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ROLE OF SHORT RANGE POTENTIALSIN SOLVING THE EIGENVALUE PROBLEMFOR THE THREE BODY DIRAC EQUATIONGeorge L. StrobelyLawren
e Livermore National LaboratoryLivermore, California 94550, USAemail:gstrobel�hal.physast.uga.edu(Re
eived June 24, 1998; revised version re
eived September 23, 1998)The eigenvalue problem for a bound state solution of three quarks re-quires deep analysis to even start a numeri
al attempt. A power seriessolution to the three body Dira
 equation solved in hyper
entral approx-imation is sought. A s
alar linear �ux tube three body string potentialis used to 
on�ne the quarks. In addition one gluon ex
hange potentials(OGEP) between quark pairs are 
onsidered to model the short range in-tera
tions. The angular momentum barrier is found to dominate the wavefun
tion behavior at the origin when in
luding only the magneti
 part ofthe OGEP. This o

urs when the Coulomb part of the OGEP is negle
ted,or 
an
eled by terms of opposite sign from the s
alar potential. Re
ur-ren
e relations for the power series 
oe�
ients are determined. When theCoulomb part of the OGEP is in
luded, the initial ratios of the 
ompositethree quark wave fun
tion 
omponents are also determined. In this 
ase,the Coulomb strength of the OGEP 
ombines with the angular momentato determine the wave fun
tion behavior near the origin.PACS numbers: 12.39.Ki, 14.20.Dh1. Introdu
tionA 
on�ned three quark model, with small 
urrent quark masses [1℄, isused to des
ribe the proton. The ne
essarily relativisti
 quark dynami
sare des
ribed by the three body Dira
 equation. The masses of the upand down quarks are taken as the same. Hyperspheri
al 
oordinates areused whi
h properly handles the 
enter of mass problem in the system resty Permament address: Physi
s and Astronomy Department, University of Georgia,Athens, Georgia 30602, USA. (89)



90 G.L. Strobelframe [2,3℄. The hyperradius squared is de�ned from the sum of the squaredquark pairwise separations as:r2 = 12 �r212 + r213 + r223� : (1)A possible set of the �ve hyperangles are as follows. The lo
ation of thethree quarks de�nes a triangle. Two of the interior angles of this triangleare the �rst two hyperangles. The triangle has a normal. The dire
tionof this normal de�nes two more hyperangles. The azimuthal orientation ofthe triangle about the normal is the �fth hyperangle. The hyperspheri
alexpansion utilizes a sum over 
on�gurations in des
ribing the three quark
omposite wave fun
tion. This expansion is trun
ated, in the hyper
entralapproximation, to a single 
on�guration [4℄. The quarks are ea
h assumedto be in the (1=2+)3 
on�guration, 
oupled to a total spin of 1/2, for theproton ground state.A set of eight 
oupled �rst order radial di�erential equations in the hy-perradius are obtained, after integration over the hyperangles, for the eight
omponents of the 
omposite three quark wave fun
tion. With equal masses,equivalent sets of quantum numbers for ea
h quark, and �avor independentfor
es, symmetry 
onditions redu
es this to a set of four 
oupled �rst orderdi�erential equations involving four unknown 
omponents. The di�erentialvariable is the hyperradius. A s
alar linear 
on�ning three body potential,V , plus one gluon ex
hange potentials (OGEP) V12, V13, V23 between quarkpairs is 
onsidered. The s
alar potential is parameterized as V = bS, whereS is the minimum �ux tube length between the three quarks.Su
h a potential is 
ommon [5�7℄ but the OGEP 
ontribution is oftenin
luded as a perturbation [8,9℄. Here the OGEP 
ontributions are soughtto be kept 
ompletely in all stages of the sear
h for a solution. The string
onstant b, is 0.18GeV2 [10℄ for quarks.The one gluon ex
hange potential [10℄ between quark pairs is:V12 = �(2�s=3r12)(1 + ~�1 � ~�2) : (2)The subs
ripts are parti
le labels, and the ~� and � are Dira
 matri
esasso
iated with a given parti
le. �s is the strong 
oupling 
onstant, viewedhere as a potential parameter. The �(2�s=3r12)(1) term in the OGEP aboveis 
alled the Coulomb term, the rest of the OGEP is 
alled the magneti
 term.In the representation used, the Dira
 ~� matrix is just the Pauli ~� matri
esalong the skew diagonal.A numeri
al solution of these equations is an eigenvalue problem wheregiven one of either the potential or the system rest energy, the other isguessed at until a solution is found that satis�es appropiate boundary 
on-ditions at the origin and at in�nity.



