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ON POLYNOMIAL APPROXIMATION OF THESTATIC VORTEX IN ABELIAN HIGGS MODEL�J. KarkowskiInstitute of Physi
s, Jagellonian University30-064 Kraków, Reymonta 4, Polandand Z. �wier
zy«skiInstitute of Physi
s, Pedagogi
al UniversityPod
hor¡»y
h 2, 30-084 Kraków, Poland(Re
eived June 2, 1998)The stati
 vortex solution in Abelian Higgs model with small ratio ofve
tor and Higgs parti
le masses is 
onsidered. Several formulae approxi-mating this solution are dis
ussed. The a

ura
y of these approximationsis tested by numeri
al 
omputations.PACS numbers: 11.27.+d, 11.15.K
1. Introdu
tionNowadays vortex solutions are found to be interesting in many areasof physi
s. Their investigations 
an help in better understanding of somephenomena in �eld theory, 
osmology and 
ondensed matter physi
s [1℄. It israther di�
ult to obtain vortex solutions sin
e one has usually to solve highlynon-linear, very 
ompli
ated di�erential equations. Therefore appropriateanalyti
al and numeri
al methods must be worked out and applied to makesome progress in this area.One of the simplest systems possessing vortex solution is the AbelianHiggs model. An exa
t vortex solution, in the form of in�nite 
onvergentseries, was found for this model in the so-
alled Bogomolny limit (the massesof the s
alar and ve
tor bosons are the same) [2℄. However in this limit theequations of motion redu
e to the �rst order di�erential equations and theunderlying methods 
an not be simply applied in general 
ase.� This work was supported in part by KBN grant No 2 P03B 095 13.(73)
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zy«skiRe
ently in the Abelian Higgs model a polynomial approximation wasextensively used to investigate ex
ited vortex [3,4℄. This method gives ana-lyti
al formulae simple enough to be applied in further 
omputations. How-ever, it is ne
essary to estimate the error of this approximation and this 
anbe done by a 
omparison with the numeri
al solution.The goal of the present paper is twofold. First we would like to test someapproximating formulae for the stati
 vortex solution proposed in paper[3℄. These analyti
 formulae were obtained in the limit � ! 0 where �is the ratio of ve
tor and Higgs parti
le masses. Our investigations arealso limited to small values of �. Se
ond we would like to present morepre
ise analyti
al approximations. The a

urate analyti
al and numeri
alresults for the stati
 vortex solution 
an be useful in many problems apartfrom the ex
ited vortex. For example, equations governing evolution of a
urved vortex [5℄ involve 
onstants whi
h are determined by the stati
 vortexsolution.Our paper is organized as follows. In Se
. 2 we shortly review the simpleanalyti
 formulae approximating the stati
 vortex solution. As mentionedabove these formulae were introdu
ed and dis
ussed in more detail in [3℄.We also 
ompare the results obtained this way with numeri
al approxima-tions to test the a

