Z 0 �B0 >)(Y 00; V 00)+(V 00 � (r00Y 00B00)+ < Y 00 �B00; V 00 � B00 >)(X 0; Z 0) ; (3.14)R0 is the urvature tensor of the subbundle �0R0(X 0; Y 0)Z 0 � fr0X0r0Y 0 �r0Y 0r0X0 �r0[X0;Y 0℄0 + 2L0A00(X0;Y 0)gZ 0 ;(3.15)where L0 is the Lie derivative projeted into the subbundle �0(L0XY � H 0 �LXY ). This de�nition of the urvature tensor, introdued in the works [7�9℄,is the invariant generalization of that introdued in oordinate form in [1℄.Note that the latter term in (3.15) is neessary in order that the di�erentialurvature operator R0(X 0; Y 0) on �0 be a linear multipliative one, or, inother words, R0 be a tensor of type (1,3) on non-holonomi subbundle �0.The following expression in (3.14), with the �xed vetors X 0; Z 0; Y 00; V 00,(hY 00 �B00; V 00 � B00i)(X 0; Z 0) � hY 00 � B00(X 0; : ); V 00 � B00( : ; Z 0)ide�nes the salar produt of the two one-forms � � Y 00 � B00(X 0; : ) and� � V 00 � B00( : ; Z 0) aording to (2.1) by the metri (g0)�1. The ovariantderivatives of the tensor B0 are given by(r0X0B0)(Y 00; Z 00) = r0X0(B0(Y 00; Z 00))�B0(r00X0Y 00; Z 00)�B0(Y 00;r00X0Z 00) ;(r0X00B0)(Y 00; Z 00) = r0X00(B0(Y 00; Z 00))�B0(r00X00Y 00; Z 00)�B0(Y 00;r00X00Z 00) :The relations (3.12)�(3.14) are nonholonomi analogies of the well�knownGauss�Codazzi�Rii equations. Other nontrivial projetions of the urva-ture tensor may be written out using the substitution � 0 � for � 00 � and vieversa. In the speial ase of oordinate representation of (3 + 1) and (2 + 2)deomposition, the objets introdued above give us the known tensors [1�4℄,whih have lear physial and geometrial meaning.



10 V. GladushLet us note that the objets, presented in the work [5℄ may be expressedin terms of these tensors. For example, the torsion tensor introdued thereas the Nijenhuis tensor [11℄ proved to be equalSH0(X;Y ) = [X;Y 0℄0 + [X 0; Y ℄0 � [X 0; Y 0℄� [X;Y ℄0= 2A0(X 00; Y 00) + 2A00(X 0; Y 0) :This tensor does not have a simple interpretation even in the lassial aseof hypersurfaes in M .4. An invariant (n+1) split strutureon a pseudo-Riemannian manifoldIn this setion we give the invariant generalization of (n + 1) deom-position of spaes (the monad method [1,2℄) as a speial ase of (n +m)deomposition when m = 1.Let u be a vetor �eld (�eld of a monad) on M suh that u �u = " = �1.It gives a one-form ! and projetion operators uniquely by the formulae!(X) = "u �X ; 8X 2 T (M) ; (4.1)H 00 = u
 ! ; H 0 = I �H 00 : (4.2)The operators H 00 and H 0 satisfy all the neessary relations (3.1)�(3.3), itbeing known that �00 is a one-dimensional subbundle (m = 1). The tensorprodut is denoted by �
�.Thus, de�ning vetor or ovetor �elds, u or ! respetively, we, thereby,indue an (n + 1) split struture on M . For any vetor �eld X and metrig, this impliesX = X 0 + !(X)u ; g = g0 + "! 
 ! ; g�1 = (g0)�1 + "u
 u ; (4.3)where !(X)u = X 00. The metris g00 = "!
! and g0 are the metris on thesubbundles �00, and �0 orrespondingly. A onnetion r has the followingomponents:rX0Y 0 = r0X0Y 0 �B(X 0; Y 0)u ; ruu = r0uu = �B0(u; u) � F ; (4.4)where B(X 0; Y 0) = !(B00(X 0; Y 0)). If we onsider a ongruene of urvesfor whih the vetor u is the tangent vetor, then F is the �rst urvatureof this ongruene. The tensor B of type (0,2) is the tensor of extrinsinon-holonomiity of the subbundle �0 and an be written as the sum of itssymmetri and antisymmetri parts:B(X 0; Y 0) = �!(r00X0Y 0) = "S(X 0; Y 0) +A(X 0; Y 0) ; (4.5)