Role of Short Range Potentials in Solving the Eigenvalue Problem for: : : 91The di�
ulty is that this is a problem in a multi-parameter spa
e. Theoverall wave fun
tion normalization 
an set the s
ale of one of the wavefun
tion 
omponents. But one must still guess the ratio of three of theother 
omponents to the value of the �rst 
omponent at, or near, the originto even start o� an attempted numeri
al solution. If su
h an attempt fails tosatisfy the boundary 
onditions, the failure 
an be due to the ratios assumed,or to the rest energy guess utilized by the numeri
al solution.If the wave fun
tion 
omponents are all analyti
, and therefore expand-able in a power series of say, as
ending powers of the hyperradius, then themultiparameter aspe
t of this eigenvalue problem 
an be avoided. If the
oe�
ients of the power series expansions 
an all be determined re
ursivelyin terms of the rest energy of the system and the potential parameters, thenthe eigenvalue problem redu
es to just one parameter, the value of the restenergy utilized. The power series solution 
an then be used for any hyperra-dial range if enough terms in the series are in
luded. In
luding only a small�nite number of terms of the series will still provide wave fun
tion 
ompo-nents of su�
ient a

ura
y for small hyperradial values. These 
omponents
an then be used to determine the starting values of the 
omponent ratios forthe numeri
al solution of the 
oupled di�erential equations, thereby avoidingthe multiparameter aspe
t of the eigenvalue problem.The main point of this paper is to show that this 
an be done for thethree body Dira
 equation solved in hyper
entral approximation. A s
alarlinear �ux tube three body string potential is used to 
on�ne the quarks. Inaddition, one gluon ex
hange potentials (OGEP) between quark pairs are
onsidered to model the short range intera
tions. The Coulomb 
ontributionof the OGEP a�e
ts the wave fun
tion behavior at the origin, but not sofor the magneti
 
ontribution. The Coulomb 
ontribution dominates overthe angular momentum barrier near the origin if the one gluon ex
hangepotential is 
ompletely kept. If just the magneti
 part of the OGEP isin
luded, then the angular momentum barier dominates the wave fun
tionbehavior near the origin.2. Analysis of radial Dira
 equation for 3 quarksThe three body Dira
 equation is:8<: ( ~�1 � ~p1 +m1�1) + V12+( ~�2 � ~p2 +m2�2) + V13 + V23+( ~�3 � ~p3 +m3�3) + �1�2�3V 9=;	 = E	 : (3)After the hyperangular integration [2℄, a set of eight 
oupled linear dif-ferential equations are obtained [11,12℄ in the hyper
entral approximation.With f; g denoting the upper and lower 
omponent in the two 
omponent



