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We motivate and use the concept of free random variables for the study
of the de-pinning transition of flux lines in superconductors as recently
discussed by Hatano and Nelson in one dimension. Our analysis yields nat-
urally to a generalization of the concept of Coherent Phase Appproximation
(CPA) for nonhermitean Hamiltonians, and is exact for Cauchy random-
ness. We derive analytical conditions for the critical points of the complex
eigenvalue distribution, in very good agreement with numerical calcula-
tions. We suggest a relation between dimensionally reduced nonhermitean
quantum mechanics and weak nonhermiticity.

PACS numbers: 05.45.+b, 72.15.Rn, 74.60.Ge

1.

Recently Hatano and Nelson [1] have shown that the de-pinning of flux
lines from columnar defects in superconductors in D-+1-dimensions, may
be mapped onto the world lines of bosons in D-dimensions. The pinning
and hence localization by the columnar defects is mapped onto an on site
real randomness, and the de-pinning by the transverse magnetic field is
mapped onto a directed hoping, resulting in nonhermitean quantum me-
chanics. While it is generally accepted that all eigenstates are localized
in one- and two-dimensions in the presence of randomness, it is clear that
the flux lines are de-pinned by a strong transverse magnetic field. The de-
pinning in one- and two-dimensions was studied numerically in [1], and the
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phenomenon of nonhermitean localization generated a lot of investigations
[1-8, 18].

In this paper, we would like to show that the nonhermitean tight-binding
model discussed by Hatano and Nelson in one-dimension can be analyzed
in a straightforward way using the concepts of free random variables. In
Section 2 and 3, we introduce the model and motivate the use of the addition
law for free random variables. In Section 4, we derive an explicit condition
for the end-points of the distribution of (localized) eigenvalues on the real
axis for arbitrary transverse magnetic field. In Section 5, we extend our
analysis to the complex eigenvalue plane obtaining the complez eigenvalue
distribution and the critical values of the magnetic field. In Section 6, we use
the uncertainty principle to show that the constant mode sector of this and
related models may be amenable to nonhermitean random matrix models
with weak nonhermiticity [2, 3].

2.

Following Hatano and Nelson, we consider the nonhermitean tight-
-binding Hamiltonian in second quantized form for D =1

N
t _
H=Hy+V= Z <§(e+hc:r4+1c,4+e hci‘ch)—FVAchA) , (1)
A=1

where CL is a boson creation operator at site A. Throughout, the lattice

spacing ¢ = 1. The diagonal entries are random with elements distributed
uniformly between (—A, A), and the deterministic part Hy is off-diagonal
with hopping strengths te*” /2 (t < 0). Here h is the typical strength of the
‘transverse magnetic field’ in units of the flux quantum [1].

The eigenvalues of H are complex valued for h # 0. Due to reality of
the partition function and the symmetry H(—h) = H”(h), the complex
eigenvalues are symmetric under reflection along the x and y axes. Their
distribution in the z-plane is shown in Fig. 1, for A = 0.1,0.3 and A =t = 1.
The results are for an ensemble of 100 matrices of size 100 x 100. For h = 0.1
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the eigenvalues are mostly real (localized). For h = 0.3 the eigenvalues
around z = 0 are mostly complex (delocalized). For larger size matrices,
the width of the rim shrinks to zero in agreement with the results discussed
in [1].

An important question regarding the character of the spectrum is the
occurrence of a critical hgl) for which a gap near z ~ 0 sets in for the
localized states. For increasing h > hgl) the eigenvalues migrate from the
real axis to the complex plane as also discussed by Feinberg and Zee [9]. The

migration is total for h = hg) > hgl). To try to quantify this and the bulk
aspects of the spectrum in Fig. 1, we will analyze (1) using the addition law
for free random variables [10,11].

3.

All the information on the eigenvalue distribution of the Hatano—Nelson
Hamiltonian is encoded in the Green’s function:

G(z) = <$> . (2)

The distribution of eigenvalues, which is one-dimensional in this case, can
be reconstructed from the discontinuities of G(z). It is convenient to express
it through

G(z) = (0, logdet(z — Hy — V)) . (3)

The determinant splits into a sum of two terms:
AN
det(z - Hy — V) ~ <§> . [eNh + e—Nh] + eNFouc(z,V)(l 4. ) (4)

We see that when h + log(t/2) > Foyut, the latter term can be neglected and
the Green’s function is G(z) = 0. In the opposite case, in particular for large
z’

G(z) = 0, Fout (5)

(after averaging over V). We will now proceed to find the Green’s function
in the latter region.

