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LOCALIZATION TRANSITIONS FROM FREERANDOM VARIABLESRomuald A. Janika, Ma
iej A. Nowaka;b, Gábor Papp
and Ismail ZaheddaInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandbGSI, Plan
kstr. 1, D-64291 Darmstadt, Germany
Institute for Theoreti
al Physi
s, Eötvös UniversityBudapest, HungarydDepartment of Physi
s and Astronomy, SUNYStony Brook, New York 11794, USA.(Re
eived August 20, 1998)We motivate and use the 
on
ept of free random variables for the studyof the de-pinning transition of �ux lines in super
ondu
tors as re
entlydis
ussed by Hatano and Nelson in one dimension. Our analysis yields nat-urally to a generalization of the 
on
ept of Coherent Phase Appproximation(CPA) for nonhermitean Hamiltonians, and is exa
t for Cau
hy random-ness. We derive analyti
al 
onditions for the 
riti
al points of the 
omplexeigenvalue distribution, in very good agreement with numeri
al 
al
ula-tions. We suggest a relation between dimensionally redu
ed nonhermiteanquantum me
hani
s and weak nonhermiti
ity.PACS numbers: 05.45.+b, 72.15.Rn, 74.60.Ge1.Re
ently Hatano and Nelson [1℄ have shown that the de-pinning of �uxlines from 
olumnar defe
ts in super
ondu
tors in D+1-dimensions, maybe mapped onto the world lines of bosons in D-dimensions. The pinningand hen
e lo
alization by the 
olumnar defe
ts is mapped onto an on sitereal randomness, and the de-pinning by the transverse magneti
 �eld ismapped onto a dire
ted hoping, resulting in nonhermitean quantum me-
hani
s. While it is generally a

epted that all eigenstates are lo
alizedin one- and two-dimensions in the presen
e of randomness, it is 
lear thatthe �ux lines are de-pinned by a strong transverse magneti
 �eld. The de-pinning in one- and two-dimensions was studied numeri
ally in [1℄, and the(45)



46 R.A. Janik et al.phenomenon of nonhermitean lo
alization generated a lot of investigations[1�8, 18℄.In this paper, we would like to show that the nonhermitean tight-bindingmodel dis
ussed by Hatano and Nelson in one-dimension 
an be analyzedin a straightforward way using the 
on
epts of free random variables. InSe
tion 2 and 3, we introdu
e the model and motivate the use of the additionlaw for free random variables. In Se
tion 4, we derive an expli
it 
onditionfor the end-points of the distribution of (lo
alized) eigenvalues on the realaxis for arbitrary transverse magneti
 �eld. In Se
tion 5, we extend ouranalysis to the 
omplex eigenvalue plane obtaining the 
omplex eigenvaluedistribution and the 
riti
al values of the magneti
 �eld. In Se
tion 6, we usethe un
ertainty prin
iple to show that the 
onstant mode se
tor of this andrelated models may be amenable to nonhermitean random matrix modelswith weak nonhermiti
ity [2, 3℄. 2.Following Hatano and Nelson, we 
onsider the nonhermitean tight--binding Hamiltonian in se
ond quantized form for D = 1H = H0 + V = NXA=1� t2(e+h 
yA+1
A + e�h 
yA�1
A) + VA 
yA
A� ; (1)where 
yA is a boson 
reation operator at site A. Throughout, the latti
espa
ing a = 1. The diagonal entries are random with elements distributeduniformly between (��;�), and the deterministi
 part H0 is o�-diagonalwith hopping strengths te�h=2 (t < 0). Here h is the typi
al strength of the`transverse magneti
 �eld' in units of the �ux quantum [1℄.The eigenvalues of H are 
omplex valued for h 6= 0. Due to reality ofthe partition fun
tion and the symmetry H(�h) = HT (h), the 
omplexeigenvalues are symmetri
 under re�e
tion along the x and y axes. Theirdistribution in the z-plane is shown in Fig. 1, for h = 0:1; 0:3 and � = t = 1.The results are for an ensemble of 100 matri
es of size 100�100. For h = 0:1
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Fig. 1. Re " � Im " for t = � = 1.