Split Strutures in General Relativity 11where S(X 0; Y 0) = "!(S00(X 0; Y 0)) ; A(X 0; Y 0) = !(A00(X 0; Y 0))and 2S(X 0; Y 0) = (Lug0)(X 0; Y 0) ; 2A(X 0; Y 0) = (d!)(X 0; Y 0) (4.6)are the tensors of extrinsi urvature and extrinsi torsion of the subbun-dle �0.The omponents of the urvature tensor in an (n+ 1) deomposed formlead to the generalized Gauss�Codazzi�Rii's equations:R(X 0; Y 0)Z 0 � V 0 = R0(X 0; Y 0)Z 0 � V 0 + "[2A(X 0; Y 0)B(Z 0; V 0)+B(X 0; Z 0)B(Y 0; V 0)�B(Y 0; Z 0)(X 0; V 0)℄ ; (4.7)R(X 0; Y 0)Z 0 � u = �2A(X 0; Y 0)F � Z 0+"[(rY 0B)(X 0; Z 0)� (rX0B)(Y 0; Z 0)℄ ; (4.8)R(X 0; u)Y 0 � u = �Y 0 � r0X0F + "(F �X 0)(F � Y 0)+("LuB� < B;BT >)(X 0; Y 0) ; (4.9)where the urvature tensor of the subbundle �0 (see [6℄) is given byR0(X 0; Y 0)Z 0 = fr0X0r0Y 0 �r0Y 0r0X0�r0[X0;Y 0℄0 + 2A(X 0; Y 0)L0ugZ 0 : (4.10)5. (n+m) deomposition with respet to an adopted basisTo �nd all the relations onsidered above in an (n +m) deompositionform for some �xed basis is a question of great signi�ane for appliations.One's hoie of one basis or another is ditated by a physial situation,requirements of an interpretation of results, or just by the neessity to usethe most omfortable way of alulation. We shall present here the invariantrelations of Se. 3 with respet to an adopted basis of deomposition. Notethat all the known types of deomposition an be obtained as speial asesof the present formalism by hoosing the orresponding onrete bases.We shall now onsider two dual bases of deomposition: a vetor onefE�g = fEa; Eig on T (M), and a ovetor basis f��g = f�a; �ig on T �(M),where Eb 2 �0 � �n; Ei 2 �00 � �m; �a 2 ��0 � ��n; �i 2 ��00 ���m (a; b = 1; 2; :::; n; i; k = n+1; n+2; :::; n+m). Aording to (3.4) onehas for an adopted basis�a(Eb) = Æab ; �a(Ej) = 0 ; �i(Eb) = 0 ; �i(Ek) = Æik ; (5.1)



12 V. Gladush(Eb � Ek) = 0 ; h�a; �ii = 0 : (5.2)It should be emphasized that the indies a; b; ; : : : and i; j; k; : : : indiate thesubbundles �n; ��n and �m; ��m respetively. With respet to the basisfE�g; f��g one hasH 0 = Ea
�a ; H 00 = Ei
�i ; g = g0+g00 = ab�a
�b+hik�i
�k ; (5.3)where ab = Ea � Eb and hik = Ei � Ek are the omponents of the metrisg0; g00 indued on the subbundles �n and �m.Then we introdued the de�nitionsr0EaEb = LabE ; r00EiEj = LkijEk ;B0(Ei; Ek) = BaikEa ; B00(Ea; Eb) = BiabEi ; (5.4)[Ea; Eb℄0 = �abE ; [Ei; Ej ℄00 = �kijEk ;[Ea; Ei℄0 = �baiEb ; [Ei; Ea℄00 = �kiaEk ; (5.5)where Lab and Lijl are the oe�ients of onnetions r0 indued on �n andr00 indued on �m. Similarly Bik and Biab are the oe�ients of the tensorsof extrinsi non-holonomiity of the subbundles �m and �n respetively.Using the identity (2.5) one an �ndLab = 4ab + ab ; Lijk = 4ijk + ijk ;Baik = Saik +Aaik ; Biab = Siab +Aiab ; (5.6)where24ab = Eab +Eba �Eab ; 2ab = �ab + �ba � �ab ; (5.7)2Saik = (LEag00)(Ei; Ek) = Eihik + �ika + �kia ;2Aaik = (d�a)(Ei; Ek) ; 2Aaik = �Ea � [Ei; Ek℄ : (5.8)The oe�ients Aiab; Siab; ijk; 4ijk, unwritten here, an be obtainedfrom (5.7), (5.8) by the replaement (a; b; ; : : : $ i; j; k; : : :). Adhering tothis style here and below we shall write and disuss only those relationswhih an not be found by the hange of indies. We should remember alsothat the indies (a; b; ; : : :) are raised and lowered by the metris ab andab. The urvature tensor and its ontrations are presented in Appendix A.



