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1. Introduction

In the present note we address the issue of singular Lagrangians in an-
alytical mechanics. Deriving Hamiltonian formulations of physical systems
with singular Lagrangians was attempted by Dirac and Bergmann [1|. The
aim was to obtain Hamiltonian formulations of relativistic field theories al-
though Dirac formulated his theory in terms of finite dimensional geometry.
Applying Dirac procedures to relativistic mechanical systems we find that in
most cases the resulting Hamiltonian description contains less information
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than was available in the Lagrangian formulation. We propose a version of
the Legendre transformation without this defect.

In a recent paper Cendra, Holm, Hoyle, and Marsden [2| express the
opinion that Lagrangian systems and Hamiltonian systems offer different
representations of the same object. The Legendre transformation is the
passage from one of these representations to the other. We agree with these
concepts. We also agree with the statement that “one should do the Legendre
transformation slowly and carefully when there are degeneracies”. We think
that our Legendre transformation is slow and careful enough to provide the
correct Hamiltonian representation of relativistic mechanical systems.

We provide an almost complete although somewhat superficial review of
the geometric background for analytical mechanics. Complete coordinate
characterizations of all structures are provided. Intrinsic constructions of
most of the objects are given. A more rigorous version of this material is in
preparation. Related material can be found in [10,12,13].

Much of the material was developed in collaboration with G. Marmo at
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli.

2. Geometry of tangent and cotangent bundles

Let @ be a differential manifold of dimension m. We use a coordinate
system or a chart

(¢") : Q- R™
cze (¢)(2) = (¢' (2),...,q" (@) (1)

Each individual coordinate is a function
“: Q — R (2)

We ignore the fact that the domain of a chart could be an open submanifold
of @) and not all of Q.
Let F' be a differentiable function on ). The function

Fo(¢") :R" R (3)

is the coordinate expression of the function F. It is a function of the coor-
dinates (¢"(q)) € R™ of a point ¢ € Q). We define partial derivatives

A(F o (¢")™")
9q"(v)

These partial derivatives are functions on Q.

O F = o (¢"). (4)
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The tangent bundle of a manifold () is a manifold TQ. There is a mapping

70:TQ = Q (5)

called the tangent fibration. Tangent vectors (elements of TQ) are equiv-
alence classes of curves in Q. Two curves v:R — @ and 7:R — Q are
equivalent if 7/(0) = (0) and D(f o +')(0) = D(f o ¥)(0) for each function
f:@Q — R. The equivalence class of a curve v: R — @ will be denoted by
ty(0). Coordinates

(¢",0%) : TQ — R*™
o= (' (v), -, 4™(0), 60" (0), ., 5¢™ () (6)
are induced by coordinates (¢”) in Q. If y is a representative of a vector v,
then ¢"(v) = ¢"(y(0)) and d¢*(v) = D(¢" 0 ¥)(0). The tangent fibration is
defined by
7o (t7(0)) = 7(0). (7)

Fibres of this fibration are vector spaces. We have operations

+:TQ x TQ—TQ (8)
(TQ:7Q)
and
SRXTQ —TQ (9)

with coordinate representations

(4%, 60") (v1 +v2) = (¢"(v1), 5¢* (v1) + 0> (v2)) (10)
and
(¢%, 60" (k - v) = (¢"(v), kdg* (v)). (11)
We denote by TQ x (19, 79)TQ the set
{(v1,v2) € TQ x TQ; T(v1) = T (v2)}. (12)

Since representatives of vectors (curves in @) can not be added the construc-
tion of linear operations in fibres of 7 is somewhat indirect. Let v = ty(0),
v; = ty1(0), and vy = ty2(0) be elements of the same fibre T,Q = Tél(q).
We write
V=1 + V2 (13)
if
D(f 07)(0) = D(f o 71)(0) + D(f ©2)(0) (14)
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for each function f on ). We have defined a relation between three elements
of a fibre T,Q). This relation will turn into a binary operation if we show
that for each pair (vi,v2) € TyQ X T,Q there is an unique vector v € T,Q
such that v = v1 + v2. The coordinate construction

(¢" 0 )(s) = (¢"(v1) + (3¢" (v1) + 8¢" (v2))s) (15)

of a representative «y of v proves existence. Let v = ty(0) and v' = t7/(0) be
in relations v = vy + v9 and v’ = vy + vy with v; = ty1(0) and v9 = ty2(0).
Then

D(f 07')(0) = D(f o 7)(0) = D(f 0 71)(0) + D(f 0 72)(0) (16)

for each function f on Q. It follows that 4 and «y represent the same vector
v =wv. This proves uniqueness. Let v = ty(0) and u = tA(0) be elements of
T,Q and let k£ be a number. We write

v =ku (17)
if
D(f 07)(0) = kD(f 2 A)(0) (18)
for each function f on Q. The coordinate construction
(¢" 07)(s) = (¢"(u) + kdq" (u)s) (19)

shows that for each £ € R and u € T,Q there is a vector v € T,Q such that
v = ku. If v = ty(0) and v' = ty/(0) are two such vectors, then

D(f 04)(0) =D(f 2 7)(0) = kD(f o A)(0). (20)

It follows that the vector v is unique.
Each curve v: R — @ has a tangent prolongation

ty : R=>TQ
: s ty(-+ s)(0). (21)

The curve (- + s) is the mapping

Y(e+s) : R=>Q
2 s y(s + s). (22)

The vector ty(s) is the vector tangent to 7y at y(s). The coordinate descrip-
tion of the prolongation is given by

(¢",0q™) oty = (¢" 07, D(¢q" 0 ). (23)
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A mapping X: Q — TQ such that 7go X: Q — @ is the identity mapping
is called a section of the fibration 7g. A section of the tangent fibration is
called a vector field.

Let P be a differential manifold with coordinates

(p'): P — R". (24)
For each differentiable mapping
a:@Q —- P (25)
we have the tangent mapping
Ta:TQ — TP. (26)

If v:R — @ is a representative of a vector v € TQ, then aoy:R — P is a
representative of the vector Ta(v) € TP:

Ta(ty(0)) = t(a o 7)(0). (27)
The coordinate definition of the tangent mapping is given by
(p',0p7) o Ta = (a' 0 7, (90 0 70)8q") (28)
with o = p’ o & or by a simplified formula
(p',0p7) o Ta = (o, B0’ 6¢"™). (29)

Einstein’s summation convention is used. The commutative diagram

TQ —™ TP
3 | (30)
Q —> 5 P

is a vector fibration morphism.
A differentiable mapping o: T — @ is called an immersion if at each
point ¢ € T' the linear mapping T;o: T/ T — T, ;)@ obtained by restricting

the mapping To to the fibre T,T = Tfl(t) is injective. If
(t"):T — R* (31)

are coordinates in T' and ¢® = ¢” o o, then ¢ is an immersion if the matrix
(0;0") is of maximal rank k. The image S = im(c) C @ is called an
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(immersed) submanifold of @ of dimension k. A submanifold S C @ is
frequently given as a set

S ={q€Q; YaFa(q) =0}, (32)

where F4 are m—k functions on @ such that the matrix (9 F4) is of maximal
rank m — k at points of S. A set S specified in this way is called an embed-
ded submanifold. Submanifolds are usually assumed to be embedded. We
will adopt the standard practice of not distinguishing elements of geometric
spaces from their coordinates. Functions defined on these geometric spaces
will be considered functions of coordinates. Instead of writing a formula
(32) we will say that S satisfies equations F4(¢") = 0. The tangent set of a
subset S C @ (not necessarily a submanifold) is a subset of TQ. A vector v
is in TS if there is a curve y: R — @ such that v = ty(0) and 7(s) € S for
each s in a neighbourhood of 0 € R. We have 7o(TS) = S. If S is the image
of an immersion o:T — @, then TS is the image of To: TT — TQ. The
coordinates (¢*,¢") of elements of TS are related to coordinates (', §t/) by

¢ = o"(t'), dg* = 00N (t))ot!. (33)

If S satisfies equations F)4(¢") = 0, then TS satisfies equations 0, F4d¢" = 0
in addition to F4(¢") = 0.
A 0-form on @Q is a function on Q. A 1-form on @ is a mapping

A:TQ—R
v (A ) (34)

linear on fibres of 7. The product of a 0-form F' with a 1-form A is a 1-form
F A defined by
(FA,v) = F(1q(v))(4,v). (35)

The differential dF of a function F' on @ is 1-form defined by
(dF,ty(0)) = D(F ©7)(0). (36)

The differential of the product F'G of two functions is the 1-form FAG+GdAF'.
Coordinates (d¢") in TQ are 1-forms. They are the differentials (dg”) of
coordinates (¢) in @Q. Each 1-form A can be expressed as a combination

A= A.dg" (37)
of these differentials. The coefficients A, are 0-forms obtained from

(A, v) = A (v)dq" (v) (38)
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for each v € TQ. The differential of a function F(¢") is the 1-form
dF = 0\F(q¢")dq. (39)
A 2-form on (@ is a function

B:TQ x TQ—R

(1Q.7q)
: (v1,v9) = (B, v1 Awg), (40)
which is antisymmetric:
(B,v1 Avg) + (B,va A1) =0 (41)
and linear in its first argument:
(B, (kvy + E'v]) Avg) = k(B,v1 Avg) + k' (B, v} Awvsg). (42)

Linearity in the first argument and antisymmetry imply linearity in the
second argument. The product of 0-form with a 2-form is a 2-form. The
exterior product of 1-forms A' and A? is a 2-form A' A A? defined by

<A1 A AQ, V1 A\ U2> = <A1, 1)1><A2, UQ) — <A1, UQ><A2, 1)1>. (43)

Each 2-form B is a combination

1 K A
B = §B,€)\dq Adg?. (44)
The coefficients B, are 0-forms characterized by
1
s V1 NV2) = S DA\0q (V1)0q (V2) — 09 (V2)0q (V1
(B,v1 Avz) = 5B (6¢"( )0 (v2) — 3" (v2)3q™ (v1)) (45)
and

By + By, = 0. (46)

The exterior differential of a 1-form A is a 2-form dA. In order to construct

the exterior differential we associate with each pair (v1,v2) € TQ x TQa

(7Q:7Q)
mapping x: R? — @ such that v; = tx(-,0) and vy = tx(0,-). The coordinate
construction

x"(s1,52) = q"(x(s1,52)) = ¢"(v1) + 6q" (v1)s1 + 0¢" (v2)s2  (47)
proves the existence of such mappings. We define curves

51 :R— TQ
;s tx(-, $)(0) (48)
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and

52 R — TQ
: s+ tx(s,-)(0) (49)

with coordinate representations

(€5 (52), 067 (s2)) = (¢ (€1(s2)), 80* (€1(52))) = (X" (0, 52), D5, (0, 52))

(50)
and
(¢5(51), 863 (s1)) = (¢"(&2(51)), 00 (€2(s1))) = (X"(Slao),3sQXA(81,0))(-51)
For the mapping defined in (47) we have
(£7(5), 067 (s)) = (a"(v1) + 8" (v2)5, 5™ (v1)) (52)
and
(€5(5),063(5)) = (¢"(v1) + 0q"(v1)5, 007 (v2)). (53)
The exterior differential is defined by
(dA,v1 Awvg) = D(A, &) (0) — D(A, &)(0). (54)
Relations
A'NA?+ A2 NA =0, (55)
d(FA)=dF NA+ FdA, (56)
and
ddF =0 (57)

are easily established for an arbitrary O-form F and arbitrary 1-forms A, A,
and A2. The exterior differential of a 1-form A = Aydg¢” is the 2-form

1
dA = dA\ Adg* = 8,A4,dg" Adg = 5(aMA — hAg)dg" Adgt.  (58)

A 2-form which is the differential of a 1-form is said to be ezact.

A 1-form A is said to be closed if dA = 0. If A is closed, then there is a
neighbourhood V of each point ¢ and a 0-form F on V such that A|V = dF.
This is as a consequence of the Poincaré lemma.

Let P be a differential manifold with coordinates (p’) and let a: Q — P
be a differentiable mapping. Let o = p’oa. The pull back of a 0-form F on
P is the O-form F o« on Q. The pull back of a 1-form A on P is the 1-form
a* A on @ defined by
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(a"A,v) = (A, Ta(v)). (59)
If .
A= Adp', (60)
then .
oA = A;0,a'dg". (61)
The pull back of a 2-form B on P is the 2-form a*B on @) defined by
(a*B,v; ANvg) = (B, Ta(v1) A Ta(v1)). (62)
If .
B = §Bijdpi Adp/, (63)
then .
o*B = §Bijaﬁai3>\ajdq” Adgt. (64)
The relations
d(a«*F) = «*dF (65)
and
d(a*A) = o*dA (66)

hold for a O-form F and a 1-form A. Let C C @ be a submanifold. The
mapping
Lo C — Q
g g (67)
is the canonical injection. The pull backs - F', 1A, and B are denoted
by F|C, A|C, and B|C, respectively.