Lo
alization Transitions from Free Random Variables 47the eigenvalues are mostly real (lo
alized). For h = 0:3 the eigenvaluesaround z = 0 are mostly 
omplex (delo
alized). For larger size matri
es,the width of the rim shrinks to zero in agreement with the results dis
ussedin [1℄.An important question regarding the 
hara
ter of the spe
trum is theo

urren
e of a 
riti
al h(1)
 for whi
h a gap near z � 0 sets in for thelo
alized states. For in
reasing h > h(1)
 the eigenvalues migrate from thereal axis to the 
omplex plane as also dis
ussed by Feinberg and Zee [9℄. Themigration is total for h = h(2)
 > h(1)
 . To try to quantify this and the bulkaspe
ts of the spe
trum in Fig. 1, we will analyze (1) using the addition lawfor free random variables [10, 11℄. 3.All the information on the eigenvalue distribution of the Hatano�NelsonHamiltonian is en
oded in the Green's fun
tion:G(z) = � 1z �H0 � V� : (2)The distribution of eigenvalues, whi
h is one-dimensional in this 
ase, 
anbe re
onstru
ted from the dis
ontinuities of G(z). It is 
onvenient to expressit through G(z) = h�z log det(z �H0 � V)i : (3)The determinant splits into a sum of two terms:det(z �H0 � V) � � t2�N � heNh + e�Nhi+ eNFout(z;V)(1 + : : :) : (4)We see that when h+ log(t=2) > Fout, the latter term 
an be negle
ted andthe Green's fun
tion is G(z) = 0. In the opposite 
ase, in parti
ular for largez, G(z) = �zFout (5)(after averaging over V). We will now pro
eed to �nd the Green's fun
tionin the latter region.A standard method used in the treatment of latti
e models with sitedisorder is the Coherent Phase Approximation (CPA). The basi
 assump-tion is that one 
an implement the e�e
ts of disorder through a s
alar (i.e.diagonal) self-energy �(z):GCPA(z) = 1N tr 1z �H0 ��(z) � GH0(z ��(z)) ; (6)



48 R.A. Janik et al.where � satis�es � Va ��(z)1� (Va ��(z))GCPA(z)� = 0 : (7)This 
an be re
ast in the formGCPA(z) = GV � 1GCPA(z) +�(z)� : (8)We will now show that a solution of the CPA equations is equivalent tothe addition formalism of the Blue's fun
tions [13℄, whi
h are the fun
tionalinverses of the Green's fun
tions i.e. they satisfyBV(GV(z)) � z : (9)We will now evaluate the Blue's fun
tion for the random part BV on bothsides of (8): BV(GCPA(z)) = 1GCPA(z) +�(z) (10)and evaluate the Blue's fun
tion for the deterministi
 part BH0 on both sidesof (6): BH0(GCPA(z)) = z ��(z) : (11)Adding the last two equations together gives the addition law for randommatri
es [13℄ BV(GCPA(z)) +BH0(GCPA(z)) � 1GCPA(z) = z : (12)The formal link between the CPA approximation and the addition of freerandom variables has been noti
ed using di�erent methods in [11℄. Howeverthe physi
al systems 
onsidered there were of a di�erent variety. In theremaining part of this paper we will apply this method to the analysis of thespe
trum of the model. In fa
t it is quite intriguing why the addition methoddeveloped for random matri
es i.e. for 0-dimensional systems, works so wellalso for the 1-dimensional Hatano�Nelson model. In the appendix we willre
onsider the justi�
ation of our method using diagrammati
 arguments. Inparti
ular we will show how one 
an map a large 
lass of Feynman graphs forthe Hatano�Nelson Green's fun
tion into an e�e
tive random matrix model.4.In this se
tion we would like to �nd the edge of the spe
trum on thereal axis and the density of lo
alized eigenvalues within our approximation
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heme. To this end we will �rst derive a formula for the resolvent G(z)along the real axis using the addition law for `hermitean' matri
es. Thenthe density of lo
alized eigenvalues would follow from the imaginary part ofthe Green's fun
tion ��(�) = ImG(� + i"), and the edge of the spe
trumwould 
orrespond to a bran
h point of G(z) or, equivalently, to G0(ze) =1.With this in mind, the resolvent for the random part is simply given byGV(z) = 1N 12� �Z�� NdVz � V = 12� ln z +�z �� (13)with an inverse (Blue's fun
tion) given by BV = � 
oth�z, in agreementwith [16℄. The resolvent for the deterministi
 part isGH0(z) = 1N NXn=1 1z � t 
os (2�n=N + ih) : (14)In the large N limit GH0(z) = 1=pz2 � t2 for z outside the ellipse de�nedby � x
oshh�2 + � ysinhh�2 = t2 (15)and zero inside. The inverse of the resolvent (Blue's fun
tion) is just BH0 =p1=z2 + t2 .For large z, the resolvent G(z) for (1) along the real axis follows from itsfun
tional inverse B[G(z)℄ = z through the addition law [13℄, B = BH0 +BV � 1=z. Spe
i�
allyz =r 1G2 + t2 +� 
oth�G� 1G (16)and is h-independent. Along the real axis, the end-points ze of the spe
trumsatisfy ze�B(z
), with dB(z
)=dz=0, that is� 1z3 1q 1z2 + t2 � �2sinh2�z + 1z2 = 0 : (17)For � = t = 1 this yields z
 = 1:5752 or ze = 1:63915.