A standard method used in the treatment of lattice models with site
disorder is the Coherent Phase Approximation (CPA). The basic assump-
tion is that one can implement the effects of disorder through a scalar (i.e.
diagonal) self-energy ¥(z):

1

G ) = L s = Omlz - 5 (6)
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where X satisfies

V, — X(z) B
<1 Sy Gy E(z))GCPA(z)> =0 (7)
This can be recast in the form
1

We will now show that a solution of the CPA equations is equivalent to
the addition formalism of the Blue’s functions [13], which are the functional
inverses of the Green’s functions i.e. they satisfy

By(Gy(2)) = z. (9)

We will now evaluate the Blue’s function for the random part By on both
sides of (8):
1
CPA _
By(G™ (7)) = GOPA (2 + X(2) (10)

and evaluate the Blue’s function for the deterministic part By, on both sides
of (6):
B, (G (2)) = 2 — 2(2). (11)

Adding the last two equations together gives the addition law for random
matrices [13]

1

By(G™(2)) + By (G (2)) — GOPA ()

=z. (12)
The formal link between the CPA approximation and the addition of free
random variables has been noticed using different methods in [11]. However
the physical systems considered there were of a different variety. In the
remaining part of this paper we will apply this method to the analysis of the
spectrum of the model. In fact it is quite intriguing why the addition method
developed for random matrices i.e. for 0-dimensional systems, works so well
also for the 1-dimensional Hatano—Nelson model. In the appendix we will
reconsider the justification of our method using diagrammatic arguments. In
particular we will show how one can map a large class of Feynman graphs for
the Hatano—Nelson Green’s function into an effective random matrix model.

4.

In this section we would like to find the edge of the spectrum on the
real axis and the density of localized eigenvalues within our approximation
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scheme. To this end we will first derive a formula for the resolvent G(z)
along the real axis using the addition law for ‘hermitean’ matrices. Then
the density of localized eigenvalues would follow from the imaginary part of
the Green’s function wv(A) = ImG(\ + ie), and the edge of the spectrum
would correspond to a branch point of G(z) or, equivalently, to G'(z,) = oc.

With this in mind, the resolvent for the random part is simply given by

1

1 Ndv 1 z+ A
N 2A

2V 24" Z_A

—r

Gy(z) = (13)

L

with an inverse (Blue’s function) given by By = Acoth Az, in agreement
with [16]. The resolvent for the deterministic part is
1 & 1

GH()(Z) = NZ 2z — tcos (27T77,/N+'Lh) ‘

(14)

In the large N limit Gp,(z) = 1/V2? — t? for z outside the ellipse defined
by

T \2 Y oN\2
=1 15
(o) * (i) (15)
and zero inside. The inverse of the resolvent (Blue’s function) is just By, =

V1/22 +t2.

For large z, the resolvent G(z) for (1) along the real axis follows from its
functional inverse B[G(z)] = z through the addition law [13], B = Bpg, +
By — 1/z. Specifically

z:wé—l—t?—i—AcothAG—é (16)

and is h-independent. Along the real axis, the end-points z, of the spectrum
satisfy z, =B(z.), with dB(z.)/dz=0, that is

2
LT a1y (17)

2 [ p snh’Az 2
z

For A =t =1 this yields z, = 1.5752 or 2z, = 1.63915.
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5.

In this section, we derive analytical conditions for the migration of eigen-
values into the complex plane (see Fig. 1). For the model considered here,
this corresponds to the celebrated nonhermitean delocalization [1].