Split Strutures in General Relativity 13In the speial ase of (n + 1) deomposition, i.e. when m = 1 one hasadopted bases fE�g = fEa; Eg, f��g = f�a; �g; (E = En+1; � = �n+1;a; b = 1; 2; : : : n), so that�a(Eb) = Æ ba ; �a(E) = �(Ea) = 0 ;�(E) = 1 ; E � Ea = 0 ; E �E � "N2 ; (5.9)where fEag 2 �n; �a 2 ��n and E 2 �1; � 2 ��1. In this ase theprojetors H 0 = Ea 
 �a and H 00 = E 
 � indue the deomposition of themetri g = g0 + g00 = ab�a 
 �b + "N2� 
 � : (5.10)Then using the relations (5.4)�(5.8), (A.1)�(A.8) when i = j = k = 1 or(4.4)�(4.10) when u = N�1E;! = N� we an �nd all the neessary relationsin the (n+ 1) deomposition form in an adopted basis. Thus, from (4.4) itfollows that F = N�2(G � (E logN)E) ; G = rEE: (5.11)The tensor of extrinsi non-holonomiity of the subbundle �n an be writtenin the formB(Ea; Eb) = "Sab +Aab � "N�1Bab ; Bab = Dab + 12Fab ; (5.12)Sab = N�1Dab ; 2Dab = (LEg0)(Ea; Eb) ;2Aab = "N�1Fab ; Fab = "N2d�(Ea; Eb) : (5.13)Ating in the same way as in the previous setions we an �nd the generalizedGauss�Codazzi�Rii equations (see Appendix B).6. Canonial parameterization of an n+m split strutureThe relations of Se. 5 are invariant under the transformation of adoptedbases:�a = Labeb; �l = Llkek; Ea = (L�1) ba eb; Ei = (L�1) ki ek ; (6.1)where fLabg and fLki g are (n � n) and (m �m) non-singular matries, andf(L�1) ba g and f(L�1) ki g are their inverse matries. Using this property ofinvariane one an hoose, without loss of generality, the simplest basis ofdeomposition whih is useful for appliations.For this purpose we onsider the expansion of the ovetor basis on ��min the domain U of de�nition of the map x�(� = 1; 2; : : : n; n+1; : : : n+m),



14 V. Gladushi.e. �i = �i�dx�(i; k = n + 1; n + 2; : : : ; n + m). Due to the fat that therank of the n � (n + m) matrix f�i�g is equal to n, there is an (m � m)non-singular matrix f�ikg as a box in f�i�g. Then the ovetors �i an bewritten in the form: �i = �ikdxk + �iadxa = Lik(dxk + Nka dxa) � Likekwhere Lik = �ik; Nka = (L�1)ki �ia. Thus the ovetor basis �i goes over intothe new ovetor basis ek 2 ��m. The vetor basis on �n an be writtensimilarly as Ea = E �a ��. From the ondition of duality ek(Ea) = 0 it followsthat Ea = (L�1)ba(�b � Nkb �k) � (L�1)baeb, where (L�1) ba = E ba . Therebywe de�ned the new vetor basis eb 2 �n. The other vetor and ovetorbases (ei 2 �m and ea 2 ��n respetively) are de�ned by the ondition ofduality up to (n � m) funtions Bai . As a result one obtains the followingparameterization of the basis of deomposition:ea = dxa +Bai ei 2 ��n; ea = �a �N ia�i 2 �n;ei = dxi +N iadxa 2 ��m; ei = �i �Bai ea 2 �m: (6.2)We shall all this parameterization the anonial one.If one follows similar proedure beginning with the ovetor basis �a 2��n, one will obtain the other anonial parameterization of (n + m) de-omposition:ea = dxa +Aai dxi 2 ��n; ea = �a �Mka ek 2 �n;ei = dxi +M iaea 2 ��m; ek = �k �Aak�a 2 �m: (6.3)When some metri g is �xed on M , the funtions Bai (or M ia) an be foundfrom the ondition of orthogonality (5.2) in terms of g�� and N ia (or Abk). If,otherwise, we �x Bai (or M ia), then we an obtain the metri for both asesaording to (5.3):g = ab(dxa +Bai ei)
 (dx +Bkek) + hikei 
 ek ;g = abea 
 eb + hik(ei +M iaea)
 (ek +Mkb eb) : (6.4)With respet to the anonially parameterized basis (6.2), the objets (5.6)�(5.8) and the Lie braket of the basi vetor �elds have the form�ab = �2BiAiab ; �kij = (Bai ej �Baj ei)Nka ;�ai = �eaBi + 2AkabBbiBk +Nka;iBk ; �kia = �2AkaBi �Nka;i ;2Aiab = ebN ia � eaN ib ; 2Aaij = eiBaj � ejBai � �kijBak ;2Saik = (Leah)(ei; ek) ; 2Siab = (Lei)(ea; eb) ; (6.5)where  = abea 
 eb and h = hikei 
 ek. Here all the geometrial har-ateristis are expressed in terms of the funtions hij ; ab; Bai ; Nkb and their



