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General approach to decomposition of the tangent bundle of pseudo-
Riemannian manifolds, and the associated decomposition of geometric ob-
jects are constructed on the basis of the invariantly defined split structure.
We define the main geometric objects characterizing decomposition. Invari-
ant non-holonomic generalizations of the Gauss—-Codazzi-Ricci’s relations
have been obtained. All the known types of decompositions (used in the-
ory of frames of reference for the general relativity, in the Hamiltonian
formulation for gravity, in the Cauchy problem, in the theory of stationary
spaces, and so on) follow from the present work as special cases when fixing
the basis and dimensions of subbundles, and parametrization of a basis of
decomposition. Method of decomposition have been applied here for the
relativistic configurations of a perfect fluid. Discussing an invariant form
of the equations of motion we have found the invariant equilibrium condi-
tions and their (3+1) decomposed form. The invariant formulation of the
conservation law for the curl have been obtained.

PACS numbers: 02.40.Ky, 04.20.Cv, 04.20.—q

1. Introduction

Most approaches and formalisms in General Relativity are connected
with decomposition of spaces into direct sums of subspaces and the asso-
ciated decomposition of geometrical objects. It means that in addition to
usual structures one should introduce a split structure which induces the
decomposition of manifolds. This extra structure determines decomposi-
tion of all objects and structures defined on a manifold. Among varieties
of formalism of decomposition are the methods aimed to describe frames of
reference and observable quantities in the theory of gravity. Similar meth-
ods have gained the wide acceptance in a great number of problems. Some
of these problems are the canonical formalism and the Cauchy problem in
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General Relativity, the gravitational waves and quantization of the gravita-
tional field, the theory of stationary and axisymmetric gravitational fields
and so on.

The formalism of the decomposition of spaces in coordinate form is pre-
sented in [1-4]. The invariant split method was considered in [5] but
without any connection with the previous works on decomposition. Objects
introduced formally in this work have no clear geometrical meaning.

The invariant method of an n+m decomposition for pseudo-Riemannian
manifolds was proposed in [6-9]. There were most approaches to decom-
position unified in these works, and the objects introduced there have clear
physical and geometrical meaning. For special cases of (1+4), (1+3), (2+2),
(n 4 4) decomposition in the coordinate representation these objects reduce
to known physical characteristics of a system [1-4].

The general theory of decomposition of the tangent bundle T'(M) of
pseudo-Riemannian manifold M into direct sum the non-holonomic sub-
bundles Y’ and X" and the associated decomposition of geometric objects
has been constructed in the present work. The (n+m) and (n+ 1) forms of
invariant decomposition have been obtained. We define the main geomet-
ric objects characterizing decomposition. Choosing the projection operators
and gauges of a basis of decomposition we construct various special cases.
The invariant non-holonomic generalization of the Gauss—Codazzi—Ricci’s
relations has been found as various projections of the curvature tensor.

Method of decomposition have been applied here for the relativistic con-
figurations of a perfect fluid. Discussing an invariant form of the equations of
motion we have found the invariant equilibrium conditions and their (3+ 1)
decomposed form. The invariant formulation of the conservation law for the
curl have been obtained.

Note that we do not refer to problems of global geometry, but use its in-
variant formulations to construct decompositions of spaces. We use, mostly,
notations and definitions of the works [10-12].

2. The basic notations and definitions

Let M be a pseudo-Riemannian manifold, g a metric on M, T(M)
and T*(M) are the tangent and cotangent bundles over M. The objects
X, Y, Z,u... ¢ T(M) and «, B, w,df € T*(M) denote contravariant and co-
variant vector fields (d is an exterior differential). We shall denote by w(X)
an inner product of a one-form w and vector X. The scalar product of two
vectors X,Y and two forms «, f is determined by the metric g

X.Y=(X,Y)=g(X,Y); <a,f>=g9 Ya,p), (2.1)

1

where g7 is the inverse of the metric g.
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We need to note that for each vector field u € T'(M) a dual one-form w
is determined uniquely by w(X) = ¢g(X,u), VX € T(M). From now on we
just will write w = g( . ,u). Then the inverse of the metric g is given by

g Hw, ) =g (g( . ,u),a) = a(u), Yu € T(M), VYae€T*(M)

so that u = ¢ (. ,w).

A linear operator L on T(M) is a tensor of type (1,1) which acts ac-
cording to the relations L - X = L(X) € T(M),vX € T(M). Then
(LT - w)(X) = (w- L)(X) = w(L(X)),VX € T(M) where LT is a trans-
pose of the operator L. The product of two linear operators is defined by
(L-H)-X=L-(H-X)eT(M),YX € T(M). An operator H is called a
symmetric one if (H-X,Y)=(X,H-Y),VX,Y € T(M).

