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LECTURE IN HONOUR OF LEOPOLD INFELD(EXTENDED OUTLINE ONLY)SPINORS IN GENERAL RELATIVITY�Sir Roger PenroseMathematial Institute24�29 St Giles, Oxford OX1 3LB, U.K.(Reeived June 29, 1999)This artile is an extended outline of the leture delivered at the InfeldCentenial Meeting. In the leture a review was given of the development ofthe theory of spinors and related objets in speial and general relativity,with some emphasis on the twistor theory and its impliations. The leturewas not intended as a detailed aount of the subjet, but it rather wasa series of omments on the relevane of various spinor-type objets andtheir relation to some features of spae-time struture. The present artileis also a guide, with its author's personal preferenes, to the extensivebibliography of the subjet.PACS numbers: 04.20.GzIt is a great honour for me to have this opportunity to pay my respetsto Leopold Infeld. His seminal work showing how spinor alulus may beapplied in general urved spae-times has been extremely in�uential, and ithas profoundly a�eted my own researhes, these having been very greatlyonerned with the relationship between spinor theory and Einstein's generalrelativity. 1. Preliminaries: �at-spae spinorsSpinors were �rst found by Élie Cartan (1913; f. also Cartan 1966).His spinor spaes onstitute the representation spaes of 2-valued represen-tations of orthogonal groups. He did not use the name �spinor� at thattime, this term having been apparently introdued later by Ehrenfest (as Iwas reently informed by Andrzej Trautman), following Dira's (1928) re-disovery of spinors and disovery of their appliation to the spin of the� Presented at �The Infeld Centennial Meeting�, Warsaw, Poland, June 22�23, 1998.(2979)



2980 R. Penroserelativisti eletron (and also Pauli's earlier work, in 1927, onerning thenon-relativisti eletron's spin). However many spinor-related ideas wereknown muh earlier, partiularly in relation to the 2-valued (�spin�) rep-resentations of partiular rotation groups. (There are quaternions, foundby William Rowan Hamilton in 1837 and their expliit representation ofrotation matries given by the Cayley�Klein parameters, illustrating theloal isomorphism SU(2) ! O(3), and its omplexi�ation SL(2;C) !O(3, C), and there is also the loal isomorphism SU(4) ! O(6) and itsomplexi�ation SL(4;C)! O(6, C), known to Sophus Lie in about 1872.For information on the history of these matters, see Crowe 1967 and van derWaerden 1985.) The general disussion of spin representations of rotationgroups stems from the algebras of William Kingdon Cli�ord (1878), thesearising as the ommon generalization of quaternions and Grassman algebras(f. Grassman 1844, desribing work done in 1825). An elegant and thor-ough disussion of spinors for general orthogonal groups is to be found inBrauer and Weyl (1935), based on Cli�ord algebras. (See also the appendixto Penrose and Rindler 1986; Budinih and Trautman 1988.) Chevalley(1954) showed how to develop a theory of spinors appliable to �elds of�nite harateristi (inluding the awkward ase of harateristi 2).The appliations of spinors to physis stemmed initially from the workof Pauli and Dira as ited above, where the spinors were brought in speif-ially for the treatment of partiles of spin 1=2. Whereas �Pauli spinors�are the 2-omponent spinors for the (non-relativisti) rotation group O(3),�Dira spinors� are 4-omponent entities, being spinors for the Lorentz groupO(1,3). These 4-spinors split down into pairs of 2-omponent entities, some-times referred to �half-spinors� (or �Weyl spinors�), whih were onsideredby Weyl (1929) (and earlier, apparently, by Dira himself, f. Dira 1982)to have relevane to a relativisti (re�etion-non-invariant) wave equation.This equation is now often used to desribe the neutrino. It is a generalfeature of spinors for an even-dimensional spae that the spinors indeedbreak down into suh �half-spinors� � or redued spinors � in this way.