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We investigate the cosmological model with the complex scalar self-
interacting inflaton field non-minimally coupled to gravity. The different
geometries of the Euclidean classically forbidden regions are represented.
The instanton solutions of the corresponding Euclidean equations of mo-
tion are found by numerical calculations supplemented by the qualitative
analysis of Lorentzian and Euclidean trajectories. The applications of these
solutions to the no-boundary and tunneling proposals for the wave function
of the Universe are studied. Possible interpretation of obtained results and
their connection with inflationary cosmology is discussed.

PACS numbers: 98.80.Hw

1. Introduction

It is widely recognized that inflationary cosmological models give a good
basis for the description of the observed structure of the Universe [1]. Most
of these models include the so called inflaton scalar field possessing non-zero
classical average value which provides the existence of an effective cosmolog-
ical constant on an early stage of the cosmological evolution. On one hand
inflationary cosmology has received the strong support due to discovery of
the anisotropy of the microwave background radiation |2], while on the other
hand it is connected with such an exciting field of modern theoretical physics
as quantum cosmology. The main task of quantum cosmology is the consid-
eration of the Universe as a unique quantum object which can be described
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by the wave function of the Universe, obeying to the Wheeler-DeWitt equa-
tion. Studying this wave function of the Universe one can hope to get the
probability distribution of the initial conditions for the Universe. During
the last decade quantum cosmology has been developing intensively on the
basis of two proposals for the boundary conditions for the wave function
of the Universe: the so-called “no-boundary” [3] and “tunneling” [4] pro-
posals. Both these proposals use the apparatus of Euclidean quantum field
theory combined with the ideas of the theory of quantum tunneling transi-
tions and instantons. However, these proposals taken in tree semiclassical
approximation cannot provide the normalizability of the wave function of
the Universe [5] and to predict the initial conditions for the cosmological
evolution providing sufficient amount of inflation [6]. One can look for dif-
ferent ways out from this situation. Consideration of the wave function of
the Universe in one-loop approximation [7]| gives us an opportunity to obtain
the normalizability of the wave function of the Universe and the existence
of the suitable probability distribution for the initial conditions for inflation
provided proper particle content of the theory is chosen. Another possible
direction of the development of quantum cosmology is the consideration of
more wide theories than the traditional scheme with a real scalar field. Thus
in the series of recent papers [8, 9] the model with a complex scalar inflaton
field was studied. One of the reasons for the consideration of a complex
scalar field consists in the fact that such fields and the non-Abelian mul-
tiplets of scalar fields appear naturally in the modern theories of particle
physics. The most natural representation of the complex scalar field has the
form