50 R.A. Janik et al.5.In this se
tion, we derive analyti
al 
onditions for the migration of eigen-values into the 
omplex plane (see Fig. 1). For the model 
onsidered here,this 
orresponds to the 
elebrated nonhermitean delo
alization [1℄.The lo
us of the eigenvalue distribution appears through the dis
onti-nuity of the Green's fun
tion. For one dimensional 
urves in the 
omplexplane the density of delo
alized states 
an be re
onstru
ted from the two-dimensional Gauss law in a standard way. Here we will just restri
t ourselvesto determining some global 
hara
teristi
s of the spe
trum. Re
all from Se
-tion 3, that the 
ondition for the dis
ontinuity of the Green's fun
tion readsFin def� h+ log(t=2) = Fout(z) ; (18)where Fout is determined by the 
ondition �zFout(z) = G(z). For that,we analyti
ally 
ontinue G(z) to the z-plane minus the ellipse (15), anduse it to 
onstru
t the potential Fout(z) through Fout = R dz G, with theintegration 
onstant �xed by the appropriate behavior at in�nity [12℄. Infa
t this integral 
an be performed even when the expli
it form of G(z) isnot known but only using the expression for the Blue's fun
tion, that isFout(z) = zG(z) � Z dGB(G) : (19)In this way we obtainFout(z) = +�G 
oth�G� 1+ log 1 +p1 +G22 � log sinh�G� : (20)The lo
us of the 
usp (18) 
oin
ides with the position of the 
omplex eigen-value distribution shown in Fig. 1 as N ! 1. The real (lo
alized) eigen-values are the remnants of the hermitean addition law dis
ussed above, anddisappear at some 
riti
al value of h = h(2)
 .Fig. 2 (left) shows the behavior of the 
riti
al 
usp-line along the realaxis, where the eigenvalue spe
tra have a bran
hing point (xbran
h), versusthe strength h for whi
h (18) holds. At xbran
h(h(2)
 ) = ze the lo
alizedstates disappear from the spe
trum. The dots are the numeri
ally generatedbran
hing points, while the solid line 
orresponds to using (18)�(20). Fig. 2(right) shows the same along the imaginary axis for the topmost point ofthe spe
trum ymax. For large h, the resolvent drops to zero in the outerregion like 1=z, and using (16) together with (20) we get ymax � sinhh ��2=6 sinhh.
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Fig. 2. xbran
h and ymax versus h for t = �=1.The existen
e of the solution for given h de�nes the 
riti
al value h(1)
 forwhi
h the 
ut starts to develop in the inner ellipse of Fig. 1. The dependen
eof h(1)
 on � is shown in Fig. 3 (solid line). The dotted lines are generatedanalyti
ally by working out the leading 
ontributions to F in (20), for smallvalues of � (dotted line), and large values of � (long dashed line).
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Fig. 3. h(1)
 versus �. See text.These results are also reprodu
ed analyti
ally using a semi-
ir
ular dis-tribution for the random part, that is �P (Vi) = q4� � V 2i =2� , when � =�2=3!1, as indi
ated by the thi
k dashed line in Fig. 3. Then the equa-tion for the Green's fun
tion in the outer region follows from the semi
ir
ularBlue's fun
tion Bsemi
ir
ularV = �G+ 1=G:(z � �G)2G2 = 1 + t2G2 : (21)Similarly, we 
onsider the Cau
hy randomness, that is �P (Vi) = 
=(
2+V 2i ). In this 
ase, the results are exa
t, as originally suggested in [11℄ forthe hermitean 
ase. In parti
ular, (20) is nowF (z) = log �i
 + z +p(i
 + z)2 � t2�� log 2 : (22)Using (18) with (22) in the outside leads the position of the `
usp' for Cau
hyrandomness. In this 
ase, the 
riti
al value h(1)
 for the onset of delo
alization



