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LECTURE IN HONOUR OF LEOPOLD INFELD(EXTENDED OUTLINE ONLY)SPINORS IN GENERAL RELATIVITY�Sir Roger PenroseMathemati
al Institute24�29 St Giles, Oxford OX1 3LB, U.K.(Re
eived June 29, 1999)This arti
le is an extended outline of the le
ture delivered at the InfeldCentenial Meeting. In the le
ture a review was given of the development ofthe theory of spinors and related obje
ts in spe
ial and general relativity,with some emphasis on the twistor theory and its impli
ations. The le
turewas not intended as a detailed a

ount of the subje
t, but it rather wasa series of 
omments on the relevan
e of various spinor-type obje
ts andtheir relation to some features of spa
e-time stru
ture. The present arti
leis also a guide, with its author's personal preferen
es, to the extensivebibliography of the subje
t.PACS numbers: 04.20.GzIt is a great honour for me to have this opportunity to pay my respe
tsto Leopold Infeld. His seminal work showing how spinor 
al
ulus may beapplied in general 
urved spa
e-times has been extremely in�uential, and ithas profoundly a�e
ted my own resear
hes, these having been very greatly
on
erned with the relationship between spinor theory and Einstein's generalrelativity. 1. Preliminaries: �at-spa
e spinorsSpinors were �rst found by Élie Cartan (1913; 
f. also Cartan 1966).His spinor spa
es 
onstitute the representation spa
es of 2-valued represen-tations of orthogonal groups. He did not use the name �spinor� at thattime, this term having been apparently introdu
ed later by Ehrenfest (as Iwas re
ently informed by Andrzej Trautman), following Dira
's (1928) re-dis
overy of spinors and dis
overy of their appli
ation to the spin of the� Presented at �The Infeld Centennial Meeting�, Warsaw, Poland, June 22�23, 1998.(2979)



2980 R. Penroserelativisti
 ele
tron (and also Pauli's earlier work, in 1927, 
on
erning thenon-relativisti
 ele
tron's spin). However many spinor-related ideas wereknown mu
h earlier, parti
ularly in relation to the 2-valued (�spin�) rep-resentations of parti
ular rotation groups. (There are quaternions, foundby William Rowan Hamilton in 1837 and their expli
it representation ofrotation matri
es given by the Cayley�Klein parameters, illustrating thelo
al isomorphism SU(2) ! O(3), and its 
omplexi�
ation SL(2;C) !O(3, C), and there is also the lo
al isomorphism SU(4) ! O(6) and its
omplexi�
ation SL(4;C)! O(6, C), known to Sophus Lie in about 1872.For information on the history of these matters, see Crowe 1967 and van derWaerden 1985.) The general dis
ussion of spin representations of rotationgroups stems from the algebras of William Kingdon Cli�ord (1878), thesearising as the 
ommon generalization of quaternions and Grassman algebras(
f. Grassman 1844, des
ribing work done in 1825). An elegant and thor-ough dis
ussion of spinors for general orthogonal groups is to be found inBrauer and Weyl (1935), based on Cli�ord algebras. (See also the appendixto Penrose and Rindler 1986; Budini
h and Trautman 1988.) Chevalley(1954) showed how to develop a theory of spinors appli
able to �elds of�nite 
hara
teristi
 (in
luding the awkward 
ase of 
hara
teristi
 2).The appli
ations of spinors to physi
s stemmed initially from the workof Pauli and Dira
 as 
ited above, where the spinors were brought in spe
if-i
ally for the treatment of parti
les of spin 1=2. Whereas �Pauli spinors�are the 2-
omponent spinors for the (non-relativisti
) rotation group O(3),�Dira
 spinors� are 4-
omponent entities, being spinors for the Lorentz groupO(1,3). These 4-spinors split down into pairs of 2-
omponent entities, some-times referred to �half-spinors� (or �Weyl spinors�), whi
h were 
onsideredby Weyl (1929) (and earlier, apparently, by Dira
 himself, 
f. Dira
 1982)to have relevan
e to a relativisti
 (re�e
tion-non-invariant) wave equation.This equation is now often used to des
ribe the neutrino. It is a generalfeature of spinors for an even-dimensional spa
e that the spinors indeedbreak down into su
h �half-spinors� � or redu
ed spinors � in this way.(This is �redu
tion� under the narrowing down of the rotation group to itsnon-re�e
tive subgroup.) For a 2n-dimensional spa
e, the redu
ed spinorsare 2n�1-dimensional, so the unredu
ed spinors are 2n-dimensional; for a(2n+ 1)-dimensional spa
e, the spinors are 2n-dimensional.In the 
ase of a 4-dimensional spa
e-time, subje
t to lo
al Lorentz groupsymmetry, the redu
ed spinors are 2-
omponent entities, usually referred toas 2-spinors. Ea
h of the two 2-dimensional spa
es of redu
ed spinors is a
omplex spa
e; these two spa
es go into ea
h other under spa
e-re�e
tion,time-re�e
tion, or 
omplex 
onjugation. A

