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ROLE OF SHORT RANGE POTENTIALSIN SOLVING THE EIGENVALUE PROBLEMFOR THE THREE BODY DIRAC EQUATIONGeorge L. StrobelyLawrene Livermore National LaboratoryLivermore, California 94550, USAemail:gstrobel�hal.physast.uga.edu(Reeived June 24, 1998; revised version reeived September 23, 1998)The eigenvalue problem for a bound state solution of three quarks re-quires deep analysis to even start a numerial attempt. A power seriessolution to the three body Dira equation solved in hyperentral approx-imation is sought. A salar linear �ux tube three body string potentialis used to on�ne the quarks. In addition one gluon exhange potentials(OGEP) between quark pairs are onsidered to model the short range in-terations. The angular momentum barrier is found to dominate the wavefuntion behavior at the origin when inluding only the magneti part ofthe OGEP. This ours when the Coulomb part of the OGEP is negleted,or aneled by terms of opposite sign from the salar potential. Reur-rene relations for the power series oe�ients are determined. When theCoulomb part of the OGEP is inluded, the initial ratios of the ompositethree quark wave funtion omponents are also determined. In this ase,the Coulomb strength of the OGEP ombines with the angular momentato determine the wave funtion behavior near the origin.PACS numbers: 12.39.Ki, 14.20.Dh1. IntrodutionA on�ned three quark model, with small urrent quark masses [1℄, isused to desribe the proton. The neessarily relativisti quark dynamisare desribed by the three body Dira equation. The masses of the upand down quarks are taken as the same. Hyperspherial oordinates areused whih properly handles the enter of mass problem in the system resty Permament address: Physis and Astronomy Department, University of Georgia,Athens, Georgia 30602, USA. (89)



90 G.L. Strobelframe [2,3℄. The hyperradius squared is de�ned from the sum of the squaredquark pairwise separations as:r2 = 12 �r212 + r213 + r223� : (1)A possible set of the �ve hyperangles are as follows. The loation of thethree quarks de�nes a triangle. Two of the interior angles of this triangleare the �rst two hyperangles. The triangle has a normal. The diretionof this normal de�nes two more hyperangles. The azimuthal orientation ofthe triangle about the normal is the �fth hyperangle. The hyperspherialexpansion utilizes a sum over on�gurations in desribing the three quarkomposite wave funtion. This expansion is trunated, in the hyperentralapproximation, to a single on�guration [4℄. The quarks are eah assumedto be in the (1=2+)3 on�guration, oupled to a total spin of 1/2, for theproton ground state.A set of eight oupled �rst order radial di�erential equations in the hy-perradius are obtained, after integration over the hyperangles, for the eightomponents of the omposite three quark wave funtion. With equal masses,equivalent sets of quantum numbers for eah quark, and �avor independentfores, symmetry onditions redues this to a set of four oupled �rst orderdi�erential equations involving four unknown omponents. The di�erentialvariable is the hyperradius. A salar linear on�ning three body potential,V , plus one gluon exhange potentials (OGEP) V12, V13, V23 between quarkpairs is onsidered. The salar potential is parameterized as V = bS, whereS is the minimum �ux tube length between the three quarks.Suh a potential is ommon [5�7℄ but the OGEP ontribution is ofteninluded as a perturbation [8,9℄. Here the OGEP ontributions are soughtto be kept ompletely in all stages of the searh for a solution. The stringonstant b, is 0.18GeV2 [10℄ for quarks.The one gluon exhange potential [10℄ between quark pairs is:V12 = �(2�s=3r12)(1 + ~�1 � ~�2) : (2)The subsripts are partile labels, and the ~� and � are Dira matriesassoiated with a given partile. �s is the strong oupling onstant, viewedhere as a potential parameter. The �(2�s=3r12)(1) term in the OGEP aboveis alled the Coulomb term, the rest of the OGEP is alled the magneti term.In the representation used, the Dira ~� matrix is just the Pauli ~� matriesalong the skew diagonal.A numerial solution of these equations is an eigenvalue problem wheregiven one of either the potential or the system rest energy, the other isguessed at until a solution is found that satis�es appropiate boundary on-ditions at the origin and at in�nity.