Split Strutures in General Relativity 15derivatives. Substituting the objets (6.5) for those used in (A.1)�(A.7) wean obtain the Riemann tensor, the Rii tensor and the salar urvature inan (n+m) deomposed form with respet to the anonially parameterizedbasis (6.2). All the relations for the parameterization (6.3) are found from(6.5) by the substitution (a; b $ i; j; Bai !M ia; N ia ! Aai ).In the ase of (n + 1) deomposition both types of parameterizationsshould be onsidered independently. Thus for the (3 + 1) monad methodthere are two kinds of anonial parameterizations (with respet to loaloordinates fx�g = ft; xig) determined bye0 = �t �N i�i = Nu ; e0 = dt+Biei = N�1! ;ei = �i �Bie0 ; ei = dxi +N idt (6.6)and e0 = �t �M iei = V u ; e0 = dt+Aidxi = V �1! ;ei = �i �Ai�t ; ek = dxk +Mke0 ; (6.7)where u is a monad vetor, ! is a one-form of time suh that !(u) = 1.The �rst set of bases (6.6) is the generalization of the well-known ADMparameterization [14℄. In this ase the metri has the formds2 = N2(dt+Bjej)2 � hikeiek; (ei = dxi +N idt) : (6.8)The seond set of bases (6.7) implies that the metri is given byds2 = V 2(e0)2 � hik(dxi +M ie0)(dxk +Mke0); (6.9)where e0 = dt+Ajdxj .The latter parameterization is the generalization of those often used whendesribing stationary spaes. It is worth emphasizing that the redundant�degrees of freedom� of the metris (6.8)�(6.9) may be used to �x a frame ofreferene or to simplify the Einstein equations. In the theory of stationaryon�gurations, representation (6.9) is useful for examining of solutions, forwhih a �ux of matter and the timelike Killing vetors are non-ollinear(so-alled skew solutions [15℄).If Bj vanishes the metri (6.8) goes over into the standard ADM param-eterization ds2 = N2dt2 � hik(dxi +N idt)(dxk +Nkdt) : (6.10)When Mk vanishes, the metri (6.9) has the formds2 = V 2(dt+Ajdxj)2 � hikdxidxk : (6.11)This parameterization is often used when desribing stationary spaes [15℄.



16 V. Gladush7. (n+m) deomposition indued by a family of surfaesLet fMm � Mg be an n-parameter family of m-dimensional surfaes.One may think of these surfaes as intersetions of the hypersurfaes xa=onst i.e. Mm = Tafxa = onstg. It is obvious that suh a family indues(n +m) deomposition of M . Indeed, there exists the vetor basis ei = �ion T (M); (i = n+1; : : : ; n+m), beause of holonomiity of the Mm itself.As a onsequene of it, the ovetor basis on the orthogonal to T (Mm) dualsubbundles ��n is a set of one-forms fea = dxag. The orresponding dualbases to the bases feig and feag are determined up to (n �m) funtions N iasuh that ea = dxa 2 ��n ; ea = �a �N ia�i 2 �n ;ei = dxi +N iadxa 2 ��m ; ei = �i 2 �m : (7.1)The funtions N ia are expressed in terms of the omponents of the metrig by using the ondition of orthogonality ea � ei = 0. Thus the projetionoperators and the metri have the form:H 0 = (�a �N ia�i)
 dxa ; H 00 = �k 
 (dxk +Nka dxa) ; (7.2)g = abdxa 
 dxb + hik(dxi +N idx)
 (dxk +Nkd dxd) : (7.3)From the form of the metri (7.3) it an be seen that here we used the speialase of anonial parameterization of (n+m) deomposition (6.2) when Baivanishes. In this ase the formulae (6.5) beome muh simpler. Thus, one�nds �ab = 0; �kij = 0; �ai = 0; �kia = �Nka;i; Aaij = 0; (7.4)2Siab = ab;i ; 2Aiab = ebN ia � eaN ib ; (7.5)2Saik = hik;a � hik;lN la � hlkN la;i � hilN la;k ; (7.6)2Lab = 24ab = eab + eba + eab ; (7.7)2Lijk = 24ijk = hij;k � hik;j � hjk;i : (7.8)The partial derivatives with respet to oordinates xi and xa are denotedhere by \;i� and \;a�, respetively. Then, aording to (A.1)�(A.7), one an�nd the urvature tensor and its ontrations.