(This is �redution� under the narrowing down of the rotation group to itsnon-re�etive subgroup.) For a 2n-dimensional spae, the redued spinorsare 2n�1-dimensional, so the unredued spinors are 2n-dimensional; for a(2n+ 1)-dimensional spae, the spinors are 2n-dimensional.In the ase of a 4-dimensional spae-time, subjet to loal Lorentz groupsymmetry, the redued spinors are 2-omponent entities, usually referred toas 2-spinors. Eah of the two 2-dimensional spaes of redued spinors is aomplex spae; these two spaes go into eah other under spae-re�etion,time-re�etion, or omplex onjugation. Aording to the 2-spinor alulusintrodued by van der Waerden (1929), as notationally slightly modi�ed in



Leture in Honour of Leopold Infeld : : : 2981Penrose (1960) and Penrose and Rindler (1984), the elements of these twospin-spaes are labelled by kernel symbols having indies whih are, respe-tively, apital Roman letters without primes (A;B;C; : : : ; A0; B0; : : : ; A1; : : :)and Roman letters with primes (A0; B0; C 0; : : : ; A00; B00; : : : ; A01; : : :). Thereare invariant skew-symmetrial quantities "AB , "A0B0 , "AB , "A0B0 , that anbe used for raising and lowering indies (are having to be exerised to keepthe signs onsistent). The tensor alulus may be thought of as being em-bedded in the 2-spinor alulus where an unprimed and a primed spinorindex taken together ounts as a tensor index.In this van der Waerden (1929) 2-spinor formalism, the Dira equationfor the eletron beomes a pair of oupled linear di�erential equations re-lating an unprimed spinor �A to a primed spinor �A0 . This formalism wassubsequently used by Laporte and Uhlenbek (1931) to represent, amongother things, the Maxwell equations for the eletromagneti �eld in an ele-gant way. Then Dira (1936) showed how to write down �eld equations forhigher spin, generally, in a very neat way and this was followed up signi�-antly by Fierz (1938). (In later work, Rarita, Shwinger, Du�n, Kemmer,and others formulated higher-spin equations, in speial ases, but not us-ing suh a powerful general formalism; see Corson 1953 for a omprehensiveaount of all this.)Lorentzian 2-spinors have a very neat geometrial desription in terms ofthe null one. A non-zero 2-spinor determines a future-pointing null vetorand a null half-plane ontaining the diretion of this vetor. These are the��agpole� and ��ag plane�, respetively, of this null �ag interpretation of thespinor; see Payne (1952), Penrose and Rindler (1984). This geometrial de-sription determines the 2-spinor ompletely up to a sign. (To interpret thesign, a non-loal desription is needed; see Penrose and Rindler 1984. Ro-tation of a spinor through 2� hanges its sign, whereas rotation through 4�restores it to its original value.) The null diretion of the �agpole desribesthe 2-spinor ompletely up to proportionality. A symmetrial n-valent spinor(an n-index quantity �AB:::L, with �AB:::L = �(AB:::L) desribes an entity ofspin n=2. It has a anonial deomposition, aording to whih it an be rep-resented (uniquely up to salings and ordering) as a symmetrized produt ofsingle-index 2-spinors �AB:::L = �(A�B : : : �L) and, therefore, up to propor-tionality, it orresponds uniquely to a symmetrial set of n null diretions.This desription gives the Majorana (1932) geometrial desription of thegeneral spin state of a spin n=2 partile (see Penrose 1989).2. Spinors for urved spae-timeThe �rst treatment of spinors in urved spae-time was that of Infeld andvan der Waerden (1933), using the van der Waerden 2-spinor formalism. The



