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The eigenvalue problem for a bound state solution of three quarks re-
quires deep analysis to even start a numerical attempt. A power series
solution to the three body Dirac equation solved in hypercentral approx-
imation is sought. A scalar linear flux tube three body string potential
is used to confine the quarks. In addition one gluon exchange potentials
(OGEP) between quark pairs are considered to model the short range in-
teractions. The angular momentum barrier is found to dominate the wave
function behavior at the origin when including only the magnetic part of
the OGEP. This occurs when the Coulomb part of the OGEP is neglected,
or canceled by terms of opposite sign from the scalar potential. Recur-
rence relations for the power series coefficients are determined. When the
Coulomb part of the OGEP is included, the initial ratios of the composite
three quark wave function components are also determined. In this case,
the Coulomb strength of the OGEP combines with the angular momenta
to determine the wave function behavior near the origin.

PACS numbers: 12.39.Ki, 14.20.Dh

1. Introduction

A confined three quark model, with small current quark masses [1], is
used to describe the proton. The necessarily relativistic quark dynamics
are described by the three body Dirac equation. The masses of the up
and down quarks are taken as the same. Hyperspherical coordinates are
used which properly handles the center of mass problem in the system rest
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frame [2,3|. The hyperradius squared is defined from the sum of the squared
quark pairwise separations as:

7"2 = % (7"%2 + T%3 + T%g) . (1)

A possible set of the five hyperangles are as follows. The location of the
three quarks defines a triangle. Two of the interior angles of this triangle
are the first two hyperangles. The triangle has a normal. The direction
of this normal defines two more hyperangles. The azimuthal orientation of
the triangle about the normal is the fifth hyperangle. The hyperspherical
expansion utilizes a sum over configurations in describing the three quark
composite wave function. This expansion is truncated, in the hypercentral
approximation, to a single configuration [4]. The quarks are each assumed
to be in the (1/21)3 configuration, coupled to a total spin of 1/2, for the
proton ground state.

A set of eight coupled first order radial differential equations in the hy-
perradius are obtained, after integration over the hyperangles, for the eight
components of the composite three quark wave function. With equal masses,
equivalent sets of quantum numbers for each quark, and flavor independent
forces, symmetry conditions reduces this to a set of four coupled first order
differential equations involving four unknown components. The differential
variable is the hyperradius. A scalar linear confining three body potential,
V', plus one gluon exchange potentials (OGEP) Vi, Vi3, Va3 between quark
pairs is considered. The scalar potential is parameterized as V' = bS, where
S is the minimum flux tube length between the three quarks.

Such a potential is common [5-7] but the OGEP contribution is often
included as a perturbation [8,9]. Here the OGEP contributions are sought
to be kept completely in all stages of the search for a solution. The string
constant b, is 0.18GeV? [10] for quarks.

The one gluon exchange potential [10] between quark pairs is:

Vig = —(2a5/3r12)(1 + a1 - a) . (2)

The subscripts are particle labels, and the & and S are Dirac matrices
associated with a given particle. ay is the strong coupling constant, viewed
here as a potential parameter. The —(2a;/3r12)(1) term in the OGEP above
is called the Coulomb term, the rest of the OGEP is called the magnetic term.
In the representation used, the Dirac @& matrix is just the Pauli & matrices
along the skew diagonal.

A numerical solution of these equations is an eigenvalue problem where
given one of either the potential or the system rest energy, the other is
guessed at until a solution is found that satisfies appropiate boundary con-
ditions at the origin and at infinity.
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The difficulty is that this is a problem in a multi-parameter space. The
overall wave function normalization can set the scale of one of the wave
function components. But one must still guess the ratio of three of the
other components to the value of the first component at, or near, the origin
to even start off an attempted numerical solution. If such an attempt fails to
satisfy the boundary conditions, the failure can be due to the ratios assumed,
or to the rest energy guess utilized by the numerical solution.