92 G.L. StrobelDira
 notation for a single quark wave fun
tion, the eight 
omponents, la-beled R1 through R8 of the 
omposite three quark wave fun
tion, denotethe 
omposite 
ombinations fff; gff; fgf; ggf; ffg; gfg; fgg; and ggg. Thenormalization of these 
omponents is the same as in [4,13℄. The �rst 
om-ponent is the one that survives in the non-relativisti
 limit. For equal massquarks, and �avor independent for
es, there is a symmetry su
h that wehave the 
omponent relations [12℄, R2 = R3 = R5, and that R4 =R6 = R7.The 
oupled di�erential equations for the four unknown 
omponents 
an berepresented as the matrix equation, M	 =0, where 	 is the 
olumn ve
tor,R1, R2, R4, and R8. The matrix equation is:2664 M1 -D(5) 0 0D(0) M2 -D(6)/2 00 2D(-1) M4 -D(7)/50 0 3D(-2) M8 37752664 R1R2R4R8 3775 = 0 : (4)The relativisti
 kineti
 energy appears in the operatorD(n) = ddr + nr : (5)The diagonal matrix elements are 
ombinations of the mass terms, theenergy, the s
alar potential, the Coulomb part and the magneti
 part of theOGEP terms. The magneti
 part has o� diagonal matrix elements in the 8by 8 representation, but due to the symmetry relations of the 
omponents, itappears along the diagonal of the 4 by 4 system of equations. It is 
onvenientto have a dimensionless variable, so we de�ne y = Lr, where L is an arbitrarynon zero energy (or inverse length) unit and y is dimensionless. We dividethe equations above by L, so that their forms remains the same if we nowtake the relativisti
 kineti
 energy operator as:D(n) = ddy + ny : (6)The diagonal matrix elements are M1 = �e1 + K1y � 
1=y, where thes
alar potential 
ontribution is in K1 = b 1.59 p(2=3)=L2. b is the string
onstant and the 
oe�
ients appearing in K1 
ome from the hyperangularintegration over the string length, S, and from the 
hange of variables fromr to y. The energy and mass terms are in e1 = (E � 3M)=L, where E isthe system rest energy, and M is the quark rest mass energy. The Coulombpart of the OGEP is re�e
ted in 
1=48a0, wherea0 = �sp3=2� : (7)



Role of Short Range Potentials in Solving the Eigenvalue Problem for: : : 93The se
ond diagonal matrix element isM2 = �e2+K2y�
2=y. Here K2is minus K1, as the s
alar 
ontribution has �ipped sign in the Hamiltonianrepresentation. The energy and mass term is e2 = (E �M)=L. 
2 has a
ontribution of 264a0=9 from the Coulomb, and an additional (32/9)a0 fromthe magneti
 part of the OGEP.The third diagonal matrix element isM4 = �e4+K4y�
4=y. Here K4 isequal to K1, and the energy term is e4 = (E +M)=L. 
4 has a 
ontributionof (208/27)a0 and also (32/27)a0 from the Coulomb and magneti
 parts ofthe OGEP, respe
tively. The last diagonal matrix element is M8 = �e8 +K8y � 
8=y. Here the s
alar 
ontribution is again the negative, K8= -K1.The energy and mass term is e8 = (E + 3M)=L. 
8 = (8=9)a0, all from theCoulomb part of the OGEP, none from the magneti
 part.The matrix equation of 
oupled di�erential relations 
an be solved forthe derivative terms resulting in the matrix equation:d	=dy = B	 ; (8)where B is the matrix:2664 0 �M2 4/y �M8/6M1 -5/y 0 00 0 2/y �M8/310M1 -60/y 5M4 -7/y 3775 : (9)3. The power series solutionWe will now seek and �nd a power series solution to these di�erentialequations. We set R1 = �Anyn, where the sum is over n going from zerothrough positive integers. Also we expand R2 = �Bnyn, R4 = �Cnyn, andR8 = �Dnyn. The derivative with respe
t to y of R1 is then just �nAnyn�1,with similar expressions for the derivatives of the other 
omponents. The
oe�
ients of these power series expansions are unknown, and the goal is todetermine all of the 
oe�
ients re
ursively. These power series expansionsare substituted into the above matrix equation solved for the derivativeterms. The 
oe�
ients of like powers of y are then equated in the matrixrelations. One then obtains the relations:I (n+ 1)An+1 = e2Bn �K2Bn�1 + 
2Bn+1 + 4Cn+1+ e8Dn �K8Dn�1 + 
8Dn+16II (n+ 6)Bn+1 = �e1An +K1An�1 � 
1An+1III (n� 1)Cn+1 = e8Dn �K8Dn�1 + 
8Dn+13