We shall say that a split structure H" is introduced on M if r lin-
ear symmetric operators H® (a = 1,2,...r) of a constant rank with the
properties

r
H-H"=§"H" Y H'=1I, (2.2)
a=1

where I is the unit operator (- X =1, VX € T(M)) are defined on T'(M).
Then bundles T'(M) and T*(M ) are decomposed into the (ny+ngo+...+n,)
subbundles X, X% so that

r r
o) =@ ) = P
a=1 a=1

where the sign @ denotes the direct sum. The arbitrary vectors, covectors,
and metrics are decomposed according to the scheme:

r r r N
X:ZX‘I’ a:ZOéaa g:Zgaa 9_122951, (23)
a=1 a=1 a=1 a—1

where
X®=H" X e x%; X X"=0; (a#b)
a,=a-H"€ X (X =0; (a#b)
gU(XLY) =g(X YY) g7 (@ fa) =97 (@ fa) . (24)

In these relations {g®} are the metrics induced on the subbundles {X%}
of the tangent bundle T'(M). Using this scheme we can obtain the decom-
position of more complex tensors. We assume that all objects with indices
a,b,... are defined on the corresponding subbundles X¢, X%, ... .
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Let V be an affine (symmetric and compatible with ¢g ) connection such
that VyY —Vy X = [X,Y],X(Y-Z) = Z-VxY+Y -V Z, where [X,Y]f =
X(Yf)—Y(Xf) is the Lie bracket of two vector fields X and Y, VxY is
the covariant derivative of Y in the direction X. A consequence of this is
that

27 -VxY = X(Y-2)+Y(Z-X) = Z(X-Y)
+Z-[X,Y]+Y - [Z,X]-X-[Y,Z]. (2.5)

The covariant derivative V xT of a tensor T of type (r,s), where s =0, 1
with respect to X is defined by

(VxT)(Tis- oo ¥y) = VT (Vi Yo)
—ZT(Yh---E—l,VXE,YiH,---Yr)- (2.6)

The Lie derivative LxT of a tensor T with respect to a vector X and
the exterior derivative of an r-form (2 are given by:

(LxT)(Y1,...Yr) = Lx(T(Y1,...Y,))

T
_ZT(Yla"'YiflaEXYiaYi+17'"Y;“)7 (27)

(dR)(Yo, Y1,...Y;) = Z(—l)%(n(Yo,...,ﬁ, . Y)
+ ) (DY Y, YY), (28)
0<i<y<r

where LxY = [X,Y]. The symbol “"” means that the associated term is
omitted. The curvature tensor is defined by the formula

R(X,Y)Z = (VxVy = VyVx —Vixy))Z. (2.9)
Using a split structure H", the decomposition of a V is easily set up:
T
VY= Y V&Y VXY eT(M). (2.10)
a,b,c=1
In this sum the objects

V% Y®=H* V% Y*,  VX°Y%°€X® (a=1,2,...r) (2.11)
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define connections {V®} induced on the subbundles {¥“}. The objects
Ve, Y= H - VoY= -BY(X" YY), vxlybesx? (2.12)

are tensors of extrinsic non-holonomicity of subbundles X° (a # b). One can
think that the objects

V5 Y= H" VY= -Qn(X", Y, Va#b#c (2.13)

define the generalization of the Ricci coefficients of rotation «;' [13]. In
general case they give the objects of rotation @}, of the subbundles o, xe
in the n,-dimensional direction X*. The other components can be expressed
in terms of the introduced objects. Thus, the components Vg(aYb = H".
VxaY? and Vg(be = H® -V +Y? satisfy the relations

7% V4. Y =Y?. B (X% Z%) (a#b);
7%V 2" = 7" AY(X", V) + X" BY(Y*, Z%);
AY(XP, Yo = H* - [X° V€] (a#b#c). (2.14)

The tensor of extrinsic non-holonomicity B® can be expressed as the sum
of symmetric and antisymmetric components

BY(Xx% Y% = 89X v + A¢(Xx?, YY), (2.15)

where S%(X% Y?) and A%(X®,Y?) define the tensors of extrinsic curvature
and extrinsic torsion of subbundle X in the direction of the subbundle ¢
For these objects we have

27%. 89X YY) = (Lzg") (X0, YY), (2.16)
24%(Xb, YY) = —H*. [X° Y], (2.17)

It can be shown that the connection V* induced on the subbundle ¥'* will
be symmetric and compatible with the metric g*. The projecting of the
curvature tensor into the subbundles ¢, X%, ... gives us nonholonomic gen-
eralizations of the Gauss—Codazzi—Ricci equations.

3. An invariant (n + m) split structure
on a pseudo-Riemannian manifold

If r = 2, then there are only two subbundles X’ and X" of the tan-
gent bundle T(M) and the previous formulae become much simpler. Owing
to importance of this case it was deemed worthwhile to consider the split
structure with more details and independently from Sec. 2 [8,9].
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Let H' be a linear idempotent symmetric operator of a constant rank
with the property
H . -H =H. (3.1)

We shall say that H' defines a (n + m) split structure on M if
dim ImH' = n; dim KerH' = m; dim M =n+m, (3.2)

where KerH' is the kernel of the operator H'. Since H' is defined, thereby
we define the operator H” such that

HI/ 'H” — H”; H/I 'HI — HI'HH — 0’ HI+HH — I (33)

Therefore H' and H” are the projection operators which determine the split
structure H2 on M due to the definition (2.2). We have T(M) = X' @ X"

X:XI—‘FX”; a:a/+all; g:g/+gll;
XI:HI‘X; X”:HH‘X; XI‘XH:O;
J(X\Y)=9(X"Y):  ¢'(X"Y")=g(X"Y"). (34)

A connection V is decomposed into the following components: a connection
on X' and the tensor of extrinsic non-holonomicity of the subbundle X',
respectively

VY =H - VY, (3.5)
B"(X'\Y')= V%Y = —H" . VxY'. (3.6)

Other components of V can be expressed in terms of the components (3.5),
(3.6) and the Lie derivatives of two vector fields

X' V42" =2".B"(Y' X'), (3.7)
X'V Z' = X' LynZ' +Y"-B"(Z', X"). (3.8)

The rest of the components of V {V%.,Y", V\,Y" V%Y VLY"}
may be written out by substituting X', Y', B’ H',... for X", Y" B" H",...
and vice versa in formulae (3.5)—(3.8). This completes the set of all the eight
possible projections of the connection.