The cotangent bundle of a manifold @) is a manifold T*@Q). The cotangent
fibration

TQ: T'Q = Q (68)
is the vector fibration dual to the tangent fibration 7. The canonical pairing

is a bilinear mapping

(,): T"Q@ x TQ—-R
(7Q,7Q)

2 (fyv) = (fv) (69)
defined on the set

TR x TRQ=A(f,v) e T'@xTQ; mq(f) =7)}.  (70)

(mQ:7Q)
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Each covector f € T;Q = 71'651((]) is the differential dF(q) of a function
F:Q — R. Differentials (dg”(q)) form a basis of the vector space T;Q. Let
(ex(q)) be the basis of the vector space T, dual to the base (dg”(g)) in the
sense that

(dg*(q),ex(q)) = "x. (71)
Coordinates
(¢, fr): TQ — R*™ (72)
are defined by
(¢", () = (¢"(mq(f)), {f; ex(m@(f))))- (73)
The canonical pairing has the coordinate expression
(f,0) = Ja(£)dg* (w). (74)

For the tangent bundle TT*Q of the cotangent bundle T*Q we have the
tangent fibration
TT*Q: TT*Q — T*Q (75)

and the tangent mapping
Trg:TT'Q = TQ (76)
of the cotangent fibration mg: T*Q — (). The diagram

Trg

o —2 s TQ
TT*Ql TQ[ (77)
T —2 s Q
is commutative. Hence, (rr-g(w), Trg(w)) € T*Q x TQ for each

(7Q7Q)
w € TT*Q. A canonical 1-form d¢g on T*Q, called the Liouville form, is

defined by
(0, w) = (r7-q(w), Tmg(w)). (78)

In the manifold TT*() we have coordinates
(qﬁap)\a 5q“7 5pu): TT*Q - R4m (79)

related to the coordinates (¢, f\) as the coordinates (¢*, d¢") in TQ are re-
lated to the coordinates (¢”) in @Q. In terms o these coordinates, coordinates
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(¢%, fr) in T*Q, and coordinates (¢*,d¢") in TQ we have the coordinate
definitions of the fibrations 771+g and Tmg:

(@ fr) ot = (4", fr) (80)
and
(4",0q") 0 Trg = (4", 04%). (81)
It follows that
(Vq,w) = fu(w)ig" (w). (82)
Hence,
Vg = frdq". (83)

A 1-form A on @ is a function on T(Q but it can be interpreted as a section
A: Q — T*Q of the cotangent fibration. In terms of this dual interpretation
we state the following fundamental property of the Liouville form:

A" = A. (84)

A manifold P and an exact, non degenerate 2-form w form an (exact)
symplectic manifold (P,w). The 2-form w defines a mapping Bp.): TP —
T*P characterized by the equality

(Bipw) (), v) = (w,uAv) (85)

for vectors u € TP and v € TP such that 7p(v) = 7p(u). The 2-form w is
said to be non degenerate if the mapping f(p,,) is invertible. The cotangent
bundle T*@) together with the 2-form

wo =Yg = df, Adg" (36)

form a symplectic manifold (T*Q,wg). In the cotangent bundle T*T*Q we

use coordinates
(qﬁaf)\aa'uaby):T*T*Q _>R4m (87)

induced by coordinates (¢*, f)) in T*@. The coordinate definition of the

mapping
ﬂ(T*QMQ):TT*Q - T'T"Q (88)

is given by
(qn’ f)\a Qs by) o IB(T*Q,UJQ) = (qn’ f)\a 5f;u _5qu)‘ (89)
This mapping is invertible. Its inverse

ﬁ(—TE Qwe)’ T'T*Q — TT*Q (90)
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is defined by

(qn’ s 5q“7 5fl/) © /B(irl*QMQ) = (qH7 Y _bﬂ’ au)' (91)
The Poisson bracket
{F,G}:T"Q = R (92)
of two functions F and G on T*Q is defined by
[F.GY(f) = ([AG(F). B guu) (AF (). (93)

It follows from the coordinate relation (91) that the Poisson bracket {F, G}
of two functions F(¢", fy) and G(¢", f)) is the function

OF 0G _ 0G OF
0¢t Of,  O0q® Ofy

(94)
or

0xFO"G — 0,GO"F (95)
with the symbol 0% used to denote the partial derivative with respect to fy.

3. Lagrangian submanifolds

A Lagrangian submanifold of a general symplectic manifold (P,w) is a
submanifold S C P of dimension dim(S) = 3 dim(P) such that w|S = 0.
This last condition means that the symplectic form w evaluated on two
vectors tangent to S vanishes. If S is the image of an immersion o:T — P,
then w|S = 0 is equivalent to o*w = 0.

A Lagrangian submanifold of (T*Q,wq) is a submanifold S C T*Q of
dimension m such that wg|S = 0. If S is the image of an immersion 0: T —
T*@ from a manifold T with coordinates (¢*) and

(¢" fr) o0 = (0", 02), (96)
then
0*wg = 0a0x050"dt* AdtP = % (000,050" — 050,0,0"%) dt* Adt?.  (97)
If S is a Lagrangian submanifold, then the Lagrange brackets
0q0x080" — 080,,0q0" (98)

vanish. Let f € S andlet T;S C T;T*Q denote the space of vectors tangent
to S at f. Let

T3S = {a € T}T*Q; Yuer,s{a, w) =0} (99)
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be the polar of T;S. If u € TfS, then

(Br-Quq) (1), w) = (wo,u Aw) =0 (100)
for each w € T¢S. Hence, B(1+Q.uo) (TS) CT}S. Since dim(B(1+,wg) (TS))
= dim(T;S) = m and dim(T}S) = dim(T;T*Q) — dim(T;S) = m, the
spaces T3S and B(1-Que)(TfS) are equal. If F and G are functions on T*Q
constant on S, then dF(f) and dG(f) are in T3S for each f € S. It follows

that
{F,G}|S = 0. (101)

If S is specified by equations F'4 = 0, where F4 are m independent functions
on T*@, then
{F4,Fp}|S=0. (102)

There are three categories of Lagrangian submanifolds of cotangent bun-
dles generated by increasingly complex objects.

3.1. Lagrangian submanifolds generated by functions

Let U be a function on ). The image S of the differential dU: Q) — T*Q
is a Lagrangian submanifold of (T*Q,wq) since dim(S) = m and

(dU)*wg = (dU)*ddg = d(dU)*dg = ddU = 0. (103)

The submanifold S is said to be generated by U. In terms of coordinates
(", fx) the set S is described by equations

fr=0\U(q"), (104)
equivalent to the simple version of the principle of virtual work
Mg = 6U(q%) = o\U(¢%)éq*, (105)

where the virtual displacements §¢* are coordinates of a vector v € TQ.
Let S =im(o) C T*Q be the image of a 1-form interpreted as a section
0:Q — T*Q of the cotangent fibration. From

(0)*wg = (0)*ddg = d(0)" g = do (106)
it follows that if S is a Lagrangian submanifold, then for each element fy € S

there is a neighbourhood W C T*Q of fy and a function U on @ such that
SNW =im(dU) N W. This is a version of the Poincaré lemma.
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3.2. Lagrangian submanifolds generated by constrained functions

Let C C @ be a submanifold of dimension k£ and let U:C' — R be a
differentiable function. The set

S={feTQ; q=mo(f) € C.Voer,ccT,0{f,v) = (AU, v)} (107)

is an affine subbundle of the cotangent bundle T*@ restricted to C. At each
point g € C the fibre 5, = SNT(Q is an affine subspace of T;() modeled on
the vector subspace ToC' C T;@Q) of dimension m — k. It follows that S is a
submanifold of T*@ of dimension m. We choose a function U:Q — R such
that U|C = U and define functions U = U o g on T*Q and U =T|S on
S. The function U does not depend on the choice of the function U, it can
be defined directly by U(f) = U(rg(f)) for each f € S. If w € TS, then
Trg(w) € TC since mg(S) = C. From

<19Q’w> =

) (108)

it follows that
dg|S =dU (109)

and
wg|S = ddg|S = d(Jg|S) = ddU = 0. (110)

Hence, S is a Lagrangian submanifold of (T*Q,wq).

Given a function U(¢*) and m — k independent functions F4(¢") such
that the set C'is described by the equations F4(¢") = 0 we write the principle
of virtual work

Fa(¢") = 0
fHrégr = U(q")ég
NFa(g")og> = 0 (111)

for the set S. Coordinates (¢, f)) of elements of S satisfy the variational
principle with arbitrary virtual displacements d¢* satisfying the last equality.
This last equality indicate that the virtual displacements are coordinates of
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vectors tangent to C. Using Lagrange multipliers A* we write the equations
for S in the form

Fa(g®) =0
f)\ = 8)\U(q“)+8AFA(q’”“)>\A. (112)

Let (t') be the coordinates in C' and let ¢ = o*(t') be the coordinate
expression of the canonical injection of C'in Q. If U(#") is the internal energy,
then S is represented by

¢" = o"(t)
PojeNE) = 0;U(t). (113)

Let C C @ be a submanifold and let S be an affine subbundle of the
cotangent bundle T*(Q restricted to C modeled on the vector subbundle
T°C of T*Q restricted to C. If S is a Lagrangian submanifold of (T*Q, wg),
then 9¢|S is closed. Let fy be an element of S and let W C T*Q be a

neighbourhood of fy and U a function on SNW such that dolSNW = au.
We choose the neighbourhood W to have a connected intersection W, =
SqNW with the fibre S; = SN T,Q for each ¢ in V' = mo(S N W). The
restriction of Jq to the fibre T;Q is the zero form since (Jg,w) = 0 if
Trg(w) = 0. Consequently,

AU|W, = 9g|W, =0 (114)

and the function U is constant on the connected set W,. This permits the

introduction of a function U on C such that U(f) = U(mg(f)) for each
f€SNW. The set

{f e T°Q; q =mq(f) € C.\Vyer,ccT,0(f>v) = (dU,v)} (115)

intersected with W is the intersection of S with W. We have obtained an
extension of the Poincaré lemma to constrained Lagrangian submanifolds.

3.8. Lagrangian submanifolds generated by Morse families

Let : Y — Q be a differential fibration with coordinates (¢*,y*) adapted
in the sense that

(¢") on = (q%), (116)

where the coordinates (¢”) on the right hand side are coordinates in Y. Let
U:Y — R be a function interpreted as a family of functions defined on fibres
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of the fibration 1. The family is called a Morse family if the k x (m + k)
matrix ) )
0°U 0°U
(117)
oyAoyB  OyAogh

is of maximal rank. A Morse family generates a set

= {1 €7@ v, Ve, v (1, TH(2) = (@U2) }. (118)
The critical set
Cr(U,n) = {y €Y Vyer,yTn(w) =0 = (dU,w) = 0} (119)
of the Morse family is a submanifold of Y of dimension m. A mapping
k:Cr(U,n) —» T*°Q (120)
such that mg(k(y)) = n(y) is defined by
(k(y),v) = (AU, w), (121)
where v is any vector in T,y and w € T, Y such that Tn(w) = v. This map-

ping is an immersion and S = im(x). Let y € Cr(U,n) and w € T, Cr(U, n).
From

(g ,w) = (dq, Tr(w))
= (rr:@(Tr(w)), Trg(Tr(w)))
= (k(y), Tn(w))
= (dU,w) (122)
it follows that
k*9¢g = dU| Cr(U,n). (123)

The set S is an immersed Lagrangian submanifold of (T*Q,w¢) since
K'wg =0 (124)

and dim(S) = dim(Cr(U,n)) =m

It follows from a theorem of Hérmander [4,7] that for each element fqy of
a Lagrangian submanifold of (T*Q,wq) there is a neighbourhood W C T*Q
and a Morse family U: Y — R of functions on fibres of a fibration : Y — Q
such that S and the Lagrangian submanifold generated by U coincide in W.
This is an extension of the Poincaré lemma.
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The coordinates (¢*, f)) of elements of S satisfy equations

Hro= U vy
0 = dpU(¢",y") (125)

derived from the variational principle of virtual work
£r6q* = U(¢%,y™) = U (", y™")oq" + apU (", y) " (126)

with some values of the variables (y*) and all variations (3¢*,dy?). The
symbol 94 stands for the partial derivative with respect to y*. Equations
(125) imply the equalities

dfy = 9,00U(q", y)dg" + 0porU (¢",y™)dy”
0 = 0\dBU(q" y™). (127)

Consequently,
wolS = dfa Adg*|S = 8,00U (", y")dg" A dg* = 0. (128)

It follows from the maximality of the rank of the matrix (117) that
dim(S) = m.
Note that the affine subbundle (107) is generated by the Morse family

U(q®,y™*) =TU(q") + Falq®)y™. (129)

The rank of the matrix

2 2
< 0°U o°U >:<0 8FA) (130)
ayAayB ayAaqn aqn

is maximal due to independence of the functions Fi4(¢"). The function (129)
depends linearly on the unrestricted variables (y“). This is the characteris-
tic feature of a Morse family equivalent to a constrained generating function.
There is little difference between the variables (y*) and the Lagrange mul-
tipliers (A4).