52 R.A. Janik et al.is given in 
losed form through sinhh(1)
 = 
=t, as noti
ed �rst by Brezin andZee [18℄ using di�erent arguments.Finally, the dependen
e of the eigenvalue distribution shown in Fig. 1 on1=N , may be qualitatively understood by using the 
ir
ular version of (1).This amounts to trading t=2eh!r and t=2e�h!0. For a uniform distribu-tion of eigenvalues, the se
ular equation isYi (�� Vi) = �(�r)N : (23)For small values of �, hen
e Vi, (23) 
an be solved perturbatively, with theansatz �j = rei2�j=N + "j , giving "j = �Pi Vi=N . Typi
ally, hN2"2j i =NhV 2i i = N�2=3, showing the 
orre
tions to be " � 1=pN in large N . Thisresult 
ompares well with the numeri
al estimate using Æ� = max (j�ij � j�j j)between the outer and inner eigenvalues as shown in Fig. 4.
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Fig. 4. Æ� versus N (matrix size) for r=�=1.One should note the intriguing possibility of observing a universal be-havior whi
h is exa
tly 
hara
terized by the s
ale 1=pN in the imaginarydire
tion. This regime 
hristened `weak nonhermiti
ity' has re
eived mu
hattention lately [2,3℄, and it would be interesting to extend it to the present
ontext. 6.The previous analysis borrows on some of the methods dis
ussed in [12℄for random matrix models. However, the Hatano�Nelson model di�ers in animportant way from matrix models: it knows about the dimensionality ofspa
e. Re
ently Efetov [3℄ has used supersymmetri
 methods to argue thatin 0-dimension the model redu
es to a nonhermitean random matrix modelwith weak-nonhermiti
ity [2℄, and suggested that the redu
tion may yield tonew developments in the 
ontext of oriented quantum 
haos.The redu
tion is a
tually understandable from the point of view of 
on-tinuum quantum me
hani
s of 
onstant modes. The 
ontinuum version of (1)is H = (p + ih)2 + V, where p is the D-dimensional momentum and V the



Lo
alization Transitions from Free Random Variables 53random site potential. The redu
tion to 0-dimension means that V is x-independent. Classi
ally this would imply that p = 0. Quantum me
hani-
ally, however, p �u
tuates. In a box of size N , p � W= DpN by the un
er-tainty prin
iple. Hen
e, the redu
tion of H to H� in 0-dimension amountsto H� = V + i2hDpN W : (24)For su�
iently random hopping, the result is a random matrix model withsmall nonhermiti
ity in general. For D=2 this is just the 
ase of weak non-hermiti
ity dis
ussed by Fyodorov et al. [2℄. For V;W 
hosen in the GOEensemble as motivated by V real in the D-dimensional version of (1), ourarguments suggest lo
alization for D=2 in (24) as also noted in [3℄.The present arguments may also extend to other models. For example,the (massless) QCD Dira
 operator in a D-dimensional Eu
lidean box ofvolume N at �nite 
hemi
al potential � is H = 
D+1(i
ara+ i�
D), where
's are Dira
 matri
es with a = 1; :::;D, and r the 
ovariant derivativeswith external gauge �elds. The squared operator,H� = (ira)(ira) + i2�ab[ira; irb℄ + 2i�(irD) (25)with �ab = i[
a; 
b℄=2, is analogous to (24). For su�
iently random hoppingand irD � 1= DpN , lo
alization may take pla
e for the GOE ensemble inD=2 dimensions at �nite �. Sin
e two-dimensional QCD, in the limit of alarge number of 
olors, exhibits quasi long-range order, this issue is worthinvestigating. 7.We have shown that the Hatano�Nelson model (1), may be understoodin terms of the addition law for free random variables, and obtained ana-lyti
al 
onditions for the end-points of the 
omplex eigenvalue spe
tra that
ompare well with numeri
s. Our diagrammati
 approximation satis�es thenonhermitean analogue of the CPA equation, and is exa
t for Cau
hy ran-domness [18℄. Corre
tions for generalized randomness 
an be sought in theremaining non-planar graphs in the form of two-site, three-site, et
. res
at-terings. In the light of re
ent dis
ussion [19℄, it would be interesting to 
on-sider the extension of our method to higher dimensions. For two-dimensionsthis looks possible through (12), by modifying the Blue's fun
tion for thedeterministi
 matrix H0 to in
orporate the stru
ture of the two dimensionallatti
e. The result involves ellipti
 fun
tions.