¢ = zexp(if), (1)
where z is the absolute value of the complex scalar field, while 6 is its phase.
This phase is a cyclical variable corresponding to the conserved quantity —
a classical charge of the Universe, which plays the role of the new quasi-
fundamental constant of the theory [8]. Appearance of this new constant
essentially modifies the structure of the Wheeler-DeWitt equation. Namely,
the form of the superpotential U(z,a), where a is the cosmological radius
of the Universe, displays now a new and interesting feature: the Euclidean
region, i.e. the classically forbidden region where U > 0, is bounded by a
closed curve in the minisuperspace (x,a) for a large range of parameters.
Thus, in contrast with the picture of “tunneling from nothing”[4] and with
the “no-boundary proposal” for the wave function of the Universe [3] we
have the Lorentzian region at the very small values of cosmological radius a
and hence a wave can go into the Euclidean region from one side and outgo
from the other. These new features of the model require reconsideration of
traditional schemes [3, 4] and give some additional possibilities. Here, it is
necessary to stress that speaking about the “Euclidean” or “classically forbid-
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den” regions one should understand that in the case of the quantum gravity
and cosmology these terms can be used only in a “loose” sense, because due to
indefiniteness of the supermetric the “Euclidean” region is not impenetrable
for Lorentzian trajectories. It is well-known that in the cosmological models
with a inflaton scalar field the Lorentzian trajectories can penetrate into the
Euclidean region just like as the trajectories corresponding to the Euclidean
equations of motion can leave the Euclidean region for the Lorentzian one
(see, for example, [10-12]). However, one can use such terms as Euclidean
and Lorentzian regions as people usually do investigating the tunneling type
processes in cosmology [3-12| and in instanton physics [13] even in the case
of indefinite supermetric. Moreover, one can give to the term “Euclidean
region” quite definite value as the region where the points of the minimal
contraction and maximal expansion of the Universe can exist. In principle,
investigating the cosmological models with the complex scalar field one can
use instead of parametrization (1.1) the pair of real scalar fields, representing
the real and imaginary part of ¢ as it was done in [14]. However, in this case
the presence of the symmetry corresponding to a new constant is hidden
and results obtained in [14] for the case of flat Freedman—Robertson—Walker
model coincide with those obtained for the case of the real scalar field [11].
In recent years quite a few papers were devoted to the investigation of the
cosmological models with the non-minimal coupling between inflaton scalar
field and gravity [15, 7]. On one hand such models give a lot of opportunities
for matching with the observational data and ideas of particle physics, on
the other hand they can be treated as more consistent from the point of
view of quantum gravity [16]. In recent papers [17], we have considered a
non-minimally coupled complex scalar field. It was shown that inclusion of
non-minimal coupling makes the model richer. In particular the geometry
of Euclidean regions have a large diversity and depends on the choice of
parameters of the theory. In the model with the minimally coupled complex
scalar field it was shown that one instanton solution exists [8]. This instan-
ton solution can be continued into the Lorentzian region in accordance with
Lorentzian equations of motion and thus it can provide the beginning of
the inflation. This scheme gives the strong preference to the “no-boundary”
proposal for the wave function of the Universe [9]. At the same time in the
case of non-minimally coupled complex scalar field, we can have a couple of
instantons one of which is suitable for the “no-boundary” wave function of
the Universe while the other is suitable for the tunneling one. This paper
will be devoted to the more detailed investigation of the properties of the
model represented in [17]. Here it is necessary to tell that strictly speaking
the Hartle-Hawking or “no-boundary” proposal can literally not be applied
to the case of complex scalar field [9]. Indeed, in the semiclassical approxi-
mation and in a minisuperspace model the “no-boundary” proposal can be
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boiled down to the path integration from ¢ = 0 up to some small value of
the cosmological radius e over compact metrics and regular matter fields.
However, in the presence of the phase variable 6 and a connected with it new
constant — the charge of the Universe — the centrifugal term arises in the
super-potential which prevents the regularity of matter fields at @ = 0. Thus
we need some extension of the Hartle-Hawking proposal. Throughout this
paper we shall use the extension of no-boundary proposal discussed in [9].
The idea consists in the consideration of the fact that the Hartle-Hawking
proposal is equivalent to the requirement that the wave function of the Uni-
verse should be exponentially growing in the classically forbidden region and
should be in semiclassical approximation proportional to
exp(—I),

where I is the corresponding classical Euclidean action. Instantons consid-
ered in [8, 9, 17] correspond to just this definition of the “no-boundary” wave
function of the Universe. It is necessary to add that another approach to
the complex scalar field in cosmology was discussed in [18-21] mainly in the
context of wormhole solutions. It was noticed [19], that “nonzero charge
can play the same role in wormhole dynamics that nonzero angular momen-
tum does in the dynamics of a particle in an attractive central potential, or
nonzero magnetic charge in the dynamics of a 't Hooft—Polyakov monopole.
Nonzero angular momentum keeps the particle from falling into the origin;
nonzero magnetic charge keeps the monopole from decaying into mesons;
nonzero charge flowing down the throat keeps the wormhole from punch-
ing off two disconnected manifolds”. Some differences between our approach
and that of [18-21] will be discussed below. The structure of our paper is as
follows: in Sec. 2 we obtain a new fundamental constant of our model — the
classical charge — and discuss its influence on the structure of the superpo-
tential and on the tunneling process; in Sec. 3 we consider different forms
of the Euclidean region depending on the choice of parameters; in Sec. 4 we
present the equations of motion for our theory and describe the results of
numerical search of instantonic solutions of Euclidean equations of motion
and their connection with different versions of the boundary conditions for
the wave function of the Universe.