Split Strutures in General Relativity 178. (n+m) deomposition indued by a group of isometriesLetM admits a non-transitive group of isometries Gn with the n linearlyindependent Killing vetors f�ag, whih satisfy the relations[�a; �b℄ = Cdab�d (a; b; d = 1; 2; : : : n) ; (8.1)where Cdab are the struture onstants and obey the Jaobi identityC[abCfd℄ = 0 and the ondition Cab + Cba = 0. In addition, the metrig satis�es the Killing equations:(L�ag)(X;Y ) = �a(X � Y )� [�a;X℄ � Y �X � [�a; Y ℄ = 0 : (8.2)The group Gn deomposesM into a family ofm�odimensional surfaesfMng � M , on whih Gn is simply transitive (fMng are invariant mani-folds). Thus, we an say that the group Gn indues (n+m) deomposition ofM into the m�parameter family of n�dimensional surfaes of transitivity.Then the subbundle �n = ST (Mn) is a union of the tangent bundles ofthe family fMng, and �m is a union of all the m�dimensional diretions,whih are tangent to M and orthogonal to T (Mn).Now we shall start in the same way as in the previous setion. Thusone may think of the surfaes Mn as an intersetion of the invariant hyper-surfaes fxi = onstg, i.e. Mm = Tifxi = onstg; (i = n + 1; : : : n +m).Moreover, one has dxi(�a) = �axi = 0. Thus it is obvious that the in-variant di�erential one-forms dxi an be hosen as a ovetor basis on thesubbundles ��m. Then there exists the vetor basis f�ag 2 T (Mn), so thatdxi(�a) = 0 and �a = �b(a)�b. Having extended these bases to the �ompleteones�: fdxig ! fdx�g = fdxa; dxig 2 T �(M) and f�ag ! f��g = f�a; �ig 2T (M), where dx�(��) = Æ�� and [�a; �i℄ = 0, we an de�ne one-forms !a suhthat !a(�b) = Æab ; !a(�i) = 0; L�i!a = 0 (8.3)L�a!b = �Cbad!d ; 2d!a = Cabd!b ^ !d : (8.4)Let us now introdue an auxiliary de�nition. We shall say that a splitstruture H2 is ompatible with a group of isometries if the onditions ofinvariane of H2 are satis�ed, i.e. ifL�aH 0 = 0 ; L�aH 00 = 0 ; (a = 1; 2; : : : n) : (8.5)Using (5.3) and (8.1) one an easily verify that for the other vetor andovetor bases fEkg 2 �m and f�ag 2 ��n we have, respetively,L�a�b = �Cbad�d ; L�aEk = 0 : (8.6)