The tensor B” may be expressed as the sum of its symmetric and anti-
symmetric parts:

B”(XI,YI) — SII(XI,YI)+AII(XI,YI); (39)
27" S"(X'Y') = (Lyng)(X',Y"), (3.10)
2A"(X",Y") = —H".[X", Y], (3.11)
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where S” and A” are the tensors of extrinsic curvature and torsion respec-
tively. If A” = 0, the subbundle X’ will be holonomic (one of the variants
of Frobenius theorem).

Using the definition of the curvature tensor (2.9) one can find every
possible projection of the curvature tensor

R(XI, YI)ZI ) VI — RI(XI,YI)ZI . VI + B”(XI, ZI) . BII(yI’ VI)
-B"(Y',Z") - B"( X', V") + 24" (X", Y")- B"(Z',V'); (3.12)
R(XI, YI)ZI ) VII — VII . {(VI{'/B”) (XI, ZI) _ (VI)I(IB”) (YI, ZI)}
+27"- B'(A" (X", Y"),V"); (3.13)
R(XI, YII)ZI . VII — (ZI . (VI)(IBI)_i_ < XI . BI, ZI ) BI >)(yll’ VII)
+(V" (VY B+ <Y" . B" V" B" >) (X', Z"); (3.14)

R’ is the curvature tensor of the subbundle X'
R(X,Y)Z = (V5 Vs — VTl = Tl + 2Ly } 25 (3.15)

where £’ is the Lie derivative projected into the subbundle X'(£ Y = H' -
LxY). This definition of the curvature tensor, introduced in the works [7-9],
is the invariant generalization of that introduced in coordinate form in [1].
Note that the latter term in (3.15) is necessary in order that the differential
curvature operator R'(X',Y’) on X’ be a linear multiplicative one, or, in
other words, R’ be a tensor of type (1,3) on non-holonomic subbundle 3.
The following expression in (3.14), with the fixed vectors X', Z', V" V"

(<YII 'B”, VII . B”))(XI,ZI) = <YII ) B”(XI, . ),V” ) BII( . ’Z/)>

defines the scalar product of the two one-forms o = Y" - B”(X', . ) and
B=V"-B"(.,Z") according to (2.1) by the metric (¢')"!. The covariant
derivatives of the tensor B’ are given by

(VIX’BI)(YHa ZH) = VIX’(BI(Yv”a ZII)) - BI(VI)I(’YIla Z”) - BI(Y”a VI)I(’ZH) ’
(VS(//BI)(Y”, Z”) = VI)(” (BI(Y”, Z”)) - BI( g(//YII, Z”) - BI(YH, V” IIZ”) .

The relations (3.12)-(3.14) are nonholonomic analogies of the well-known
Gauss—Codazzi—Ricci equations. Other nontrivial projections of the curva-
ture tensor may be written out using the substitution “’” for “ ” ” and vice
versa. In the special case of coordinate representation of (34 1) and (2 + 2)
decomposition, the objects introduced above give us the known tensors [1-4],
which have clear physical and geometrical meaning.
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Let us note that the objects, presented in the work [5] may be expressed
in terms of these tensors. For example, the torsion tensor introduced there
as the Nijenhuis tensor [11] proved to be equal

SH’(X7Y) = [Xayl]l + [Xlay]l - [Xlayl] - [Xa Y]l
— 2AI(XH,Y”) + 2A”(XI,YI) .

This tensor does not have a simple interpretation even in the classical case
of hypersurfaces in M.

4. An invariant (n+1) split structure
on a pseudo-Riemannian manifold

In this section we give the invariant generalization of (n + 1) decom-
position of spaces (the monad method [1,2]) as a special case of (n + m)
decomposition when m = 1.

Let u be a vector field (field of a monad) on M such that u-u = ¢ = %1.
It gives a one-form w and projection operators uniquely by the formulae

wX) = eu-X, VX € T(M), (4.1)
H' = uQuw; H =I-H". (4.2)

The operators H” and H' satisfy all the necessary relations (3.1)—(3.3), it
being known that X" is a one-dimensional subbundle (m = 1). The tensor
product is denoted by “®”.

Thus, defining vector or covector fields, u or w respectively, we, thereby,
induce an (n + 1) split structure on M. For any vector field X and metric
g, this implies

X =X"+wX)u, g=¢ +ew®uw, g =) " +eu®u, (4.3)

where w(X)u = X”. The metrics ¢ = ew @ w and ¢’ are the metrics on the
subbundles X", and X’ correspondingly. A connection V has the following
components:

VxY' =V Y — B(X' ) Y)u; Vou=Viu=-B(uu)=F, (44)

where B(X")Y') = w(B"(X',Y")). If we consider a congruence of curves
for which the vector w is the tangent vector, then F' is the first curvature
of this congruence. The tensor B of type (0,2) is the tensor of extrinsic
non-holonomicity of the subbundle X’ and can be written as the sum of its
symmetric and antisymmetric parts:

B(XY') = —w(VLY') = eS(X", V') + AX',Y"), (4.5)
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where
S(X'Y) =ew(8"(X",Y"), AXY")=wA"(X",Y")
and
28(X"Y") = (L) (XY, 24(X",Y') = (dw)(X',Y") (4.6)

are the tensors of extrinsic curvature and extrinsic torsion of the subbun-
dle X',

