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ON POLYNOMIAL APPROXIMATION OF THESTATIC VORTEX IN ABELIAN HIGGS MODEL�J. KarkowskiInstitute of Physis, Jagellonian University30-064 Kraków, Reymonta 4, Polandand Z. �wierzy«skiInstitute of Physis, Pedagogial UniversityPodhor¡»yh 2, 30-084 Kraków, Poland(Reeived June 2, 1998)The stati vortex solution in Abelian Higgs model with small ratio ofvetor and Higgs partile masses is onsidered. Several formulae approxi-mating this solution are disussed. The auray of these approximationsis tested by numerial omputations.PACS numbers: 11.27.+d, 11.15.K1. IntrodutionNowadays vortex solutions are found to be interesting in many areasof physis. Their investigations an help in better understanding of somephenomena in �eld theory, osmology and ondensed matter physis [1℄. It israther di�ult to obtain vortex solutions sine one has usually to solve highlynon-linear, very ompliated di�erential equations. Therefore appropriateanalytial and numerial methods must be worked out and applied to makesome progress in this area.One of the simplest systems possessing vortex solution is the AbelianHiggs model. An exat vortex solution, in the form of in�nite onvergentseries, was found for this model in the so-alled Bogomolny limit (the massesof the salar and vetor bosons are the same) [2℄. However in this limit theequations of motion redue to the �rst order di�erential equations and theunderlying methods an not be simply applied in general ase.� This work was supported in part by KBN grant No 2 P03B 095 13.(73)



74 J. Karkowski, Z. �wierzy«skiReently in the Abelian Higgs model a polynomial approximation wasextensively used to investigate exited vortex [3,4℄. This method gives ana-lytial formulae simple enough to be applied in further omputations. How-ever, it is neessary to estimate the error of this approximation and this anbe done by a omparison with the numerial solution.The goal of the present paper is twofold. First we would like to test someapproximating formulae for the stati vortex solution proposed in paper[3℄. These analyti formulae were obtained in the limit � ! 0 where �is the ratio of vetor and Higgs partile masses. Our investigations arealso limited to small values of �. Seond we would like to present morepreise analytial approximations. The aurate analytial and numerialresults for the stati vortex solution an be useful in many problems apartfrom the exited vortex. For example, equations governing evolution of aurved vortex [5℄ involve onstants whih are determined by the stati vortexsolution.Our paper is organized as follows. In Se. 2 we shortly review the simpleanalyti formulae approximating the stati vortex solution. As mentionedabove these formulae were introdued and disussed in more detail in [3℄.We also ompare the results obtained this way with numerial approxima-tions to test the auray of the algorithm. In Se. 3 we propose severalimprovements of this method to get more preise analytial approximationsand numerial results valid in wider region than the previous ones. Finallyin Se. 4 we present some general remarks and onlusions summarizing ourpaper. 2. Simple approximationsThe Abelian Higgs model in 3 + 1-dimensional Minkowski spae-time isdesribed by the following Euler�Lagrange equations(�� + iqA�)(�� + iqA�)�+ �2��j�j2 � 2m2� � = 0; (1)��F �� = iq(������ �����)� 2q2A� j�j2: (2)The Higgs �eld �(x) is omplex valued, the star denotes the omplexonjugation. The signature of metri of the spae-time is (� + ++). Thestati Abrikosov�Nielsen�Olesen solution [6℄ represents a straight linear, in-�nite vortex. The unit topologial harge vortex lying along the z-axis anbe obtained from the equations (1), (2) by imposing on them the axially



On Polynomial Approximation : : : 75symmetri Ansatz �(�; �) = r2m2� ei�F (�) ;A0 = 0 ; A3 = 0 ;A1 = sin(�)�(�)� 1q� ;A2 = � os(�)�(�)� 1q� : (3)Here � = p(x1)2 + (x2)2 and � = artan(x2=x1) are the standard polaroordinates in the (x1; x2) plane.The Ansatz (3) together with the resaling of the � variabler = 2m2� ; (4)leads to the seond order di�erential equations for the �elds F (r) and �(r)F 00 + F 0r � �2r2 F + 12(F � F 3) = 0 ; (5)�00 � �0r � �2F 2� = 0 ; (6)where prime denotes di�erentiation with respet to r and � = p2q2=� isthe only remaining free parameter.To guarantee the vortex solution to be regular on x3-axis and to have�nite energy per unit of length in x3 diretion the above equations must besupplemented by the boundary onditionsF (0) = 0 ; F (1) = 1 ; (7)�(0) = 1 ; �(1) = 0 : (8)The asymptoti form of � an be easily obtained from Eqs (6), (8) sim-pli�ed by putting F = 1. Thus we get�asym(r) = 0rK1(�r) � 0r�r2 exp(��r) ; (9)where K1 is the modi�ed Bessel funtion [7℄ and 0 is a onstant. Theasymptoti behaviour of F (r) strongly depends on � [8℄. For � < 12 it isdetermined mainly by the term �2F=r2 and an be obtained from Eqs (5), (7)Fasym1 = 1� 20��(1� 4�2)r exp(�2�r) ; (10)