18 V. GladushTo onretize the basis of deomposition we take �a = �a�dx� and Ei = E�i ��.Then the onditions of duality �a(�b) = Æab ; �a(Ei) = 0; dxk(Ei) = Ækidetermine these bases up to (n � m) funtions Aai . As a result the basis of(n+m) deomposition has the form:�a 2 �n ; ea = !a +Aai dxi 2 ��n ;ei = �i �Aai �a 2 �m ; dxk 2 ��m ; [�a; ei℄ = 0: (8.7)The projetion operators and the metri an be written asH 0 = �a 
 (!a +Aai dxi) ; H 00 = (�i �Aai �a)
 dxi ; (8.8)g = g0 + g00 = ab(!a +Aai dxi)
 (!b +Abjdxj) + hkldxk 
 dxl : (8.9)This representation of the metri is used when desribing spaes of the mul-tidimensional Kaluza�Klein theories [16℄. From the Killing equations one�nds�ab�Cdabd�Cdabd = 0 ; �aAbi �CbadAdi = 0 ; �ahik = 0 : (8.10)Using these equations we obtain the main geometrial objetsA00(�a; �b) = 0 ; 2A0(ei; ek) � F aik�a ; (8.11)F aik = Aak;i �Aai;k + CabdAbkAdi ; (8.12)S0(ei; ek) = 0 ; 2ei � S00(ea; eb) � 2Siab = eiab ; (8.13)2Lab = Cab + Cba + Cab ; (8.14)2Lijk = 24ijk = ejhik + ekhij � eihjk : (8.15)In the end, from (A.1)�(A.7), we an �nd the urvature tensor, the Riitensor and salar urvature (see Appendix C). When m = 0 we ome to thease of homogeneous spaes.9. Relativisti on�gurations of a perfet �uidLet us onsider spae-time M4 with the metri g in the (3 + 1) deom-posed form g = V 2e0 
 e0 � hikei 
 ek : (9.1)For the time being, we require the basis of deomposition to be an adoptedone. Let the soure of the gravitational �eld desribed by the metri (9.1)be a perfet �uid with the �eld of 4-veloities u = V �1e0 = d=ds whih istangent to the �ow lines x� = x�(s). Herewith the mass density � obeys theonservation lawdiv(�u) � (re��u)(e�) = V �1h�1=2L00e0(�h1=2) = 0 ; (9.2)



Split Strutures in General Relativity 19where L00e0 is the Lie derivative with respet to the basis feig: 2L00e0ph =phhik(Le0h)(ei; ek). The equation of motion for the �uid follows from therelation: divT � (re�T )(e�; : ) = 0 : (9.3)The energy-momentum tensor T isT = �V �2e0 
 e0 + Phikei 
 ek ; (9.4)where � is the energy density of the �uid, P is the pressure. Using thethermodynami relationsdH = Tds+ ��1dP; H = (�+ P )��1 (9.5)one �nds the equations of motion(divT )(e0) = �TV �1uS = ��V �1dS=ds = 0 ; (9.6)(divT )(ei) = hik(dP � �HLu!)(ek) = 0 : (9.7)Here we use the following notations: H is the enthalpy, S is the entropy,T is the temperature, and ! is the ovetor of the 4-veloity of the �uid(! = V e0; !(u) = 1). We introdue �the one-form of the enthalpy �� and�the two-form of the url 
� by� = H! = HV e0; 
 = d� : (9.8)Then the equations of motion (9.6), (9.7) an be expressed asLe0� = d(HV )� V TdS : (9.9)Using the formula Le0 = ie0d+die0 , where the operator ie0 is de�ned by therelation (ie0
)(Y ) = 
(e0; Y ); 8Y 2 T (M4), we obtain one more form ofthe equations of motion ie0
 = �V TdS : (9.10)The ondition of integrability of these relations leads to the equations ofmotion for the url of a perfet �uidLe0
 = �d(TV ) ^ dS : (9.11)In the speial ase S = onst a perfet �uid is isentropi so that the equationsfor �the one-form of the enthalpy� (9.9) and �the two-form of the url� (9.10),(9.11) are redued to the relations:



20 V. GladushLe0� = d(HV ) (9.12)ie0
 = 0; Le0
 = 0 : (9.13)It is to be noted that the last equation in (9.13) is the ondition of integra-bility of the equation (9.12). Moreover we may regard this ondition as aninvariant formulation of the theorem [17℄, whih states that the two-formof the url 
 is onstant along the world lines of partiles of an isentropiperfet �uid. From the �rst relation in (9.13) it follows that 
 is singular,i.e. 
(e0;X) = 0; 8X 2 T (M4), and therefore �ompletely spatial�. Thisimplies 
 =Xi;j 
ijei ^ ej ; 
 ^
 = d� ^ d� = 0 : (9.14)Sine in general ase � ^ d� 6= 0, then aording to the Darboux theorem(see, for example [10℄) it follows that there exist suh funtions �; �; � that� = d� + �d�. This representation has been used in [18℄ to onstrut anumber of families of solutions of the Einstein equations for an isentropiperfet �uid.Now we shall onsider the stationary spaes of General Relativity witha timelike Killing vetor �t. Then the equations (9.6), (9.7), as well astheir onsequenes (9.9)�(9.13), go over into the equilibrium onditions ofa perfet �uid. For an isentropi stationary �ow they admit ompletely3�dimensional formulation. Indeed, in this ase one hasL�tg = 0 ; L�te� = 0 ; [�t; e�℄ = 0 : (9.15)Then using the parameterization of deomposition (6.7) we dedue that thefuntions V;Ai;Mk; hik as well as �; �; P;H do not depend on time. Wede�ne the vetor ~M and ovetor A on the subbundles �00 � �3 by~M = M i�i ; A = Akdxk : (9.16)In terms of ~M and A the onservation law for mass (9.2) is transformed intothe 3�dimensional equation of ontinuity of the �ow linesdiv(3)(� ~M) � (rei� ~M)(ei) = h�1=2L ~M (�h1=2) = 0 : (9.17)When S = onst the ondition (9.9) may be rewritten in the 3�dimensionalform as well i ~MdA = �d log (HV ); ~M(HV ) = 0 : (9.18)From now on the objets and operations are de�ned on the 3�dimensionalmanifold t = onst with respet to the bases f�ig and fdxkg. For example:



Split Strutures in General Relativity 212dA = Fikdxi ^ dxk, where Fik = Ak;i � Ai;k. The equilibrium ondition(9.18) may be expressed in the formL ~MA = dfA( ~M )� log (HV )g (9.19)showing that the one-form L ~M ~A is exat. Hene, as the ondition of inte-grability one obtains the 3�dimensional onservation theorem for the urldA along the 3�dimensional �ow lines, i.e.L ~MdA = 0 : (9.20)In the ase of parameterization (6.6) for the stationary spaes the fun-tions V;Bi; Nk; hjk do not depend on time either. By analogy with (9.19)one has L ~NB = �d log (HV ) ; (9.21)where ~N = N i�i; B = Bkdxk : (9.22)The ondition of integrability gives the onservation theorem for the urlof B L ~NdB = 0 : (9.23)If one of the two objets ~M and A in (9.19) (or ~N and B in (9.21))vanishes then the equilibrium ondition of an isentropi perfet �uid has thesimple form HV = V (�+ p)=� = k ; (9.24)where k is a onstant. Thus the Lagrangian of an isentropi perfet �uid inequilibrium isLm � �VphP = (k�� �V )ph = [k � (1 + ")V ℄�ph ; (9.25)where " = "(�) is the internal energy of the �uid and � = �(1 + ") .I would like to aknowledge M. Korkina for interesting and helpful dis-ussions. The author wish also to thank Yu. Vladimirov for enouragementand ontinual attention to the theme of this researh.



22 V. GladushAppendix AComponents of the urvature tensor with respet to an adopted basisfor an (n+m) deompositionDue to the de�nitionsfE�g = fEa; Eig; R(E�; E�)E� �E� = R���� ; R(E�; E�)E� = R����E�the generalized Gauss�Codazzi�Rii equations (3.12)�(3.15) have the formRabd = R(n)abd + 2Ai:dBiba +Bi:bBida +Bi:dbBia (A.1)Ribd = Bibjd �Bidbj + 2Ak:dBbki +Bk:db(Bik � �ki)�Bk:b(Bdik � �kid) (A.2)Ribj = Bbjij �Bibjj �BbjkB ki: �BidB djb:+Bbki�k:j +Bbjk�k:i +Bidb�d:j +Bid�d:bj ; (A.3)where the urvature tensor of the subbundle �n is de�ned by its omponentsR(n)abd aording toR(n)abd = ELadb �EdLab + LfdbLaf � LfbLadf � �fdLafb + 2Ai:d�abi (A.4)(and similarly for the replaement n! m and a; b; ; : : : $ i; j; k; : : :). Thenthe omponents of the Rii tensor and the urvature salar have the formRbd = R(n)bd �Bidbji � Sbjd + 2AiadA aib: + 2SiadSiab�S ijb Sdij +AbijA ijd � SiBi:db �Bi:da�a:bi �Bi:ab�a:di (A.5)Ria = B bia: jb +B kai: jk � Sija � Saji � 2SbikSkab � 6AbikAkab+Sk(Baik � �kia) + Sb(Biab � �bai) +Bkab� bki: +Bbik� kba: (A.6)R = R(n) � 2Siji � SiSi � SiabSabi:: �AiabAabi::+R(m) � 2Saja � SaSa � SaijSija: �AaijA ija:: ; (A.7)where Si = Siabab; Sa = Saikhik. The signs � ji� and � ja� denote the ovariantderivative with respet to the onnetions Lkmn and Lab in the diretions ofthe vetors Ei and Ea, respetively. For exampleBibjd = EdBib �BiabLad �BiaLadb (a; b; $ i; j; k) : (A.8)The other omponents of the Rii tensor and the urvature tensor an befound from (A.1)�(A.6) by the formal substitution a; b; ; : : : for i; j; k; : : :and otherwise.