The components of the curvature tensor in an (n + 1) decomposed form
lead to the generalized Gauss—Codazzi—Ricci’s equations:

R(X'\YNZ'-V' = R(X'.YZ' - V' +2A(X',YB(Z', V")
+B(Xla ZI)B(YIa VI) - B(Yla ZI)(Xla VI)] ) (47)
RX'\YNZ'-u = —2A(X".Y'\F - Z'

+5[(VY’B)(XIa ZI) - (VX’B)(YIa ZI)] ) (48)
RX' w)Y' - u = =Y .V F+eF-X)F- Y
+(eL,B— < B,BT >)(X',Y"), (4.9)

where the curvature tensor of the subbundle X’ (see [6]) is given by

RI(XI,YI)ZI — {VIX/VIY, - Iylvl)(/
~Vixyy + 24X YL} 2" (4.10)

5. (n + m) decomposition with respect to an adopted basis

To find all the relations considered above in an (n + m) decomposition
form for some fixed basis is a question of great significance for applications.
One’s choice of one basis or another is dictated by a physical situation,
requirements of an interpretation of results, or just by the necessity to use
the most comfortable way of calculation. We shall present here the invariant
relations of Sec. 3 with respect to an adopted basis of decomposition. Note
that all the known types of decomposition can be obtained as special cases
of the present formalism by choosing the corresponding concrete bases.

We shall now consider two dual bases of decomposition: a vector one
{E,} = {E,, E;} on T(M), and a covector basis {#"} = {6*,6'} on T*(M),
where By € X = X" E;, € X' = X™; 9% ¢ X = 3", 9 ¢ XY =
XM (a,b=1,2,...n; i,k =n+1,n+2,....,n+m). According to (3.4) one
has for an adopted basis

0%(Ey) =65,  0%E;)=0;  0(Ey)=0;  0(Ey)=0dp; (51)
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(Ey- Ey) =0; 0%,6" = 0. (5.2)

It should be emphasized that the indices a, b, c, ... and 4, j, k, . . . indicate the
subbundles ™, 2" and XY™, X*™ respectively. With respect to the basis
{E,},{6"} one has

H =E,®0% H"=FE;0; g=g¢+¢" =ya0°Q0°+hy0'260", (5.3)
where vo, = F, - By and h;, = FE; - Ej, are the components of the metrics

g'.¢" induced on the subbundles X™ and X™.
Then we introduced the definitions

Vi, By = LSE.; V%, Ej :L%Ek;
B'(E;,E,) = B4E,; B"(E,, Ey)= B! FE;; (5.4)
[Ba, By = MoyEe; By, Byl = X Ey;
[Ea, Ei] = Mo Ey; [E;, E,)" = \EEy (5.5)

where L, and Lé-l are the coefficients of connections V' induced on X" and

V" induced on X™. Similarly Bf, and B!, are the coefficients of the tensors
of extrinsic non-holonomicity of the subbundles Y™ and X™ respectively.
Using the identity (2.5) one can find

ab = Dap+ Vaps Lip = N+
e = Sip + Al ab = Sap + Agp s (5.6)

where

20 cap = Eovpe + EyYae — Ecyab ; 2Yeab = Acab + Abea — Aabe 5 (57)

2S4it = (Lr,9")(Ei, Ex) = Eihig + Nika + Akia ;
245, = (dO°)(Ei, Ex); 24w = —E" - [E;, Ey]. (5.8)

The coefficients A;qp, Siap, Vijks Dijk, unwritten here, can be obtained
from (5.7), (5.8) by the replacement (a,b,c,... <> 4,75,k,...). Adhering to
this style here and below we shall write and discuss only those relations
which can not be found by the change of indices. We should remember also
that the indices (a,b,c,...) are raised and lowered by the metrics y*® and
Yab- The curvature tensor and its contractions are presented in Appendix A.
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In the special case of (n + 1) decomposition, i.e. when m = 1 one has
adopted bases {E,} = {E,, E}, {6#} ={0% 0}, (E = Ep11, 0 =0""Y
a,b=1,2,...n), so that

0°(Ep) = 0,";  0a(E) = 0(E,) = 0;
9E)=1; E-E,=0; FE-E=¢eN?, (5.9)

where {E,} € X" 6% € ¥* and E € X% 6 € X*'. In this case the
projectors H' = E, ® ¢ and H' = E ® 0 induce the decomposition of the
metric

g=9¢ +¢" =70°®0°+eN?020. (5.10)

Then using the relations (5.4)-(5.8), (A.1)-(A.8) wheni =j =%k =1 or
(4.4)—(4.10) when v = N~'E,w = N6 we can find all the necessary relations
in the (n + 1) decomposition form in an adopted basis. Thus, from (4.4) it
follows that

F=N %G~ (ElogN)E); G = VgyE. (5.11)

The tensor of extrinsic non-holonomicity of the subbundle X™ can be written
in the form

B(E,,Ey) = eSyp + Agpy = eN "By ; By = Dap + 5Fup;  (5.12)

Sap = N™'Day;  2Day = (L5g')(Ea, By)
24, = eN 1E,: Fu = eN?d0(E,, Eyp) . (5.13)

Acting in the same way as in the previous sections we can find the generalized
Gauss—Codazzi-Ricci equations (see Appendix B).

