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This article is an extended outline of the lecture delivered at the Infeld
Centenial Meeting. In the lecture a review was given of the development of
the theory of spinors and related objects in special and general relativity,
with some emphasis on the twistor theory and its implications. The lecture
was not intended as a detailed account of the subject, but it rather was
a series of comments on the relevance of various spinor-type objects and
their relation to some features of space-time structure. The present article
is also a guide, with its author’s personal preferences, to the extensive
bibliography of the subject.

PACS numbers: 04.20.Gz

It is a great honour for me to have this opportunity to pay my respects
to Leopold Infeld. His seminal work showing how spinor calculus may be
applied in general curved space-times has been extremely influential, and it
has profoundly affected my own researches, these having been very greatly
concerned with the relationship between spinor theory and Einstein’s general
relativity.

1. Preliminaries: flat-space spinors

Spinors were first found by Elie Cartan (1913; ¢f. also Cartan 1966).
His spinor spaces constitute the representation spaces of 2-valued represen-
tations of orthogonal groups. He did not use the name “spinor” at that
time, this term having been apparently introduced later by Ehrenfest (as I
was recently informed by Andrzej Trautman), following Dirac’s (1928) re-
discovery of spinors and discovery of their application to the spin of the
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relativistic electron (and also Pauli’s earlier work, in 1927, concerning the
non-relativistic electron’s spin). However many spinor-related ideas were
known much earlier, particularly in relation to the 2-valued (“spin”) rep-
resentations of particular rotation groups. (There are quaternions, found
by William Rowan Hamilton in 1837 and their explicit representation of
rotation matrices given by the Cayley—Klein parameters, illustrating the
local isomorphism SU(2) — O(3), and its complexification SL(2,C) —
O(3, C), and there is also the local isomorphism SU(4) — O(6) and its
complexification SL(4,C) — O(6, C), known to Sophus Lie in about 1872.
For information on the history of these matters, see Crowe 1967 and van der
Waerden 1985.) The general discussion of spin representations of rotation
groups stems from the algebras of William Kingdon Clifford (1878), these
arising as the common generalization of quaternions and Grassman algebras
(cf. Grassman 1844, describing work done in 1825). An elegant and thor-
ough discussion of spinors for general orthogonal groups is to be found in
Brauer and Weyl (1935), based on Clifford algebras. (See also the appendix
to Penrose and Rindler 1986; Budinich and Trautman 1988.) Chevalley
(1954) showed how to develop a theory of spinors applicable to fields of
finite characteristic (including the awkward case of characteristic 2).

The applications of spinors to physics stemmed initially from the work
of Pauli and Dirac as cited above, where the spinors were brought in specif-
ically for the treatment of particles of spin 1/2. Whereas “Pauli spinors”
are the 2-component spinors for the (non-relativistic) rotation group O(3),
“Dirac spinors” are 4-component entities, being spinors for the Lorentz group
0O(1,3). These 4-spinors split down into pairs of 2-component entities, some-
times referred to “half-spinors” (or “Weyl spinors”), which were considered
by Weyl (1929) (and earlier, apparently, by Dirac himself, ¢f. Dirac 1982)
to have relevance to a relativistic (reflection-non-invariant) wave equation.
This equation is now often used to describe the neutrino. It is a general
feature of spinors for an ewven-dimensional space that the spinors indeed
break down into such “half-spinors” — or reduced spinors — in this way.
(This is “reduction” under the narrowing down of the rotation group to its
non-reflective subgroup.) For a 2n-dimensional space, the reduced spinors
are 2"~ !-dimensional, so the unreduced spinors are 2"-dimensional; for a
(2n + 1)-dimensional space, the spinors are 2"-dimensional.

In the case of a 4-dimensional space-time, subject to local Lorentz group
symmetry, the reduced spinors are 2-component entities, usually referred to
as 2-spinors. Each of the two 2-dimensional spaces of reduced spinors is a
complex space; these two spaces go into each other under space-reflection,
time-reflection, or complex conjugation. According to the 2-spinor calculus
introduced by van der Waerden (1929), as notationally slightly modified in
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Penrose (1960) and Penrose and Rindler (1984), the elements of these two
spin-spaces are labelled by kernel symbols having indices which are, respec-
tively, capital Roman letters without primes (A, B, C, ..., Ay, Bo,..., A1,...)
and Roman letters with primes (4’, B’,C’,..., A}, By, ..., A},...). There
are invariant skew-symmetrical quantities ep, 4, €25, 6AIB’, that can
be used for raising and lowering indices (care having to be exercised to keep
the signs consistent). The tensor calculus may be thought of as being em-
bedded in the 2-spinor calculus where an unprimed and a primed spinor
index taken together counts as a tensor index.