Split Strutures in General Relativity 23Appendix BComponents of the urvature tensor with respet to an adopted basisfor (n+1) deompositionThe generalized Gauss�Codazzi�Rii equations for the metri (5.10)with respet to the basis (5.9) have the form:Rabd = R(n)abd + "N�2(BbBda � BdbBa + FdBba) ; (B.1)Rn+1;bd = Nf(N�1Bb)jd � (N�1Bdb)jg � "N�2GbFd ; (B.2)Rn+1;b;n+1 = NLE(N�1Bb)� BaB ab:+"N�2GbG �N2(N�2Gb)j ; (B.3)Rbd = R(n)bd � "N�2[NLE(N�1Bdb) +DBdb + 12FbaF ad: � 2DbaD ad: ℄+"(N�2Gb)jd �N�4GbGd ; (B.4)Rn+1;a = N [(N�1B ba:)jb �Ea(N�1D)℄� "N�1FabGb ; (B.5)Rn+1;n+1 = � NE(N�1D)�DabDab + 14FabF ab+ N2(N�2Ga)ja � "N�2GaGa ; (B.6)R = R(n) � 2"N�1E(N�1D)� "N�2(D2 +DabDab + 14FabF ab)+ 2"(N�2Ga)ja � 2N�4GaGa: (B.7)R(n)abd = ELadb �EdLab + LfdbLaf � LfbLadf � �fdLafb + "N�2Fd�ab ; (B.8)where �ab = �a([Eb; E℄) and R(n) = bdR(n)bd; R(n)bd = R(n)abad .Appendix CComponents of the urvature tensor for a (n+m) deomposition induedby a group of isometriesThe urvature tensor and its ontrations with respet to the basis (8.7)for the metri (8.9) have the form:



24 V. GladushR(m+n)dab = R(n)dab + Si[aSib℄d ; (C.1)R(m+n)iab = Sk[aFb℄ki + SidCd:ba + 2Sid[ad:b℄ ; (C.2)R(m+n)ikb = �Sib;k + SibdS dk: + 14FkjF jbi: � 12d:bFdki ; (C.3)R(m+n)ajkl = Faj[l;k℄ + Fbj[kS bl℄a + FbklS bja ; (C.4)R(m+n)ijkl = R(m)ijkl + 12Fai[kF a:l℄j � 12FaijF akl ; (C.5)R(m)ijlk = 2e[k4il℄j + 24mj[l4ik℄m; R(n)d:ab = 2 dq:[a qb℄: � Cqd::aqb ;(C.6)R(m+n)ab = R(n)ab � Siab;i � SiabSi + 2SiaS i b + 14FaijF ijb ; (C.7)R(m+n)ai = 12F kai ;k + 12FailSl + Cd:baSbid � CbbdS dia ; (C.8)R(m+n)ik = R(m)ik � S(i;k) � SiabS abk + 12FaijF aj::k ; (C.9)R(m+n) = R(n) +R(m) � 2Si;i � SiSi � SiabSiab � 14F aijF ija : (C.10)Here R(m) = hikR(m)ik ; R(m)ik = R(m)lilk and R(n) = bdR(n)bd; R(n)bd = R(n)abad.The ovariant derivative in the diretion of the vetor ek with respet to theonnetion 4ijk is denoted by \; k�.REFERENCES[1℄ A.L. Zelmanov, V.G. Agakov, The Elements of General Relativity, Nauka,Mosow 1989 (in Russian).[2℄ Yu.S. Vladimirov, The Frames of Referene in General Relativity, Energoizdat,Mosow 1982 (in Russian).[3℄ V.I. Antonov, V.N. Efremov, Yu.S. Vladimirov, Gen. Relativ. Gravitation 9,9, (1978).[4℄ Yu.S. Vladimirov, Physial Spae-Time Dimensions and Uni�ation of Inter-ations, Mosow University Press, Mosow 1987 (in Russian).[5℄ A. Gray, J . Math. Meh. 16, 715, (1967).[6℄ V.D. Gladush, Izv. Vyssh. Uhebn. Zaved. Fiz. N11, 58 (1979) (in Russian)(English translation: Sov. Phys. J. 22, 1172, (1979)).[7℄ V.D. Gladush, in Thesis of Dokl. of V Sov. Grav. Conf., Mosow UniversityPress, Mosow 1981, p. 126 (in Russian); In Thesis of Dokl. of VI Sov. Grav.Conf., Patrie Lumumba University Press, Mosow 1984, p. 36 (in Russian).
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