6. Canonical parameterization of an n 4+ m split structure

The relations of Sec. 5 are invariant under the transformation of adopted
bases:

0% = L’ 0 =Lie*; E,=(LYrley; Ei= (LY e, (6.1)

where {L¢} and {L¥} are (n x n) and (m x m) non-singular matrices, and
{(L7 Y2} and {(L~1!),*} are their inverse matrices. Using this property of
invariance one can choose, without loss of generality, the simplest basis of
decomposition which is useful for applications.

For this purpose we consider the expansion of the covector basis on X*™
in the domain U of definition of the map z#(p =1,2,...n,n+1,...n+m),
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e 0 = szac“(i,k =n+1,n+2,...,n+m). Due to the fact that the
rank of the n x (n + m) matrix {6/} is equal to n, there is an (m X m)
non-singular matrix {f¢} as a box in {02} Then the covectors § can be
written in the form: 6' = @idz* + 0idz® = Li(dz* + NFdz®) = Lie
where Li = 0i, NF = (Lfl)fOfl. Thus the covector basis 6 goes over into
the new covector basis e¥ € 5*™. The vector basis on X" can be written
similarly as B, = Eg"'d,. From the condition of duality e*(F,) = 0 it follows
that B, = (L"1)%(9y — NFO) = (L 1)2ep, where (L71) > = Eb. Thereby
we defined the new vector basis e, € X™. The other vector and covector
bases (e’ € X™ and e® € X*" respectively) are defined by the condition of
duality up to (n - m) functions B{. As a result one obtains the following
parameterization of the basis of decomposition:

¢ = dz® + Ble' € X5*"; eq =0y — NLO; € 5"
el =dz' + Nédma e X, ei = 0; — Blle, € X™. (6.2)
We shall call this parameterization the canonical one.

If one follows similar procedure beginning with the covector basis ¢ €
X*" one will obtain the other canonical parameterization of (n + m) de-
composition:

e’ = dz" +A%x" € X eq = 0y — MFej, € 7,

e =dr' +Mie® € 5™ ep = 0 — A%, € I™. (6.3)
When some metric g is fixed on M, the functions B¢ (or M) can be found
from the condition of orthogonality (5.2) in terms of g,, and N? (or A%). If,

otherwise, we fix B¢ (or M?), then we can obtain the metric for both cases
according to (5.3):

g = Yab(dz® + Ble') @ (dz’ + Bie®) + hype' @ ¥,
9= Yape" ® " + hig(¢' + Mge®) ® (" + Mye’). (6.4)

With respect to the canonically parameterized basis (6.2), the objects (5.6)—
(5.8) and the Lie bracket of the basic vector fields have the form

o = —2B{Ay; A= (Biej — Bie)Ny;

Xy = —eoBf + 24 BIBf + NF,Bf: M, = —2AFBf — N}
2A4%, = ey)Ni —eaNj;  2A% =e;BY — e;BY — By ;
284k = (Le,h)(eiser); 25mb = (Le;7)(€ar ) s (6.5)

where v = y,€e® ® et and h = h;jre’ @ eF. Here all the geometrical char-

acteristics are expressed in terms of the functions h;j,vap, B;', N,f and their
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derivatives. Substituting the objects (6.5) for those used in (A.1)-(A.7) we
can obtain the Riemann tensor, the Ricci tensor and the scalar curvature in
an (n +m) decomposed form with respect to the canonically parameterized
basis (6.2). All the relations for the parameterization (6.3) are found from
(6.5) by the substitution (a,b ¢ 4,5; B — M., Ni— A%).

In the case of (n + 1) decomposition both types of parameterizations
should be considered independently. Thus for the (3 + 1) monad method
there are two kinds of canonical parameterizations (with respect to local
coordinates {z#} = {t,z'}) determined by

o = &, — N9y =Nu; € =dt+ Bie' = N 'w;
e; = 0; — Bjegy; e :diﬁi—i-Nidt (6.6)

and

ey = Bt—Miei:Vu; eozdt—f—AidIi:Vflw;
e, = 0; — A;0;; e’ = da* + M*e (6.7)
where v is a monad vector, w is a one-form of time such that w(u) = 1.

The first set of bases (6.6) is the generalization of the well-known ADM
parameterization [14]. In this case the metric has the form

ds?> = N*(dt + Bje’)? — hiypeleF, (¢! = dz' + N'dt). (6.8)
The second set of bases (6.7) implies that the metric is given by
ds? = V(%)% — hy(dz’ + M'e%)(da® + M*e0), (6.9)

where ¥ = dt + A;dz’.

The latter parameterization is the generalization of those often used when
describing stationary spaces. It is worth emphasizing that the redundant
“degrees of freedom” of the metrics (6.8)—(6.9) may be used to fix a frame of
reference or to simplify the Einstein equations. In the theory of stationary
configurations, representation (6.9) is useful for examining of solutions, for
which a flux of matter and the timelike Killing vectors are non-collinear
(so-called skew solutions [15]).