A Morse family generating a Lagrangian submanifold is not unique. It
is frequently possible to reduce the dimension of the fibration 1. Reductions
are based on the following observation. Let S be a Lagrangian submanifold
of (T*Q,wq) generated by a Morse family U:Y — R of functions defined on
fibres of a fibration 7: Y — @. If the critical set Cr(U,n) is the image of a
section 0: Q) — Y of 1, then S is generated by the function Uoo: Q — R. If
f €S and g=mg(f), then f = k(o(g)) and

(f,0) = (k(o(q)),v) = (AU, To(v)) = (d(U ¢ 0),v) (131)
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for each v € T4Q. Hence, f = d(U o 0)(g). This shows that S C im(U o o).
If f=d(Uoo)(q), then

(f;0) ={d(U 0 0),v) = (AU, To(v)) = (r(a(q)),v) (132)

for each v € T,Q. Hence, f = k(o(q)). It follows that im(U o o) C S.
It may happen that the fibration 7 is the composition " o 1’ of fibrations
7Y — Y and ":Y' — @ and that the critical set Cr(U,7’) is the image
of a section 0:Y' — Y of 1. In this case the Lagrangian submanifold S is
generated by the Morse family U o 6:Y' — R of functions on fibres of n”.

4. Statics of mechanical systems

Let @ be the configuration space of a static mechanical system. Elements
of the cotangent bundle T*Q) are the generalized forces applied to the system.
The constitutive set of a static system is subset S (usually a submanifold)
of the cotangent bundle. An element f € S is the generalized force which
when applied by an external controlling device will maintain the system in
equilibrium at the configuration ¢ = mg(f). The constitutive set provides
a complete characterization of the response of the static system to external
control represented by generalized forces applied to it. The knowledge of
equilibrium configurations of an isolated system does not characterize the
system completely. Two systems may have the same equilibrium configura-
tions and yet respond differently to external control.

The system is said to be reciprocal if wg|S = 0. Let w; and ws be
vectors tangent to S such that 7r-g(w2) = Tr-g(w1). Let d1¢" = d¢" (w1),
01 fx = 0fx(wr), 02g" = d¢"(ws), and da f, = § fx(w2). The equality

01 fr02q" = 02 fr 014" (133)

derived from (wg,w; A wg) = 0 is a reciprocity relation. The system is
said to be potential if S is a Lagrangian submanifold generated globally
by a generating function, a constrained function or a Morse family. The
generating function is interpreted as the internal energy of the system. A
potential system is reciprocal.

In the following three examples the configuration space is an affine Eu-

clidean plane with Cartesian coordinates (z,y). Coordinates (z,y, f,g) are
used in T*Q.

EXAMPLE 1. The function

Ule.y) = 20?4 97) (134)
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is the internal energy of an elastically suspended material point. The consti-
tutive set S is the Lagrangian submanifold generated by U. It is described
by equations

f=kx, g=ky (135)

derived from the principle of virtual work
fox + gdy = 0,U(z,y)dx + 0,U (z,y)dy. (136)
A

EXAMPLE 2. Let C C @ be the circle

2 + 9% = d>. (137)
Let -
Ulz,y) = ky (138)
represent the internal energy of a material point constrained to the circle
22 + 9% = d> (139)
From the variational principle
224y =0
féxr + goy = kdy
xox +ydy = 0 (140)
we derive equations
22 +y? =0
f =Xz
g =k+Xy (141)

for the constitutive set S with a Lagrange multiplier A. With the parametric
representation

= qgcosV

y = asind (142)

we obtain the expression U(¥) = kasind for the internal energy and the
variational principle

x = acosd
y = asind
—fasinddd + gacos 9909 = kacos ¥ (143)
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equivalent to (140). The constitutive set is generated by the Morse family

A
U(z,y,\) = ky + 5(:52 +9? — d?). (144)
A
ExAMPLE 3. The function
k
U(z,y,9) = 5(($ —acos?)? + (y — asind)?) (145)

is the internal energy of a material point tied elastically to a point left to
move freely on the circle

r=acosd, y=asind. (146)

The function U is a Morse family of functions of the variable ¥ since the
rank of the 1 x 3 matrix

< 0*U  9*U 90U

9909 090z 8198y) = (ka(z cos 9 +ysind), kasind, —kacos?)

(147)
is 1. From the principle of virtual work

foxr + goy = 6U(z,y,9)

= k(x —acos9)ox + k(y — a) sind)dy + ka(xzsind — y cos 9)d9
(148)

we obtain equations

f = k(z —acos?)
g = k(y — asind)
0 = ka(zsind —ycosd) (149)

for the constitutive set S. Equations

= pcos

= psind

k(p — a)cos?d

= k(p—a)sind (150)

Q e 8
I

represent a mapping o from R? to T*Q. The set S is the image of this
mapping. The matrix
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Jor Oy OJf O0g

dp 0dp 09p 0O
or oy of

o9 o9 09 0Y

_ < cos sin 4 k cos ksind ) (151)

—psing  pcost?d —k(p—a)sind k(p—a)cosd

is of rank 2. This indicates that S is an immersed submanifold. With the
exclusion of points corresponding to p = 0 the set S is the union of images of
two sections of mg corresponding to the two different signs in the formulae

g = \/m (\/552 + y? :l:a) (152)

With the exclusion of points corresponding to z? + y? > a?, S is the set of
points satisfying equations

F(z,y,f,9) = z— (\/f2+g —ka) =0

k\/Jm
- TH - (\/f2+g —ka)—O (153)

The functions F? and Fg? are obviously independent. It follows that S is an
embedded submanifold. The rank of the Jacobian

F)(z,y,f.9) = y—

o oy

dp Op | _( cosd sind

oz Oy _<—psin'b1 pcost (154)
dp Op

of the mapping mg o o represented by

= pcost
y = psind (155)

changes from 2 to 1 at p = 0. This indicates the presence of a Lagrangian
singularity above the point with coordinates (z,y) = (0,0). A
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5. Differential equations

The tangent fibration 7,: TQ — () was introduced in Section 2. Ele-
ments of the tangent bundle T(Q were interpreted as virtual displacements.
We return to the topic of tangent vectors this time interpreted as veloci-
ties. Coordinates (¢, d¢"): TQ — R*™ introduced in Section 2 will be now
denoted by (¢*,¢*).

A first order differential equation in @ is a submanifold D C TQ. A
curve y: I — (@) defined on an open interval I C R is said to be a solution of
D if for each t € I the vector ty(t) tangent to -y at (¢) is an element of D.
A differential equation D is said to be integrable if for each v € D there is a
solution v: I — @ of D such that v = ty(tg) for some ¢y € I.

Not all differential equations are integrable. Let D C TQ be a differential
equation and let C' be the set 7¢(D). If v € D and D is integrable, then
there is a solution y: I — @ of D such that v = ty(ty) for some g € I. Since
ty(t) € D for each t € I, it follows that y(¢) € C for each t € I. Consequently
ty(t) € TC for each t € T and v = ty(ty) € TC. We have shown that the
condition D C TC is necessary for integrability of the equation D. This
condition is sufficient for a class of differential equations described below.

The image D = im(X) of a vector field X:@Q — TQ is an integrable
differential equation. Let C' C @ be a submanifold and let D be the union

J {im(Xa]C)} (156)

achA
of a family of vector fields
X0 Q > TQ (157)
restricted to C. If D C TC, then each field X, induces a vector field
X, : C—>TC

t g~ Xa(q) (158)
since im(X,|C) C D C TC. The differential equation im(X,) is integrable

for each a € A and
D= |J{imXa)}. (159)
achA
Hence, D is integrable.

If the necessary condition D C T7g(D) is not satisfied, then the reduced
equation D N Trg(D) is closer to being integrable although the condition
DNTrg(D) C Trg(D N Trg(D)) is not necessarily satisfied. This observa-
tion suggests the following algorithm for extracting the integrable part of a
differential equation. We consider the sequence of sets

C’ =179(D), T = 17o(DNTC"),....,C" =1o(DNTC""),...  (160)
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and the sequence of differential equations
D'=D,D' =Dn7C°,.... D" =DNnTC",. .. (161)

It may happen that after a finite number of steps the sets in the sequence
(160) are all equal to a set C. This set satisfies the equality

C=19(DNTC). (162)

If the differential equation D = DNTC is integrable, then it is the integrable
part of D.

In Section 12 we give an example of a version of the above algorithm
applied to a Hamiltonian system.

Other algorithms for extracting the integrable part of a differential equa-
tions have been designed. They require the use of higher order tangent
vectors.

The second tangent bundle of a manifold Q is the set T?Q of equivalence
classes of curves in Q. Two curves 1:R — @ and v: R — @ are equivalent

if 4'(0) = 7(0), D(f ©+)(0) = D(f 07)(0), and D?(f 0+')(0) = D*(f )(0)
for each function f: @ — R. We use coordinates

(¢",¢",§"): T°Q » ™ (163)

in T2Q. If v is a representative of a second tangent vector a € T?Q, then

q"(a) = ¢*(7(0)), ¢*(a) = D(g* ©7)(0), and ¢*(a) = D*(¢"* ©)(0). The
equivalence class of a curve 7: R — @Q will be denoted by t2y(0). Each curve
v:R — @ has a second tangent prolongation

t’y : R— T°Q
:t t2y(- 4+ 1)(0). (164)
The coordinate description of the prolongation is given by
(a",¢",§") o t*y = (¢" 07, D(¢" 0 7),D*(¢" o 7)) (165)
The second tangent fibration is the mapping

T2Q T2Q =@
: ty(0) — 4(0). (166)

There is also the fibration

o + T?Q = TQ
: t29(0) — ty(0). (167)
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A second order differential equation in Q is a submanifold £ C T?Q. A
solution is a curve y: I — @ such that t?>y(t) € E for each t in the open
interval I C R. The concept of integrability is easily extended to second
order equations. The image im(X) of a section

X:TQ — T%Q (168)

of the fibration 7'5¢ is an integrable differential equation.
Elements of the iterated tangent bundle TT(Q are equivalence classes of
curves in TQ. Coordinates

(¢" ¢ q",¢"): TQ — R'™ (169)

will be used. These coordinates are related to coordinates (¢, ¢") as coor-
dinates (¢*,¢*) are related to coordinates (¢*). We have fibrations

TTQ: TTQ = TQ (170)
and
Tro:TTQ — TQ (171)
with coordinate representations
(4", ¢") o Trq = (¢",¢") (172)
and
(4",¢") o Trq = (4", d"). (173)

There is an useful immersion Ag of T2Q in TTQ. This immersion as-
sociates with a second tangent vector a = t2y(0) the vector w = tty(0)
tangent to the prolongation ty of the curve y at ty(0). The formal definition
is expressed in

Ag @ TPQ—TTQ
: t29(0) = tty(0). (174)
From 77q(tty(0)) = t7(0), Tro(tty(0)) = t7(0), and 7'2(t*y(0)) = t(0)
it follows that
T1Q o Ao = TrgoAg = Thao. (175)

Let D C TQ be a differential equation. The set
PD =), (TD) C T°Q (176)

is a second order differential equation called the prolongation of D. If the
differential equation is given in the form

D= {v € TQ; Vifi(v) = 0}, (177)
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where f; are functions on T(), then TD is the set

{w e TTQ; Vifi(rro(w)) =0,
Iufi(rrg(w))q'" (a) + O fi(Tro(w))d'* (a) = 0} (178)

and PD is the set

{a € T?Q; Vifi(t'20(a)) =0,
Oufi(r'29(a))d" (a) + 9 fi(r'2q(a))d" (a) = 0}. (179)

The symbol 0, stands for the partial derivative with respect to ¢/.
The inclusion

r'90(PD) C D (180)

follows from
7129(PD) = 11(Aq(PD)) = tro(A@(Ag' (TD))) C 71¢(TD) = D. (181)

Let D C TQ be an integrable equation. If v € D, then there is a solution
v:I — @ of D such that ty(0) = v. We have Ag(t?y(0)) = tty(0) € TD
since ty(t) € D for each ¢ € I. Tt follows that v = ty(0) = 7150 (t*y(0)) €
7190 (PD). Hence,

D C 7'59(PD) (182)

if D is integrable. We have established a necessary condition
'90(PD) = D (183)

for integrability of a differential equation D C TQ. If this condition is not
satisfied, then the integrable part of D is a subset of the set T!5¢(PD).
The set T15(PD) is a subset of D closer to the integrable part without
being necessarily integrable. These observations suggest a new algorithm
for extracting the integrable part of a differential equation. We introduce
the sequence of differential equations

D’ =D,D' =7'44(PD%),...,D* = '5o(PD*"),... (184)
It may happen that after a finite number of steps the sets in the sequence

(184) are all equal to a set D. It may happen that D is the integrable
part of D.
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6. The iterated tangent bundle

We have already introduced the iterated tangent bundle TTQ and the

coordinates
(¢*, ¢ q" q"): TQ — R'™.