The locus of the eigenvalue distribution appears through the disconti-
nuity of the Green’s function. For one dimensional curves in the complex
plane the density of delocalized states can be reconstructed from the two-
dimensional Gauss law in a standard way. Here we will just restrict ourselves
to determining some global characteristics of the spectrum. Recall from Sec-
tion 3, that the condition for the discontinuity of the Green’s function reads

def
Fip S h+log(t/2) = Fou(2), (18)

where Fyy is determined by the condition 0,Fou(z) = G(z). For that,
we analytically continue G(z) to the z-plane minus the ellipse (15), and
use it to construct the potential Fyyi(z) through Foy = [dz G, with the
integration constant fixed by the appropriate behavior at infinity [12]. In
fact this integral can be performed even when the explicit form of G(z) is
not known but only using the expression for the Blue’s function, that is

Fou(2) = 2G(z) — / dGB(G). (19)

In this way we obtain

Fout(z) = +AGcoth AG — 1
1+\/1+G2_ sinh AG
— .

1
+ log A

log (20)
The locus of the cusp (18) coincides with the position of the complez eigen-
value distribution shown in Fig. 1 as N — oo. The real (localized) eigen-
values are the remnants of the hermitean addition law discussed above, and
disappear at some critical value of h = hg).

Fig. 2 (left) shows the behavior of the critical cusp-line along the real

axis, where the eigenvalue spectra have a branching point (Zpranch), versus

the strength h for which (18) holds. At @prancn(hS)) = z the localized
states disappear from the spectrum. The dots are the numerically generated
branching points, while the solid line corresponds to using (18)—(20). Fig. 2
(right) shows the same along the imaginary axis for the topmost point of
the spectrum ymax. For large h, the resolvent drops to zero in the outer
region like 1/z, and using (16) together with (20) we get ymax =~ sinhh —
A? /6 sinh h.
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O P, N W >

Fig.2. pranch and ymax versus h for t = A=1.

The existence of the solution for given h defines the critical value hgl) for
which the cut starts to develop in the inner ellipse of Fig. 1. The dependence
of hgl) on A is shown in Fig. 3 (solid line). The dotted lines are generated
analytically by working out the leading contributions to F' in (20), for small
values of A (dotted line), and large values of A (long dashed line).
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Fig. 3. A versus A. See text.

These results are also reproduced analytically using a semi-circular dis-
tribution for the random part, that is 7P(V;) = /47 — V:2/27, when 7 =

A?/3 — o0, as indicated by the thick dashed line in Fig. 3. Then the equa-
tion for the Green’s function in the outer region follows from the semicircular
Blue’s function Biymicireular — +G 4 1/G:

(z —7G)*G? =1+ 2G> (21)

Similarly, we consider the Cauchy randomness, that is 7 P(V;) = v/(y? +
V2). In this case, the results are exact, as originally suggested in [11] for
the hermitean case. In particular, (20) is now

F(z) =log (z”y + 24/ (iy+2)? — t2) —log2. (22)

Using (18) with (22) in the outside leads the position of the ‘cusp’ for Cauchy
(1)

randomness. In this case, the critical value h¢ * for the onset of delocalization
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(1

is given in closed form through sinhh,
Zee [18] using different arguments.

Finally, the dependence of the eigenvalue distribution shown in Fig. 1 on
1/N, may be qualitatively understood by using the circular version of (1).
This amounts to trading ¢/2e" —r and ¢/2e~" — 0. For a uniform distribu-
tion of eigenvalues, the secular equation is

10 -7 = (="

2

) = v/t, as noticed first by Brezin and

(23)

For small values of A, hence V;, (23) can be solved perturbatively, with the
ansatz \; = rei2mi/N 4 £j, giving €; = — ). V;/N. Typically, <N255> =
N(V?) = NA?/3, showing the corrections to be e ~ 1/v/N in large N. This
result compares well with the numerical estimate using 0A = max (|\;| — |A;|)
between the outer and inner eigenvalues as shown in Fig. 4.
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Fig.4. dA versus N (matrix size) for r=A=1.

One should note the intriguing possibility of observing a universal be-
havior which is exactly characterized by the scale 1/ V/N in the imaginary
direction. This regime christened ‘weak nonhermiticity’ has received much
attention lately [2,3], and it would be interesting to extend it to the present
context.

6.

The previous analysis borrows on some of the methods discussed in [12]
for random matrix models. However, the Hatano—Nelson model differs in an
important way from matrix models: it knows about the dimensionality of
space. Recently Efetov [3] has used supersymmetric methods to argue that
in 0-dimension the model reduces to a nonhermitean random matrix model
with weak-nonhermiticity [2], and suggested that the reduction may yield to
new developments in the context of oriented quantum chaos.