If B; vanishes the metric (6.8) goes over into the standard ADM param-
eterization

ds? = N2dt* — hy(dz’ + N'dt)(dz® + N*dt) . (6.10)
When M* vanishes, the metric (6.9) has the form
ds? = V2(dt + Ajdz?)? — hypda'da® . (6.11)

This parameterization is often used when describing stationary spaces [15].
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7. (n + m) decomposition induced by a family of surfaces

Let {M™ C M} be an n-parameter family of m-dimensional surfaces.
One may think of these surfaces as intersections of the hypersurfaces z%=
const i.e. M™ = (1, ,{z* = const}. It is obvious that such a family induces
(n +m) decomposition of M. Indeed, there exists the vector basis e; = 9;
on T(M), (i=n+1,...,n+m), because of holonomicity of the M™ itself.
As a consequence of it, the covector basis on the orthogonal to T'(M™) dual
subbundles X*" is a set of one-forms {e* = dz®}. The corresponding dual
bases to the bases {e;} and {e®} are determined up to (n - m) functions N!
such that

e’ = dz® e X", eazaa—NéaiEE";
e = di' + Nidg® € X*™, ¢, =0; € 5™, (7.1)

The functions N! are expressed in terms of the components of the metric
g by using the condition of orthogonality e, - ¢; = 0. Thus the projection
operators and the metric have the form:

H = (9, — N!&;) ®@dz®,  H" =8 @ (dz* + NFdz?); (7.2)

g = Yapdz® @ dab + hy,(da’ + Nldz®) @ (dz* + Ndz?). (7.3)

From the form of the metric (7.3) it can be seen that here we used the special
case of canonical parameterization of (n +m) decomposition (6.2) when B¢
vanishes. In this case the formulae (6.5) become much simpler. Thus, one
finds

=0 AE=0, X;=0; X, =-NF; 4y =0; (7.4)

2Siab = Yabyi } 2A%, = ey N. — eaNj ; (7.5)
2Saik = hik,a — hikgNe — higNe iy — haNL 1 ; (7.6)
2Lcab = 20 cab = €aYbe + €5Yea + €cVab ; (7.7)
2Lk = 20k = hijr — hikj — hjki - (7.8)

The partial derivatives with respect to coordinates z* and z® are denoted
“w

here by “;” and “,”, respectively. Then, according to (A.1)-(A.7), one can
find the curvature tensor and its contractions.
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8. (n + m) decomposition induced by a group of isometries

Let M admits a non-transitive group of isometries G™ with the n linearly
independent Killing vectors {,}, which satisfy the relations

[0 &) = Ch¢q  (a,b,d=1,2,...n), (8.1)

where Cgb are the structure constants and obey the Jacobi identity

C’[‘;bqj&c = 0 and the condition C{, + Cy, = 0. In addition, the metric

g satisfies the Killing equations:
(Le,g)(XY) =&(X - Y) = [0, X]- Y = X - [§,Y]=0. (82

The group G™ decomposes M into a family of m—codimensional surfaces
{M™} C M, on which G" is simply transitive ({M"} are invariant mani-
folds). Thus, we can say that the group G™ induces (n+m) decomposition of
M into the m—parameter family of n—dimensional surfaces of transitivity.
Then the subbundle Y™ = |JT(M™) is a union of the tangent bundles of
the family {M"}, and X™ is a union of all the m—dimensional directions,
which are tangent to M and orthogonal to T'(M™).

Now we shall start in the same way as in the previous section. Thus
one may think of the surfaces M"™ as an intersection of the invariant hyper-
surfaces {z' = const}, i.e. M™ = (. {z' = const}, (i=n+1,...n+m).
Moreover, one has dz'(&,) = &' = 0. Thus it is obvious that the in-
variant differential one-forms dz’ can be chosen as a covector basis on the
subbundles X*™. Then there exists the vector basis {9,} € T(M™), so that
dz'(0,) = 0 and &, = fé’a)(?b. Having extended these bases to the “complete
ones”: {dz'} — {dz"} = {dz?,dx'} € T*(M) and {8, } — {0,} = {04, 0i} €
T(M), where dz*(9,) = 61, and [£,, ;] = 0, we can define one-forms w® such
that

w'(&) =055 w(0) =0; Lypw'=0 (8.3)

Le,w’ = —-Cuw?; 2dw® = Cfwb A w?. (8.4)

Let us now introduce an auxiliary definition. We shall say that a split
structure H? is compatible with a group of isometries if the conditions of
invariance of H? are satisfied, i.e. if

Le,H =0, Le,H' =0, (a=1,2,...n). (8.5)

Using (5.3) and (8.1) one can easily verify that for the other vector and
covector bases {E} € ™ and {0°} € X*" we have, respectively,

Le,0"=-Cbo%;  Le EL=0. (8.6)



18 V. GLADUSH

To concretize the basis of decomposition we take 0 = §jdz" and E; = EY9,.
Then the conditions of duality 0%(&) = 6%, 6%(E;) = 0, dz*(E;) = oF
determine these bases up to (n-m) functions A?. As a result the basis of
(n +m) decomposition has the form:

o €57 e = w® + Addz' € 5,
ej=0; — A}, € X, da* e o [€qs€i] = 0. (8.7)

The projection operators and the metric can be written as
H =&, ® (w4 AYdz’);  H" = (0; — A%,) @ dz'; (8.8)

g=9 +¢" = yap(w® + A%dz") @ (W’ + A?dxj) + hydzF @ det . (8.9)

This representation of the metric is used when describing spaces of the mul-
tidimensional Kaluza-Klein theories [16]. From the Killing equations one
finds

Eavoe— Cavae = Caema =03 €Al = CogAl =05 Ehy = 0. (8.10)
Using these equations we obtain the main geometrical objects

A6, &) =05 2A(eisex) = Fiilas (8.11)

k= Api — A+ Ciy AL AT (8.12)
S'(ei, ek) = 0; 261’ . S"(ea, eb) = 2Siab = €iYab ; (8.13)
2Labe = Ceab + Cpea + Cach ; ( )
2L = 20;ji, = ejhix + ephij — eihjy . (8.15)
In the end, from (A.1)-(A.7), we can find the curvature tensor, the Ricci
tensor and scalar curvature (see Appendix C). When m = 0 we come to the
case of homogeneous spaces.