The fibration
TTQ: TTQ — TQ

is a vector fibration. We have the operations

+:TTQ x TTQ-—-TTQ
(T1Q:7m1Q)

and
SR XTTQ - TTQ

with coordinate representations

(¢, q™, ") (w1 + ws)
= (q"(w1), ¢ (w1), ¢*(w1) + ¢ (w2), ¢ (w1) + ¢ (w2))

and

(@, " a",q") (k- w) = (¢"(w), ¢ (w), kg (w), k" (w)).

The diagram

TQ —2 , TQ
ol N
0 T, g

is a vector fibration morphism.
We show that the mapping

Tro:TTQ — TQ
is a vector fibration by constructing operations

FTTQ x TTQ—-TTQ
(TTQ,TTQ)

and
TR TTQ — TTQ.

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)
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Let w; and wy be elements of TTQ such that Trg(we) = Trg(wy). It is
possible to choose curves £1: R — TQ and &: R — TQ such that wy = t&1(0),
wy = t€2(0) and 7g 0 & = 7 0 &;. The coordinate constructions

(",4") 0 &1 = (¢"(w1) + " (w1)s,¢* (wr) + ¢ (w1))s (195)

and
(q%,d) 0 &2 = (q"(w2) + ¢ (w2)s, ¢ (ws) + ¢ (w2))s (196)

provide an example. The operation + is defined by
wy +we = t(&1 + £)(0). (197)
The operation - is defined by
k=t£(0) = t(k£)(0). (198)

Coordinate representations of these operations are given by

(¢",¢* q",d") (w1 +ws)
= (¢"(w1), ¢ (w1) + ¢ (w2), ¢*(w1), ¢ (w1) + ¢ (wa))  (199)

and
(", d* ¢, ") (k7 w) = (¢"(w), kq* (w), ¢ (w), k¢ (w)). (200)
The diagram
T % TQ
TTQ‘ TQ‘ (201)
Q @ —— Q

is a vector fibration morphism.

Elements of the iterated bundle TT(Q are equivalence classes of curves in
a set of equivalence classes of curves in (). A simpler representation of these
elements is needed. Let x:R? — @ be a differentiable mapping. For each
s € R we denote by t(%(s,0) the vector tx(s,-)(0) € TQ. For each t € R
we denote by t(10x(0,) the vector tx(-,%)(0) € TQ. We have curves

tODy(,0):R = TQ (202)

and
t19%(0,-): R = TQ. (203)
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Vectors tt0Dy(-,0)(0) € TTQ and tt(9(0,-)(0) € TTQ will be denoted
by tt(®1(0,0) and tt(1:0x(0,0) respectively. For each w € TTQ there is a,
mapping x:R? — Q such that w = tt(®1)(0,0). The mapping specified by
coordinate relations

(q" o x)(s,8) = (¢"(w) + ¢"(w)t + ¢ (w)s + " (w)st) (204)

has the required property. We consider mappings x: R*> — Q and x": R?> — Q
equivalent if
tt(®Y/(0,0) = tt(>Y(0,0). (205)

These mappings are equivalent if

X' (0,0) = x(0,0), (206)
D105/ (0,0) = DEx(0,0), (207)
D{%Yx/(0,0) = D*Vx(0,0), (208)
and
DD/ (0,0) = DTV x(0,0). (209)

We have obtained an efficient representation of elements of TT(Q. In terms
of this representation we define the canonical involution

kg : TTQ = TTQ

. tt®13(0,0) — tt19%(0,0) = 1>V 5%(0,0), (210)
with
X : R -5Q
(s, 1) = x(t, 9). (211)

The coordinate expression of this involution is given by
(a", " d",d") o rg = (a%, 4", d",d"). (212)
The commutative diagram

TTQ —2— TTQ

TTQl TTQl (213)
TQ —— TQ
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is a vector fibration isomorphism. The diagram

Q. —2—  TTQ
oy o] o
TR TQ
is the inverse isomorphism. For a differentiable mapping a: @) — P we have
TTa(tt®Yx(0,0)) = tt® (a0 x)(0,0) (215)
and
kpoTTa=TTaokg. (216)

Let A be a 1-form on Q. A 0-form irA on TQ is defined as the function

irA(v) = (A, v). (217)
Let B be a2-formon Q. If w € TTQ, then (r1g(w), Trg(w)) € TQ( X )TQ
’TQ,’TQ
since 7g o T1g = 7g o T1g. A 1-form i7B on TQ is defined by
(iTB,w) = <B,7‘TQ(w) /\TTQ(?U)). (218)

Let F, A, and B = dA be a 0-form, a 1-form, and an exact 2-form on Q
respectively. We define a O-form dpF, a 1-form dr A, and a 2-form dpB on

TQ by

drF = irdF, (219)
drA =ipdA + dipA, (220)

and
drB = dipB = dipdA = ddrA. (221)

The coordinate expression of the function drF is
drF(¢",¢") = F(q")d". (222)

If
A= Ag(¢",p,)dg" (223)

and )
B = §BKA(q“,py)dq“ Adg, (224)
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then
irA = A.(¢" p,)d", (225)
drA = 0\AxgMdq", (226)
irB = By(¢",py)"dg, (227)
and

1
dipdA = §8u(8/<;A>\ — ONAL) A NG + (0K AN — ONAL)dGE Adgh. (228)

Each 1-form on () can be expressed as a sum of products F'dG and from

(@(PaG), £ x(0,0) = 2 (F(0.0) - Glxts1)) (229)
[s=0,t=0

ot E
and
PG00 = g (FXOg000) e
it follows that
(A7 (FAG), &™) x(0,0)) = T{FAG,tx(. )0z (231)
Hence,
(Ar A, % 5(0,0)) = $(4 0 ) (0)) o (232

for each 1-form A.

7. A geometric framework for analytical mechanics

Let @ be a manifold of dimension m. We have already described the
geometry of the tangent bundle TQ), the cotangent bundle T*@) and the
tangent bundle TT*@Q of the cotangent bundle T*(). The present section
is devoted to the study of the canonical symplectic structure of the bundle
TT*Q. We will use coordinates

(¢",¢") : TQ — R*™, (233)
(¢"p2) : T'Q = R*™, (234)

and
(¢, px, 4", p0): TT*Q — R™ (235)
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in the manifolds TQ, T*Q and TT*Q. The mappings 71+ and Tmg have
now the coordinate expressions

(qn’p)\) OTT*Q = (qn’p)\) (236)

and
(¢",¢*) o Tmg = (¢", ). (237)

We introduce the exact 2-form
dT(/JQ = diTwQ. (238)

It will be shown that this 2-form is non degenerate. The manifold TT*Q
with the form drwg form a symplectic manifold (TT*Q,drwg). We believe
that the symplectic form d7rwg is the only natural symplectic form in TT*Q.
The discovery of a second symplectic structure in TT*() was announced in a
recent Springer-Verlag publication [9]. We have not been able to identify the
second symplectic structure. We strongly suspect that this announcement
is false. The formula

A9, = d¢® A dg® + dpy, A dpy, (239)

for the Marsden—Ratiu symplectic form does not seem to have an intrinsic
meaning since elementary rules of tensor calculus have been violated. We
have the coordinate expressions

drdg = pedq” + pedg” (240)

and
drwg = dp, A dg” + dp, A dg”. (241)

The fibration 71+g: TT*Q — T*Q is a vector fibration. We will construct
a vector fibration structure for the fibration Tmg: TT*Q — TQ. For two
vectors z; € TT*Q and zp € TT*Q such that Tmg(z2) = Trg(z1) it is
possible to choose representatives (1: R — T*Q and (s: R — T*(Q such that
z1 = 11(0), 22 = t(2(0) and 7g o {2 = mg © (1. An example is provided by
the coordinate constructions

(¢, px) © G = (¢"(21) + ¢"(21)5, PA(21) + Pa(21)5) (242)

and
(¢",pr) 0 G2 = (¢"(22) + ¢"(22) 5, pr(22) + Pa(22)5). (243)

An operation
HTT'Q  x  TT'Q—TTQ (244)
(Trg,Tng)
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is defined by

21 —T— Z9 = t(Cl + CQ)(O) (245)

An operation
TRXTTQ - TTQ (246)

is defined by
k=16 (0) = t(kC)(0). (247)

Coordinate representations of these operations are given by

(¢%,pr, 6", D0) (21 + 22) = (¢"(21), Pa(21) + Pa(22), 4" (21), Do (21) + Pu(22))

(248)
and
(¢, px, ¢" Do) (K~ 2) = (¢"(2), kpa(2), 4" (2), kpu (2)). (249)
The diagram
TT*Q __ ™ T*Q
TQ — 2 5 Q

is a vector fibration morphism. The vector fibration Tmg: TT*Q — TQ is
dual to the vector fibration T7g: TTQ — TQ. The pairing

()™ TT*Q X TTQ — R (251)
(Trg,TTQ)
is defined by
d
(Z, w>N = &(C(S)a 5(3»\520 ) (252)

where (: R — T*Q and £&: R — TQ are curves such that z = t{(0), w = t£(0)
and mgo( = Tgo&. Such curves are provided by the coordinate constructions

(¢, px) o ¢ = (¢"(2) + ¢"(2) 5, pA(2) + Pa(2)s) (253)
and
(a",¢") 0 & = (¢"(w) + ¢ (w)s, ¢* (w) + ¢ (w)s). (254)
The coordinate expression of the pairing is
(z,w)"™ = pu(2)q" (w) + pr(2)q" (w). (255)
A mapping
P TTQ X TQ —-TT*Q (256)

(ﬂ'QO’rT*Q,ﬂ'Q)
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is defined by
Po(w, f) =w —tn(0) (257)

with n: R — T*Q defined by 7(s) = 7r-g(w) + sf. The coordinate expres-
sion of the mapping in terms of coordinates (¢”,px,¢",p,) in TT*Q and
coordinates (¢", f) in T*Q is given by

(qn’p)\’ 7pl/) 1/}Q - ( 7p)\7 apV fl/) (258)

In the cotangent bundle T*T() we use coordinates
(¢", ¢ au,by): T*TQ — R'™ (259)

induced by coordinates (¢, ¢") in TQ. The Liouville form is the 1-form

Y1g = axdq” + b.dg". (260)
The 2-form
wtg = da, Adg” + db, A dg® (261)
is the symplectic form on T*T(. A vector fibration isomorphism
TTQ —2—  TTQ
o ] e
TQ —— TQ
is defined as dual to the vector fibration isomorphism
Q.  —2—  TTQ
ol | s
TQ — T1Q
in the sense that
(aq(2), w) = (2, k(w))™ (264)

for z € TT*Q and w € TTQ such that Tng(z) = 71o(w). We have the
coordinate characterization

(q", 6>, au,by) 0 ag = (4%, Pus Pv) (265)

of the mapping aq.
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For a vector z = tt(®%y(0,0) € TTT*Q represented by a mapping

x:R? = T*Q we have

79TQ7 Tag(2))
1Q(Teag(
! (TTT*Q(Z))a TTrg(2))

<a619TQaz> = (
(
(
= (T11+q () Q(TTWQ(Z)))N
(
(
(

2)), Tr1Q(Tag(2)))

“Ux(0 ,0)) “Q(TTWQ(tt(O’I)X(Oa0)))>N

= (rr7eq(tt!
= (t©@Dx(0,0), kot (g o x)(0,0)))™
= (tx(0,-)(0), tt™ (1 o x)(0,0))™

= L 0. (rg 0 )0,

t

= (0,0, g 0 X) (- ()=

= Lirrg(tx(1(0), Trg(ex(-

= gt D)

d
= L g 19000}
= (drdg, 1tV x(0,0))

= <dT'l9Q,Z>
We have used the formula (232) and relations
TT*TQ o TOAQ = OéQ o TTT*Q

and
T7TTQ 0] TO{Q = TTT{'Q

derived from
TTQ o g = Tmg.

We have shown that
Oéa’l?TQ = dTﬁQ.

0

£)(0)))1=0

(266)

(267)

(268)

(269)

(270)

It follows that the 2-form drwg is non degenerate and that the mapping
ag:TT*Q — T*TQ is a symplectomorphism from (TT*Q,drwg) to

(T*TQ, wtg) since

dTOJQ = de’ﬁQ = ddT’ﬁQ = da*Qﬁ-rQ = Of&?d'ﬁTQ = aawTQ.

