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LOCALIZATION TRANSITIONS FROM FREERANDOM VARIABLESRomuald A. Janika, Maiej A. Nowaka;b, Gábor Pappand Ismail ZaheddaInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandbGSI, Plankstr. 1, D-64291 Darmstadt, GermanyInstitute for Theoretial Physis, Eötvös UniversityBudapest, HungarydDepartment of Physis and Astronomy, SUNYStony Brook, New York 11794, USA.(Reeived August 20, 1998)We motivate and use the onept of free random variables for the studyof the de-pinning transition of �ux lines in superondutors as reentlydisussed by Hatano and Nelson in one dimension. Our analysis yields nat-urally to a generalization of the onept of Coherent Phase Appproximation(CPA) for nonhermitean Hamiltonians, and is exat for Cauhy random-ness. We derive analytial onditions for the ritial points of the omplexeigenvalue distribution, in very good agreement with numerial alula-tions. We suggest a relation between dimensionally redued nonhermiteanquantum mehanis and weak nonhermitiity.PACS numbers: 05.45.+b, 72.15.Rn, 74.60.Ge1.Reently Hatano and Nelson [1℄ have shown that the de-pinning of �uxlines from olumnar defets in superondutors in D+1-dimensions, maybe mapped onto the world lines of bosons in D-dimensions. The pinningand hene loalization by the olumnar defets is mapped onto an on sitereal randomness, and the de-pinning by the transverse magneti �eld ismapped onto a direted hoping, resulting in nonhermitean quantum me-hanis. While it is generally aepted that all eigenstates are loalizedin one- and two-dimensions in the presene of randomness, it is lear thatthe �ux lines are de-pinned by a strong transverse magneti �eld. The de-pinning in one- and two-dimensions was studied numerially in [1℄, and the(45)



46 R.A. Janik et al.phenomenon of nonhermitean loalization generated a lot of investigations[1�8, 18℄.In this paper, we would like to show that the nonhermitean tight-bindingmodel disussed by Hatano and Nelson in one-dimension an be analyzedin a straightforward way using the onepts of free random variables. InSetion 2 and 3, we introdue the model and motivate the use of the additionlaw for free random variables. In Setion 4, we derive an expliit onditionfor the end-points of the distribution of (loalized) eigenvalues on the realaxis for arbitrary transverse magneti �eld. In Setion 5, we extend ouranalysis to the omplex eigenvalue plane obtaining the omplex eigenvaluedistribution and the ritial values of the magneti �eld. In Setion 6, we usethe unertainty priniple to show that the onstant mode setor of this andrelated models may be amenable to nonhermitean random matrix modelswith weak nonhermitiity [2, 3℄. 2.Following Hatano and Nelson, we onsider the nonhermitean tight--binding Hamiltonian in seond quantized form for D = 1H = H0 + V = NXA=1� t2(e+h yA+1A + e�h yA�1A) + VA yAA� ; (1)where yA is a boson reation operator at site A. Throughout, the lattiespaing a = 1. The diagonal entries are random with elements distributeduniformly between (��;�), and the deterministi part H0 is o�-diagonalwith hopping strengths te�h=2 (t < 0). Here h is the typial strength of the`transverse magneti �eld' in units of the �ux quantum [1℄.The eigenvalues of H are omplex valued for h 6= 0. Due to reality ofthe partition funtion and the symmetry H(�h) = HT (h), the omplexeigenvalues are symmetri under re�etion along the x and y axes. Theirdistribution in the z-plane is shown in Fig. 1, for h = 0:1; 0:3 and � = t = 1.The results are for an ensemble of 100 matries of size 100�100. For h = 0:1