If the wave function components are all analytic, and therefore expand-
able in a power series of say, ascending powers of the hyperradius, then the
multiparameter aspect of this eigenvalue problem can be avoided. If the
coefficients of the power series expansions can all be determined recursively
in terms of the rest energy of the system and the potential parameters, then
the eigenvalue problem reduces to just one parameter, the value of the rest
energy utilized. The power series solution can then be used for any hyperra-
dial range if enough terms in the series are included. Including only a small
finite number of terms of the series will still provide wave function compo-
nents of sufficient accuracy for small hyperradial values. These components
can then be used to determine the starting values of the component ratios for
the numerical solution of the coupled differential equations, thereby avoiding
the multiparameter aspect of the eigenvalue problem.

The main point of this paper is to show that this can be done for the
three body Dirac equation solved in hypercentral approximation. A scalar
linear flux tube three body string potential is used to confine the quarks. In
addition, one gluon exchange potentials (OGEP) between quark pairs are
considered to model the short range interactions. The Coulomb contribution
of the OGEP affects the wave function behavior at the origin, but not so
for the magnetic contribution. The Coulomb contribution dominates over
the angular momentum barrier near the origin if the one gluon exchange
potential is completely kept. If just the magnetic part of the OGEP is
included, then the angular momentum barier dominates the wave function
behavior near the origin.

2. Analysis of radial Dirac equation for 3 quarks

The three body Dirac equation is:

(a4 - pi +mipr) + Vio
+(az - p2+mafs) + Viz+ Vo3 ¥ =EV. (3)
+(a3 - p3 + m3fs) + P1P203V

After the hyperangular integration [2], a set of eight coupled linear dif-
ferential equations are obtained [11,12] in the hypercentral approximation.
With f, g denoting the upper and lower component in the two component
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Dirac notation for a single quark wave function, the eight components, la-
beled Ry through Rg of the composite three quark wave function, denote
the composite combinations ff f,gff, faf,99f,ff9,9/9. g9, and ggg. The
normalization of these components is the same as in [4,13]. The first com-
ponent is the one that survives in the non-relativistic limit. For equal mass
quarks, and flavor independent forces, there is a symmetry such that we
have the component relations [12|, R = R3 = Rj5, and that Ry =Rg = Ry.
The coupled differential equations for the four unknown components can be
represented as the matrix equation, M¥ =0, where ¥ is the column vector,
Ry, Ry, Ry, and Rg. The matrix equation is:

M;  -D(5) 0 0 Ry
D(0) Ms -D(6)/2 0 Ry —0 (4)

0 2D(-1) My -D(7)/5 Ry

0 0 3D(-2) Mg Rg

The relativistic kinetic energy appears in the operator
d n

D(n)=—+—. 5
(n) = -+~ (5)

The diagonal matrix elements are combinations of the mass terms, the
energy, the scalar potential, the Coulomb part and the magnetic part of the
OGEP terms. The magnetic part has off diagonal matrix elements in the 8
by 8 representation, but due to the symmetry relations of the components, it
appears along the diagonal of the 4 by 4 system of equations. It is convenient
to have a dimensionless variable, so we define y = Lr, where L is an arbitrary
non zero energy (or inverse length) unit and y is dimensionless. We divide
the equations above by L, so that their forms remains the same if we now
take the relativistic kinetic energy operator as:

Dm=%+3 (6)

The diagonal matrix elements are My = —e; + K1y — ¢1/y, where the
scalar potential contribution is in K; = b 1.59 \/(2/3)/L?. b is the string
constant and the coefficients appearing in K; come from the hyperangular
integration over the string length, S, and from the change of variables from
r to y. The energy and mass terms are in e; = (E — 3M)/L, where E is
the system rest energy, and M is the quark rest mass energy. The Coulomb
part of the OGEP is reflected in ¢;=48a, where

372

™

(7)

ag = O
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The second diagonal matrix element is My = —eg+ Koy —co/y. Here Ko
is minus K7, as the scalar contribution has flipped sign in the Hamiltonian
representation. The energy and mass term is e = (F — M)/L. ¢ has a
contribution of 264a/9 from the Coulomb, and an additional (32/9)aq from
the magnetic part of the OGEP.