(271)



A Slow and Careful Legendre Transformation for Singular Lagrangians 2943

These results are confirmed by the coordinate calculations
a’éﬁTQ = ;['),idq'i —}—pnd(f” = dT’l9Q (272)

and
apwtq = dpx A dg” + dpsx A d¢" = drwg. (273)

In the cotangent bundle T*T*@Q we use coordinates
(% pas ty, 07): TTHQ — RY™ (274)
induced by coordinates (¢",py) in T*Q. We have the Liouville form
I1-qQ = ukedg”™ + v dp. (275)
and the symplectic 2-form
wr+g = duy Adg” + dv” Adp. (276)
on T*T*@Q. We have already introduced the mapping
B Quo): TT°Q =TT Q (277)
characterized by the equality
(Br- @) (1), 0) = (g u A ) (278)

for vectors u € TT*Q and v € TT*Q such that rr-g(v) = 7r+g(u). The
diagram

B *Q,w
TTHQ 2 T
(279)
TT*Q TT*Q
TQ  ——— T7Q

is a vector fibration isomorphism. For each z € TT*T*() we have

(Bt 0wo)?TQ:2) = (910 THT* Q) (%))
(T 1Q(TBTQuuo) (7)) TTT-Q(TB(T+Qwg) (2)))
= (B1Quq) (TT1-0(2)), TTT=0(2))
(W@, TTTq(2) A TTr0(2))
(irwg, 2). (280)
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The formula (218) and relations

1@ © TB(TQuo) = BT Quo) © TTT*Q (281)
and
Try-g o Tﬁ(T*Q,wQ) =Tr7 (282)
derived from
TT:Q © BT*Quo) = TT*Q (283)

were used. We have shown that
5EKT*Q,MQ)79T*Q = iTOJQ. (284)

It follows that the mapping B(T*Q’MQ): TT*Q — T*T*Q is a symplectomor-
phism from (TT*Q, drwq) to (T*T*Q,wT+q) since

dTLUQ == leUJQ = d/BEkT*Q,wQ)IﬁT*Q = /BZ(T*Q,LUQ)dﬁT*Q = 5FT*Q’MQ)WT*Q.

(285)
Coordinate calculations
Bt guo)?T@ = Prdq” — ¢"dp. = iTwg (286)
( Q7 Q)
and
/BE((T*Q7LL)Q)0JT*Q =dp, ANdqg" + dp, AdG" = drwg. (287)

confirm these results.

8. Dynamics of mechanical systems

Let @ be the configuration manifold of a mechanical system. The cotan-
gent bundle T*@Q is the phase space of the system. Elements of the phase
space are momenta. The commutative diagram

(288)
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contains the geometric structures used to formulate the dynamics of the
system. The dynamics is a differential equation D C TT*Q. A solution
m: I — T*Q of this equation is a phase space trajectory of the system.
External forces have to be included in a complete description of dynamics.
The dynamics of the system with external forces is the differential equation

Df=1,' (D) CTT*Q X TQ. (289)
(WQOTT*QﬂTQ)

A solution is a curve (m, ¢): I — T*Q X )T*Q. The values of this curve
TQ,TQ

represent the momenta and external forces. The differential equation Dy is
of first order for the momentum component 7 and of zero order for the force
component ¢. This treatment of external forces is suitable for non relativis-
tic systems. Relativistic systems described by homogeneous Lagrangians
require a modification of the concept of force. We will deal with dynamics
without external forces.

Trajectories of the system in the configuration manifold @) are solutions
of the second order Euler-Lagrange equation

E = T?ng(PD). (290)

We have recognized the presence of a canonical symplectic structure in
TT*Q with the symplectic form drwg. In most cases of interest in relativistic
physics the dynamics is a Lagrangian submanifold of (TT*Q, drwg). Mor-
phisms «aqg and [rqu Q) are canonical symplectomorphisms from
(TT*Q,drwg) to (T*TQ,wrtq) and to (T*T*Q,wT-g). These symplecto-
morphisms with cotangent bundles create the possibility of generating the
dynamics from (generalized) Lagrangians associated with TQ or (general-
ized) Hamiltonians associated with T*Q.

We will present a number of examples of mechanical systems in La-
grangian and Hamiltonian formulations. We will perform the Legendre
transformations and test the integrability criteria for these systems.

9. Lagrangian systems
Let
L:TQ - R (291)

be the Lagrangian of a mechanical system with configuration space ). The
Lagrangian may be defined on all of TQ or on an open subset. The image
N = im(dL) of the mapping

dL:TQ — T*TQ (292)
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is a Lagrangian submanifold of (T*TQ,wtg) and the set D =
aél(N) C TT*Q is a Lagrangian submanifold of (TT*Q,drwg). Coordi-
nates (¢*, ¢, ay,b,) of N satisfy equations

a’# = aﬂL(qﬁaq‘A)
by = 9uL(d", ") (293)
and coordinates (¢",py, ¢*,p,) of elements of D satisfy equations
Py = BML(q"“, q')‘)
pu = 9il(d",d") (294)
derived from the variational principle
Prdq” + pudd” = SL(¢",¢") = 0uL(¢",¢)dq" + IpL(d",¢*)d¢".  (295)

Substituting the equalities

dp, = 0,0,Ldq" + 0,0, Ld¢" (296)
and
dp, = 8,,8ﬂqu” + 8y8ﬂqu'” (297)
in
drwg = dp, A dg" +dp, A dg* (298)

we obtain the equality

drwg|D = 0,0,Ldq" Adg" + 0,0, Ldq” A dgH
+0,0;,Ldq” N d¢" + 0,0, Ld¢” A d¢" = 0. (299)
This equality together with dim(D) = 2m = 1/2dim(TT*Q) confirms that
D is a Lagrangian submanifold of (TT*Q,drwg). The set N is a Lagrangian
submanifold since it is the image of the differential of a function and D
is a Lagrangian submanifold since it is obtained from N by applying the
symplectomorphism ag. We have confirmed this fact by direct calculation.

The set D C TT*Q is a differential equation. A solution is a curve
v:R — T*Q such that vectors tangent to -y are in D. Equations

"Yu = auL(’YF"ﬂ"A)
Y = O L(y", ) (300)

are differential equations for the coordinate expression

(Y*5m) = (g%, pr) oy (301)
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of a curve 7 derived from equations (294). Dots indicate derivatives. The

differential equation D represents dynamics in the sense that solution curves

are phase space trajectories of the mechanical system. We say that D is a

Lagrangian system since it was obtained from a Lagrangian function (291).

Equations (294) and equations (300) will be called the Lagrange equations.
The second order equations

Py = auL(qﬁaq'A)

pu = 9iL(q",q)
Py = 0,0,L(q",¢)¢" + 050,L(q",¢*)§"
Py = 0,0;L(q",¢")¢" + 0:0,L(q",¢")i" (302)

represent the prolongation PD of the Lagrange equations. The equations
QO L(a", M) + 0 OpL(a", M) — Du(d®, ") = 0 (303)
are the Euler-Lagrange equation T?mg(PD) in coordinate form.

EXAMPLE 4. Let @ be a manifold of dimension 3 with coordinates (¢*) =

(¢', ¢ ¢%). There is a Riemannian metric tensor g;;, a function ¢, and a
1-form A = A;dq* on ). The function

m

5 9ii4'¢’ — e + eA;d' (304)

L(¢',¢') =
is the Lagrangian of a particle of mass m and charge e in an electric field
E = Eidq = —d¢ = ~di¢dq’ (305)
and a magnetic field (induction)
B = %Bijdqi Adg’ = dA = dA; Adg’
= 0;A;d¢' Nd¢' = %(aiAj — 0;A;)dq" Ad¢. (306)
The dynamics D of the particle is described by equations

pi = 5 igikg’§" — edigp + ed; Aj¢

pi = mgi;¢’ + eA;. (307)

Gauge independent covariant second order Euler—Lagrange differential equa-
tions ' ‘ '
mgii(§’ + Id"d") = eB; + Bijd/ (308)
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are easily derived. The symbol I ka is the Christoffel symbol

1
Iy = 59" (Okgii + Ougri — digni) - (309)

Solution curves of (308) are motions in the configuration space Q. These
equations provide a partial description of dynamics. The complete descrip-
tion of dynamics is obtained by complementing these equations with the
gauge dependent velocity-momentum relation

pi = mgij§’ + eA;. (310)
A gauge transformation
will not modify equations (308) but will change the velocity-momentum
relation. A

ExAMPLE 5. A gauge independent formulation of dynamics of a charged
particle is obtained by extending the configuration space () to a manifold
Q of four dimensions with coordinates (g, g ) A gauge transformation is a
coordinate transformation (q,¢%) — (¢4 (¢*), ¢"). The dynamics is derived
from the gauge independent Lagrangian

L(4: 4" 4,4') = 5 9id'd’ — ed + eAid" + eq. (312)
The equations
p =0
pi = 5 i9jkg’ 4" — edigp + ed; Aj¢’
p=c
pi = mgi¢’ + eA; (313)

provide a description of dynamics in terms of coordinates (q,qi,p,pj, q, ",
p,p;) in TT*Q. These equations are gauge independent and can be given an
explicitly covariant and gauge independent form

p=0
mgij (@ +Td"d') = eBi+ By
p=e
pi — eA; = mgi;q’. (314)

The gauge invariant quantity (p; — eA;) is the momentum of the particle. A
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EXAMPLE 6. Let @ be the space-time of general relativity with coordinates
(¢%) = (¢",¢", 4%, ¢*). The gravitational field is represented by a Minkowski
metric g,) and the electromagnetic field is a 2-form

1
F = 5F,qu'@ Adg? = —dA = —dA\ Adg?

1
= —9,A,\dq" Adg* = 5(8AAH — 8, A\)dg" A dg? (315)

derived from a potential
A= Agdq”. (316)

The dynamics of a relativistic particle of mass m and charge e is derived
from the Lagrangian

L(q", ") = mV/gurd®d* + eApd® (317)

defined for time-like vectors — vectors satisfying g.1§“¢* > 0. Dynamics
D C TT*Q is described by the Lagrange equations

)\ ;4 )\ p,
Pr = m@ng)\uzn || + ed Arg? mgAVFH”M T || + edp Axg

D
Pe = mgquTH + eAy (318)

with |4l = V/gxrG"¢*. Note that these equations are reparametrization

invariant: if v: R — T*@Q is a solution and 0:R — R is a diffeomorphism

with positive derivative, then o o is a solution. One can say that solutions

are one-dimensional oriented but not parametrized submanifolds of T*(Q.
The Euler-Lagrange equations

m .
—gm (G + T d"d" ) +eFand® = 7=0un@ g (6" + Tydq” ) ¢ (319)
|| | 4l

are reparametrization invariant and gauge invariant. If proper time is cho-
sen as the parameter, then ||¢|| = 1 and the world line of the particle in
space-time is a solution of simplified gauge invariant second order differen-
tial equations

m(§* + I q* ") = —eg™ Fyugh. (320)

The complete dynamics is gauge dependent. A

ExaMPLE 7. Let @ be the space-time of general relativity with coordinates
(¢"), a Minkowski metric g.) and an electromagnetic potential A = A,dq".
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Let @ be a manifold of dimension 5 with coordinates (g, ¢"). A gauge trans-
formation is a coordinate transformation (q,q") — (¢ + ¥ (¢"), ¢"). We use
coordinates (g, ¢",p,py) in T*Q. Two gauge invariant quantities are derived
from the 5-momentum (p,py). These are the charge p and the energy mo-
mentum (py—pAy). There are two equivalent interpretations of the manifold
Q [6]. This manifold is interpreted as a pseudoriemannian manifold (Kaluza
[5]) with a metric tensor

| A,
<An Grx + Ag Ay ) (321)

or as the total space of a principal fibration (Utiyama [14])

x:Q—Q (322)
characterized by
(¢") o x = (") (323)
The electromagnetic potential is used to introduce the connection form
a=dq+ A.dg” (324)

in the principal bundle Q. The curvature form

B=da = —1F.d¢"dg* = dAy Adg?
= 0, A\dg" Adg* = —3(O\Ay — 0,A))dg" Adg* (325)
represents the electromagnetic field.

The Lagrangian of a particle with mass m and charge e is the gauge
invariant function

L(q,4",4,4") = m\/ gurg"¢* + eAnd" + eq. (326)

Coordinates (¢, ¢%, p, px, 4, ¢", p, p,) are used in TT*Q. The Lagrange equa-
tions

p =20

g+ Qg+
P = ma,ig)\#zn || + ed Arg? mg)\yl"',i”u i || + ed, Arg
b =ce€

q)\
bk = mgn)\m +eA, (327)
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are equivalent to the explicitly covariant and gauge independent second order
equations

p=0
m(§* + 5@ q") = eg™ Fyud"
p =c¢€
Pr — eAn = mgnAqA- (328)

These equations are obtained by adopting the simplifying condition ||¢|| = 1.
Trajectories in @ satisfy the second order equations

m(§* + I, d*q") = eg™ Fyug" (329)

with no conditions on ¢. Compatibility with field equations requires that
trajectories in @ be two dimensional. The dynamics of a charge particle
has to be suitably modified for correct description of interaction with the
electromagnetic field. A

Not all mechanical systems are Lagrangian systems derived from a La-
grangian defined on the tangent bundle TQ. The dynamics could be gener-
ated by a Morse family of functions defined on fibres of a fibration

7Y — TQ. (330)

We have coordinates (¢*,¢*) in TQ. In the space Y we use adapted coordi-

nates
(¢",¢* yh): Y — REmHF (331)

such that

(4", d*) on = (¢".d"). (332)
Let L:Y — R be a Morse family of functions defined on fibres of 1. The
k x (2m + k) matrix

27 2T, 2r
< 9 ) ) ) (333)

AyAoyE  OyAdgs  OyAog
is of maximal rank. The Lagrangian submanifold N C T*T(Q generated by

the family is the set of elements of T*TQ with coordinates (¢*,d",a,,by)
satisfying equations

A = auL(qF"a(i)‘ Z/A)
b, = 9 L(q", ¢ y")
0= aAL(qnaq.)\ayA% (334)

?
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for some values of the variables y*. The set D = aél(N) C TT*Q is a
Lagrangian submanifold of (TT*Q,d7wg). It is the set of elements of TT*Q
with coordinates (¢", px, ¢*, p,) satisfying equations

pﬂ = altL(qnaq‘)\ayA)
vy = OL(¢" ¢ y™)
0 = 9aL(q", ¢ y") (335)

for some values of the variables y. These equations can be derived from a
variational principle

Prdq" + psdd® = SL(¢", ¢, y") = 9,L(¢", ¢, y™)dg"
+0;L(q", ¢ y™*)od" + dpL(q", ¢ y*)oyB. (336)

Equations (335) present the set D parametrized by variables (¢*,d*, y?)
subject to d4L(¢",¢*,y*) = 0. From

dp,, = 9,0, Ldq" + 050,Ld¢" + 940, Ldy”, (337)
dp,, = 8,0, Ldq” + 930, LdG” + 049;dy™, (338)
940,L = 0, (339)
940,L =0 (340)

we obtain the equality
dTOJQ|D = 0. (341)

Equations d4L(¢*, ¢*,y*) = 0 leave only 2m out of the 2m + k variables
(¢",¢*,y?) independent. This is a consequence of maximality of the rank of
the matrix (333). It follows that dim(D) = 2m. We have thus confirmed that
D is a Lagrangian submanifold of (TT*Q,drwg). The set D is a differential
equation and may represent the dynamics of a mechanical system.