The reduction is actually understandable from the point of view of con-
tinuum quantum mechanics of constant modes. The continuum version of (1)
is H = (p+ ih)? +V, where p is the D-dimensional momentum and V the
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random site potential. The reduction to 0-dimension means that V is z-
independent. Classically this would imply that p = 0. Quantum mechani-
cally, however, p fluctuates. In a box of size N, p ~ W/ ¥N by the uncer-
tainty principle. Hence, the reduction of H to H, in 0-dimension amounts
to

i2h
VN

For sufficiently random hopping, the result is a random matrix model with
small nonhermiticity in general. For D=2 this is just the case of weak non-
hermiticity discussed by Fyodorov et al. [2]. For V, W chosen in the GOE
ensemble as motivated by V real in the D-dimensional version of (1), our
arguments suggest localization for D=2 in (24) as also noted in [3].

The present arguments may also extend to other models. For example,
the (massless) QCD Dirac operator in a D-dimensional Euclidean box of
volume N at finite chemical potential y is H = yP+1(i72V® +ipuy?), where
~’s are Dirac matrices with ¢ = 1,..., D, and V the covariant derivatives
with external gauge fields. The squared operator,

H.=V+

wW. (24)

H, = (iV9)(iV®) + %aab[iva,iv”] + 2iu(iVP) (25)

with 0% = 4[y?,4%]/2, is analogous to (24). For sufficiently random hopping
and iVP ~ 1/ YN, localization may take place for the GOE ensemble in
D=2 dimensions at finite u. Since two-dimensional QCD, in the limit of a
large number of colors, exhibits quasi long-range order, this issue is worth
investigating.

7.

We have shown that the Hatano-Nelson model (1), may be understood
in terms of the addition law for free random variables, and obtained ana-
lytical conditions for the end-points of the complex eigenvalue spectra that
compare well with numerics. Our diagrammatic approximation satisfies the
nonhermitean analogue of the CPA equation, and is exact for Cauchy ran-
domness [18]. Corrections for generalized randomness can be sought in the
remaining non-planar graphs in the form of two-site, three-site, etc. rescat-
terings. In the light of recent discussion [19], it would be interesting to con-
sider the extension of our method to higher dimensions. For two-dimensions
this looks possible through (12), by modifying the Blue’s function for the
deterministic matrix Hy to incorporate the structure of the two dimensional
lattice. The result involves elliptic functions.
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Finally, we have presented generic arguments for how the constant modes
of the model in D-dimensions and for sufficiently random hopping, relate to
random matrix models with weak nonhermiticity. For D=2 our arguments
confirm a recent observation by Efetov [3].

We would like to thank Prof. D. Nelson for suggesting that we look at
this problem, E. Gudowska-Nowak for discussions. IZ thanks Y. Fyodorov
and A. Zee for discussions. RJ thanks the Nuclear Theory Group at Stony
Brook, where part of this work was done. This work was supported in
part by the US DOE grant DE-FG-88ER40388, by the Polish Government
Project (KBN) grants 2P03B04412 and 2P03B00814 and by the Hungarian
grants OTKA T022931 and F019689.

Appendix

In this section, we proceed to motivate the use of free random variables
for the Hamiltonian (1) from a diagrammatic standpoint. Note that the
physical meaning of our approximation scheme is most clearly spelled out
using the equivalence with the Coherent Potential Approximation (CPA. The
discussion below is not needed to apply our method to specific cases but may
perhaps help in emphasizing the features of the model which are essential
for the method to have a chance of working (e.g. translational invariance).

As we saw all the information about the behavior of the model (1) is
encoded in the Green’s function (2). We will now analyze the diagrammatic
expansion of (2) and try to reinterpret a large class of graphs as coming from
a certain random matrix model.

For that, we note that the diagrammatic expansion for (1) follows that
of random matrix models [12] to the exception that the V-propagators are
changed to

(VyVi) = 0405060 = (26)
ab cd
Feynman graph:”~

This is, however, markedly different from the random matrix propagator

1
(MyMG) = —050; = (27)
b d N d®b ab d
Feynman graph:”

In particular there is no ‘double line’ structure in (26), as visualized by our
notation (all the lines are pinched to a point). Also there is no accompanying
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factor of 1/N. This causes the fact that for the Hatano-Nelson Green’s
function there is no natural separation of graphs into planar and subleading
non-planar ones. We will now show that nevertheless a class of graphs for
G(z) can be rewritten in a random matrix like way.