2982 R. Penrosetranslation between spinors and tensors is then ahieved in loal omponentform by use of the Infeld�van der Waerden symbols (in the terminology ofPenrose and Rindler 1984). In this paper, the ingenious suggestion wasmade that the spinor phase should be the gauge quantity that generateseletromagnetism. However, this idea has not stood the test of time (atleast not in its original form) beause it appears to imply a diret relationbetween the spin and the harge of a partile. (The spin/harge value for theneutron would appear to be in on�it, the neutron having been disoveredin 1932, at about the same time as this paper was written.)Although the initial use of the Infeld-van der Waerden formalism was forthe desription of partiles with spin within the urved spae-time frameworkof Einstein's general relativity, this formalism an also be used to studyEinstein's theory itself. See Veblen and von Neumann (1936), Bergmann(1957), Witten (1959), Penrose (1960), Penrose and Rindler (1984, 1986).For example, the Weyl onformal tensor orresponds to a totally symmetrispinor 	ABCD whih resembles a spin 2 massless �eld, in the sense (referredto above) of Dira�Fierz. The anonial deomposition applied to this spinorgives a neat lassi�ation sheme for vauum spae-times (f. Penrose 1960,Penrose and Rindler 1986).When all tensor as well as spinor omponents are referred to a hoieof spin-frame (a basis in the loal spin spae at eah spae-time point),then the formalism of spin-oe�ients is obtained (f. Jordan, Ehlers, andSahs 1961, Newman and Penrose 1962). This turns out to have a greatalulational utility; see, for example, Chandrasekhar (1983). In ertainsituations, it turns out that beause of the geometry of a problem, it maybe onvenient to speify merely a pair of null diretions at eah point (the�agpole diretions of the two spinor basis elements) rather than an entirespin-frame. Then the more streamlined ompated spin-oe�ient formalisman be very onvenient to use (see Newman and Penrose 1966, Geroh, Held,and Penrose 1973, Penrose and Rindler 1984).Most of the foregoing remarks, in this setion, have been onerned withspinors only loally in urved spae-time. In fat there are important globalrestritions and ambiguities, for spinor �elds to make global sense on a spae-time manifold. These have to do with what are alled Stie�el�Whitneylasses on the manifold. The essential issue is the fat that the sign of aspinor does not have a loal geometrial interpretation (something that wastouhed upon in the previous setion), so the onsisteny of this sign globallydepends upon global properties of the spae-time. For results of relevaneto this issue, see Milnor (1963), Lihnerowiz (1968), Geroh (1968, 1970),Penrose and Rindler (1984). (1984).



Leture in Honour of Leopold Infeld : : : 29833. Twistor theoryIt is possible to regard spinors as being, in some sense, more primi-tive than tensors. One may take the view that the light-one strutureand metri saling are determined by the spinor struture of the spae-time(f. Bergmann 1957, Penrose and Rindler 1984). Perhaps, even the par-tiular dimensionality and signature of the spae-time metri may, in somesense, be regarded as derived onepts. However, so long as the spae-timemanifold itself must be given beforehand, it is hard to hold to suh a view ina serious way. The manifold's dimension is determined by its topology, andthe de�nition of tensors requires only its di�erentiable struture. However,the theory of twistors (Penrose 1967) provides the possibility of a more rad-ial view. Aording to this sheme of ideas, the spae-time manifold itself,not just its light one struture, is indeed regarded as derived from a moreprimitive spinor-type spae.This is not the plae to give a detailed aount of twistor theory. (Suhaounts an be found in Huggett and Tod 1985, Penrose and Rindler 1986,Ward and Wells 1989.) Only some brief omments of relevane will begiven here. For �at spae-time M , whih is to be a Minkowski 4-spae,the translation between the onformal ompati�ation M# of M and thetwistor spae T is very diret. The spae T is a 4-omplex-dimensionalvetor spae with a Hermitian quadrati form � of signature (+ + ��).The parts of T on whih � > 0, � < 0, and � = 0 are denoted byT+, T�, and N , respetively. The elements of N are alled null twistors.Any point x 2 M# is interpreted as a 2-dimensional linear subspae xof M , where x � N . It is often onvenient to think in terms of theprojetive twistor spae PT , whih is the omplex projetive 3-spae whosepoints are