Role of Short Range Potentials in Solving the Eigenvalue Problem for: : : 91The di�ulty is that this is a problem in a multi-parameter spae. Theoverall wave funtion normalization an set the sale of one of the wavefuntion omponents. But one must still guess the ratio of three of theother omponents to the value of the �rst omponent at, or near, the originto even start o� an attempted numerial solution. If suh an attempt fails tosatisfy the boundary onditions, the failure an be due to the ratios assumed,or to the rest energy guess utilized by the numerial solution.If the wave funtion omponents are all analyti, and therefore expand-able in a power series of say, asending powers of the hyperradius, then themultiparameter aspet of this eigenvalue problem an be avoided. If theoe�ients of the power series expansions an all be determined reursivelyin terms of the rest energy of the system and the potential parameters, thenthe eigenvalue problem redues to just one parameter, the value of the restenergy utilized. The power series solution an then be used for any hyperra-dial range if enough terms in the series are inluded. Inluding only a small�nite number of terms of the series will still provide wave funtion ompo-nents of su�ient auray for small hyperradial values. These omponentsan then be used to determine the starting values of the omponent ratios forthe numerial solution of the oupled di�erential equations, thereby avoidingthe multiparameter aspet of the eigenvalue problem.The main point of this paper is to show that this an be done for thethree body Dira equation solved in hyperentral approximation. A salarlinear �ux tube three body string potential is used to on�ne the quarks. Inaddition, one gluon exhange potentials (OGEP) between quark pairs areonsidered to model the short range interations. The Coulomb ontributionof the OGEP a�ets the wave funtion behavior at the origin, but not sofor the magneti ontribution. The Coulomb ontribution dominates overthe angular momentum barrier near the origin if the one gluon exhangepotential is ompletely kept. If just the magneti part of the OGEP isinluded, then the angular momentum barier dominates the wave funtionbehavior near the origin.2. Analysis of radial Dira equation for 3 quarksThe three body Dira equation is:8<: ( ~�1 � ~p1 +m1�1) + V12+( ~�2 � ~p2 +m2�2) + V13 + V23+( ~�3 � ~p3 +m3�3) + �1�2�3V 9=;	 = E	 : (3)After the hyperangular integration [2℄, a set of eight oupled linear dif-ferential equations are obtained [11,12℄ in the hyperentral approximation.With f; g denoting the upper and lower omponent in the two omponent



92 G.L. StrobelDira notation for a single quark wave funtion, the eight omponents, la-beled R1 through R8 of the omposite three quark wave funtion, denotethe omposite ombinations fff; gff; fgf; ggf; ffg; gfg; fgg; and ggg. Thenormalization of these omponents is the same as in [4,13℄. The �rst om-ponent is the one that survives in the non-relativisti limit. For equal massquarks, and �avor independent fores, there is a symmetry suh that wehave the omponent relations [12℄, R2 = R3 = R5, and that R4 =R6 = R7.The oupled di�erential equations for the four unknown omponents an berepresented as the matrix equation, M	 =0, where 	 is the olumn vetor,R1, R2, R4, and R8. The matrix equation is:2664 M1 -D(5) 0 0D(0) M2 -D(6)/2 00 2D(-1) M4 -D(7)/50 0 3D(-2) M8 37752664 R1R2R4R8 3775 = 0 : (4)The relativisti kineti energy appears in the operatorD(n) = ddr + nr : (5)The diagonal matrix elements are ombinations of the mass terms, theenergy, the salar potential, the Coulomb part and the magneti part of theOGEP terms. The magneti part has o� diagonal matrix elements in the 8by 8 representation, but due to the symmetry relations of the omponents, itappears along the diagonal of the 4 by 4 system of equations. It is onvenientto have a dimensionless variable, so we de�ne y = Lr, where L is an arbitrarynon zero energy (or inverse length) unit and y is dimensionless. We dividethe equations above by L, so that their forms remains the same if we nowtake the relativisti kineti energy operator as:D(n) = ddy + ny : (6)The diagonal matrix elements are M1 = �e1 + K1y � 1=y, where thesalar potential ontribution is in K1 = b 1.59 p(2=3)=L2. b is the stringonstant and the oe�ients appearing in K1 ome from the hyperangularintegration over the string length, S, and from the hange of variables fromr to y. The energy and mass terms are in e1 = (E � 3M)=L, where E isthe system rest energy, and M is the quark rest mass energy. The Coulombpart of the OGEP is re�eted in 1=48a0, wherea0 = �sp3=2� : (7)