The third diagonal matrix element is My = —eq+ K4y —c4/y. Here K, is
equal to K7, and the energy term is e = (F'+ M)/L. ¢4 has a contribution
of (208/27)ay and also (32/27)ag from the Coulomb and magnetic parts of
the OGEP, respectively. The last diagonal matrix element is Mg = —eg +
Kgy — cg/y. Here the scalar contribution is again the negative, Kg— -Kj.
The energy and mass term is eg = (E 4+ 3M)/L. cg = (8/9)ayp, all from the
Coulomb part of the OGEP, none from the magnetic part.

The matrix equation of coupled differential relations can be solved for
the derivative terms resulting in the matrix equation:

d¥/dy = BV, (8)
where B is the matrix:
0 —MQ 4/y —M8/6
M, -5y 0 0 (9)
0 0 2y —Mg/3 |-

10M, -60/y 5My -T/y

3. The power series solution

We will now seek and find a power series solution to these differential
equations. We set Ry = Y A,y", where the sum is over n going from zero
through positive integers. Also we expand Ry = XB,y", R4 = XCpy", and
Rg = XD,y". The derivative with respect to y of Ry is then just ¥nA,y" !,
with similar expressions for the derivatives of the other components. The
coefficients of these power series expansions are unknown, and the goal is to
determine all of the coefficients recursively. These power series expansions
are substituted into the above matrix equation solved for the derivative
terms. The coefficients of like powers of y are then equated in the matrix
relations. One then obtains the relations:

I (n+1)A,q1 =eBp, — KoBp_1 + 2By +4Ch 44
egDyp, — KgDy, 1 + cgDyq1
+
6
II (n + G)Bn+1 = —elAn + KlAn,1 - ClAn+1

egDp — KgDy_1 + cg Dy 1
3

I (n—1)Chyy =
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v (n + 8)Dn+1 = —1061An + 10K1An,1 - 1001An+1 - GOBn+1 - 564Cn
+ 5K4Cn_1 — 5C4Cn+1 .

Now use II and III to replace the B,y and Cj,41 in the right hand side of
IV. Then solve the resulting equation for D, ;. These are the recurrence
relations for the unknown coefficients of the series expansions of the wave
function components.

Set all expansion coefficients with negative subscripts to zero. Set the
coefficient, Ay to unity. This is equivalent to the normalization condition.
After a solution has been found, the components can all be rescaled by a
common factor to satisfy a desired normalization. A solution where the
angular momentum dominates the wave function behavior at the origin is
found only if ¢; is zero. From II, with n set to -1, we get By = —c1/5.
From I, with n = —1, we get Cy = —c2By/4 = ¢1¢2/20. From III, with
n = —1, we get Dy = —6¢y¢1/20cg. From IV, with n = —1, we get 7Dy =
—1001A0 - 6030 - 50400.

These must be simultaneously true, so we obtain from the last relation,

2.1 Cq
c1 <2+0208 4)-0. (10)

For the angular momentum barrier to dominate at small y, we expect
R, to be proportional to y there, and R4 and Rg proportional to y? and 3
respectively. This happens only if ¢; is zero. If ¢; is not zero, then the index
power, g, of the power series must instead be first determined. See below
for that case. With ¢; set to zero, then the coefficients By, Cy, and Dy are
all zero. With this restriction, then II becomes:

1Ib (n + G)Bn+1 = —e1A, + K1A,_1.

And for n set to 0, we have,

—€1A0

By = r (11)

With n = 0, III yields,
¢ =20 (12)

and IV, with n = 0 yields:
8D; = —5¢4C . (13)

These are simultaneously satisfied only if both C; and D; are zero. For
n = 1, IIT demands that Dy =0. I with n = 0 yields that A; = ¢3B1, and thus
the equations IIb, IV, 111, and I can be used recursively for successive values
of n to determine the coefficients of the power series solutions. This solution
also satisfies the expectation, from the angular momentum dominance at the
origin, that the components Rs, R4, and Rg vanish near the origin, with the
first, second and third power of the radius respectively.
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4. Discussion of the Coulomb term ¢; being zero

There are two ways for ¢; to be zero. One can neglect the Coulomb
part of the OGEP, arguing that the magnetic part of this potential is all
that needs to be included in attempts to explain the Delta-proton mass
difference. For that mass difference, the Coulomb part of the OGEP will
contribute zero anyway. The other way is to add to the scalar potential a
term that cancels the Coulomb OGEP contribution to ¢;. This can be easily
done, but involves changing simultaneously the other values, co, ¢4, and cg
of the diagonal matrix elements. This also involves using a potential not
ingpired from QCD considerations. Certain combinations of a scalar and
vector potential that has both linear confining terms and magnetic OGEP
type terms [12,13] yield analytic wave function components. The power
series solutions found here by including the first 40 terms, not shown, well
reproduce these analytic solutions for values of y less than 10.