the 1-dimensional linear subspaes of T . Thus, there is 5-real-dimensional subspae PN , of PT , onsisting of the projetive null twistors.The projetive version Px, of x �N , is a projetive straight line in PN . Itturns out that a projetive null twistor represents a light ray (null geodesi)inM# and the generators of the light one of a point x 2M# are therebyrepresented, in PT , by the points of the line Px. Two points x and y ofM# are null separated i� the orresponding lines Px and P y interset.This gives the basi geometry of the orrespondene between the (om-pati�ed) spae-time M# and the (projetive) twistor spae PT . In fat,this geometry is really a manifestation of the struture of Sophus Lie's lo-al isomorphism SL(4;C) ! O(6;C), in its real form SU(2; 2) ! O(2; 4).The relevane of O(2; 4) here is that it is loally isomorphi to the 15-parameter onformal group of (ompati�ed) Minkowski 4-spae M#. Thegroup SU(2; 2) ats on the spin spae T and preserves the (2; 2)-Hermitian-quadrati form �. The loal isomorphism SU(2; 2) ! O(2; 4) expresses



2984 R. Penrosethe fat that twistors (elements of T ) are in fat redued spinors for thepseudo-orthogonal group O(2,4) that desribes the onformal symmetriesof ompati�ed spae-time M#. The other spae of redued spinors (theanalogue of Lorentzian �primed spinors�) turns out to be the dual spaeT � of T .The underlying philosophy of twistor theory is that the omplex spaeT is to be regarded as being, in some sense, more primitive than the spae-time itself. (The main motivations for this twistor view ome from a desireto bring together the basi, but inompatible, priniples of quantum me-hanis and Einstein's general relativity without trying to impose one uponthe other. The omplex-number struture of quantum mehanis and quan-tum non-loality �nd manifestations in spae-time geometry via the twistororrespondene.) Over the years, it has been found that many of the basiphysial notions, partiularly those whih have to do with massless partilesand �elds, indeed have elegant interpretations in twistor-spae terms; also,twistor theory has had many appliations within areas of pure mathemat-is. (See Hughston 1975, Huggett and Tod 1985, Penrose and Rindler 1986,Ward and Wells 1989, Bailey and Baston 1990, Mason and Woodhouse 1996,Huggett, Mason, Tod, Tsou, and Woodhouse 1998 for details).Yet, that ruial physial �eld, whih any attempt at unifying quantummehanis with spae-time struture must profoundly ome to terms with,is Einstein's general relativity. How does twistor theory fare in this respet?At �rst sight (in fat a ��rst sight� whih lasted for some 10 years or more),it had seemed that twistor theory is really just a sheme of things thatapplies only to (onformally) �at spae-time. However, it eventually turnedout (Penrose 1976) that by deforming (portions of) twistor spae it beomespossible to enode the Einstein vauum equations in the ase of anti-self-dualWeyl urvature into the struture of the deformed twistor spae. Anti-self-dual Weyl urvature orresponds, in the weak-�eld limit, to the left-handedgraviton �eld, when we are thinking of the omplex graviton wave-funtionas a weak-�eld deformation of omplexi�ed Minkowski spae CM . In fat,twistor theory is a profoundly hiral theory, and it has the urious featurethat the left-handed and right-handed omponents of a massless quantum�eld are treated on a quite di�erent footing. In the ase of the Einsteingravitational �eld, it has turned out (using the standard twistor onventions)that the left-handed part of the graviton �nds a twistor interpretation farmore readily than does the right-handed part.What is the present status of the problem of enoding the right-handedgraviton also into the framework of twistor theory, over twenty years afterthe suessful left-handed onstrution? For a number of years reently(f. Penrose 1992), I had been pinning my hopes on the striking fat thatmassless �elds of heliity 3=2 seem to provide an intermediary between the
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