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Loalization Transitions from Free Random Variables 47the eigenvalues are mostly real (loalized). For h = 0:3 the eigenvaluesaround z = 0 are mostly omplex (deloalized). For larger size matries,the width of the rim shrinks to zero in agreement with the results disussedin [1℄.An important question regarding the harater of the spetrum is theourrene of a ritial h(1) for whih a gap near z � 0 sets in for theloalized states. For inreasing h > h(1) the eigenvalues migrate from thereal axis to the omplex plane as also disussed by Feinberg and Zee [9℄. Themigration is total for h = h(2) > h(1) . To try to quantify this and the bulkaspets of the spetrum in Fig. 1, we will analyze (1) using the addition lawfor free random variables [10, 11℄. 3.All the information on the eigenvalue distribution of the Hatano�NelsonHamiltonian is enoded in the Green's funtion:G(z) = � 1z �H0 � V� : (2)The distribution of eigenvalues, whih is one-dimensional in this ase, anbe reonstruted from the disontinuities of G(z). It is onvenient to expressit through G(z) = h�z log det(z �H0 � V)i : (3)The determinant splits into a sum of two terms:det(z �H0 � V) � � t2�N � heNh + e�Nhi+ eNFout(z;V)(1 + : : :) : (4)We see that when h+ log(t=2) > Fout, the latter term an be negleted andthe Green's funtion is G(z) = 0. In the opposite ase, in partiular for largez, G(z) = �zFout (5)(after averaging over V). We will now proeed to �nd the Green's funtionin the latter region.A standard method used in the treatment of lattie models with sitedisorder is the Coherent Phase Approximation (CPA). The basi assump-tion is that one an implement the e�ets of disorder through a salar (i.e.diagonal) self-energy �(z):GCPA(z) = 1N tr 1z �H0 ��(z) � GH0(z ��(z)) ; (6)



48 R.A. Janik et al.where � satis�es � Va ��(z)1� (Va ��(z))GCPA(z)� = 0 : (7)This an be reast in the formGCPA(z) = GV � 1GCPA(z) +�(z)� : (8)We will now show that a solution of the CPA equations is equivalent tothe addition formalism of the Blue's funtions [13℄, whih are the funtionalinverses of the Green's funtions i.e. they satisfyBV(GV(z)) � z : (9)We will now evaluate the Blue's funtion for the random part BV on bothsides of (8): BV(GCPA(z)) = 1GCPA(z) +�(z) (10)and evaluate the Blue's funtion for the deterministi part BH0 on both sidesof (6): BH0(GCPA(z)) = z ��(z) : (11)Adding the last two equations together gives the addition law for randommatries [13℄ BV(GCPA(z)) +BH0(GCPA(z)) � 1GCPA(z) = z : (12)The formal link between the CPA approximation and the addition of freerandom variables has been notied using di�erent methods in [11℄. Howeverthe physial systems onsidered there were of a di�erent variety. In theremaining part of this paper we will apply this method to the analysis of thespetrum of the model. In fat it is quite intriguing why the addition methoddeveloped for random matries i.e. for 0-dimensional systems, works so wellalso for the 1-dimensional Hatano�Nelson model. In the appendix we willreonsider the justi�ation of our method using diagrammati arguments. Inpartiular we will show how one an map a large lass of Feynman graphs forthe Hatano�Nelson Green's funtion into an e�etive random matrix model.4.In this setion we would like to �nd the edge of the spetrum on thereal axis and the density of loalized eigenvalues within our approximation



Loalization Transitions from Free Random Variables 49sheme. To this end we will �rst derive a formula for the resolvent G(z)along the real axis using the addition law for `hermitean' matries. Thenthe density of loalized eigenvalues would follow from the imaginary part ofthe Green's funtion ��(�) = ImG(� + i"), and the edge of the spetrumwould orrespond to a branh point of G(z) or, equivalently, to G0(ze) =1.With this in mind, the resolvent for the random part is simply given byGV(z) = 1N 12� �Z�� NdVz � V = 12� ln z +�z �� (13)with an inverse (Blue's funtion) given by BV = � oth�z, in agreementwith [16℄. The resolvent for the deterministi part isGH0(z) = 1N NXn=1 1z � t os (2�n=N + ih) : (14)In the large N limit GH0(z) = 1=pz2 � t2 for z outside the ellipse de�nedby � xoshh�2 + � ysinhh�2 = t2 (15)and zero inside. The inverse of the resolvent (Blue's funtion) is just BH0 =p1=z2 + t2 .For large z, the resolvent G(z) for (1) along the real axis follows from itsfuntional inverse B[G(z)℄ = z through the addition law [13℄, B = BH0 +BV � 1=z. Spei�allyz =r 1G2 + t2 +� oth�G� 1G (16)and is h-independent. Along the real axis, the end-points ze of the spetrumsatisfy ze�B(z), with dB(z)=dz=0, that is� 1z3 1q 1z2 + t2 � �2sinh2�z + 1z2 = 0 : (17)For � = t = 1 this yields z = 1:5752 or ze = 1:63915.