Consider an expectation value (V-C-V) with C some translationally
invariant matrix. Then we have

VE.clovs) = C = 53Cq
< b d> ab cd N
Feynman graphio summation!
- ¢ =&-Luc (28)
ab cd N

Feynman graph:”

Note that the result is the same as if it were calculated for a random matrix
model with the propagator (27). This enables us to use the double line
propagators in the Hatano—Nelson model.

We will now proceed to consider the diagrammatic expansion of the
resolvent G(z) = tr G(z) for this model

g(z):<z—}}0—v>:z—Hol—E(z)’ (29)

where Y(z) is the 1-particle irreducible (1PI) self-energy. Typical contribu-
tions to X(z) are shown in Fig. 5. They may be decomposed into planar
(gluon-)connected (pl, ¢) (see [13] for the precise definition) and non-planar
1PI ones (np). Generically,

2(z) =Y {(rVG(2)V...G(2)V), o + (t1VG(2)V...G(2)V),,) . (30)

n

The planar piece is equal to

)

N
(Ve (G(2)i)" = (10 V")) . G(2)" " (31)
-1

In the last equality we made use of the invariance of Hg under lattice trans-
lations. The non-planar piece is, as it stands, much more complicated. Here,
we will approzimate G(z) by its diagonal part G(z) - 1, i.e. retaining only
the single-site rescattering. Hence

2(z)=Y ((tr V) et (tr vn>np) G2t (32)

n
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This is our main approximation. To convince oneself that this is really an
approximation one can examine the first graph (lowest order in 1/z expan-
sion of the Green’s function) that is not included in the ‘random-matrix like’
diagrammatic expansion of (32). It gives a contribution to the coefficient
of the 1/2° term in the Green’s function. Indeed the following graph con-
tributing to the expectation value (tr VH)VH VHyVH,) does not appear in
our approximation scheme:

-
-

‘@@ % f L@ = ) #o. 2
ii i

mm

Fig. 5. Planar and non-planar contributions to X(z). The lines with a dot represent

G(2).

Having said this, we note that the calculation of the resolvent would be
simplified considerably if we could show that there ezists a random matrix
model M with a measure P(M) such that

(M), = (v, + (V) (34)

Indeed, then X(z) and hence G(z) for our problem would simply follow from
the analogue random matrix model Hy+.M. The main advantage is that now
only planar graphs in the random matrix model would contribute, for which
the whole machinery of free random variables applies [10], in particular the
addition law [10,13].

To show the existence of such random matrix model, we first note that all
the non-planar parts <tr Vi>np can be absorbed into effective connected -th

moments. This amounts to modifying the probability distribution P(M) to
be different from the probability distribution of the V4’s.

We may now use the combinatorial relations discussed in [14], between
connected and ordinary moments for planar diagrams to reduce the equal-
ity (34) just to the equality of moments (dropping the requirement of gluon-
connectedness):

(tr M) = (tr V") (35)
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with the pertinent measures for each averaging. This is equivalent to finding
a probability distribution P(M) = exp(—N tr V(M)) such that the resol-
vents and consequently the eigenvalue distributions of M and V coincide.

To this end suppose that the eigenvalue distribution of V has support on
the interval [—1,1]. Consider py(X)/v1 — X2, If this function is a polyno-
mial we are done — we may read off the coefficients of the random matrix
potential from the formulas of [14]. In the other case we may approximate
it by polynomials to an arbitrary degree of accuracy and take the limit of
the corresponding probability distributions. In any case an explicit formula
for the probability distribution can be derived (see e.g. [15]):

dV (2)
dz

= Gy(z +ie) + Gy(z — ie) . (36)

A matrix model with such a potential will satisfy all our requirements. How-
ever to apply the methods of free random variables we need only to know
that such a model exists, the explicit form of the random matrix potential
V through (36) is unnecessary. This concludes our proof of existence.

To summarize, our approximation scheme for (1) in the form of (32)
includes all the planar graphs and resums the single-site rescatterings from
the non-planar contributions to the resolvent. It is easily implemented in
the matrix analogue using the addition law for Hy + M, as we have now
shown.
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