ording to the 2-spinor 
al
ulusintrodu
ed by van der Waerden (1929), as notationally slightly modi�ed in
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ture in Honour of Leopold Infeld : : : 2981Penrose (1960) and Penrose and Rindler (1984), the elements of these twospin-spa
es are labelled by kernel symbols having indi
es whi
h are, respe
-tively, 
apital Roman letters without primes (A;B;C; : : : ; A0; B0; : : : ; A1; : : :)and Roman letters with primes (A0; B0; C 0; : : : ; A00; B00; : : : ; A01; : : :). Thereare invariant skew-symmetri
al quantities "AB , "A0B0 , "AB , "A0B0 , that 
anbe used for raising and lowering indi
es (
are having to be exer
ised to keepthe signs 
onsistent). The tensor 
al
ulus may be thought of as being em-bedded in the 2-spinor 
al
ulus where an unprimed and a primed spinorindex taken together 
ounts as a tensor index.In this van der Waerden (1929) 2-spinor formalism, the Dira
 equationfor the ele
tron be
omes a pair of 
oupled linear di�erential equations re-lating an unprimed spinor �A to a primed spinor �A0 . This formalism wassubsequently used by Laporte and Uhlenbe
k (1931) to represent, amongother things, the Maxwell equations for the ele
tromagneti
 �eld in an ele-gant way. Then Dira
 (1936) showed how to write down �eld equations forhigher spin, generally, in a very neat way and this was followed up signi�-
antly by Fierz (1938). (In later work, Rarita, S
hwinger, Du�n, Kemmer,and others formulated higher-spin equations, in spe
ial 
ases, but not us-ing su
h a powerful general formalism; see Corson 1953 for a 
omprehensivea

ount of all this.)Lorentzian 2-spinors have a very neat geometri
al des
ription in terms ofthe null 
one. A non-zero 2-spinor determines a future-pointing null ve
torand a null half-plane 
ontaining the dire
tion of this ve
tor. These are the��agpole� and ��ag plane�, respe
tively, of this null �ag interpretation of thespinor; see Payne (1952), Penrose and Rindler (1984). This geometri
al de-s
ription determines the 2-spinor 
ompletely up to a sign. (To interpret thesign, a non-lo
al des
ription is needed; see Penrose and Rindler 1984. Ro-tation of a spinor through 2� 
hanges its sign, whereas rotation through 4�restores it to its original value.) The null dire
tion of the �agpole des
ribesthe 2-spinor 
ompletely up to proportionality. A symmetri
al n-valent spinor(an n-index quantity �AB:::L, with �AB:::L = �(AB:::L) des
ribes an entity ofspin n=2. It has a 
anoni
al de
omposition, a

ording to whi
h it 
an be rep-resented (uniquely up to s
alings and ordering) as a symmetrized produ
t ofsingle-index 2-spinors �AB:::L = �(A�B : : : �L) and, therefore, up to propor-tionality, it 
orresponds uniquely to a symmetri
al set of n null dire
tions.This des
ription gives the Majorana (1932) geometri
al des
ription of thegeneral spin state of a spin n=2 parti
le (see Penrose 1989).2. Spinors for 
urved spa
e-timeThe �rst treatment of spinors in 
urved spa
e-time was that of Infeld andvan der Waerden (1933), using the van der Waerden 2-spinor formalism. The