Role of Short Range Potentials in Solving the Eigenvalue Problem for: : : 93The seond diagonal matrix element isM2 = �e2+K2y�2=y. Here K2is minus K1, as the salar ontribution has �ipped sign in the Hamiltonianrepresentation. The energy and mass term is e2 = (E �M)=L. 2 has aontribution of 264a0=9 from the Coulomb, and an additional (32/9)a0 fromthe magneti part of the OGEP.The third diagonal matrix element isM4 = �e4+K4y�4=y. Here K4 isequal to K1, and the energy term is e4 = (E +M)=L. 4 has a ontributionof (208/27)a0 and also (32/27)a0 from the Coulomb and magneti parts ofthe OGEP, respetively. The last diagonal matrix element is M8 = �e8 +K8y � 8=y. Here the salar ontribution is again the negative, K8= -K1.The energy and mass term is e8 = (E + 3M)=L. 8 = (8=9)a0, all from theCoulomb part of the OGEP, none from the magneti part.The matrix equation of oupled di�erential relations an be solved forthe derivative terms resulting in the matrix equation:d	=dy = B	 ; (8)where B is the matrix:2664 0 �M2 4/y �M8/6M1 -5/y 0 00 0 2/y �M8/310M1 -60/y 5M4 -7/y 3775 : (9)3. The power series solutionWe will now seek and �nd a power series solution to these di�erentialequations. We set R1 = �Anyn, where the sum is over n going from zerothrough positive integers. Also we expand R2 = �Bnyn, R4 = �Cnyn, andR8 = �Dnyn. The derivative with respet to y of R1 is then just �nAnyn�1,with similar expressions for the derivatives of the other omponents. Theoe�ients of these power series expansions are unknown, and the goal is todetermine all of the oe�ients reursively. These power series expansionsare substituted into the above matrix equation solved for the derivativeterms. The oe�ients of like powers of y are then equated in the matrixrelations. One then obtains the relations:I (n+ 1)An+1 = e2Bn �K2Bn�1 + 2Bn+1 + 4Cn+1+ e8Dn �K8Dn�1 + 8Dn+16II (n+ 6)Bn+1 = �e1An +K1An�1 � 1An+1III (n� 1)Cn+1 = e8Dn �K8Dn�1 + 8Dn+13



94 G.L. StrobelIV (n+ 8)Dn+1 = �10e1An + 10K1An�1 � 101An+1 � 60Bn+1 � 5e4Cn+ 5K4Cn�1 � 54Cn+1 .Now use II and III to replae the Bn+1 and Cn+1 in the right hand side ofIV. Then solve the resulting equation for Dn+1. These are the reurrenerelations for the unknown oe�ients of the series expansions of the wavefuntion omponents.Set all expansion oe�ients with negative subsripts to zero. Set theoe�ient, A0 to unity. This is equivalent to the normalization ondition.After a solution has been found, the omponents an all be resaled by aommon fator to satisfy a desired normalization. A solution where theangular momentum dominates the wave funtion behavior at the origin isfound only if 1 is zero. From II, with n set to -1, we get B0 = �1=5.From I, with n = �1, we get C0 = �2B0=4 = 12=20. From III, withn = �1, we get D0 = �621=208. From IV, with n = �1, we get 7D0 =�101A0 � 60B0 � 54C0.These must be simultaneously true, so we obtain from the last relation,1�2 + 2 2:18 � 44 � = 0 : (10)For the angular momentum barrier to dominate at small y, we expetR2 to be proportional to y there, and R4 and R8 proportional to y2 and y3respetively. This happens only if 1 is zero. If 1 is not zero, then the indexpower, g, of the power series must instead be �rst determined. See belowfor that ase. With 1 set to zero, then the oe�ients B0, C0, and D0 areall zero. With this restrition, then II beomes:IIb (n+ 6)Bn+1 = �e1An +K1An�1:And for n set to 0, we have,B1 = �e1A06 : (11)With n = 0, III yields, C1 = �8D13 (12)and IV, with n = 0 yields: 8D1 = �54C1 : (13)These are simultaneously satis�ed only if both C1 and D1 are zero. Forn = 1, III demands thatD2 =0. I with n = 0 yields that A1 = 2B1, and thusthe equations IIb, IV, III, and I an be used reursively for suessive valuesof n to determine the oe�ients of the power series solutions. This solutionalso satis�es the expetation, from the angular momentum dominane at theorigin, that the omponents R2, R4, and R8 vanish near the origin, with the�rst, seond and third power of the radius respetively.