ExaMpPLE 8. Let Q be the space-time of general relativity with coordinates
(¢") = (¢°, ¢", g%, ¢*) and a Minkowski metric g,.y. Let

1

L(¢",¢*y) = @gmq"‘ff (342)

be a function on TQ x Ry, where T @ is the tangent bundle with the zero
vectors removed. This function is a Morse family of functions of the variable
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y with the coordinates (¢”,¢*) treated as parameters. It represents the La-
grangian of a particle of mass zero. The dynamics of the particle is governed
by the equations

) 1 .
Pr = @&chquq“
1 )
Pk = _gn)\q)\
y
0 = gerd"q" (343)

satisfied for some value of the variable y. The variable y can be eliminated
from the equation for p,. It follows from the resulting equation

P — Do prd" = (344)

that the covector py is covariant constant along the world line. If an affine
parameter is chosen then y is constant and the dynamics satisfies equations

¢+ L34 =0

9arg"q* = 0
1
P = —grq (345)
Y
for some constant y > 0. A

10. Hamiltonian systems
Let
H:TQ—-R (346)

be the Hamiltonian of a mechanical system with configuration space ). The
mapping

—dH:T*Q —» T*T*Q (347)

is a section of the fibration 7y-g. Consequently
X = B1gug) © (FAH):T'Q = TT'Q (348)
is a vector field. The image M = im(—dH) is a Lagrangian subman-

ifold of (T*T*Q,wt+@) and D = im(X) is a Lagrangian submanifold of
(TT*Q,drwg). The equations describing D are the Hamilton equations

q:‘i — a:‘iH

P = —OxH (349)
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derived from the variational principle

Pudgt — ¢"op, = 6H(q",pr) = —0,H(q",px)0q" — 0" H(q", pr)dpk. (350)

The symbol 9" denotes the partial derivative %. The dimension of D is

2m and by using equalities

dg" = 0,0" Hdq" + 80" Hdp, (351)
and

dp, = —0,0,Hdq" — 0”0, Hdp, (352)
in

drwg = dp, A dg" +dp, A dgH (353)

we obtain the equality
drwg|D = —0,0,Hdq” Nd¢" — 0”0, Hdp, N dg"
+0,0"Hdp, Ndq” + 0”0, Hdp, A dp, = 0. (354)

It follows that D is a Lagrangian submanifold of (TT*Q,drwgq). The set D
is a differential equation and may represent the dynamics of a mechanical
system.

EXAMPLE 9. Equations (307) of Example 4 can be rewritten in the form

1

i iy oA
q mg (PJ e J)
1 .
S caa.a0llakm _
Di Qmazg]kg g (o — eAr)(Pm — eAm)
—edig+ —0iA;g" (p — eAy). (355)

These equations describe a Hamiltonian vector field. They are the Hamilton
equations for the Hamiltonian

. 1 ..
H(q',pj) = %g” (pi — eAi)(pj — e4;) + ed. (356)

A

Gauge independent dynamics of charged particles and the dynamics of
relativistic particles are not images of Hamiltonian vector fields. Dirac [1]
introduced generalized Hamiltonian systems in order to be able to deal with
similar cases. In the original construction of Dirac a generalized Hamiltonian
system is a family of Hamiltonian vector fields on the phase space T*Q



A Slow and Careful Legendre Transformation for Singular Lagrangians 2955

restricted to a constraint set C' C T*Q. We have translated this construction
in an equivalent construction of a differential equation D C TT*(Q.
Let C C T*@ be a submanifold and let

H:C =R (357)
be a differentiable function. The set

M={beTTQ; a=mn7-q(b) € C,VyeT,0cT, T+ (b, u) = —(dH, u)}

(358)
is a Lagrangian submanifold of (T*T*Q,wT+g) and
—1
D = ﬁ(T*Q,wQ)(M)
= {weTT'Q; a=T11-¢(w) € C,VyeT, 0T, T*Q{wq, u ANw) = (dH,u)}
(359)

is a Lagrangian submanifold of (TT*Q, drwg). If (@4) is a set of k indepen-
dent functions on T*Q such that

C={aeTQ; Pa(a)=0for A=1,...,k} (360)

and H is a function on T*Q such that H|C' = H, then coordinates (¢*, py, §*,
py) of elements of D satisfy the equations

Da(qg",pr) =0
" = 0"H +v19"d,
pn = —8KE+UA8,€@A (361)

derived from the variational principle

D4(¢",pr) =0
Puoqh — ¢"dp, = 6H(q", pr) = —0,H(q",pr)dq" — 0" H(q",px)opx (362)

with variations (d¢", dp)) satisfying
8K@A5qﬁ + BH@A(S;DK =0. (363)

Lagrange multipliers (UA € R*) appear in these equations. The same equa-
tions are derived from the variational principle

Pudgh — ¢p, = 6H(q", px,v™)
= —9,H(q",p)dg" — " H(q",pr)ops + Pa(q™,pr)dv? (364)
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corresponding to the Morse family

H(q",pr,v™) = H(q",py) — v Da(q",py) (365)

of functions of the variables (v € R¥). The set D is a Lagrangian subman-
ifold since it is generated by a Morse family. At each point a € C the set
D, =DNT,T*Q is an affine subspace of the vector space T,T*Q.

In Dirac’s construction the dynamics is described by vector fields

X = 5(;1 0w) ° (AP, — dH): T*Q — TT*Q (366)

with arbitrary functions v*(
straint set C.

q",px). These fields are restricted to the con-

ExaMPLE 10. The dynamics of the charged particle of Example 5 is a Dirac
system. The Hamiltonian is the function

_ . 1 ..
H(q,q",p,pj) = =—g" (pi — eA;)(pj — eA;) + ed (367)
2m

and the constraint is the set characterized by
®(q,q',p,pj) =p — e =0. (368)

The function

- ) 1 ..
H(q,q¢',p,pj,v) = %g”(pi —eA;)(pj —eAj) +ep—v(p—e)  (369)

is a Morse family of functions of v € R. Equations

p=ce

qg = v

-0 1 ij

q" = —g"(pj — e4y)

p =0

) 1 ; e ;

Pi = 5 i9ikg” 9" (p1 — €A)) (pm — €Am) — €0 + E@'Ajgﬂ(pz —eAy).

(370)

obtained with this Morse family are equivalent to equations (313). A

The dynamics of a non relativistic charged particle in the above example
is the only Dirac system known to us. Hamiltonian formulations of rela-
tivistic dynamics require a higher level of complexity. Differential equations
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generated by Lagrangians and by Lagrangian Morse families are Lagrangian
submanifolds of (TT*Q, drwg). The same is true of Dirac systems. We de-
fine a generalized Dirac system as a differential equation D C TT*Q, which
is a Lagrangian submanifold of (TT*Q,drwg). Existence of Morse families
for open subsets of Lagrangian submanifolds is guaranteed by Hérmander’s
theorem. Known generalized Dirac systems are globally generated by Hamil-
tonian Morse families.

ExaMPLE 11. Lagrange equations (318) of Example 6 have an equivalent
form

9" (s — eAy)(pr — eA)) = m?

. v

¢ = —g"™(pr — eA))
m

. v .

Pr = “om 9" (pu - eAu)(pl, —eA,)
0" e Au(py — eA) (371)

with arbitrary v > 0. These equations are obtained from the Morse family

H(q",px,v) = v <\/g“A —eAy)(pr — eAy) — m) (372)

of functions of the variable v > 0. A

EXAMPLE 12. The gauge independent dynamics in Example 7 is a general-
ized Dirac system. Equations

9" (i — eAy)(pr — eA)) = m?

m
b =€
§ =
‘K Ul KA
" = —g"(px —ed))
m
p =0
Ul
P = “om 9" ( —eA )( —e4,)
vle »
+H9“ a‘iAu(pu - eAl/) (373)

with »! > 0 and arbitrary v? are equivalent to equations (328). These

equations are generated by the Morse family
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H(pacto?) = (= eAn)pn = es) = m) 402(p-0) (370

of functions of the variables v! > 0 and v2. A

ExaMPLE 13. The generalized Dirac system of Example 8 is described by
equations

gn)\pnp)\ =0
i = vg"py
. v
bk = _E ngﬂupupu (375)

derived from the Morse family

v
H(q",px:v) = 59" Pspa (376)

with v > 0. A

11. The Legendre transformation

A Lagrangian L(q"*, ¢") is said to be hyperregular if the Legendre mapping

ATQ - T°Q (377)
defined by
(qn’p)\) oA = (qn’ a)\L(qpa qa)) (378)
is a diffeomorphism. Let the mapping
x:T'Q — TQ (379)
represented by
(a%,¢") o x = (¢", x*(¢",po)) (380)
be the inverse diffeomorphism. Relations
O L(a", x" (4", ps)) = px (381)
x"(¢",00L(¢",q")) = ¢" (382)

hold. Using the diffeomorphism x to eliminate the velocities (¢*) from the
energy function
E(¢",px,¢") = pxd* — L(¢", ¢") (383)
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we obtain the Hamiltonian
H(q",py) = pax (", pv) — L(¢", X" (4", p0))- (384)

The energy function is defined on T*Q X
(mQ:7q)
Lagrangian to the above Hamiltonian is the Legendre transformation for a
hyperregular Lagrangian.
Let H be the Hamiltonian (384) obtained from a hyperregular Lagran-
gian L. For the mappings

TQ. The passage from the

dH:T*Q — T*T*Q, (385)
-1 L TRk *
B(T*Q’MQ).T TQ — TTQ, (386)
and
Bt 0ug) © (FAH):T'Q = TT*Q (387)
we have
(qn’p)\’ Uy y UV) odH = (qli’p)\’ 8MH(qpapU)’ aVH(qp’pa))’ (388)
(qﬁap)\a quapu) ° /B(irl*QwQ) = (qn’p)\’ _Uua ul/)a (389)
and
(qn’p)\’ quapu) ° 5&£Q’MQ) ° (_dH) = (qn’p)\’ aMH(qP’pU)’ _al/H(qpap(T))'
(390)
On the other hand, we have
(qli’ q.)\a aua bV) 0 dL = (qH7 qAa auL(qpa q.o—)a al)L(qpa da))a (391)
(qnap)\aq.“apu) ° aél (qnab)\aq.ﬂaafu)a (392)
(q%pr; ", pv) 0 ' 0 dL = (¢*,05L(¢”,4"),¢", 0, L(¢",¢")), (393)
and
(qﬁap)\aqluapl/) ° aél odLo X =
(¢%, 05 L(q”, X" (¢“,pr)), X" (*,p7), 0 L(¢”, X" (¢”,p7)))  (394)
for the mappings
dL : TQ — T*TQ, (395)
aél : TTQ —» TT*Q, (396)
aél odL : TQ — TT*Q, (397)
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and
ozél odLoy:T*Q — TT*Q. (398)
From
OcH(¢",pv) = Pu0ex"(q”,ps) — 0xL(¢", X" (¢’ 1s))
—apL(q“,x”(q“’,pT)) X" (4", o)
= —0.L(¢". x"(¢",ps)) (399)
and

I"H(q",p,) = x"(¢",ps) +pu0"x"(q”,ps)
—0pL(¢", x"(¢“,p7))0" X" (¢, o)
= x"(¢’,ps) (400)

it follows that
P odLoX IBT*QwQ) (—dH). (401)

We see that the Hamiltonian and the Lagrangian generate the same dynam-
ics

D= lm(ﬁ(T*Q wo) o(—dH)) = im(ozé1 odL). (402)
ExaMPLE 14. The Lagrangian
i gy = i 9
L¢",d') = 59ij4'd — ed + eAid (403)

of Example 4 is hyperregular. The Legendre mapping and its inverse are the
mappings

(¢'.p;) o A = (¢, mg;ud” + eA;) (404)
and )
(¢ ¢7)ox = <qi, —g" (pj - eAj)) : (405)
From the energy function
E(q',pj>¢") = pid' — S 9i0'¢ +ed — eAig (406)
we derive the Hamiltonian
i L
H(q',pj) = =——g" (pi — eA;)(pj — eA;j) + ed. (407)

2m
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If a Lagrangian is not hyperregular, then the Legendre mapping is not
invertible. It may happen that the image of the Legendre mapping A is
a submanifold C C T*Q. Let G C T*Q x TQ be the graph of A (in-

(7@:7q)
tersected with T*Q x TQ C T*Q x TQ). The energy function (383)
(7Q7Q)
restricted to the graph G does not depend on ¢ since

OxE = pe — O L. (408)
If fibres of the projection pri: T*Q x TQ — T*Q are connected, then a
(7Q:7q)
function
H(qﬁap)\) = E(qﬁap)\aqlu) (409)

can be defined on C' by substituting in E any values of the velocities (¢*) such
that p, — 9L = 0. This is the construction of the constrained Hamiltonian
used by Dirac. This is also the construction of the generalized Legendre
transformation introduced by Cendra, Holm, Hoyle and Marsden. The Dirac
system generated by the constrained Hamiltonian is sometimes equal to the
Lagrangian system generated by the original Lagrangian.