ura
y of the algorithm. In Se
. 3 we propose severalimprovements of this method to get more pre
ise analyti
al approximationsand numeri
al results valid in wider region than the previous ones. Finallyin Se
. 4 we present some general remarks and 
on
lusions summarizing ourpaper. 2. Simple approximationsThe Abelian Higgs model in 3 + 1-dimensional Minkowski spa
e-time isdes
ribed by the following Euler�Lagrange equations(�� + iqA�)(�� + iqA�)�+ �2��j�j2 � 2m2� � = 0; (1)��F �� = iq(������ �����)� 2q2A� j�j2: (2)The Higgs �eld �(x) is 
omplex valued, the star denotes the 
omplex
onjugation. The signature of metri
 of the spa
e-time is (� + ++). Thestati
 Abrikosov�Nielsen�Olesen solution [6℄ represents a straight linear, in-�nite vortex. The unit topologi
al 
harge vortex lying along the z-axis 
anbe obtained from the equations (1), (2) by imposing on them the axially
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 Ansatz �(�; �) = r2m2� ei�F (�) ;A0 = 0 ; A3 = 0 ;A1 = sin(�)�(�)� 1q� ;A2 = � 
os(�)�(�)� 1q� : (3)Here � = p(x1)2 + (x2)2 and � = ar
tan(x2=x1) are the standard polar
oordinates in the (x1; x2) plane.The Ansatz (3) together with the res
aling of the � variabler = 2m2� ; (4)leads to the se
ond order di�erential equations for the �elds F (r) and �(r)F 00 + F 0r � �2r2 F + 12(F � F 3) = 0 ; (5)�00 � �0r � �2F 2� = 0 ; (6)where prime denotes di�erentiation with respe
t to r and � = p2q2=� isthe only remaining free parameter.To guarantee the vortex solution to be regular on x3-axis and to have�nite energy per unit of length in x3 dire
tion the above equations must besupplemented by the boundary 
onditionsF (0) = 0 ; F (1) = 1 ; (7)�(0) = 1 ; �(1) = 0 : (8)The asymptoti
 form of � 
an be easily obtained from Eqs (6), (8) sim-pli�ed by putting F = 1. Thus we get�asym(r) = 
0rK1(�r) � 
0r�r2 exp(��r) ; (9)where K1 is the modi�ed Bessel fun
tion [7℄ and 
0 is a 
onstant. Theasymptoti
 behaviour of F (r) strongly depends on � [8℄. For � < 12 it isdetermined mainly by the term �2F=r2 and 
an be obtained from Eqs (5), (7)Fasym1 = 1� 
20��(1� 4�2)r exp(�2�r) ; (10)
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zy«skiwhile for � > 12 the Higgs term (F � F 3)=2 is more important. In this 
aseEq. (5) linearized in (F � 1) gives the following resultFasym2 = 1 + 
1K0(r) � 1 + 
1r �2r exp(�r) : (11)Here K0 denotes the zero-order modi�ed Bessel fun
tion [7℄ and 
1 is a
onstant.The asymptoti
 forms of F and � were used in [3℄ to get the approximatestati
 vortex solution. In the neighbourhood of r = 0 the �elds F and� were approximated by low order polynomials obtained as power seriessolutions of Eqs (5), (6). These polynomials were smoothly mat
hed withthe appropriate asymptoti
s at some point r = r0 i.e. the fun
tions F (r)and �(r) were required to be 
ontinuous at r = r0 together with their �rstderivatives Fpoly(r0) = Fasym(r0) ; F 0poly(r0) = F 0asym(r0) ; (12)�poly(r0) = �asym(r0) ; �0poly(r0) = �0asym(r0): (13)In the simplest version proposed in [3℄ the stati
 vortex solution wasapproximated by the following formulaeF (r) = � f1r � 13!f3r3 if r < r0,1 if r > r0 ; (14)�(r) = � 1� 12!�2r2 + 14!�4r4 � 16!�6r6 if r < r0 ;
0rK1(r) if r > r0 ; (15)involving four 
onstants r0; f1; �2; 
0. These 
onstants were �xed by applyingthe mat
hing 
onditions des
ribed above. The other 
onstants are given byre
urren
e relations (18) below.In order to get more a