2. Complex scalar field and the new quasi-fundamental constant

We shall consider the model with the following action:

2 1 1 1
S = / d*zv/—g (%(R —24) +§9“”¢Z¢u + §£R¢¢* - §m2¢¢*

]' *
- A4 )2). &)
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Here ¢ is the parameter of non-minimal coupling (we choose for convenience
the sign which is opposite to the generally accepted), A is the parameter of
the self-interaction of the scalar field, A is the cosmological constant, m is
the mass of the scalar field. The complex scalar field ¢ can be represented
in the form given by Eq. (1). We shall consider the minisuperspace model
with the spatially homogeneous variables a (the cosmological radius in the
Freedman- Robertson-Walker metric), 2, and 6. In terms of these variables
the action (2) looks as follows:

2 .2 .
— 9.2 3(mp a a 1Y L .o
S =27 /dtNa <167T [6 <N2a2 + Nq + a2> 2/1] + 2N2$

1 202 d2 a 1 2 1 2.2 1 4
+W$9 +3£<N2a2+m+a—2)$ —§mx —IA.’L' s (3)

where N is the lapse function. Now, by integrating by parts one may get rid
of the terms containing ¢ and write down the action (3) in a more convenient
form

2 52
_ 2 mP a~a 3 1 .9 1 259
S =2n /dtN<E|:6<_m+a)—2/la:|+W$ +W$0
+35<N2 +a)m—6§v+mma—§mma—g/&a>.
(4)

Let us notice that the phase variable 0 is cyclical and, correspondingly, its
conjugate momentum py should be conserved. We shall call its value the
charge of the Universe and shall denote it by @

pg=Q = a’z20. (5)

Now, coming over to the canonical formalism and using the relation (5), one
can rewrite the action (4) in the following form:

S = 2n? / dt(pab + pai — NH), (6)
where the super-Hamiltonian H has the following form

p2 EpaPa

= mp o Lo 2,2) 942 (Mp 4 & 2,2
2a (T2 + 5 +3¢20%) 202 (F2 + 5 +3¢202)
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The function U (a, ), which we shall call the superpotential, looks as follows:

U _ m%G 2 Na2 342 ? 1 2229 1/142
(a,7) =a 16—71'(_ a’)) + fﬂv—m—imxa—ﬂ z'a

(8)
The variation of the action with respect to the lapse function N gives us the
super-Hamiltonian constraint

H=0, 9)

whose quantum analog is the well-known Wheeler-DeWitt equation. Now
it is convenient to go back to the Lagrangian formalism and to write down
the Lagrangian, depending only on two minisuperspace variables ¢ and z
and their derivatives (the lapse function N is chosen to be equal to 1):

2
L = G%P [6 (—a%a + a) — 24a%] + 3¢ (—a%a + a) 2°
™
1 Q? 1 1
. 22 3 2,2 3 4 3
—6fata’r + g3 g g g T M — I/lx a ) . (10)
This Lagrangian gives us the equations of motion for the minisuperspace
variables a and z which will be written down explicitly and investigated
in Sec. 4. (Let us notice that the simple substitution of the value of 6
from Eq. (5) with the subsequent variation of (3) with respect to a and
x does not give us the correct equations of motion). It is clear that the
transition from the Lorentzian equations of motion which can be obtained
from the Lagrangian (10) to their Euclidean counterparts should be done

by a simple change of sign of the terms containing time derivatives of a
and z. However, if we make the transition to Euclidean (imaginary) time

before we have got rid of 6 due to Eq. (5), we shall have another couple of
Euclidean equations of motion. These equations of motion shall differ from
the previous ones by the sign before the terms containing the new charge
Q. The question arises: what pair of equations is “correct” and what is
the reason of the “discrepancy”? These problems were discussed in [18] and
illustrated by the example of the particle in the central potential, where
the angular momentum plays the role of the charge, while cyclical angular
variable plays the role of the phase. Assuming that the correct Euclidean
equations of motion are those which are obtained when the transition to the
Euclidean time is carried out after the exclusion of cyclic variables the author
of [18] proposed two ways to cure the situation. One proposal consists in
the idea that it is necessary to add to the Euclidean action, where all the
variables are on the equal footing, the term which represents a Lagrange
multiplier multiplied by a constraint