Role of Short Range Potentials in Solving the Eigenvalue Problem for: : : 954. Disussion of the Coulomb term 1 being zeroThere are two ways for 1 to be zero. One an neglet the Coulombpart of the OGEP, arguing that the magneti part of this potential is allthat needs to be inluded in attempts to explain the Delta-proton massdi�erene. For that mass di�erene, the Coulomb part of the OGEP willontribute zero anyway. The other way is to add to the salar potential aterm that anels the Coulomb OGEP ontribution to 1. This an be easilydone, but involves hanging simultaneously the other values, 2, 4, and 8of the diagonal matrix elements. This also involves using a potential notinspired from QCD onsiderations. Certain ombinations of a salar andvetor potential that has both linear on�ning terms and magneti OGEPtype terms [12,13℄ yield analyti wave funtion omponents. The powerseries solutions found here by inluding the �rst 40 terms, not shown, wellreprodue these analyti solutions for values of y less than 10.The power series solution, dominated at the origin by the Coulomb termwhen 1 is not zero, is now disussed. This ase of inluding the Coulombterm of the OGEP seems reminisent of the slight divergene at the origin ofthe Dira equation solution to the Hydrogen Coulomb problem [14℄. If oneinludes only the 1=y terms in the matrix B above, near the origin, one anask that eah omponent is proportional to yg, where g is the index powerto be determined. Substituting this anzatz into the equation, d	=dy = B	 ,one �nds that the wave funtion omponents onstants of proportionalityare all zero unless the determinant of the oe�ients is zero. Therefore, onehas det G = 0, where G is the matrix:G = 2664 -g 2 4 8/6-1 (�g-5) 0 00 0 (�g+2) 8/3-101 -60 -54 (�g-7) 3775 : (14)The requirement that det G = 0 results in a quarti equation for g.Physial reasoning must be applied to determine whih of the roots of thequarti is allowed. For instane, we expet g to be real. As the hyperspher-ial volume element ontains r5dr, g annot be more negative than -5/2,from normalization onsiderations. If 8 is small, beause the strong ou-pling onstant is small, or if 8 is viewed as small ompared to 1, (8=1=1/54) then the quarti equation for g simpli�es to a quadrati, resultingin g = �5 +p25� 4122 : (15)In this limit, g is small and negative and satis�es the normalizationonstraint. If 1 is zero, of ourse we see that the index power is zero, as



96 G.L. Strobelin the power series solution above. If 1 is not small, then the smallest realroot of the quarti larger than -5/2 is the desired root. If 1 is too largeonly omplex roots for g are found. This orresponds to the strong ouplingonstant, �s exeeding about 0.18 from the quadrati approximation for g inthe above equation. Then the method fails, as does the Hydrogen Coulombproblem with large Z [14℄. One g is determined, then the onstants ofproportionality an be determined in terms of the proportionality onstanthosen for the �rst wave funtion omponent. Knowing these ratios and g,one is prepared to numerially solve the eigenvalue problem for the oupledradial di�erential equations in the Coulomb ase.5. SummaryA power series solution for the three body Dira equation solved in hy-perentral approximation has been found. Suh a solution is neessary tobegin numerial studies of three quark models of the baryons. One has aneigenvalue problem to solve where the boundary onditions at the origin andat in�nity must be met. The numerial approah to a solution requires theomponent ratios near the origin where the boundary onditions are appliedto start the numerial solution. The power series solution allows the ratiosof the various omponents of the omposite three quark wave funtion tobe determined near the origin. These ratios depend only on the energy andthe potential parameters, and the quark masses. Determining these ratiosby a power series allows the numerial eigenvalue problem to be redued toone variable, the system rest energy. Without the power series solutions,the numerial solution of the oupled di�erential equations requires one toguess the ratios of the omponents to the omposite wave funtion, whiletrying to guess the system rest energy.When the angular momentum dominates the wave funtion behaviornear the origin, reursion relations for obtaining suh a power series solu-tion an be found. This happens when the potential does not diverge as1=r at the origin for the large omponent of the omposite wave funtion.This is the omponent that survives in the non-relativisti limit. To bringthis about, the Coulomb part of the OGEP must be negleted or partiallyanelled out by a salar term introdued for that purpose. If the Coulombterm is inluded, then it dominates the wave funtion behavior at the originjointly with the angular momentum. In this ase, the initial hyperradialbehavior of the wave funtion omponents as well as their ratios dependon the strong oupling onstant. This analysis determines the ompositewave funtion omponent ratios needed to obtain the starting values for anumerial solution to the eigenvalue problem.
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