9. Relativistic configurations of a perfect fluid

Let us consider space-time M* with the metric g in the (3 + 1) decom-
posed form
g=V?2®e — hypel @ €. (9.1)
For the time being, we require the basis of decomposition to be an adopted
one. Let the source of the gravitational field described by the metric (9.1)
be a perfect fluid with the field of 4-velocities u = V~leg = d/ds which is
tangent to the flow lines z# = z#(s). Herewith the mass density p obeys the
conservation law

divipu) = (Ve pu)(en) = V- 'h2L0 (0017 =0, (92)
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where £ is the Lie derivative with respect to the basis {e;}: 2L Vh =

Vhh*(Le,h)(eiyer). The equation of motion for the fluid follows from the
relation:

divT = (Ve,T)(e", . ) =0. (9.3)
The energy-momentum tensor 7' is
T = puV2e) ® eg + Phite, @ ey, (94)

where p is the energy density of the fluid, P is the pressure. Using the
thermodynamic relations

dH =Tds+p~'dP, H=(u+P)p" (9.5)

one finds the equations of motion
(divT)(eg) = pTV 'uS = —pV~'dS/ds =0, (9.6)
(divT)(e;) = R*(dP — pHL,w)(ex) =0. (9.7)

Here we use the following notations: H is the enthalpy, S is the entropy,
T is the temperature, and w is the covector of the 4-velocity of the fluid
(w= Ve, w(u) =1). We introduce “the one-form of the enthalpy #” and
“the two-form of the curl 2”7 by

0=Hw=HV, 02=4db. (9.8)
Then the equations of motion (9.6), (9.7) can be expressed as
Legf = d(HV) — VTdS . (9.9)

Using the formula L., = %¢,d + di,, where the operator i., is defined by the
relation (i, $2)(Y) = 2(eo,Y), VY € T(M*), we obtain one more form of
the equations of motion

iegd2 = —VTdS. (9.10)

The condition of integrability of these relations leads to the equations of
motion for the curl of a perfect fluid

L2 =—d(TV)AdS. (9.11)

In the special case S = const a perfect fluid is isentropic so that the equations
for “the one-form of the enthalpy” (9.9) and “the two-form of the curl” (9.10),
(9.11) are reduced to the relations:
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Loy = d(HV) (9.12)
ieyR2=0, Lo2=0. (9.13)

It is to be noted that the last equation in (9.13) is the condition of integra-
bility of the equation (9.12). Moreover we may regard this condition as an
invariant formulation of the theorem [17], which states that the two-form
of the curl £2 is constant along the world lines of particles of an isentropic
perfect fluid. From the first relation in (9.13) it follows that 2 is singular,
i.e. 2(eg,X) =0, VX € T(M*), and therefore “completely spatial”. This
implies
0= Qe nel; QAQ=dINdI=0. (9.14)
]

Since in general case 0 A df # 0, then according to the Darboux theorem
(see, for example [10]) it follows that there exist such functions &, 7, that
0 = d¢ + nd(. This representation has been used in [18] to construct a
number of families of solutions of the Einstein equations for an isentropic
perfect fluid.

Now we shall consider the stationary spaces of General Relativity with
a timelike Killing vector dy. Then the equations (9.6), (9.7), as well as
their consequences (9.9)-(9.13), go over into the equilibrium conditions of
a perfect fluid. For an isentropic stationary flow they admit completely
3—dimensional formulation. Indeed, in this case one has

Lyg=0, Lpe'=0, [0e,]=0. (9.15)

Then using the parameterization of decomposition (6.7) we deduce that the
functions V,AZ-,Mﬁ,hik as well as p,u, P,’H do not depend on time. We
define the vector M and covector A on the subbundles X" = X3 by

M =M9;, A= Audz". (9.16)

In terms of M and A the conservation law for mass (9.2) is transformed into
the 3—dimensional equation of continuity of the flow lines

divi® (pM) = (Ve,pM)(€') = h /2L 5 (ph'/?) = 0. (9.17)

When S = const the condition (9.9) may be rewritten in the 3—dimensional
form as well

i jdA = —dlog (HV); M(HV)=0. (9.18)

From now on the objects and operations are defined on the 3—dimensional
manifold ¢ = const with respect to the bases {9;} and {dz*}. For example:
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2dA = Fipdz® A dz*, where Fy, = Api — Aj . The equilibrium condition
(9.18) may be expressed in the form

LA =d{AM) - log (HV)} (9.19)

showing that the one-form £ 1\7[‘4‘ is exact. Hence, as the condition of inte-
grability one obtains the 3—dimensional conservation theorem for the curl
dA along the 3—dimensional flow lines, i.e.

LydA=0. (9.20)

In the case of parameterization (6.6) for the stationary spaces the func-
tions V,Bi,Nk,hjk do not depend on time either. By analogy with (9.19)
one has

LyB = —dlog (HV), (9.21)

where

N = N'9;, B = Byds". (9.22)

The condition of integrability gives the conservation theorem for the curl
of B
LidB =0. (9.23)

If one of the two objects M and A in (9.19) (or N and B in (9.21))
vanishes then the equilibrium condition of an isentropic perfect fluid has the
simple form

HV =V(p+p)/p=EF, (9.24)

where k is a constant. Thus the Lagrangian of an isentropic perfect fluid in
equilibrium is

Ly =-VVhP = (kp — pV)WVh =[k — (1 +¢)V]pVh, (9.25)

where € = ¢(p) is the internal energy of the fluid and p = p(1 +¢).