2982 R. Penrosetranslation between spinors and tensors is then a
hieved in lo
al 
omponentform by use of the Infeld�van der Waerden symbols (in the terminology ofPenrose and Rindler 1984). In this paper, the ingenious suggestion wasmade that the spinor phase should be the gauge quantity that generatesele
tromagnetism. However, this idea has not stood the test of time (atleast not in its original form) be
ause it appears to imply a dire
t relationbetween the spin and the 
harge of a parti
le. (The spin/
harge value for theneutron would appear to be in 
on�i
t, the neutron having been dis
overedin 1932, at about the same time as this paper was written.)Although the initial use of the Infeld-van der Waerden formalism was forthe des
ription of parti
les with spin within the 
urved spa
e-time frameworkof Einstein's general relativity, this formalism 
an also be used to studyEinstein's theory itself. See Veblen and von Neumann (1936), Bergmann(1957), Witten (1959), Penrose (1960), Penrose and Rindler (1984, 1986).For example, the Weyl 
onformal tensor 
orresponds to a totally symmetri
spinor 	ABCD whi
h resembles a spin 2 massless �eld, in the sense (referredto above) of Dira
�Fierz. The 
anoni
al de
omposition applied to this spinorgives a neat 
lassi�
ation s
heme for va
uum spa
e-times (
f. Penrose 1960,Penrose and Rindler 1986).When all tensor as well as spinor 
omponents are referred to a 
hoi
eof spin-frame (a basis in the lo
al spin spa
e at ea
h spa
e-time point),then the formalism of spin-
oe�
ients is obtained (
f. Jordan, Ehlers, andSa
hs 1961, Newman and Penrose 1962). This turns out to have a great
al
ulational utility; see, for example, Chandrasekhar (1983). In 
ertainsituations, it turns out that be
ause of the geometry of a problem, it maybe 
onvenient to spe
ify merely a pair of null dire
tions at ea
h point (the�agpole dire
tions of the two spinor basis elements) rather than an entirespin-frame. Then the more streamlined 
ompa
ted spin-
oe�
ient formalism
an be very 
onvenient to use (see Newman and Penrose 1966, Gero
h, Held,and Penrose 1973, Penrose and Rindler 1984).Most of the foregoing remarks, in this se
tion, have been 
on
erned withspinors only lo
ally in 
urved spa
e-time. In fa
t there are important globalrestri
tions and ambiguities, for spinor �elds to make global sense on a spa
e-time manifold. These have to do with what are 
alled Stie�el�Whitney
lasses on the manifold. The essential issue is the fa
t that the sign of aspinor does not have a lo
al geometri
al interpretation (something that wastou
hed upon in the previous se
tion), so the 
onsisten
y of this sign globallydepends upon global properties of the spa
e-time. For results of relevan
eto this issue, see Milnor (1963), Li
hnerowi
z (1968), Gero
h (1968, 1970),Penrose and Rindler (1984). (1984).
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ture in Honour of Leopold Infeld : : : 29833. Twistor theoryIt is possible to regard spinors as being, in some sense, more primi-tive than tensors. One may take the view that the light-
one stru
tureand metri
 s
aling are determined by the spinor stru
ture of the spa
e-time(
f. Bergmann 1957, Penrose and Rindler 1984). Perhaps, even the par-ti
ular dimensionality and signature of the spa
e-time metri
 may, in somesense, be regarded as derived 
on
epts. However, so long as the spa
e-timemanifold itself must be given beforehand, it is hard to hold to su
h a view ina serious way. The manifold's dimension is determined by its topology, andthe de�nition of tensors requires only its di�erentiable stru
ture. However,the theory of twistors (Penrose 1967) provides the possibility of a more rad-i
al view. A

ording to this s
heme of ideas, the spa
e-time manifold itself,not just its light 
one stru
ture, is indeed regarded as derived from a moreprimitive spinor-type spa
e.This is not the pla
e to give a detailed a