76 J. Karkowski, Z. �wierzy«skiwhile for � > 12 the Higgs term (F � F 3)=2 is more important. In this aseEq. (5) linearized in (F � 1) gives the following resultFasym2 = 1 + 1K0(r) � 1 + 1r �2r exp(�r) : (11)Here K0 denotes the zero-order modi�ed Bessel funtion [7℄ and 1 is aonstant.The asymptoti forms of F and � were used in [3℄ to get the approximatestati vortex solution. In the neighbourhood of r = 0 the �elds F and� were approximated by low order polynomials obtained as power seriessolutions of Eqs (5), (6). These polynomials were smoothly mathed withthe appropriate asymptotis at some point r = r0 i.e. the funtions F (r)and �(r) were required to be ontinuous at r = r0 together with their �rstderivatives Fpoly(r0) = Fasym(r0) ; F 0poly(r0) = F 0asym(r0) ; (12)�poly(r0) = �asym(r0) ; �0poly(r0) = �0asym(r0): (13)In the simplest version proposed in [3℄ the stati vortex solution wasapproximated by the following formulaeF (r) = � f1r � 13!f3r3 if r < r0,1 if r > r0 ; (14)�(r) = � 1� 12!�2r2 + 14!�4r4 � 16!�6r6 if r < r0 ;0rK1(r) if r > r0 ; (15)involving four onstants r0; f1; �2; 0. These onstants were �xed by applyingthe mathing onditions desribed above. The other onstants are given byreurrene relations (18) below.In order to get more aurate solutions the formula for F in the regionr > r0 was replaed with a more subtle oneF =s1� 2��r�2 ; (16)obtained from Eq. (5) simpli�ed by negleting the terms with the derivativesof F . In this ase the polynomial approximation of F must be ompletedwith the term proportional to r5F = f1r � 13!f3r3 + 15!f5r5 ; (17)



On Polynomial Approximation : : : 77while the formulae for � remain unhanged although the values of the par-tiular parameters are di�erent. The equations (5), (6) lead to the followingreurrene relations for oe�ients of the polynomialsf3 = 34 �12 + �2� f1;�4 = 3�2f21 ;f5 = 56 �12 + �2� f3 + 52 �16�4 + 12�22 + f21� f1 ;�6 = 5�2f1 (2f3 + 3�2f1) : (18)In Fig. 1 we have ompared the desribed above approximation of theHiggs �eld F with its numerial values obtained by applying standard al-gorithms for sti� di�erential equations [9℄. As we are interested mainly insmall values of � we have limited ourselves to � = 0:05, � = 0:1 and � = 0:2.Sine the values of the �eld � obtained from the numerial omputations andapproximate formula di�er very slightly we have plotted their di�erenes inFig. 2 and the numerial values themselves in Fig. 3. The numerial valuesof the free parameters f1; �2; r0; 0 are given in Table I and Table II.TABLE IFasym = 1� f1 h2 r0 00.02 0.6505427 0.00157722 2.305767 0.0200040.1 0.6646855 0.02362296 2.256706 0.10050270.2 0.6929167 0.06904716 2.164762 0.2040623 TABLE IIFasym =p1� 2(�=r)2� f1 h2 r0 00.02 0.4285536 0.001431718 2.106883 0.02000660.1 0.443162 0.02028046 2.068759 0.10078020.2 0.469365 0.05754442 2.000099 0.2056864
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num()Fig. 1. The approximate and numerial values of the �eld F (a) � � = 0:05,(b) � � = 0:1, () � � = 0:2.
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Fig. 2. The di�erenes between approximate and numerial values of the �eld � for� = 0:05; 0:1; 0:2.
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Fig. 3. The numerial values of the �eld � for � = 0:05; 0:1; 0:2.Let us note that the approximate formula for the funtion � is quitegood while the approximation of F is muh worse. This is the prie forsimpliity of the analytial expressions. The �eld F tends very quikly toits asymptoti form and suh behaviour an be hardly desribed by simpleanalytial formula.3. Improved approximate solutionsThe main defet of the approximate formulae onsidered in the previoussetion is the behaviour of the �eld F in the region of intermediate values ofr partiularly in the neighbourhood of the mathing point r0. One an try toimprove that approximation by using the higher order polynomial solutionfor the funtions F and � in the interval (0; r0). However the pratial e�et