50 R.A. Janik et al.5.In this setion, we derive analytial onditions for the migration of eigen-values into the omplex plane (see Fig. 1). For the model onsidered here,this orresponds to the elebrated nonhermitean deloalization [1℄.The lous of the eigenvalue distribution appears through the disonti-nuity of the Green's funtion. For one dimensional urves in the omplexplane the density of deloalized states an be reonstruted from the two-dimensional Gauss law in a standard way. Here we will just restrit ourselvesto determining some global harateristis of the spetrum. Reall from Se-tion 3, that the ondition for the disontinuity of the Green's funtion readsFin def� h+ log(t=2) = Fout(z) ; (18)where Fout is determined by the ondition �zFout(z) = G(z). For that,we analytially ontinue G(z) to the z-plane minus the ellipse (15), anduse it to onstrut the potential Fout(z) through Fout = R dz G, with theintegration onstant �xed by the appropriate behavior at in�nity [12℄. Infat this integral an be performed even when the expliit form of G(z) isnot known but only using the expression for the Blue's funtion, that isFout(z) = zG(z) � Z dGB(G) : (19)In this way we obtainFout(z) = +�G oth�G� 1+ log 1 +p1 +G22 � log sinh�G� : (20)The lous of the usp (18) oinides with the position of the omplex eigen-value distribution shown in Fig. 1 as N ! 1. The real (loalized) eigen-values are the remnants of the hermitean addition law disussed above, anddisappear at some ritial value of h = h(2) .Fig. 2 (left) shows the behavior of the ritial usp-line along the realaxis, where the eigenvalue spetra have a branhing point (xbranh), versusthe strength h for whih (18) holds. At xbranh(h(2) ) = ze the loalizedstates disappear from the spetrum. The dots are the numerially generatedbranhing points, while the solid line orresponds to using (18)�(20). Fig. 2(right) shows the same along the imaginary axis for the topmost point ofthe spetrum ymax. For large h, the resolvent drops to zero in the outerregion like 1=z, and using (16) together with (20) we get ymax � sinhh ��2=6 sinhh.
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Fig. 2. xbranh and ymax versus h for t = �=1.The existene of the solution for given h de�nes the ritial value h(1) forwhih the ut starts to develop in the inner ellipse of Fig. 1. The dependeneof h(1) on � is shown in Fig. 3 (solid line). The dotted lines are generatedanalytially by working out the leading ontributions to F in (20), for smallvalues of � (dotted line), and large values of � (long dashed line).
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Fig. 3. h(1) versus �. See text.These results are also reprodued analytially using a semi-irular dis-tribution for the random part, that is �P (Vi) = q4� � V 2i =2� , when � =�2=3!1, as indiated by the thik dashed line in Fig. 3. Then the equa-tion for the Green's funtion in the outer region follows from the semiirularBlue's funtion BsemiirularV = �G+ 1=G:(z � �G)2G2 = 1 + t2G2 : (21)Similarly, we onsider the Cauhy randomness, that is �P (Vi) = =(2+V 2i ). In this ase, the results are exat, as originally suggested in [11℄ forthe hermitean ase. In partiular, (20) is nowF (z) = log �i + z +p(i + z)2 � t2�� log 2 : (22)Using (18) with (22) in the outside leads the position of the `usp' for Cauhyrandomness. In this ase, the ritial value h(1) for the onset of deloalization



52 R.A. Janik et al.is given in losed form through sinhh(1) = =t, as notied �rst by Brezin andZee [18℄ using di�erent arguments.Finally, the dependene of the eigenvalue distribution shown in Fig. 1 on1=N , may be qualitatively understood by using the irular version of (1).This amounts to trading t=2eh!r and t=2e�h!0. For a uniform distribu-tion of eigenvalues, the seular equation isYi (�� Vi) = �(�r)N : (23)For small values of �, hene Vi, (23) an be solved perturbatively, with theansatz �j = rei2�j=N + "j , giving "j = �Pi Vi=N . Typially, hN2"2j i =NhV 2i i = N�2=3, showing the orretions to be " � 1=pN in large N . Thisresult ompares well with the numerial estimate using Æ� = max (j�ij � j�j j)between the outer and inner eigenvalues as shown in Fig. 4.
