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It is emphasized that Einstein’s theory of gravitation has its physical
and logical roots, firstly, in Newton’s theory, namely in the existence of
Newtonian tidal forces, and, secondly, in the requirement that these forces
be compatible with the theory of relativity. Furthermore, it is pointed out
that the nonexistence of any covariant description of energy in Einstein’s
theory is deeply rooted in a local ‘unindentifiability’ of the gravitational
force in Newton’s theory, although this fact is irrelevant in that theory.
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Many physicists think of Einstein’s theory of gravitation as a very sepa-
rate part of their subject based somewhat obscurely on an alleged ‘principle
of general relativity’ and a sophisticated ‘principle of equivalence’. It is
my purpose to show that Einstein’s theory can be directly inferred by nor-
mal physical arguments from Galileo’s discovery, confirmed to high accuracy
by modern measurements, that all bodies fall equally, irrespective of shape,
composition, etc. What then is the universal observable of this phenomenon?
It is evidently not weight which only arises when we stand an a solid body
like the Earth. But what is always present, even for freely falling bodies,
is the tide-raising force so brilliantly explained by Newton as due to the
non-uniformity of gravitation. Thus the universal observable of gravitation
is the relative acceleration of neighbouring particles. (Note that with this
definition an alleged ‘uniform gravitational field’ is no gravitational field at
all and arguments about falling lifts etc. are pointless.)

To put this mathematically, the observable of gravitation is thus the link
between the relative acceleration vector 6 of two neighbouring particles
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and their relative displacement vector dz*. This is described by the relation
Sft=da'joa. (1)

Therefore the tensor a;; is the observable of gravitation. Note that any anti-
symmetry in ¢ would imply that gravitation could spin up bodies without
limit. As this is not observed, a;; must be a symmetrical tensor. In fact
Newtonian theory asserts that

v
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and is completed by Poisson’s equation linking gravitation to its sources
j 2
a';, = =VV =—-4r G p. (3)

Excellent as Newton’s theory has proved to be, it is unacceptable since it is
non-relativistic. This is clear from (1), since if one particle moved at just
below the speed of light, there will exist displacement vectors implying that
the other particle is accelerated through the speed of light. Thus ¢ must
depend on the velocity v¥. Interpreting (1) as a four-dimensional equation,
this dependence must ensure that the resulting acceleration is necessarily
orthogonal to the velocity, as this excludes acceleration through the speed
of light. Accordingly there needs to be an anti-symmetry in the connection.
To combine this with the previously required symmetry needs a slightly
involved algebraic consideration. It emerges that the only simple solution is
to put _ _ '

Sf' = ¢ dxlvol, (4)
where the four suffix tensor ¢;j;; is anti-symmetric for an interchange of the
second and third suffix, but symmetric for the double interchange of the
first and second and third and fourth suffixes. (Anti-symmetry for the inter-
change of the first and fourth suffixes follows.) Thus the tensor ¢ constitutes
the most straightforward way of making Newton’s tidal relation (1) compat-
ible with special relativity. A further physical consideration is now helpful
to elucidate the significance of c.

There are many ways to derive the gravitational or Einstein red shift,
which occurs when the emitter of radiation is below the receiver. (My
favourite derivation uses a tower on the Earth carrying a closed chain of
buckets, filled with atoms of some species. On one side they are all in the
ground state, on the other side in a specified excited state, which makes
them more massive and therefore heavier. The ensuing motion makes the
need for the red shift patent.) Spectral lines being the basis of time keeping,
the red shift implies that two clocks that keep the same time when side by
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side, keep time differently when one is stationed above the other. Apply this
to a spherical Earth and attempt to describe the situation by a relativistic
metric. Because of the red shift, the coefficient of the time term must depend
on the radial distance. Without any infringement of generality one arrives
therefore at

ds* = g(r) dt* — h(r) dr* — r* (d6* + sin® 0 dp?) (5)

where g, because of the red shift, is not constant. This cannot occur in a flat
4-space. Thus basic physical considerations prove that a relativistic theory
of gravitation implies a non-Euclidean space. The simplest such geometry
is Riemannian and it is therefore cogent to use it.

The most important quantity in Riemannian geometry, specifying its
deviation from flatness, is the curvature tensor R;;z;, which incorporates
the symmetry relations found above (equation (4)) for the tensor ¢. The
fundamental equation of geodesic deviation is effectively identical with (4).
Thus the direct inference from purely physical considerations is that, in
order to make Newton’s theory relativistic, one has to adopt a Riemannian
geometry in which the paths of free particles are geodesics and the curvature
tensor is the observable of gravitation.

Note that in this derivation of Einstein’s theory there is no mention
of any ‘general relativity’. Also, gravitation is adequately characterised by
Galileo’s statement that all bodies fall equally.

From this point on the further development of the theory is conventional.
It may, however, be useful to make some comments on the physics of energy
in the theory of gravitation. In Newtonian theory, gravitational potential
energy plays an essential part in the conservation of energy, whenever there
is an interaction between non-gravitational (‘tangible’) forces and the ‘intan-
gible’ force of gravitation. (This terminology aims to indicate that locally
gravitational force is not identifiable, since one cannot compare the motion
of a particle affected by gravitation with one not so affected, whereas for ex-
ample in an electric field one can readily distinguish the motion of a charged
particle from that of a neutral one.) As a helpful Newtonian example, con-
sider two bodies of similar masses describing eccentric elliptic orbits about
their common centre of mass. In each orbit, the (tangible) kinetic energy
waxes and wanes; the potential energy correspondingly waning and waxing.
The kinetic energy of each body belongs to that body and resides in it and
the kinetic energy of the system is their sum. However, the potential en-
ergy belongs to the system as a whole and cannot meaningfully be shared
out between the two bodies or located in them. The fact that no position
can be ascribed to gravitational potential energy is irrelevant in Newtonian
theory. However, in a relativistic theory energy has mass and therefore an



2862 H. BonDI

unlocalisable energy is unacceptable. Accordingly there is an excellent phys-
ical reason why there is no covariant description of gravitational energy in
Einstein’s theory.

But without such a measure of gravitational energy there is no conser-
vation of energy. It is therefore unsound to call the field equations of the
theory ‘conservation laws’. Mathematically this is clear since, unlike an
ordinary divergence, a covariant one does not lead to a Green’s type of inte-
gral formulation. Physically it follows from what has been said above. The
field equations should therefore be called laws of the non-conservation of the
energy of the tangible forces arising from their interaction with gravitation.

Are there indeed any laws of the conservation of energy in the theory?
There are none locally (except under very special conditions), but, given
suitable boundary conditions at infinity, sophisticated considerations show
that there are global conservation rules. This is most easily seen in the
spherically symmetric case: Consider an isolated mass contracting slowly
and heating up in the process. This will increase its thermal energy which
is observable and therefore tangible. In the Newtonian framework we would
say that this is balanced by a decrease in the (unobservable) gravitational
potential energy. This is an irrelevance in relativistic theory, but we know
from Birkhoff’s theorem that the mass of the entire system, as seen from the
outside, is constant. Thus there is conservation.

I have tried to make evident that some of the peculiar features of Ein-
stein’s theory of gravitation are not ‘accidental’ results of the mathematical
apparatus, but are necessary physical consequences of constructing a rela-
tivistic theory based on Galileo’s discovery.