I would like to acknowledge M. Korkina for interesting and helpful dis-
cussions. The author wish also to thank Yu. Vladimirov for encouragement
and continual attention to the theme of this research.
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Appendix A

Components of the curvature tensor with respect to an adopted basis
for an (n 4+ m) decomposition

Due to the definitions
{E,} ={E,,E;}; R(E,,E,)E,-E; = Rypu; R(E,,E)E,= RZWE(7

the generalized Gauss—Codazzi—Ricci equations (3.12)—(3.15) have the form

Rapea = RSZZd + 2A?chibaL + B.ichida + B.ideica (A1)
Ribed = Bicvla — Biavle + 2A% 1Buki + By (Beik — Aric)
—B",(Baik — Mia) (A.2)
Risej = Byjic — Bia)j — BujeBei” — BicaBjy!
+Buid, + ByjeMlie + BiapA%; + Bica\%; (A.3)

where the curvature tensor of the subbundle X" is defined by its components
R((;;Zd according to
R™', = BoLY, — BaL% + L}, Ley — LY L — N, LG, + 240,08 (A4)

(and similarly for the replacement n — m and a,b,c,... <> 1,j,k,...). Then
the components of the Ricci tensor and the curvature scalar have the form

Ryy = RI(JZ) - Bfibh‘ = Spja + 245445 + 25i0aS™
—Sbideij + AbijAdij — 8iBlyy, — Blya Xy — Blap\i (A.5)
R, = B,, b|b + Bai,lTk — Sija — Sa)i — 2S5, Shy — 6AY AL,
+8*%(Bair — Meia) + S°(Biab — Mpai) + BE N + BoAE (AL6)
R = R™ - 28", - §'S; - 5,5 — Ay, A
+RO — 251, — S, — 558 — AfA, Y, (A7)
where S? = S(izb’Yaba S = kahik. The signs “‘i” and “‘a” denote the covariant

derivative with respect to the connections LE,, and L{, in the directions of
the vectors F; and E,, respectively. For example

Bictja = EaBich — BiavLge — BicaLgy, — (a,b,c <> i,5,k). (A.8)

The other components of the Ricci tensor and the curvature tensor can be
found from (A.1)-(A.6) by the formal substitution a,b,¢,... for i,5,k, ...
and otherwise.
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Appendix B
Components of the curvature tensor with respect to an adopted basis

for (n+1) decomposition

The generalized Gauss—Codazzi-Ricci equations for the metric (5.10)
with respect to the basis (5.9) have the form:

Roped = R,(;ZZd +eN"2(BepBaa — BapBea + Feabha) (B.1)
Rpiiped = N{(N7'Be)jg— (N"'Ba) .} —eN*GyFoq, (B2)

Ruiipentt = NLp(N 'By) — BB,
+eN2GyG. — N*(N7?Gy),.., (B.3)

Ryg = R — eN“2 NLp(N~'By) + DBay + LFyu Fy® — 2Dy, D ]

+e(N72Gy) g — N™'GyGla, (B.4)

Rpy1a=N[(NT'B)j, — Eo(N'D)] —eN~'FyG° (B.5)
Rn+1,n+1 = - NE(N_lD) — DabDab + iFabFab

+ N*(N2G")), — eN GG, (B.6)

R=R"™ — 2N7'E(N7'D) - eN~%(D? + D, D + LF,, F)
+ 26(N 2Gy)ia — 2N 1GoG". (B.7)

R™% = E.LY, — ByL% + Li,Ley — L L8 — M LG, + eN2F00 , (B.8)
where \¢ = 09([E), E]) and R™ = ybdg®™. R _ plma

Appendix C
Components of the curvature tensor for a (n+ m) decomposition induced

by a group of isometries

The curvature tensor and its contractions with respect to the basis (8.7)
for the metric (8.9) have the form:
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Rfi’;g”) = R(’Zib + Sz’c[aSé}d’
R(m+n) = Skan}ki + Sicdc.%a + zsid[a')/.%}c’

icab cl

1 1
RUM™ = —Sjpek + SinaSpl + 1 eki Py — 57,%ch1:¢ :

R = Fojia + oSy + FureSih

1 1
Rgﬂf") = Rg’}j + 5Fm-[,c Ff— 5 Foi Y

] i i d
R%Z)Z - 2e[kAf]j + ZAmlA;dm, R(Tbc)ab = 27qfi[a'yb}c.q - C.’{g%qb ,(C.6

Jl

R Z g gt G164 98 S, 4 L F,

ab — *lab ab;i ab i+ acib+4 atjL'y

1 1
+
R((zrzn " = §Fm‘ he+ 3 witS' 4+ C4a Sty — CraSid
1 .

R = B — Sy — Sian S + 5 Faig B

. : : 1 3
R(m+n) — R(n) + R(m) o QSZ;i o SZSZ o SzabSiab B ZFiC;'FaZJ ) (010)

Here R(™) = hikR(?Z); R(;Z) = R(mgfk and R = fybdR(Zg; R

G =R

The covariant derivative in the direction of the vector e; with respect to the

connection A;k is denoted by “; k”.
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