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Fig. 4. Æ� versus N (matrix size) for r=�=1.One should note the intriguing possibility of observing a universal be-havior whih is exatly haraterized by the sale 1=pN in the imaginarydiretion. This regime hristened `weak nonhermitiity' has reeived muhattention lately [2,3℄, and it would be interesting to extend it to the presentontext. 6.The previous analysis borrows on some of the methods disussed in [12℄for random matrix models. However, the Hatano�Nelson model di�ers in animportant way from matrix models: it knows about the dimensionality ofspae. Reently Efetov [3℄ has used supersymmetri methods to argue thatin 0-dimension the model redues to a nonhermitean random matrix modelwith weak-nonhermitiity [2℄, and suggested that the redution may yield tonew developments in the ontext of oriented quantum haos.The redution is atually understandable from the point of view of on-tinuum quantum mehanis of onstant modes. The ontinuum version of (1)is H = (p + ih)2 + V, where p is the D-dimensional momentum and V the



Loalization Transitions from Free Random Variables 53random site potential. The redution to 0-dimension means that V is x-independent. Classially this would imply that p = 0. Quantum mehani-ally, however, p �utuates. In a box of size N , p � W= DpN by the uner-tainty priniple. Hene, the redution of H to H� in 0-dimension amountsto H� = V + i2hDpN W : (24)For su�iently random hopping, the result is a random matrix model withsmall nonhermitiity in general. For D=2 this is just the ase of weak non-hermitiity disussed by Fyodorov et al. [2℄. For V;W hosen in the GOEensemble as motivated by V real in the D-dimensional version of (1), ourarguments suggest loalization for D=2 in (24) as also noted in [3℄.The present arguments may also extend to other models. For example,the (massless) QCD Dira operator in a D-dimensional Eulidean box ofvolume N at �nite hemial potential � is H = D+1(iara+ i�D), where's are Dira matries with a = 1; :::;D, and r the ovariant derivativeswith external gauge �elds. The squared operator,H� = (ira)(ira) + i2�ab[ira; irb℄ + 2i�(irD) (25)with �ab = i[a; b℄=2, is analogous to (24). For su�iently random hoppingand irD � 1= DpN , loalization may take plae for the GOE ensemble inD=2 dimensions at �nite �. Sine two-dimensional QCD, in the limit of alarge number of olors, exhibits quasi long-range order, this issue is worthinvestigating. 7.We have shown that the Hatano�Nelson model (1), may be understoodin terms of the addition law for free random variables, and obtained ana-lytial onditions for the end-points of the omplex eigenvalue spetra thatompare well with numeris. Our diagrammati approximation satis�es thenonhermitean analogue of the CPA equation, and is exat for Cauhy ran-domness [18℄. Corretions for generalized randomness an be sought in theremaining non-planar graphs in the form of two-site, three-site, et. resat-terings. In the light of reent disussion [19℄, it would be interesting to on-sider the extension of our method to higher dimensions. For two-dimensionsthis looks possible through (12), by modifying the Blue's funtion for thedeterministi matrix H0 to inorporate the struture of the two dimensionallattie. The result involves ellipti funtions.