80 J. Karkowski, Z. �wierzy«skiof suh improvement seems to be rather small. A better auray an bereahed by hanging the approximation for the funtion F in the region(r0;1). The more aurate asymptotis [3℄ is given byFasym =s1� 2��asymr �2 + 1K0(r): (19)This formula involves a new parameter 1 and an extra ondition isneessary to determine it. Therefore we have used an additional mathingondition ensuring the ontinuity of the seond order derivative of F atr = r0 F 00poly(r0) = F 00asym(r0): (20)We were able to satisfy the mathing onditions if the polynomials ap-proximating the funtions F and � were of order �fteen and fourteen ornineteen and eighteen, respetively. We do not present them as their formsare very ompliated and the numerial results not exellent as is shown inFigs 4 and 5.
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Fig. 5. The di�erenes between approximate and numerial values of the �eld � for� = 0:05; 0:1; 0:2 (seond order derivative method).The di�erenes between approximated and numerial values of F and �are presented in Figs 6 and 7. The numerial values of the parametersf1; �2; 0; 1 are given in Table III while r0 = 2:5. TABLE III� f1 h2 0 10.02 0.3811035 0.001427667 0.0200068 1.3687730.1 0.3885089 0.02025245 0.1007819 1.5301440.2 0.3998954 0.05794554 0.2052965 1.851151

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10 12 14

0.02
0.1
0.2

Fig. 6. The di�erenes between approximate and numerial values of the �eld Ffor � = 0:05; 0:1; 0:2 (�xed mathing point algorithm).
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Fig. 7. The di�erenes between approximate and numerial values of the �eld � for� = 0:05; 0:1; 0:2 (�xed mathing point algorithm).The vortex solutions onsidered so far were obtained by smooth mathingof some polynomials approximating the vortex ore with asymptoti formu-lae valid in the outer region. More aurate approximations an be obtainedby dividing the whole area into more piees and approximating the solutionin eah setor separately. We have hosen k+1 points 0 < r0 < r1 < : : : < rk.The entral part of the vortex in the interval (0; r0) was approximated byF = f1r � 13!f3r3 + 15!f5r5 + : : : + (�1)n(2n+ 1)!f2n0+1r2n0+1 ; (21)� = 1� 12!�2r2 + 14!�4r4 + : : :+ (�1)n(2n)! �2n0r2n0 ; (22)while in (rj; rj+1) for j = 0; 1; 2; : : : ; k�1 we have used the trunated Taylorseries expansionsF = ef0j + ef1j(r � rj) + 12! ef2j(r � rj)2 + : : :+ 1n! efnj(r � rj)nj ; (23)� = e�0j + e�1j(r � rj) + 12! e�2j(r � rj)2 + : : :+ 1n! e�nj(r � rj)nj : (24)In the region (rk;1) the previous asymptoti formulae (9), (19) were ap-plied. We have required the funtions F and � together with their �rstderivatives to be ontinuous in the mathing points r0; r1; : : : ; rk. Theseonditions and Eqs (5), (6) are enough to determine all the oe�ientsfj; �j ; fij; �ij ; 0; 1. Let us note that passing from r = 0 to r = rk resemblesthe proess of analyti ontinuation and is rather easy to perform. The maindi�ulty is to bind these solutions with their appropriate asymptotis.The above formulae were applied in two ways. In equations (23), (24) wehave �rstly put the expansion order to 4 (n0 = 2; n1 = 4) and have divided



On Polynomial Approximation : : : 83the whole region of r into three piees (r0 = 2; r1 = 3). In the region (0; r0)the formulae (21), (22) for n0 = 2 redue to (15), (17), (18) with negleted�6-terms while in the interval (r0; r1) the following reurrene relations arevalid in Eqs. (23), (24)ef2 = � ef02 + ef302 � ef1r0 + ef0e�20r20 ;e�2 = �2 ef20 e�0 + e�1r0 ;ef3 = ef1r20 + 2 ef0e�0e�1r20 + e�20 ef1r20 � ef2r0 � ef12 + 3 ef20 ef12 � 2 ef0e�20r30 ;e�3 = � e�1r20 + �2 ef20 e�1 + 2�2f0 ef1e�0 + e�2r0 ;ef4 = �2 ef1r30 + 6 ef0e�20r40 � ef3r0 � f22 + 3 ef2 ef202 + 3 ef21 ef0+2 ef0e�0e�2r20 + 2 ef0e�21r20 + ef2e�20r20 + 4 ef1e�0e�1r20 + 2 ef2r20�8 ef0e�0e�1r30 � 4 ef1e�20r30 ;e�4 = �2e�2r20 + 2e�1r30 + �2 ef20 e�2 + 4�2 ef0 ef1e�1+2�2 ef0e�0 ef2 + 2�2e�0 ef21 + e�3r0 ;where the seond index (j = 0) is omitted for simpliity. The numerialvalues of the remaining parameters are found from the mathing onditionsand they are given in Table IV and Table V. The rather simple but quiteaurate analytial approximation of the stati vortex solution was obtainedthis way, as is presented in Figs 8 and 9.