urate solutions the formula for F in the regionr > r0 was repla
ed with a more subtle oneF =s1� 2��r�2 ; (16)obtained from Eq. (5) simpli�ed by negle
ting the terms with the derivativesof F . In this 
ase the polynomial approximation of F must be 
ompletedwith the term proportional to r5F = f1r � 13!f3r3 + 15!f5r5 ; (17)
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hanged although the values of the par-ti
ular parameters are di�erent. The equations (5), (6) lead to the followingre
urren
e relations for 
oe�
ients of the polynomialsf3 = 34 �12 + �2� f1;�4 = 3�2f21 ;f5 = 56 �12 + �2� f3 + 52 �16�4 + 12�22 + f21� f1 ;�6 = 5�2f1 (2f3 + 3�2f1) : (18)In Fig. 1 we have 
ompared the des
ribed above approximation of theHiggs �eld F with its numeri
al values obtained by applying standard al-gorithms for sti� di�erential equations [9℄. As we are interested mainly insmall values of � we have limited ourselves to � = 0:05, � = 0:1 and � = 0:2.Sin
e the values of the �eld � obtained from the numeri
al 
omputations andapproximate formula di�er very slightly we have plotted their di�eren
es inFig. 2 and the numeri
al values themselves in Fig. 3. The numeri
al valuesof the free parameters f1; �2; r0; 
0 are given in Table I and Table II.TABLE IFasym = 1� f1 h2 r0 
00.02 0.6505427 0.00157722 2.305767 0.0200040.1 0.6646855 0.02362296 2.256706 0.10050270.2 0.6929167 0.06904716 2.164762 0.2040623 TABLE IIFasym =p1� 2(�=r)2� f1 h2 r0 
00.02 0.4285536 0.001431718 2.106883 0.02000660.1 0.443162 0.02028046 2.068759 0.10078020.2 0.469365 0.05754442 2.000099 0.2056864
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al values of the �eld F (a) � � = 0:05,(b) � � = 0:1, (
) � � = 0:2.
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Fig. 2. The di�eren
es between approximate and numeri
al values of the �eld � for� = 0:05; 0:1; 0:2.
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Fig. 3. The numeri
al values of the �eld � for � = 0:05; 0:1; 0:2.Let us note that the approximate formula for the fun
tion � is quitegood while the approximation of F is mu
h worse. This is the pri
e forsimpli
ity of the analyti
al expressions. The �eld F tends very qui
kly toits asymptoti
 form and su
h behaviour 
an be hardly des
ribed by simpleanalyti
al formula.3. Improved approximate solutionsThe main defe
t of the approximate formulae 
onsidered in the previousse
tion is the behaviour of the �eld F in the region of intermediate values ofr parti
ularly in the neighbourhood of the mat
hing point r0. One 
an try toimprove that approximation by using the higher order polynomial solutionfor the fun
tions F and � in the interval (0; r0). However the pra
ti
al e�e
t
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zy«skiof su
h improvement seems to be rather small. A better a

ura
y 
an berea
hed by 
hanging the approximation for the fun
tion F in the region(r0;1). The more a

urate asymptoti
s [3℄ is given byFasym =s1� 2��asymr �2 + 
1K0(r): (19)This formula involves a new parameter 
1 and an extra 
ondition isne
essary to determine it. Therefore we have used an additional mat
hing
ondition ensuring the 
ontinuity of the se
ond order derivative of F atr = r0 F 00poly(r0) = F 00asym(r0): (20)We were able to satisfy the mat
hing 
onditions if the polynomials ap-proximating the fun
tions F and � were of order �fteen and fourteen ornineteen and eighteen, respe
tively. We do not present them as their formsare very 
ompli
ated and the numeri
al results not ex
ellent as is shown inFigs 4 and 5.
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0.2Fig. 4. The di�eren
es between approximate and numeri
al values of the �eld Ffor � = 0:05; 0:1; 0:2 (se
ond order derivative method).There is also another simple possibility to determine the values of �veparameters 
0; 
1; f1; h2; r0. One 
an solve the four mat
hing 
onditions(12), (13) for the �xed value of the radius r0 and repeat this pro
edurefor several values of r0 in some interval. Thus we get the four parameters
0; 
1; f1; h2 as the numeri
al fun
tions of r0 . The last step was to 
omparethe approximations for F an � obtained this way with numeri
al 
al
ulationsand �x the value of r0 whi
h gives the best �tting. It turned out that inthis 
ase it was enough to approximate F and � by polynomials of order�ve and four respe
tively, see Eqs (15), (17), (18) with negle
ted �6-terms.
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Fig. 5. The di�eren
es between approximate and numeri
al values of the �eld � for� = 0:05; 0:1; 0:2 (se
ond order derivative method).The di�eren
es between approximated and numeri
al values of F and �are presented in Figs 6 and 7. The numeri
al values of the parametersf1; �2; 
0; 
1 are given in Table III while r0 = 2:5. TABLE III� f1 h2 
0 
10.02 0.3811035 0.001427667 0.0200068 1.3687730.1 0.3885089 0.02025245 0.1007819 1.5301440.2 0.3998954 0.05794554 0.2052965 1.851151
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Fig. 6. The di�eren
es between approximate and numeri
al values of the �eld Ffor � = 0:05; 0:1; 0:2 (�xed mat
hing point algorithm).
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Fig. 7. The di�eren
es between approximate and numeri
al values of the �eld � for� = 0:05; 0:1; 0:2 (�xed mat
hing point algorithm).The vortex solutions 
onsidered so far were obtained by smooth mat
hingof some polynomials approximating the vortex 
ore with asymptoti
 formu-lae valid in the outer region. More a