In this van der Waerden (1929) 2-spinor formalism, the Dirac equation
for the electron becomes a pair of coupled linear differential equations re-
lating an unprimed spinor a4 to a primed spinor S4/. This formalism was
subsequently used by Laporte and Uhlenbeck (1931) to represent, among
other things, the Maxwell equations for the electromagnetic field in an ele-
gant way. Then Dirac (1936) showed how to write down field equations for
higher spin, generally, in a very neat way and this was followed up signifi-
cantly by Fierz (1938). (In later work, Rarita, Schwinger, Duffin, Kemmer,
and others formulated higher-spin equations, in special cases, but not us-
ing such a powerful general formalism; see Corson 1953 for a comprehensive
account of all this.)

Lorentzian 2-spinors have a very neat geometrical description in terms of
the null cone. A non-zero 2-spinor determines a future-pointing null vector
and a null half-plane containing the direction of this vector. These are the
“fagpole” and “flag plane”, respectively, of this null flag interpretation of the
spinor; see Payne (1952), Penrose and Rindler (1984). This geometrical de-
scription determines the 2-spinor completely up to a sign. (To interpret the
sign, a non-local description is needed; see Penrose and Rindler 1984. Ro-
tation of a spinor through 27 changes its sign, whereas rotation through 4=«
restores it to its original value.) The null direction of the flagpole describes
the 2-spinor completely up to proportionality. A symmetrical n-valent spinor
(an m-index quantity £ap..1, with a1 = f(AB...L) describes an entity of
spin n/2. It has a canonical decomposition, according to which it can be rep-
resented (uniquely up to scalings and ordering) as a symmetrized product of
single-index 2-spinors {4p..1, = @4BB ... Ar) and, therefore, up to propor-
tionality, it corresponds uniquely to a symmetrical set of n null directions.
This description gives the Majorana (1932) geometrical description of the
general spin state of a spin n/2 particle (see Penrose 1989).

2. Spinors for curved space-time

The first treatment of spinors in curved space-time was that of Infeld and
van der Waerden (1933), using the van der Waerden 2-spinor formalism. The
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translation between spinors and tensors is then achieved in local component
form by use of the Infeld-van der Waerden symbols (in the terminology of
Penrose and Rindler 1984). In this paper, the ingenious suggestion was
made that the spinor phase should be the gauge quantity that generates
electromagnetism. However, this idea has not stood the test of time (at
least not in its original form) because it appears to imply a direct relation
between the spin and the charge of a particle. (The spin/charge value for the
neutron would appear to be in conflict, the neutron having been discovered
in 1932, at about the same time as this paper was written.)

Although the initial use of the Infeld-van der Waerden formalism was for
the description of particles with spin within the curved space-time framework
of Einstein’s general relativity, this formalism can also be used to study
Einstein’s theory itself. See Veblen and von Neumann (1936), Bergmann
(1957), Witten (1959), Penrose (1960), Penrose and Rindler (1984, 1986).
For example, the Weyl conformal tensor corresponds to a totally symmetric
spinor ¥4 pop which resembles a spin 2 massless field, in the sense (referred
to above) of Dirac—Fierz. The canonical decomposition applied to this spinor
gives a neat classification scheme for vacuum space-times (c¢f. Penrose 1960,
Penrose and Rindler 1986).

When all tensor as well as spinor components are referred to a choice
of spin-frame (a basis in the local spin space at each space-time point),
then the formalism of spin-coefficients is obtained (¢f. Jordan, Ehlers, and
Sachs 1961, Newman and Penrose 1962). This turns out to have a great
calculational utility; see, for example, Chandrasekhar (1983). In certain
situations, it turns out that because of the geometry of a problem, it may
be convenient to specify merely a pair of null directions at each point (the
flagpole directions of the two spinor basis elements) rather than an entire
spin-frame. Then the more streamlined compacted spin-coefficient formalism
can be very convenient to use (see Newman and Penrose 1966, Geroch, Held,
and Penrose 1973, Penrose and Rindler 1984).

Most of the foregoing remarks, in this section, have been concerned with
spinors only locally in curved space-time. In fact there are important global
restrictions and ambiguities, for spinor fields to make global sense on a space-
time manifold. These have to do with what are called Stieffel-Whitney
classes on the manifold. The essential issue is the fact that the sign of a
spinor does not have a local geometrical interpretation (something that was
touched upon in the previous section), so the consistency of this sign globally
depends upon global properties of the space-time. For results of relevance
to this issue, see Milnor (1963), Lichnerowicz (1968), Geroch (1968, 1970),
Penrose and Rindler (1984). (1984).
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3. Twistor theory

It is possible to regard spinors as being, in some sense, more primi-
tive than tensors. One may take the view that the light-cone structure
and metric scaling are determined by the spinor structure of the space-time
(¢f. Bergmann 1957, Penrose and Rindler 1984). Perhaps, even the par-
ticular dimensionality and signature of the space-time metric may, in some
sense, be regarded as derived concepts. However, so long as the space-time
manifold itself must be given beforehand, it is hard to hold to such a view in
a serious way. The manifold’s dimension is determined by its topology, and
the definition of tensors requires only its differentiable structure. However,
the theory of twistors (Penrose 1967) provides the possibility of a more rad-
ical view. According to this scheme of ideas, the space-time manifold itself,
not just its light cone structure, is indeed regarded as derived from a more
primitive spinor-type space.