ExaMpPLE 15. Applying the Cendra—Holm—Hoyle-Marsden generalized Leg-
endre transformation to the Lagrangian

m

5 gijq'iq'j —edp+ eAiq'i + eq. (410)

L(g,q"d,¢) =
of Example 5 we obtain the constraint C described by
p=e (411)

and the Hamiltonian

1

%9” (pi — edi)(pj — e4j) + ed (412)

H(q,q",p;) =
defined on the constraint C' with coordinates (g,q*,p;). This Hamiltonian
generates the equations (370) of Example 10 equivalent to the Lagrange
equations (313) of Example 5. The Cendra-Holm-Hoyle-Marsden version
of the Legendre transformation gives correct results for this example of a
mechanical system. A

The mechanical system in the above example is the only mechanical
system known to us for which this version of the Legendre transformation
functions correctly.
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ExXAMPLE 16. The Lagrangian

L(¢", ") = mVgurd®@* + eAnd” (413)
of Example 6 is singular. The image of the Legendre mapping
1g

K K q
(¢",px) o A= (g XV eAy) (414)
is the constraint set C described by
9 (px — eAx)(px — €Ay) = m?. (415)

The energy function

E(q",px, ¢") = prd”* — mV/ gerd*q* — eArd” (416)

vanishes on the graph G of the Legendre mapping and the Dirac Hamiltonian
is zero. Differential equations derived from this constrained Hamiltonian are
the equations

9" (pr — eAy)(py — eAy) = m?

v

i = —g"(pr — eA))
m
. ) . ve v
D = —% h‘,g# (pu — eAl,(,)(pV - eAy) + mg# ah‘,A/,L(pl/ - eAV) (417)

with arbitrary values of the Lagrange multiplier v. The Dirac system rep-
resented by these equations is the union Dy U Dy U D_ of three sets cor-
responding to v > 0, v = 0, and v < 0 respectively. The set D, is the
generalized Dirac system D of Example 11 equivalent to the Lagrangian
system of Example 6. The set Dy described by

9" (pr — eAy)(py — eAy) = m?

¢ =0
P =0 (418)
must be excluded since the velocities ¢x evaluated on vectors tangent to

world lines are never zero. The set D_ is a generalized Dirac system obtained
from the Lagrangian

L_(q",d") = —mV/gurd®d* + eApd". (419)

Setting v = 1 in equations (417) we obtain equations

Pk = mgnAqA +eA,

m(§* + Iy, dti") = —eg™ Fxug" (420)
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correctly describing the dynamics of charged particles. Solutions of these
equations are curves using proper time as the parameter. With y = —1
equations (417) result in the equation

P = _mgn)\q')\ +eAx (421)
and the second order system
m(§* + T30 ") = eg™ Faud. (422)

Solutions of the second order equations are world lines of particles with
mass m and charge —e or particles with mass —m and charge e. The equa-
tion (421) suggests that we are dealing with particles with negative mass
—m. The principle that world lines of particles with positive energy should
be oriented towards the future and that world lines of particles with nega-
tive energy (antiparticles) should be oriented towards the past (Stueckelberg
[11], Feynman [3]) is violated. We conclude that the Cendra—Holm—Hoyle—
Marsden version of the Legendre transformation is too fast to provide correct
results for this important example of a mechanical system. A

The Dirac system generated by a constrained Hamiltonian
H:C—>R (423)
is characterized by the variational relation
Prdq" — 0py = —0.kHIq" — " Hop, (424)

on C. A constrained Hamiltonian derived from a singular Lagrangian can
be considered a function on the graph G of the Legendre mapping defined
by

H(q",px) = E(¢",px,¢") = prd* — (¢", ") (425)

The variational relation
P0q" — ¢"op,. = —0,kESq" — 0" Edp,, — 0. FEiq¢" (426)

on G is equivalent to the relation (424) for the Hamiltonian (425). The
variations (d¢", dpy, dg") are components of a vector tangent to G. Hence

Opr = (9#8,§5q“ + 8H8K5q“ (427)
If Lagrange equations

Py = 8“L(q”,q)‘)
v = 0yL(q",q") (428)
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are satisfied, then
Pr0q” — §"0py = 0 Loq" — ¢"0py (429)
and

—0,kESq" — 0" Edpy — 0z E6¢" = 0xL0q" — ¢ 0ps — (pr — 0 L)0¢"
= 0, Léq" — " 0ps. (430)

This seems to imply that the Dirac system generated by the Hamiltonian
(425) is equivalent to the Lagrangian system (428). This conclusion is not
correct. It is true that the variational relation (424) follows from the La-
grange equations. The converse is not true since the same constrained
Hamiltonian may be in the relation (425) with different energy functions
constructed from different Lagrangians. The Lagrangians L, = L and L_
of Example 16 generate different Lagrangian systems Dy and D_ but lead
to the same constrained Hamiltonian.

We observe that if E(g",py,¢*) is the energy function associated with a
Lagrangian L(q",¢"), then E(¢",py,v*) is a Morse family of the variables
(v*). The rank of the matrix

< I’E O*E O*E )
B

N
I DOROgh  OvEop, ) <8v"‘8v)‘ 00k Ogh 5") (431)

is maximal. No requirements are imposed on the Lagrangian. The general-

ized Dirac system generated by the Morse family E(q",px,v") is obtained
from the variational relation

Pedqs — FOpr = —0,kES" — 85 Edp, + 0; ESv" (432)
with arbitrary variations (0¢”, dpy, dv*). With
E(q",px,v") = pav* — L(¢",v") (433)
the relation takes the form

D0q" — ¢"dp, = 0k L(q",v")6q" — v py — (pk — O L(q",v"))0v". (434)

Equations
Dy = auL(qnaUA)
pv = OpL(g",v)
@ = v (435)

obtained from this relation are equivalent to the Lagrange equations.
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The passage from the Lagrangian L(g",d¢*) to the global Hamiltonian
Morse family F(q",py,v") is the slow and careful Legendre transformation
required to provide a correct Hamiltonian formulation of any Lagrangian sys-
tem. The Morse family generating a Lagrangian submanifold is not unique.
Modifications resulting in a reduction of the number of variables are usually
possible.

ExaMPLE 17. The Hamiltonian Morse family

mgz’jvivj + e — eA;v' — ev (436)

E(qa qiapapja,uavk) = pv +pﬂ)l — 9

for the charged particle of Example 5 reduces to the Hamiltonian Morse
family

. 1 ..
H(q,q',p,pj,v) = %g”(pi —eA;)(pj —eAj) +ep—v(p—e)  (437)

of Example 10. The reduction is obtained by using in (436) the equality

vk = %gkj (pj — e4;) (438)
obtained from 9E |
So7 = Pi —mgiv’ —eAi =0, (439)
A
EXAMPLE 18.
E(q",pa, v") = puv”™ — my/gopvior — eAgo" (440)

for the charged particle of Example 6 reduces to the Hamiltonian Morse
family

H(q",px,v —U<\/g“’\ —eAy) (A—eA,\)—m) (441)

of a single variable v > 0 introduced in Example 11. Variables (¢, py, v")

are coordinates in the manifold T*Q) x T@. Only the open subset de-
(7Q,7Q)

scribed by the inequality g, v"v* > 0 is considered. Variables (¢, py,v) are

coordinates in T*@Q x Ry . The function FE(q¢",py,v") is a Morse family of

functions on fibres of the fibration

CGTQ x TR -—-T*Q (442)
(7@:7q)
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characterized by

( ap)\) C - ( 7p)\)' (443)
This fibration can be interpreted as the fibration
¢:T'Q x TR —-TQ xR, (444)
(7@.7Q)

characterized by

(¢",pr,v) o ¢ = (¢", pr, \/Guv"v") (445)

followed by the projection
pre-g: T°Q x Ry — T7Q. (446)

Fibres of ¢’ are hyperboloids g,,v"v” = v?. From

0
5E(qﬁap)\a,uﬂ) = 9 V5UV =0 (447)
v
with variations dv” satisfying
3(guvtv”) = 2g M 60" =0 (448)
we obtain two critical points
+
W = g™ (py — €A)) (449)

vV 9y o¥

in a fibre over the point with coordinates (¢, py,v). Evaluating the function
FE at these points results in two Morse families

H =+ (¢",py,v) = tv <\/g"”~>‘ —eAg)(py —eA)) F m) (450)

of functions of v. One of these is the reduced Morse family (441). The other
generates an empty set since it has no critical points. The family (441)
depends linearly on the variable v restricted to positive values. No further
reduction is possible. A

ExaMPLE 19. The dynamics of the charged particle of Example 7 is gener-
ated by the Hamiltonian Morse family

E(q,4",p,px,v,0") = pv 4 pv™ — my/ gpvio) — eAv" —ev  (451)
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or by the Hamiltonian Morse family

H( 0’ %) =0t (Voo — e )or = eds) = m) +0%(p—e) (452

of functions of two variables v' > 0 and v? as in Example 12. A

The slow Legendre transformation can be extended to Lagrangian Morse

families. If
L(g",¢* y?) (453)

is a Morse family, then the k x (k + 2m) matrix

’L ’L ’L
(L, o ) -

dyAoyB  oyrovr  dyrop,
is of maximal rank k. It follows that the function
E(¢",px,y",v") = pev® — L(g",v*, y™) (455)

is a Morse family of functions of the variables (y*,v*) since the (k 4 m) x
(k + 3m) matrix

O*E O*F 0’E O’E

dytoyB  oytovr  dyrogr  Oyrop, | _

0*E O*F O’E O’E B

ovkoyB  dvrdvr  GuvEogt  Ovkdp,
—0%L -0’L  -9°’L 0
yAoyB  Oytovr  OyAogh 456
—0%L -0’L  -9°’L (456)

14

ovEdyB  OvEdvr vk gt O

is of rank &k + m.

ExaMPLE 20. The Hamiltonian Morse family

1
B(g",pxy,0") = pr”® — 5-grav o (457)
Y
generates the generalized Dirac system of Example 8. The equations
1
OB (q",pr,y,v") = py — ;guwA (458)

permits the elimination of v* from E(q", py,y,v"). The result is the Hamil-
ton Morse family

K y K
H(q" pxy) = 59" pupa (459)

with y > 0. It is the Morse family of Example 13 with v replaced by y. A



2968 W.M. TuLczyJEW, P. URBANSKI

12. Integrability

In Section 5 we have established integrability criteria for a class of differ-
ential equations which can be specified in terms of vector fields restricted to
a submanifold. The dynamics of relativistic mechanical systems presented in
our examples all admit the Dirac-style formulations in terms of Hamiltonian
vector fields. The integrability criterion and the first integrability algorithm
formulated in Section 5 can be adapted to this situation.

Let @ be the configuration manifold of a mechanical system and let the
dynamics of the system be represented by the union

D = [ J{im(X,|C)} (460)
achA

of a family of Hamiltonian vector fields
Xo:T'Q - TTHQ (461)
generated by a family of Hamiltonians
Hy:T"Q - R (462)
and restricted to a submanifold C' C T*( specified as
C={peTQ; Vada(p) =0}, (463)

where @ 4 are independent functions on T*Q called primary constraints. The
condition D C TC means that at points of C' the vector fields X, are tangent
to C or that

(A4, X,)|C = 0 (464)

for each € A and each function @ 4. In view of

Xa = B g g © (~dHo) (465)

the integrability criterion for the dynamics D assumes the form
(o, ®4}|C =0 (466)

for each o € A and each function & 4.