54 R.A. Janik et al.Finally, we have presented generi
 arguments for how the 
onstant modesof the model in D-dimensions and for su�
iently random hopping, relate torandom matrix models with weak nonhermiti
ity. For D=2 our arguments
on�rm a re
ent observation by Efetov [3℄.We would like to thank Prof. D. Nelson for suggesting that we look atthis problem, E. Gudowska-Nowak for dis
ussions. IZ thanks Y. Fyodorovand A. Zee for dis
ussions. RJ thanks the Nu
lear Theory Group at StonyBrook, where part of this work was done. This work was supported inpart by the US DOE grant DE-FG-88ER40388, by the Polish GovernmentProje
t (KBN) grants 2P03B04412 and 2P03B00814 and by the Hungariangrants OTKA T022931 and F019689.AppendixIn this se
tion, we pro
eed to motivate the use of free random variablesfor the Hamiltonian (1) from a diagrammati
 standpoint. Note that thephysi
al meaning of our approximation s
heme is most 
learly spelled outusing the equivalen
e with the Coherent Potential Approximation (CPA. Thedis
ussion below is not needed to apply our method to spe
i�
 
ases but mayperhaps help in emphasizing the features of the model whi
h are essentialfor the method to have a 
han
e of working (e.g. translational invarian
e).As we saw all the information about the behavior of the model (1) isen
oded in the Green's fun
tion (2). We will now analyze the diagrammati
expansion of (2) and try to reinterpret a large 
lass of graphs as 
oming froma 
ertain random matrix model.For that, we note that the diagrammati
 expansion for (1) follows thatof random matrix models [12℄ to the ex
eption that the V-propagators are
hanged to hVab V
di = ÆadÆ
bÆbd = Feynman graph:�a db 
 (26)This is, however, markedly di�erent from the random matrix propagatorhMabM
di = 1N ÆadÆ
b = Feynman graph:�a db 
 (27)In parti
ular there is no `double line' stru
ture in (26), as visualized by ournotation (all the lines are pin
hed to a point). Also there is no a

ompanying
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tor of 1=N . This 
auses the fa
t that for the Hatano�Nelson Green'sfun
tion there is no natural separation of graphs into planar and subleadingnon-planar ones. We will now show that nevertheless a 
lass of graphs forG(z) 
an be rewritten in a random matrix like way.Consider an expe
tation value hV � C � Vi with C some translationallyinvariant matrix. Then we haveDVab � Cb
 � V
dE = Feynman graph:�a db C 
 = ÆadCaa|{z}no summation!= Feynman graph:�a db C 
 = Æad � 1N tr C (28)Note that the result is the same as if it were 
al
ulated for a random matrixmodel with the propagator (27). This enables us to use the double linepropagators in the Hatano�Nelson model.We will now pro
eed to 
onsider the diagrammati
 expansion of theresolvent G(z) = tr G(z) for this modelG(z) = � 1z �H0 � V� = 1z �H0 ��(z) ; (29)where �(z) is the 1-parti
le irredu
ible (1PI) self-energy. Typi
al 
ontribu-tions to �(z) are shown in Fig. 5. They may be de
omposed into planar(gluon-)
onne
ted (pl; 
) (see [13℄ for the pre
ise de�nition) and non-planar1PI ones (np). Generi
ally,�(z) =Xn (h trVG(z)V : : : G(z)Vipl; 
: + h trVG(z)V : : :G(z)Vinp) : (30)The planar pie
e is equal toNXi=1 hV ni ipl; 
 � (G(z)ii)n�1 = h trVnipl; 
G(z)n�1 : (31)In the last equality we made use of the invarian
e of H0 under latti
e trans-lations. The non-planar pie
e is, as it stands, mu
h more 
ompli
ated. Here,we will approximate G(z) by its diagonal part G(z) � 1, i.e. retaining onlythe single-site res
attering. Hen
e�(z) =Xn �h trVnipl; 
 + h trVninp� �G(z)n�1 : (32)