urate approximations 
an be obtainedby dividing the whole area into more pie
es and approximating the solutionin ea
h se
tor separately. We have 
hosen k+1 points 0 < r0 < r1 < : : : < rk.The 
entral part of the vortex in the interval (0; r0) was approximated byF = f1r � 13!f3r3 + 15!f5r5 + : : : + (�1)n(2n+ 1)!f2n0+1r2n0+1 ; (21)� = 1� 12!�2r2 + 14!�4r4 + : : :+ (�1)n(2n)! �2n0r2n0 ; (22)while in (rj; rj+1) for j = 0; 1; 2; : : : ; k�1 we have used the trun
ated Taylorseries expansionsF = ef0j + ef1j(r � rj) + 12! ef2j(r � rj)2 + : : :+ 1n! efnj(r � rj)nj ; (23)� = e�0j + e�1j(r � rj) + 12! e�2j(r � rj)2 + : : :+ 1n! e�nj(r � rj)nj : (24)In the region (rk;1) the previous asymptoti
 formulae (9), (19) were ap-plied. We have required the fun
tions F and � together with their �rstderivatives to be 
ontinuous in the mat
hing points r0; r1; : : : ; rk. These
onditions and Eqs (5), (6) are enough to determine all the 
oe�
ientsfj; �j ; fij; �ij ; 
0; 
1. Let us note that passing from r = 0 to r = rk resemblesthe pro
ess of analyti
 
ontinuation and is rather easy to perform. The maindi�
ulty is to bind these solutions with their appropriate asymptoti
s.The above formulae were applied in two ways. In equations (23), (24) wehave �rstly put the expansion order to 4 (n0 = 2; n1 = 4) and have divided
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es (r0 = 2; r1 = 3). In the region (0; r0)the formulae (21), (22) for n0 = 2 redu
e to (15), (17), (18) with negle
ted�6-terms while in the interval (r0; r1) the following re
urren
e relations arevalid in Eqs. (23), (24)ef2 = � ef02 + ef302 � ef1r0 + ef0e�20r20 ;e�2 = �2 ef20 e�0 + e�1r0 ;ef3 = ef1r20 + 2 ef0e�0e�1r20 + e�20 ef1r20 � ef2r0 � ef12 + 3 ef20 ef12 � 2 ef0e�20r30 ;e�3 = � e�1r20 + �2 ef20 e�1 + 2�2f0 ef1e�0 + e�2r0 ;ef4 = �2 ef1r30 + 6 ef0e�20r40 � ef3r0 � f22 + 3 ef2 ef202 + 3 ef21 ef0+2 ef0e�0e�2r20 + 2 ef0e�21r20 + ef2e�20r20 + 4 ef1e�0e�1r20 + 2 ef2r20�8 ef0e�0e�1r30 � 4 ef1e�20r30 ;e�4 = �2e�2r20 + 2e�1r30 + �2 ef20 e�2 + 4�2 ef0 ef1e�1+2�2 ef0e�0 ef2 + 2�2e�0 ef21 + e�3r0 ;where the se
ond index (j = 0) is omitted for simpli
ity. The numeri
alvalues of the remaining parameters are found from the mat
hing 
onditionsand they are given in Table IV and Table V. The rather simple but quitea