94 G.L. StrobelIV (n+ 8)Dn+1 = �10e1An + 10K1An�1 � 10
1An+1 � 60Bn+1 � 5e4Cn+ 5K4Cn�1 � 5
4Cn+1 .Now use II and III to repla
e the Bn+1 and Cn+1 in the right hand side ofIV. Then solve the resulting equation for Dn+1. These are the re
urren
erelations for the unknown 
oe�
ients of the series expansions of the wavefun
tion 
omponents.Set all expansion 
oe�
ients with negative subs
ripts to zero. Set the
oe�
ient, A0 to unity. This is equivalent to the normalization 
ondition.After a solution has been found, the 
omponents 
an all be res
aled by a
ommon fa
tor to satisfy a desired normalization. A solution where theangular momentum dominates the wave fun
tion behavior at the origin isfound only if 
1 is zero. From II, with n set to -1, we get B0 = �
1=5.From I, with n = �1, we get C0 = �
2B0=4 = 
1
2=20. From III, withn = �1, we get D0 = �6
2
1=20
8. From IV, with n = �1, we get 7D0 =�10
1A0 � 60B0 � 5
4C0.These must be simultaneously true, so we obtain from the last relation,
1�2 + 
2 2:1
8 � 
44 � = 0 : (10)For the angular momentum barrier to dominate at small y, we expe
tR2 to be proportional to y there, and R4 and R8 proportional to y2 and y3respe
tively. This happens only if 
1 is zero. If 
1 is not zero, then the indexpower, g, of the power series must instead be �rst determined. See belowfor that 
ase. With 
1 set to zero, then the 
oe�
ients B0, C0, and D0 areall zero. With this restri
tion, then II be
omes:IIb (n+ 6)Bn+1 = �e1An +K1An�1:And for n set to 0, we have,B1 = �e1A06 : (11)With n = 0, III yields, C1 = �
8D13 (12)and IV, with n = 0 yields: 8D1 = �5
4C1 : (13)These are simultaneously satis�ed only if both C1 and D1 are zero. Forn = 1, III demands thatD2 =0. I with n = 0 yields that A1 = 
2B1, and thusthe equations IIb, IV, III, and I 
an be used re
ursively for su

essive valuesof n to determine the 
oe�
ients of the power series solutions. This solutionalso satis�es the expe
tation, from the angular momentum dominan
e at theorigin, that the 
omponents R2, R4, and R8 vanish near the origin, with the�rst, se
ond and third power of the radius respe
tively.