54 R.A. Janik et al.Finally, we have presented generi arguments for how the onstant modesof the model in D-dimensions and for su�iently random hopping, relate torandom matrix models with weak nonhermitiity. For D=2 our argumentson�rm a reent observation by Efetov [3℄.We would like to thank Prof. D. Nelson for suggesting that we look atthis problem, E. Gudowska-Nowak for disussions. IZ thanks Y. Fyodorovand A. Zee for disussions. RJ thanks the Nulear Theory Group at StonyBrook, where part of this work was done. This work was supported inpart by the US DOE grant DE-FG-88ER40388, by the Polish GovernmentProjet (KBN) grants 2P03B04412 and 2P03B00814 and by the Hungariangrants OTKA T022931 and F019689.AppendixIn this setion, we proeed to motivate the use of free random variablesfor the Hamiltonian (1) from a diagrammati standpoint. Note that thephysial meaning of our approximation sheme is most learly spelled outusing the equivalene with the Coherent Potential Approximation (CPA. Thedisussion below is not needed to apply our method to spei� ases but mayperhaps help in emphasizing the features of the model whih are essentialfor the method to have a hane of working (e.g. translational invariane).As we saw all the information about the behavior of the model (1) isenoded in the Green's funtion (2). We will now analyze the diagrammatiexpansion of (2) and try to reinterpret a large lass of graphs as oming froma ertain random matrix model.For that, we note that the diagrammati expansion for (1) follows thatof random matrix models [12℄ to the exeption that the V-propagators arehanged to hVab Vdi = ÆadÆbÆbd = Feynman graph:�a db  (26)This is, however, markedly di�erent from the random matrix propagatorhMabMdi = 1N ÆadÆb = Feynman graph:�a db  (27)In partiular there is no `double line' struture in (26), as visualized by ournotation (all the lines are pinhed to a point). Also there is no aompanying



Loalization Transitions from Free Random Variables 55fator of 1=N . This auses the fat that for the Hatano�Nelson Green'sfuntion there is no natural separation of graphs into planar and subleadingnon-planar ones. We will now show that nevertheless a lass of graphs forG(z) an be rewritten in a random matrix like way.Consider an expetation value hV � C � Vi with C some translationallyinvariant matrix. Then we haveDVab � Cb � VdE = Feynman graph:�a db C  = ÆadCaa|{z}no summation!= Feynman graph:�a db C  = Æad � 1N tr C (28)Note that the result is the same as if it were alulated for a random matrixmodel with the propagator (27). This enables us to use the double linepropagators in the Hatano�Nelson model.We will now proeed to onsider the diagrammati expansion of theresolvent G(z) = tr G(z) for this modelG(z) = � 1z �H0 � V� = 1z �H0 ��(z) ; (29)where �(z) is the 1-partile irreduible (1PI) self-energy. Typial ontribu-tions to �(z) are shown in Fig. 5. They may be deomposed into planar(gluon-)onneted (pl; ) (see [13℄ for the preise de�nition) and non-planar1PI ones (np). Generially,�(z) =Xn (h trVG(z)V : : : G(z)Vipl; : + h trVG(z)V : : :G(z)Vinp) : (30)The planar piee is equal toNXi=1 hV ni ipl;  � (G(z)ii)n�1 = h trVnipl; G(z)n�1 : (31)In the last equality we made use of the invariane of H0 under lattie trans-lations. The non-planar piee is, as it stands, muh more ompliated. Here,we will approximate G(z) by its diagonal part G(z) � 1, i.e. retaining onlythe single-site resattering. Hene�(z) =Xn �h trVnipl;  + h trVninp� �G(z)n�1 : (32)



56 R.A. Janik et al.This is our main approximation. To onvine oneself that this is really anapproximation one an examine the �rst graph (lowest order in 1=z expan-sion of the Green's funtion) that is not inluded in the `random-matrix like'diagrammati expansion of (32). It gives a ontribution to the oe�ientof the 1=z9 term in the Green's funtion. Indeed the following graph on-tributing to the expetation value h trVH0VH0VH0VH0i does not appear inour approximation sheme:
12 R.A. Janik et al.This is our main approximation. To convince oneself that this is really anapproximation one can examine the �rst graph (lowest order in 1=z expan-sion of the Green's function) that is not included in the `random-matrix like'diagrammatic expansion of (32). It gives a contribution to the coe�cientof the 1=z9 term in the Green's function. Indeed the following graph con-tributing to the expectation value h trVH0VH0VH0VH0i does not appear inour approximation scheme:�i iH0 j H0 i H0 j H0i j i j =Xi;j �H0ijH0ji�2 6= 0 (33)Fig. 5. Planar and non-planar contributions to �(z). The lines with a dot representG(z).Having said this, we note that the calculation of the resolvent would besimpli�ed considerably if we could show that there exists a random matrixmodel M with a measure P (M) such thath trMnipl; c = �h trVnipl; c + h trVninp� : (34)Indeed, then �(z) and hence G(z) for our problem would simply follow fromthe analogue randommatrix modelH0+M. The main advantage is that nowonly planar graphs in the random matrix model would contribute, for whichthe whole machinery of free random variables applies [10], in particular theaddition law [10,13].To show the existence OF WHAT????????, we �rst note that all thenon-planar parts 
 trV i�np can be absorbed into e�ective connected i-thmoments. This amounts to modifying the probability distribution P (M) tobe di�erent from the probability distribution of the VA's.We may now use the combinatorial relations discussed in [14], betweenconnected and ordinary moments for planar diagrams to reduce the equal-ity (34) just to the equality of moments (dropping the requirement of gluon-connectedness): h trMnipl = h trVni (35)k:/nowak/nowak.ltx November 5, 1999
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Fig. 5. Planar and non-planar ontributions to �(z). The lines with a dot representG(z).Having said this, we note that the alulation of the resolvent would besimpli�ed onsiderably if we ould show that there exists a random matrixmodel M with a measure P (M) suh thath trMnipl;  = �h trVnipl;  + h trVninp� : (34)Indeed, then �(z) and hene G(z) for our problem would simply follow fromthe analogue random matrix modelH0+M. The main advantage is that nowonly planar graphs in the random matrix model would ontribute, for whihthe whole mahinery of free random variables applies [10℄, in partiular theaddition law [10, 13℄.To show the existene of suh random matrix model, we �rst note that allthe non-planar parts 
 trVi�np an be absorbed into e�etive onneted i-thmoments. This amounts to modifying the probability distribution P (M) tobe di�erent from the probability distribution of the VA's.We may now use the ombinatorial relations disussed in [14℄, betweenonneted and ordinary moments for planar diagrams to redue the equal-ity (34) just to the equality of moments (dropping the requirement of gluon-onnetedness): h trMnipl = h trVni (35)



Loalization Transitions from Free Random Variables 57with the pertinent measures for eah averaging. This is equivalent to �ndinga probability distribution P (M) = exp(�N trV (M)) suh that the resol-vents and onsequently the eigenvalue distributions of M and V oinide.To this end suppose that the eigenvalue distribution of V has support onthe interval [�1; 1℄. Consider �V(�)=p1� �2. If this funtion is a polyno-mial we are done � we may read o� the oe�ients of the random matrixpotential from the formulas of [14℄. In the other ase we may approximateit by polynomials to an arbitrary degree of auray and take the limit ofthe orresponding probability distributions. In any ase an expliit formulafor the probability distribution an be derived (see e.g. [15℄):dV (z)dz = GV(z + i") +GV(z � i") : (36)A matrix model with suh a potential will satisfy all our requirements. How-ever to apply the methods of free random variables we need only to knowthat suh a model exists, the expliit form of the random matrix potentialV through (36) is unneessary. This onludes our proof of existene.To summarize, our approximation sheme for (1) in the form of (32)inludes all the planar graphs and resums the single-site resatterings fromthe non-planar ontributions to the resolvent. It is easily implemented inthe matrix analogue using the addition law for H0 +M, as we have nowshown. REFERENCES[1℄ N. Hatano, D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996), Phys. Rev. B56,8651 (1997).[2℄ Y.V. Fyodorov, B.A. Khoruzhenko, H.-J. Sommers, Phys. Rev. Lett. 79, 557(1997).[3℄ K.B. Efetov, Phys. Rev. Lett. 79, 491 (1997), Phys. Rev. B56, 9630 (1997).[4℄ P.W. Brouwer, P.G. Silvestrov, C.W.J. Beenakker, Phys. Rev. B56, R4333(1997).[5℄ J. Feinberg, A. Zee Nul. Phys. B504, 579 (1997), e-prints ond-mat/9706218,ond-mat/9710040.[6℄ D.R. Nelson, N.M. Shnerb, e-print ond-mat/9708071, N.M. Shnerb, D.R.Nelson, e-print ond-mat/9801111.[7℄ I. Ya. Goldsheid, B.A. Khoruzhenko, Phys. Rev. Lett. 80, 2897 (1998).[8℄ N. Hatano, e-print ond-mat/9801283.[9℄ J. Feinberg, A. Zee, e-print ond-mat/9703087.
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