This is not the place to give a detailed account of twistor theory. (Such
accounts can be found in Huggett and Tod 1985, Penrose and Rindler 1986,
Ward and Wells 1989.) Only some brief comments of relevance will be
given here. For flat space-time M, which is to be a Minkowski 4-space,
the translation between the conformal compactification M# of M and the
twistor space T is very direct. The space T is a 4-complex-dimensional
vector space with a Hermitian quadratic form X of signature (+ + ——).
The parts of T on which X > 0, X < 0, and X = 0 are denoted by
T", T™, and N, respectively. The elements of N are called null twistors.
Any point z € M# is interpreted as a 2-dimensional linear subspace
of M , where  C IN. It is often convenient to think in terms of the
projective twistor space PT', which is the complex projective 3-space whose
points are the 1-dimensional linear subspaces of T'. Thus, there is 5-real-
dimensional subspace PN, of PT, consisting of the projective null twistors.
The projective version Pz, of x C IN, is a projective straight line in PN . It
turns out that a projective null twistor represents a light ray (null geodesic)
in M# and the generators of the light cone of a point z € M# are thereby
represented, in PT, by the points of the line Px. Two points z and y of
M# are null separated iff the corresponding lines Pz and Py intersect.

This gives the basic geometry of the correspondence between the (com-
pactified) space-time M# and the (projective) twistor space PT. In fact,
this geometry is really a manifestation of the structure of Sophus Lie’s lo-
cal isomorphism SL(4,C) — O(6,C), in its real form SU(2,2) — O(2,4).
The relevance of O(2,4) here is that it is locally isomorphic to the 15-
parameter conformal group of (compactified) Minkowski 4-space M#. The
group SU(2,2) acts on the spin space T and preserves the (2,2)-Hermitian-
quadratic form X. The local isomorphism SU(2,2) — O(2,4) expresses
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the fact that twistors (elements of T') are in fact reduced spinors for the
pseudo-orthogonal group O(2,4) that describes the conformal symmetries
of compactified space-time M#. The other space of reduced spinors (the
analogue of Lorentzian “primed spinors”) turns out to be the dual space
T of T.

The underlying philosophy of twistor theory is that the complex space
T is to be regarded as being, in some sense, more primitive than the space-
time itself. (The main motivations for this twistor view come from a desire
to bring together the basic, but incompatible, principles of quantum me-
chanics and Einstein’s general relativity without trying to impose one upon
the other. The complex-number structure of quantum mechanics and quan-
tum non-locality find manifestations in space-time geometry via the twistor
correspondence.) Over the years, it has been found that many of the basic
physical notions, particularly those which have to do with massless particles
and fields, indeed have elegant interpretations in twistor-space terms; also,
twistor theory has had many applications within areas of pure mathemat-
ics. (See Hughston 1975, Huggett and Tod 1985, Penrose and Rindler 1986,
Ward and Wells 1989, Bailey and Baston 1990, Mason and Woodhouse 1996,
Huggett, Mason, Tod, Tsou, and Woodhouse 1998 for details).

Yet, that crucial physical field, which any attempt at unifying quantum
mechanics with space-time structure must profoundly come to terms with,
is Einstein’s general relativity. How does twistor theory fare in this respect?
At first sight (in fact a “first sight” which lasted for some 10 years or more),
it had seemed that twistor theory is really just a scheme of things that
applies only to (conformally) flat space-time. However, it eventually turned
out (Penrose 1976) that by deforming (portions of) twistor space it becomes
possible to encode the Einstein vacuum equations in the case of anti-self-dual
Weyl curvature into the structure of the deformed twistor space. Anti-self-
dual Weyl curvature corresponds, in the weak-field limit, to the left-handed
graviton field, when we are thinking of the complex graviton wave-function
as a weak-field deformation of complexified Minkowski space C M. In fact,
twistor theory is a profoundly chiral theory, and it has the curious feature
that the left-handed and right-handed components of a massless quantum
field are treated on a quite different footing. In the case of the Einstein
gravitational field, it has turned out (using the standard twistor conventions)
that the left-handed part of the graviton finds a twistor interpretation far
more readily than does the right-handed part.

What is the present status of the problem of encoding the right-handed
graviton also into the framework of twistor theory, over twenty years after
the successful left-handed construction? For a number of years recently
(¢f. Penrose 1992), T had been pinning my hopes on the striking fact that
massless fields of helicity 3/2 seem to provide an intermediary between the
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Einstein vacuum equations and twistor theory. The consistency condition
for helicity 3/2 fields is precisely the vacuum equations, whereas, in M, the
space of charges for these fields is actually twistor space T'. In the meantime,
however, another idea has emerged (Penrose 1999) which does indeed encode
the outstanding right-handed part of the gravitational field. It remains to
be seen whether this all links together (perhaps via the agency of fields
of helicity 3/2) to provide a full twistor description of Einstein’s general
relativity. If it does, then a new approach to the unification of quantum
theory with space-time structure could well be provided.
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