84 J. Karkowski, Z. �wierzy«ski TABLE IV� f1 h2 0 10.02 0.3980053 0.1392637 0.02000953 1.2734930.1 0.4078238 0.01947355 0.1011135 1.341810.2 0.4238514 0.05537332 0.2079306 1.479463 TABLE V� ef0 ef1 e�0 e�10.02 0.6551700 0.2454606 0.9973415 -0.0025318210.1 0.6676333 0.2496415 0.9643793 -0.032294280.2 0.6863076 0.2557591 0.9036254 -0.08200263
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Fig. 8. The di�erenes between approximate and numerial values of the �eld Ffor � = 0:05; 0:1; 0:2 (two mathing points method).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5 10 15 20 25

0.02
0.1
0.2

Fig. 9. The di�erenes between approximate and numerial values of the �eld � for� = 0:05; 0:1; 0:2 (two mathing points method).



On Polynomial Approximation : : : 85In the seond ase we have tried to get the possibly most aurate nu-merial results. Therefore we have put large n0 = 9; nj = 10 and very smallvalue of rj+1 � rj = 0:01 for r0 = 1; rk = 20. The orresponding results areshown in Figs 10 and 11.
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Fig. 10. The di�erenes between approximate and numerial values of the �eld Ffor � = 0:1; 0:2 (analyti ontinuation algorithm).
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Fig. 11. The di�erenes between approximate and numerial values of the �eld �for � = 0:1; 0:2 (analyti ontinuation algorithm).4. RemarksIn the present paper we have onsidered several formulae approximat-ing the vortex solution in the Abelian Higgs model. We started with simpleanalytial formulae presented in [3℄ and ompared them with numerial om-putations. It turned out that the approximation of the Higgs �eld in the



86 J. Karkowski, Z. �wierzy«skineighbourhood of the vortex ore is rather rough and should be improved toget more aurate results. We have tried several methods to reah this goal.First of all we have hanged the formula desribing the Higgs �eld in theouter region. This formula should not be interpreted as the better asymp-totis only. Perhaps more important is the fat that this expression involvesa new free parameter whih lets us improve the whole algorithm. We haveused this possibility in several ways. At this point it is worth noting thatthe relative error of the funtion F � 1 with F given by the approximateformula (16) does not tend to zero for large r. This an be easily seen byomparing Eqs (9), (10) and (16).Our �rst trial to improve the auray of the approximation was thealgorithm with an additional mathing ondition ensuring the ontinuity ofthe seond derivative of the Higgs �eld. The next possibility we have triedwas to solve the mathing onditions in some �xed point and repeat this stepseveral times in di�erent points to hoose �nally the best mathing point onthe basis of numerial results.At last we have modi�ed the algorithm by solving the equations of motionapproximately as the trunations of the Taylor series expansions around anarbitrary point. We have used these solutions in the manner resembling theproess of analytial ontinuation. This way we have obtained both: ourbest numerial approximations of the stati vortex solutions and quite simplebut aurate analytial formulae generalizing those from [3℄. It was possiblebeause the �nal version of the algorithm turned out to be very �exible andould be applied to reah apparently di�erent purposes: analytial simpliityof expressions and numerial auray of omputer alulations.REFERENCES[1℄ See e.g. J.S. Ball, F. Zahariasen, Phys. Rep. 209, 73 (1991); C. Ol-son, M.G. Olson, K. Williams, Phys. Rev. D45, 4307 (1992); W.B. Kib-ble, J. Phys. A9, 1387 (1976); A.L. Vilenkin, Phys. Rep. 121, 263 (1985);R.P. Heubener, Magneti Flux Strutures in Superondutors, Springer Ver-lag, Berlin�Heidelberg�New York 1979; R.J. Donally, Quantised Vorties inHell, Cambridge University Press, Cambridge 1991.[2℄ H.J. de Vega, F. A. Shaposnik, Phys. Rev. D14, 1100 (1976).[3℄ H. Arod¹, L. Hadasz, Phys. Rev. D54, 4004 (1996).[4℄ H. Arod¹, L. Hadasz, Phys. Rev. D55, 942 (1997).[5℄ H. Arod¹, Nul. Phys. B450, 189 (1995).[6℄ A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957); H. Nielsen, P. Olesen,Nul. Phys. B61, 45 (1973).[7℄ Handbook of Mathematial Funtions, H. Abramowitz and I.E. Stegun (Eds.),N.B.S. Applied Mathematis Series, 1964.
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