ExaMPLE 21. The dynamics of the system in Example 9 is integrable since
it is the image of a Hamiltonian vector field. A
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ExaMPLE 22. The dynamics in Example 10 is a Dirac system. It is the
union of images of the family of Hamiltonian vector fields generated by the
family

1

%gij (pi — eAi)(pj —eAj) +ep—a(p—e)  (467)

Ho(q,¢',p,pj) =

restricted to a constraint set C'. The parameter « is an arbitrary function
on T*Q). There is one primary constraint. It is the function

b(g,4',p,pj) = p —e. (468)
The system is integrable since
{H,,?}|C = 0. (469)

A
ExXAMPLE 23. The dynamics in Example 11 is a generalized Dirac system.
It is described by the family of Hamiltonian vector fields generated by the
family

Ha(q",p») —Oé<\/9’M —eAg)(pr — eA)) —m> (470)

of Hamiltonians parametrized by a function & > 0 on T*Q. There is one
primary constraint

q",p») \/g“)‘ —eAy)(pr — eAy) —m. (471)
The integrability criterion is satisfied.
A

ExXAMPLE 24. The generalized Dirac system of Example 12 is described by
Hamiltonian vector fields generated by the family

Hgt 02)(q",p)) = o' <\/9""\(pn —eAg)(pr — eAy) — m) +a’(p—e) (472)

parametrized by functions a' > 0 and o? on T*Q. There are two primary
constraints:

P1(q, 4", p:px) = \/g“(pn —eAi)(pr —edy) —m (473)

and
®2(¢: 4", p,pr) =p —e. (474)

Integrability criteria are again satisfied. A
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ExaMPLE 25. For the generalized Dirac system in Example 13 we use the
family of Hamiltonians

K a K
Ha(q",p2) = 59" prpa (475)

depending on a function « > 0. There is one primary constraint

B(q",pr) = 9" prpa- (476)
The system is integrable. A

ExaMpPLE 26. Let @ be the affine space-time of special relativity with
Cartesian coordinates (¢*) and a constant Minkowski metric tensor (gy)-
We analyse the dynamics of two interacting relativistic particles [15] [16].
The configuration space is the product @ x @ with coordinates (qf,q3).
Coordinates (qf, ¢34, 43), (af,q5,ph.p2), and (qf,q3.pp, P2, 47, 45, pr, P2)
will be used in T(Q x Q), T*(Q x Q), and TT*(Q x Q) respectively. Masses
of the particles are denoted by my and ms. The interaction potential is a
function V of a real positive argument. Relations

gn)\q,liq‘i\ >0
gn)\ngg\ >0
g pip} >0

g pZp >0

gex(d5 —a) (@3 —at) <0 (477)

are assumed to be satisfied. Abbreviations

llgill = \/QnAQfQ{‘
llg2ll = \/QnAQ'SQS‘
I = /9" pip}

192 = /9" p2p3
lz = all = \/=gen(as — @)@} — @)

m = Vmi2+ V(|22 — z1]))
Ty = \V/mo? + V(|zg — 1)) (478)

will be used.
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The dynamics of the particles is a generalized Dirac system described by
Lagrange equations

DV (llg2 — q q q
1 (llg2 — 1)) <|| il n ll o] (@ — )

Pr = 2llg2 — q1| my ™o
. DV (llg2 — q1l|) <||d1|| ||q'2||>
2 A A
b = — + — 9x\41 — ¢
§ 2llg2 — a1 m ma ) (@7~ a2)
1 mi 5
P = 779604
O @
mo )
Pr = T 9sadd (479)
2|
derived from the Lagrangian
L(qf, ¢35 dt' ) = ™ ||gu| + 72 | doll- (480)

The Hamiltonian is the Morse family
H(4t, 030,150 v%) = 0" (Ip1ll = 701) + 0* (|pa | — 72) (481)

of functions of the variables v! > 0 and v? > 0. Hamilton equations

: DV (llg2 — aqull) (0" | ©?
1 _ PVl —aq) (v v A2
b = 2||q2 — q1|| ml + m2 gn)\(qQ ql)
5 DV(lgp—ail) (o' |
2 _ UVUlg2 —aqf) (v | v DY
D = 2||q2 _ q1|| ml + m2 g,‘i)\(ql q?)
i = gl
]|
2
. v A, 2
G = g*'p
S "l R
Ip'll = m
Pl = s (482)

are equivalent to the Lagrange equations (479).
The dynamics is the union of the family of Hamiltonian vector fields

X102 THR X Q) = TTHQ x Q) (483)
generated by the family of Hamiltonians

Hg 62 (05,359, 00) = &' (Ip1]l = m1) + o (||pa]l — m2) (484)
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and restricted to a submanifold C' C T*(Q x @) described by two primary
constraints:

él(qfaqg\aptap3) = ||p1|| —my (485)
and
¢2(qTaq§\ap;1up12/) = ||p2|| — ma. (486)

The parameters (', a?) are positive functions on T*(Q x Q). The Poisson
brackets

2 DV(llg2 — aull) (n!

H D110 =«
{H (a1 ,a2), D1} 2mims g2 — q1|

+ i) (af — 45) (487)

and

1 DV(llg2 — a1ll) (»!

H P2 }C =«
{H a1 a2), P2} 2myme||g2 — q1]|

+3)(d5 — qf) (488)

indicate that the dynamics is not integrable unless the potential V is con-
stant. A

The generalized Dirac system in Example 26 is the only case of a non
integrable dynamics known to us. We will extract the integrable part of this
system by applying different versions of the extraction algorithm.

ExXAMPLE 27. We apply the first algorithm of Section 5 to Hamilton equa-
tions (482) and constraint set C' described by

Ip*ll = m
Ip%(| = ™. (489)
We obtain equations
Ip'll = m
Ip*| = mo
DV (llg2 — q1l]) A
9 prpy = —r— (05 — a5) (@ — d7)
2||Q2 - Q1||
DV (llg2 — 1 . .
9 PPy = Mgm(qg —¢5) (@ — ) (490)
2||Q2 - Q1||
for TC and equations
: DV (llg2 — q1ll) < v? )
1
Pr = —or = + —q
K 2||q2 — q1|| mi T gn)\( 1)
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G =
Il =
l*ll =

0
1

v >0

2

e >0

DV (llg2 — a1l]) < 02)
T T + gex\q1 — ¢4
2llg2 — a1 m o ma ) (@ - &)
1
v KA1
g Dy
]
2
v KA, 2
g D
92|
mq
mo
1

2973

(491)

for the intersection D' = DN TC if the potential V is not constant. For the
. —1 —1 .
new constraint set C° = 7g(D ) we have equations

and equations

o

I
0

n)\llz

g PkPx

KA, 2 .

g pnp)\ =

0

o'l =

for TC'. The equations

I

my
Pl =
0 = (py+p2)(d5 — qb) (492)
= m
= o
_ 1 2 K _ K
= (px +pi)(az —a1)
DV(”q2 — ql”) K AYEP <A
2||q2 — q1|| gh‘)\(qQ ql)(q2 ql)
DV(”q2 — ql”) K YD <A
2||q2 — q1|| gh‘)\(qQ ql)(q2 ql)
= (Ps +52) (a5 — 4f) + (pr + 7)) (5 — 4F) (493)
- DV (llg2 — a1l < v? )
1
= ———— | —/— + — A -
ph‘, 2||q2 — q1|| ml Ty gk (q ql)
. DV (llg2 — a1ll) < vt 0 )
2
ST T —— + —— -
Pr 2||g2 — q1| my 9m (01— 43)
. v! A1
i = 9"'px
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‘K U2 KA, 2
g = g
2 Ip2)|” A
Ip'l = m
Ip?] = mo
pr+p2 #0
K K
0 = (pp+po)(d5—aqb)
vl >0
v2 >0
v! KA( 1 2\ 1 v? KA1 2\ 2
—g"\(p )P = —9" (ps +Di)P) (494)
mi ma

for D° = DNTC of D are the last step in the algorithm. We have excluded

from D’ the case pL 4+ p2 = 0. The system D = D? will be shown to be
integrable. A

ExaMpPLE 28. We apply the second algorithm of Section 5 to the Lagrange
equations (479). The prolongation of the Lagrange equations is the system
of second order equations

) DV (llg2 — q q q
5= (Ilg2 — a1l <|| 1] n [l o] INC

2llg2 — a1l m Mo
o = DVl (ol 161, 0y
Py = HT—;IIQWK
pr = HT—;HQMS

L= fHaf, 93,4}, 65,0, s

e = f2f, %, dY. @, d,d
5= ~DV(llg2 — aull)

- p— v

" 2/ ||g2 — q1]] "

.)\ U ..M

— A q1 491 q1

+7701 Gr <5 -9 —) T

AR T @l ) Nl

DV(”q2 - ql”) o Iy v q%\
= ——— 9w (@ — )45 — @) grri
2mallge — qu| MR TR TR g

')\'V ..#
4595 q5
+m A<5A— 222 )— ) 495

L9mx O g“”llqzll [l 2] (495)

The exact form of the functions f'(qf,q3,d%,d3,d!,d3) and

~— ~—

D
(g5 — i )(d5 — qf)gmm
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f2(af, 4%, 4", 4, d,dg) is of no interest since equations for f. and p% can
not impose restrictions on first derivatives. Projection in T(Q x Q) elim-
inates these equations and also the components of the last two equations
orthogonal to (¢) and (¢45) respectively. The resulting first order equations

DV B . .
1 (llg2 — q1ll) <||Q1|| + ||Q2||) gm(q%‘ —Qi\)

Py = — —
" 2llg2 — a1 my My
. DV (llg2 — a1|) <||dl|| ||d2||)
2 A
Py = — + = aq1 — ¢q
K 2||q2 —Q1|| ™ ™o 9k ( 1 2)
1 mp )
D = 7 79x0\4
" g || 7"
2 mo 5
D = 7 79x0\G
" o 7"
1. DV (llg2 — qull) llgul .
1k A A\ oK
by = — —9kX\42 — 41 )q
.. DV (llg2 — q1]) llg=l .
prds = — ( g (@ — @) db (496)

22 — qull ™o

are equivalent to the simplified equations

o - DVl (11 161,

- DVt (11161,

Py = HT—ngmq'?

Py = HT—;HQWJ%

0 = (pt +p2)(d5 — qf). (497)

These equations are not yet integrable. They were falsely declared the
integrable part of the dynamics in [8]. The prolongation of equations (497)
projected in TT*(Q x @) results in equations

. DV (llg2 — a1|) <||d1|| ||q'2||>
1 A A
= — + — kx93 — ¢q
Pr 2||Q2 —Q1|| mi mo " ( 2 1)
. DV — q1 Go
P2 = (llg2 — a1ll) <||_|| n ||_|| (@ — )
2||Q2 —Q1|| mi mo

1 my A
P = 7 779k04
T gl
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2 m A
PR = - gead
" o 7"
0 = (pr+p2)(d5 —af)
0 = (p. +p2)(d5 — df). (498)

From
. g2l Il ]|
(pr. + p2)(d5 — df) = m—2g“(pk +po)p3 — m—lg“(pi +po)py  (499)

we see that the last equation in (498) imposes a synchronization relation be-
tween parametrizations of the world lines of the particles unless p. + p2 = 0.
The case p. + p2 = 0 seems to be too restrictive to be of interest. We will
exclude this case. The integrability algorithm applied to equations (498)
produces no further restrictions. A

ExXAMPLE 29. Although the dynamics of two relativistic particles is not a
Dirac system it admits the Dirac-style representation in terms of constrained
Hamiltonian vector fields. This representation can be used to simplify the
algorithm in Example 27 and to prove the integrability of the resulting equa-
tions. The simplified algorithm is an adaptation of Dirac’s original algorithm
[1]. Since the Poisson brackets (487) and (488) do not vanish on C we restrict
the set C by adding the secondary constraint

T (g, a5,ppp0) = (pk +12) (5 — qf). (500)

The resulting system D' is now the union of images of Hamiltonian vector

fields generated by the family (484) restricted to the constraint set C' c
T*(Q x Q) satisfying the equations

D=0, P=0, ¥=0. (501)
The system is not yet integrable. In the second step we require the vanishing
of the Poisson bracket
ol 2

(0]
{Hp1 02), ¥} = mg“(pk +pi)py — mg“(pk + pp)pi (502)

on the new constraint set. We will exclude the case p. +p2 = 0 and impose
the condition

1 2

(0] [0}

—g" (D + P)Py — — 9" (P + PR)PR =0 (503)
mi mo
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on the functions (a', a?). The resulting system D’ is the union of images of
constrained Hamiltonian vector fields generated by the family (484) with the
positive functions (a!, @?) satisfying the condition (503). The vector fields

are restricted to the constraint set C'. The system is exactly the system
described by equations (494) and (498). The system is integrable since

{Ha1 .02, 81}[C" =0, (504)
{Ha1.02),82}[C" =0, (505)
and .
{Ha1,02),¥}C =0. (506)
A
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