aQ

dr’ (1)
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where 7 is the Euclidean time. Indeed, the addition of the term propor-
tional to (11) to the action changes the Euclidean equations of motion in a
desirable way. However, in our opinion, the very procedure of adding (11)
is unnecessary and illegitimate simultaneously. It is unnecessary, because
the Lagrangian of the theory implies the conservation of charge (i.e. of the
momentum conjugate to a cyclic variable). Moreover, it is illegitimate, be-
cause the term (11) contains the second derivative of our variable 6 and
its addition to the action is equivalent to a forceful change of sign of the
terms containing @. (One can say also that if the procedure of addition
of (11) is legitimate, then an analogous procedure can be carried out with
the Lorentzian equations of motion as well, and we shall have apparently
incorrect signs before some terms in these equations). Another idea uses
the known rules for matching the solutions of classical Lorentzian equations
of motion with their Euclidean counterparts [12, 26]. To satisfy the prin-
ciple of minimal action it is necessary not only to require the dynamical
variables to obey Lorentzian and Euclidean equations of motion along the
Lorentzian and Euclidean sections of their trajectories correspondingly, but
also to choose the point of matching of Lorentzian and Euclidean trajecto-
ries in such a way that provide the vanishing of the first derivatives of these
variables at this point. If this is impossible, then the complexification of
the trajectories is inescapable and at the points of matching the following
conditions should be satisfied:

Re ¢p =Im ¢r; Im g =—Reqr. (12)

Now looking at Eq. (5) it is easy to understand that 0 cannot vanish
and thus if we want to include 0 into the set of our minisuperspace variables
and to treat it on the equal footing with = and a, then the complexification
at least of the phase variable is necessary. In this case at coming to Eu-
clidean region and at the transition from Lorentzian equations of motion to
Euclidean ones it is necessary using the conditions (12) to go from the real
phase 6 to the complex one having imaginary component. Carrying this pro-
cedure out simultaneously with the transition to the Euclidean (imaginary)
time, we again obtain the Euclidean equations of motion which coincide
with those obtained from the effective Lagrangian (10) including only two
variables ¢ and z. Summing up one can say that Euclidean equations of
motion which are obtained from the Lorentzian ones before the exclusion
of phase variable 8 coincide with those obtained after the exclusion 6 pro-
vided the complexification of phase was carried out. Such a procedure is
quite correct from the mathematical point of view, however the appearance
of an imaginary phase can evoke some difficulties connected with the in-
terpretation. From our point of view there is no necessity to consider the
imaginary phases at the transition to the Euclidean equations of motion.
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It is much more reasonable to think that the phase variable # need not be
subjected to the transition from the Lorentzian time to the Euclidean and
during the tunneling transition continues to “live” in the Lorentzian time.
In the framework of such an approach we naturally obtain the effective La-
grangian (10) and the corresponding Euclidean equations of motion. This
approach accepting the simultaneous evolution of different variables in the
Lorentzian and Euclidean times can find justification in the fact that the
very idea of introduction of Euclidean equations of motion and instantons
is connected with the impossibility to describe the process of tunneling in
terms of classical trajectories. However, not all the variables of the quantum
system which undergoes the process of tunneling should be treated on the
equal footing. Some of them are not involved in the process of tunneling
and their evolution can be described in terms of Lorentzian equation of mo-
tion. This fact is well-known in the non-relativistic quantum mechanics [23].
Moreover, the existence of the variables which do not undergo the tunneling
transition, while the system in the whole does, can be used for the definition
and measurement of time spent by the system under barrier [24], because
these “non-tunneling” variables can be used as a “quantum clock” [25]. The
problem consists in the fact that there is not a procedure of subdividing
the degrees of freedom of the system under consideration onto ones which
undergo tunneling and those which do not. This problem is rather com-
plicated even in non-relativistic multidimensional quantum mechanics, left
alone the quantum gravity, where one additionally encounters the problem
of indefiniteness of the supermetric. However, in the situation when we have
cyclical variables the problem is simpler, because we can express these vari-
ables through the other conserved quantities, and reduce in such a way the
problem of tunneling to that of lower dimensionality. Thus, in the rest of our
paper we shall think that the phase 6 does not undergo tunneling and can
safely be expressed through a new quasi-fundamental constant - the classical
charge @) and the variables z and a with a help of relation (5). Dynamics
of these variables is described by the Lagrangian (10) and will be studied in
Sec. 4. In the next section we shall consider the geometry of the so-called
Euclidean or “classically-forbidden” regions which can be determined as the
regions of the positivity of the superpotential U (a, z).