ount of twistor theory. (Su
ha

ounts 
an be found in Huggett and Tod 1985, Penrose and Rindler 1986,Ward and Wells 1989.) Only some brief 
omments of relevan
e will begiven here. For �at spa
e-time M , whi
h is to be a Minkowski 4-spa
e,the translation between the 
onformal 
ompa
ti�
ation M# of M and thetwistor spa
e T is very dire
t. The spa
e T is a 4-
omplex-dimensionalve
tor spa
e with a Hermitian quadrati
 form � of signature (+ + ��).The parts of T on whi
h � > 0, � < 0, and � = 0 are denoted byT+, T�, and N , respe
tively. The elements of N are 
alled null twistors.Any point x 2 M# is interpreted as a 2-dimensional linear subspa
e xof M , where x � N . It is often 
onvenient to think in terms of theproje
tive twistor spa
e PT , whi
h is the 
omplex proje
tive 3-spa
e whosepoints are the 1-dimensional linear subspa
es of T . Thus, there is 5-real-dimensional subspa
e PN , of PT , 
onsisting of the proje
tive null twistors.The proje
tive version Px, of x �N , is a proje
tive straight line in PN . Itturns out that a proje
tive null twistor represents a light ray (null geodesi
)inM# and the generators of the light 
one of a point x 2M# are therebyrepresented, in PT , by the points of the line Px. Two points x and y ofM# are null separated i� the 
orresponding lines Px and P y interse
t.This gives the basi
 geometry of the 
orresponden
e between the (
om-pa
ti�ed) spa
e-time M# and the (proje
tive) twistor spa
e PT . In fa
t,this geometry is really a manifestation of the stru
ture of Sophus Lie's lo-
al isomorphism SL(4;C) ! O(6;C), in its real form SU(2; 2) ! O(2; 4).The relevan
e of O(2; 4) here is that it is lo
ally isomorphi
 to the 15-parameter 
onformal group of (
ompa
ti�ed) Minkowski 4-spa
e M#. Thegroup SU(2; 2) a
ts on the spin spa
e T and preserves the (2; 2)-Hermitian-quadrati
 form �. The lo
al isomorphism SU(2; 2) ! O(2; 4) expresses
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t that twistors (elements of T ) are in fa
t redu
ed spinors for thepseudo-orthogonal group O(2,4) that des
ribes the 
onformal symmetriesof 
ompa
ti�ed spa
e-time M#. The other spa
e of redu
ed spinors (theanalogue of Lorentzian �primed spinors�) turns out to be the dual spa
eT � of T .The underlying philosophy of twistor theory is that the 
omplex spa
eT is to be regarded as being, in some sense, more primitive than the spa
e-time itself. (The main motivations for this twistor view 
ome from a desireto bring together the basi
, but in
ompatible, prin
iples of quantum me-
hani
s and Einstein's general relativity without trying to impose one uponthe other. The 
omplex-number stru
ture of quantum me
hani
s and quan-tum non-lo
ality �nd manifestations in spa
e-time geometry via the twistor
orresponden
e.) Over the years, it has been found that many of the basi
physi
al notions, parti
ularly those whi
h have to do with massless parti
lesand �elds, indeed have elegant interpretations in twistor-spa
e terms; also,twistor theory has had many appli
ations within areas of pure mathemat-i
s. (See Hughston 1975, Huggett and Tod 1985, Penrose and Rindler 1986,Ward and Wells 1989, Bailey and Baston 1990, Mason and Woodhouse 1996,Huggett, Mason, Tod, Tsou, and Woodhouse 1998 for details).Yet, that 
ru
ial physi
al �eld, whi
h any attempt at unifying quantumme
hani
s with spa
e-time stru
ture must profoundly 
ome to terms with,is Einstein's general relativity. How does twistor theory fare in this respe
t?At �rst sight (in fa
t a ��rst sight� whi
h lasted for some 10 years or more),it had seemed that twistor theory is really just a s
heme of things thatapplies only to (
onformally) �at spa
e-time. However, it eventually turnedout (Penrose 1976) that by deforming (portions of) twistor spa
e it be
omespossible to en
ode the Einstein va
uum equations in the 
ase of anti-self-dualWeyl 
urvature into the stru
ture of the deformed twistor spa
e. Anti-self-dual Weyl 
urvature 
orresponds, in the weak-�eld limit, to the left-handedgraviton �eld, when we are thinking of the 
omplex graviton wave-fun
tionas a weak-�eld deformation of 
omplexi�ed Minkowski spa
e CM . In fa
t,twistor theory is a profoundly 
hiral theory, and it has the 
urious featurethat the left-handed and right-handed 
omponents of a massless quantum�eld are treated on a quite di�erent footing. In the 
ase of the Einsteingravitational �eld, it has turned out (using the standard twistor 
onventions)that the left-handed part of the graviton �nds a twistor interpretation farmore readily than does the right-handed part.What is the present status of the problem of en
oding the right-handedgraviton also into the framework of twistor theory, over twenty years afterthe su

essful left-handed 
onstru
tion? For a number of years re
ently(
f. Penrose 1992), I had been pinning my hopes on the striking fa
t thatmassless �elds of heli
ity 3=2 seem to provide an intermediary between the
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uum equations and twistor theory. The 
onsisten
y 
onditionfor heli
ity 3=2 �elds is pre
isely the va
uum equations, whereas, inM , thespa
e of 
harges for these �elds is a
tually twistor spa
e T . In the meantime,however, another idea has emerged (Penrose 1999) whi
h does indeed en
odethe outstanding right-handed part of the gravitational �eld. It remains tobe seen whether this all links together (perhaps via the agen
y of �eldsof heli
ity 3=2) to provide a full twistor des
ription of Einstein's generalrelativity. If it does, then a new approa
h to the uni�
ation of quantumtheory with spa
e-time stru
ture 
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