The power series solution, dominated at the origin by the Coulomb term
when ¢; is not zero, is now discussed. This case of including the Coulomb
term of the OGEP seems reminiscent of the slight divergence at the origin of
the Dirac equation solution to the Hydrogen Coulomb problem [14]. If one
includes only the 1/y terms in the matrix B above, near the origin, one can
ask that each component is proportional to 49, where g is the index power
to be determined. Substituting this anzatz into the equation, d¥/dy = BV,
one finds that the wave function components constants of proportionality
are all zero unless the determinant of the coefficients is zero. Therefore, one
has det G = 0, where G is the matrix:

-g co 4 cg/6
_ -¢1 (—g-5) 0 0
G=1 0 (—g+2) /3 (14)
-10¢y -60 -5ey (—g-7)

The requirement that det G = 0 results in a quartic equation for g.
Physical reasoning must be applied to determine which of the roots of the
quartic is allowed. For instance, we expect g to be real. As the hyperspher-
ical volume element contains r°dr, g cannot be more negative than -5/2,
from normalization considerations. If ¢g is small, because the strong cou-
pling constant is small, or if cg is viewed as small compared to ci, (cs/c1
—=1/54) then the quartic equation for g simplifies to a quadratic, resulting

m
-5+ 25 —4cieo
5 .

In this limit, g is small and negative and satisfies the normalization
constraint. If ¢q is zero, of course we see that the index power is zero, as

(15)
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in the power series solution above. If ¢ is not small, then the smallest real
root of the quartic larger than -5/2 is the desired root. If ¢; is too large
only complex roots for g are found. This corresponds to the strong coupling
constant, a; exceeding about 0.18 from the quadratic approximation for g in
the above equation. Then the method fails, as does the Hydrogen Coulomb
problem with large Z [14]. Once g is determined, then the constants of
proportionality can be determined in terms of the proportionality constant
chosen for the first wave function component. Knowing these ratios and g,
one is prepared to numerically solve the eigenvalue problem for the coupled
radial differential equations in the Coulomb case.

5. Summary

A power series solution for the three body Dirac equation solved in hy-
percentral approximation has been found. Such a solution is necessary to
begin numerical studies of three quark models of the baryons. One has an
eigenvalue problem to solve where the boundary conditions at the origin and
at infinity must be met. The numerical approach to a solution requires the
component ratios near the origin where the boundary conditions are applied
to start the numerical solution. The power series solution allows the ratios
of the various components of the composite three quark wave function to
be determined near the origin. These ratios depend only on the energy and
the potential parameters, and the quark masses. Determining these ratios
by a power series allows the numerical eigenvalue problem to be reduced to
one variable, the system rest energy. Without the power series solutions,
the numerical solution of the coupled differential equations requires one to
guess the ratios of the components to the composite wave function, while
trying to guess the system rest energy.

When the angular momentum dominates the wave function behavior
near the origin, recursion relations for obtaining such a power series solu-
tion can be found. This happens when the potential does not diverge as
1/r at the origin for the large component of the composite wave function.
This is the component that survives in the non-relativistic limit. To bring
this about, the Coulomb part of the OGEP must be neglected or partially
cancelled out by a scalar term introduced for that purpose. If the Coulomb
term is included, then it dominates the wave function behavior at the origin
jointly with the angular momentum. In this case, the initial hyperradial
behavior of the wave function components as well as their ratios depend
on the strong coupling constant. This analysis determines the composite
wave function component ratios needed to obtain the starting values for a
numerical solution to the eigenvalue problem.
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