Role of Short Range Potentials in Solving the Eigenvalue Problem for: : : 954. Dis
ussion of the Coulomb term 
1 being zeroThere are two ways for 
1 to be zero. One 
an negle
t the Coulombpart of the OGEP, arguing that the magneti
 part of this potential is allthat needs to be in
luded in attempts to explain the Delta-proton massdi�eren
e. For that mass di�eren
e, the Coulomb part of the OGEP will
ontribute zero anyway. The other way is to add to the s
alar potential aterm that 
an
els the Coulomb OGEP 
ontribution to 
1. This 
an be easilydone, but involves 
hanging simultaneously the other values, 
2, 
4, and 
8of the diagonal matrix elements. This also involves using a potential notinspired from QCD 
onsiderations. Certain 
ombinations of a s
alar andve
tor potential that has both linear 
on�ning terms and magneti
 OGEPtype terms [12,13℄ yield analyti
 wave fun
tion 
omponents. The powerseries solutions found here by in
luding the �rst 40 terms, not shown, wellreprodu
e these analyti
 solutions for values of y less than 10.The power series solution, dominated at the origin by the Coulomb termwhen 
1 is not zero, is now dis
ussed. This 
ase of in
luding the Coulombterm of the OGEP seems reminis
ent of the slight divergen
e at the origin ofthe Dira
 equation solution to the Hydrogen Coulomb problem [14℄. If onein
ludes only the 1=y terms in the matrix B above, near the origin, one 
anask that ea
h 
omponent is proportional to yg, where g is the index powerto be determined. Substituting this anzatz into the equation, d	=dy = B	 ,one �nds that the wave fun
tion 
omponents 
onstants of proportionalityare all zero unless the determinant of the 
oe�
ients is zero. Therefore, onehas det G = 0, where G is the matrix:G = 2664 -g 
2 4 
8/6-
1 (�g-5) 0 00 0 (�g+2) 
8/3-10
1 -60 -5
4 (�g-7) 3775 : (14)The requirement that det G = 0 results in a quarti
 equation for g.Physi
al reasoning must be applied to determine whi
h of the roots of thequarti
 is allowed. For instan
e, we expe
t g to be real. As the hyperspher-i
al volume element 
ontains r5dr, g 
annot be more negative than -5/2,from normalization 
onsiderations. If 
8 is small, be
ause the strong 
ou-pling 
onstant is small, or if 
8 is viewed as small 
ompared to 
1, (
8=
1=1/54) then the quarti
 equation for g simpli�es to a quadrati
, resultingin g = �5 +p25� 4
1
22 : (15)In this limit, g is small and negative and satis�es the normalization
onstraint. If 
1 is zero, of 
ourse we see that the index power is zero, as



96 G.L. Strobelin the power series solution above. If 
1 is not small, then the smallest realroot of the quarti
 larger than -5/2 is the desired root. If 
1 is too largeonly 
omplex roots for g are found. This 
orresponds to the strong 
oupling
onstant, �s ex
eeding about 0.18 from the quadrati
 approximation for g inthe above equation. Then the method fails, as does the Hydrogen Coulombproblem with large Z [14℄. On
e g is determined, then the 
onstants ofproportionality 
an be determined in terms of the proportionality 
onstant
hosen for the �rst wave fun
tion 
omponent. Knowing these ratios and g,one is prepared to numeri
ally solve the eigenvalue problem for the 
oupledradial di�erential equations in the Coulomb 
ase.5. SummaryA power series solution for the three body Dira
 equation solved in hy-per
entral approximation has been found. Su
h a solution is ne
essary tobegin numeri
al studies of three quark models of the baryons. One has aneigenvalue problem to solve where the boundary 
onditions at the origin andat in�nity must be met. The numeri
al approa
h to a solution requires the
omponent ratios near the origin where the boundary 
onditions are appliedto start the numeri
al solution. The power series solution allows the ratiosof the various 
omponents of the 
omposite three quark wave fun
tion tobe determined near the origin. These ratios depend only on the energy andthe potential parameters, and the quark masses. Determining these ratiosby a power series allows the numeri
al eigenvalue problem to be redu
ed toone variable, the system rest energy. Without the power series solutions,the numeri
al solution of the 
oupled di�erential equations requires one toguess the ratios of the 
omponents to the 
omposite wave fun
tion, whiletrying to guess the system rest energy.When the angular momentum dominates the wave fun
tion behaviornear the origin, re
ursion relations for obtaining su
h a power series solu-tion 
an be found. This happens when the potential does not diverge as1=r at the origin for the large 
omponent of the 
omposite wave fun
tion.This is the 
omponent that survives in the non-relativisti
 limit. To bringthis about, the Coulomb part of the OGEP must be negle
ted or partially
an
elled out by a s
alar term introdu
ed for that purpose. If the Coulombterm is in
luded, then it dominates the wave fun
tion behavior at the originjointly with the angular momentum. In this 
ase, the initial hyperradialbehavior of the wave fun
tion 
omponents as well as their ratios dependon the strong 
oupling 
onstant. This analysis determines the 
ompositewave fun
tion 
omponent ratios needed to obtain the starting values for anumeri
al solution to the eigenvalue problem.
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