56 R.A. Janik et al.This is our main approximation. To 
onvin
e oneself that this is really anapproximation one 
an examine the �rst graph (lowest order in 1=z expan-sion of the Green's fun
tion) that is not in
luded in the `random-matrix like'diagrammati
 expansion of (32). It gives a 
ontribution to the 
oe�
ientof the 1=z9 term in the Green's fun
tion. Indeed the following graph 
on-tributing to the expe
tation value h trVH0VH0VH0VH0i does not appear inour approximation s
heme:
12 R.A. Janik et al.This is our main approximation. To convince oneself that this is really anapproximation one can examine the �rst graph (lowest order in 1=z expan-sion of the Green's function) that is not included in the `random-matrix like'diagrammatic expansion of (32). It gives a contribution to the coe�cientof the 1=z9 term in the Green's function. Indeed the following graph con-tributing to the expectation value h trVH0VH0VH0VH0i does not appear inour approximation scheme:�i iH0 j H0 i H0 j H0i j i j =Xi;j �H0ijH0ji�2 6= 0 (33)Fig. 5. Planar and non-planar contributions to �(z). The lines with a dot representG(z).Having said this, we note that the calculation of the resolvent would besimpli�ed considerably if we could show that there exists a random matrixmodel M with a measure P (M) such thath trMnipl; c = �h trVnipl; c + h trVninp� : (34)Indeed, then �(z) and hence G(z) for our problem would simply follow fromthe analogue randommatrix modelH0+M. The main advantage is that nowonly planar graphs in the random matrix model would contribute, for whichthe whole machinery of free random variables applies [10], in particular theaddition law [10,13].To show the existence OF WHAT????????, we �rst note that all thenon-planar parts 
 trV i�np can be absorbed into e�ective connected i-thmoments. This amounts to modifying the probability distribution P (M) tobe di�erent from the probability distribution of the VA's.We may now use the combinatorial relations discussed in [14], betweenconnected and ordinary moments for planar diagrams to reduce the equal-ity (34) just to the equality of moments (dropping the requirement of gluon-connectedness): h trMnipl = h trVni (35)k:/nowak/nowak.ltx November 5, 1999
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al
ulation of the resolvent would besimpli�ed 
onsiderably if we 
ould show that there exists a random matrixmodel M with a measure P (M) su
h thath trMnipl; 
 = �h trVnipl; 
 + h trVninp� : (34)Indeed, then �(z) and hen
e G(z) for our problem would simply follow fromthe analogue random matrix modelH0+M. The main advantage is that nowonly planar graphs in the random matrix model would 
ontribute, for whi
hthe whole ma
hinery of free random variables applies [10℄, in parti
ular theaddition law [10, 13℄.To show the existen
e of su
h random matrix model, we �rst note that allthe non-planar parts 
 trVi�np 
an be absorbed into e�e
tive 
onne
ted i-thmoments. This amounts to modifying the probability distribution P (M) tobe di�erent from the probability distribution of the VA's.We may now use the 
ombinatorial relations dis
ussed in [14℄, between
onne
ted and ordinary moments for planar diagrams to redu
e the equal-ity (34) just to the equality of moments (dropping the requirement of gluon-
onne
tedness): h trMnipl = h trVni (35)



Lo
alization Transitions from Free Random Variables 57with the pertinent measures for ea
h averaging. This is equivalent to �ndinga probability distribution P (M) = exp(�N trV (M)) su
h that the resol-vents and 
onsequently the eigenvalue distributions of M and V 
oin
ide.To this end suppose that the eigenvalue distribution of V has support onthe interval [�1; 1℄. Consider �V(�)=p1� �2. If this fun
tion is a polyno-mial we are done � we may read o� the 
oe�
ients of the random matrixpotential from the formulas of [14℄. In the other 
ase we may approximateit by polynomials to an arbitrary degree of a

ura
y and take the limit ofthe 
orresponding probability distributions. In any 
ase an expli
it formulafor the probability distribution 
an be derived (see e.g. [15℄):dV (z)dz = GV(z + i") +GV(z � i") : (36)A matrix model with su
h a potential will satisfy all our requirements. How-ever to apply the methods of free random variables we need only to knowthat su
h a model exists, the expli
it form of the random matrix potentialV through (36) is unne
essary. This 
on
ludes our proof of existen
e.To summarize, our approximation s
heme for (1) in the form of (32)in
ludes all the planar graphs and resums the single-site res
atterings fromthe non-planar 
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