urate analyti
al approximation of the stati
 vortex solution was obtainedthis way, as is presented in Figs 8 and 9.
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zy«ski TABLE IV� f1 h2 
0 
10.02 0.3980053 0.1392637 0.02000953 1.2734930.1 0.4078238 0.01947355 0.1011135 1.341810.2 0.4238514 0.05537332 0.2079306 1.479463 TABLE V� ef0 ef1 e�0 e�10.02 0.6551700 0.2454606 0.9973415 -0.0025318210.1 0.6676333 0.2496415 0.9643793 -0.032294280.2 0.6863076 0.2557591 0.9036254 -0.08200263
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Fig. 8. The di�eren
es between approximate and numeri
al values of the �eld Ffor � = 0:05; 0:1; 0:2 (two mat
hing points method).
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Fig. 9. The di�eren
es between approximate and numeri
al values of the �eld � for� = 0:05; 0:1; 0:2 (two mat
hing points method).
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ond 
ase we have tried to get the possibly most a

urate nu-meri
al results. Therefore we have put large n0 = 9; nj = 10 and very smallvalue of rj+1 � rj = 0:01 for r0 = 1; rk = 20. The 
orresponding results areshown in Figs 10 and 11.
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Fig. 10. The di�eren
es between approximate and numeri
al values of the �eld Ffor � = 0:1; 0:2 (analyti
 
ontinuation algorithm).
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Fig. 11. The di�eren
es between approximate and numeri
al values of the �eld �for � = 0:1; 0:2 (analyti
 
ontinuation algorithm).4. RemarksIn the present paper we have 
onsidered several formulae approximat-ing the vortex solution in the Abelian Higgs model. We started with simpleanalyti
al formulae presented in [3℄ and 
ompared them with numeri
al 
om-putations. It turned out that the approximation of the Higgs �eld in the
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zy«skineighbourhood of the vortex 
ore is rather rough and should be improved toget more a

urate results. We have tried several methods to rea
h this goal.First of all we have 
hanged the formula des
ribing the Higgs �eld in theouter region. This formula should not be interpreted as the better asymp-toti
s only. Perhaps more important is the fa
t that this expression involvesa new free parameter whi
h lets us improve the whole algorithm. We haveused this possibility in several ways. At this point it is worth noting thatthe relative error of the fun
tion F � 1 with F given by the approximateformula (16) does not tend to zero for large r. This 
an be easily seen by
omparing Eqs (9), (10) and (16).Our �rst trial to improve the a

ura
y of the approximation was thealgorithm with an additional mat
hing 
ondition ensuring the 
ontinuity ofthe se
ond derivative of the Higgs �eld. The next possibility we have triedwas to solve the mat
hing 
onditions in some �xed point and repeat this stepseveral times in di�erent points to 
hoose �nally the best mat
hing point onthe basis of numeri
al results.At last we have modi�ed the algorithm by solving the equations of motionapproximately as the trun
ations of the Taylor series expansions around anarbitrary point. We have used these solutions in the manner resembling thepro
ess of analyti
al 
ontinuation. This way we have obtained both: ourbest numeri
al approximations of the stati
 vortex solutions and quite simplebut a

urate analyti
al formulae generalizing those from [3℄. It was possiblebe
ause the �nal version of the algorithm turned out to be very �exible and
ould be applied to rea
h apparently di�erent purposes: analyti
al simpli
ityof expressions and numeri
al a

ura
y of 
omputer 
al
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