3. Geometry of Euclidean regions

We have already mentioned that the very notion of the Euclidean re-
gion for the multidimensional problems, and especially in problems with the
indefinite supermetric, as in the case of quantum gravity and cosmology,
becomes “fuzzy”. Nevertheless, we shall use this terminology, because it is
generally accepted. Moreover, one can show that the notion of Euclidean
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Fig.1. The geometries of Euclidean regions at different values of the parameters:
JQ=A=A=¢(=0, m#0; b) Q=A=E6=0, m#0, 4#0;
JA=£=0, m#0, A#£0, Q#0; d)A=0, m#0, A#0, Q#0, {#0;
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region has a quite well-defined physical sense (see Ref. [17]). Thus we shall
call the Euclidean region that one where the following condition takes place:

Ula,z) > 0. (13)
Correspondingly the boundary of this region is given by the equation

U(a,z) = 0. (14)
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Resolving this equation we can get the form of the Euclidean region in the
plane of minisuperspace variables (a, x). It is interesting to compare the form
of these regions for different values of parameters entering the superpotential
U (Eq. (8)). In the simplest case of @ = A = A = ¢ = 0 we have a non-

compact Euclidean region bounded by the hyperbolic curve z = + %%

(see Fig. 1a). Inclusion of the cosmological term A # 0 implies the closing of

the Euclidean region “on the right” at a = \/g (see Fig. 1b). Inclusion of the
non-zero classical charge of the scalar field Q # 0 implies the closing of the
Euclidean region “on the left” and we have obtained “banana-like” structure
of this region [8] (see Fig. 1c). After the inclusion of the small term describing
the non-minimal coupling between the scalar field and gravity (£ # 0) we
obtain the second Euclidean region in the upper left corner of the plane
(z,a) [17]. This new region is non-compact and unbounded from above
(see Fig. 1d). While increasing the value of the parameter ¢, this second
Euclidean region drops down and at some value of ¢ joins with the first
banana-like Euclidean region (see Fig. le). It is easy to find this value of &
in the absence of self-interaction of the scalar field:

¢ = 1672m*Q?
N 27m‘}3

With the growing of the value of ¢ we shall have the unified Euclidean
region. The boundary of this unified region is partially convex, partially
concave (see Fig. 1f), and after further increasing of £ it becomes convex
(see Fig. 1g). After the inclusion of self-interaction of the scalar field A # 0
we can have, depending on the values of the parameters @, 4,£, and m,
various geometrical configurations of the Euclidean regions. It is easy to
estimate the condition for closing the Euclidean region from above: It is

AN\ 2/3
f < Q_ .
48
Now remembering that the condition for the existence of the two non-
connected Euclidean regions is
1672m*Q?
—,
2Tmp

E<

one can see that we have three options. First, if

1672m*Q?
27m‘]13 ’

&<
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we have only one closed banana-like Euclidean region (see Fig. 1h). Second,

if
16mm!Q? (@)2/3
27m‘}3 48
and 2/3
16 2,,4)2 A
&ﬁ > f > Q_ ,
2Tm’p 48

we shall have two non-connected Euclidean regions (the corresponding pic-
ture is close to that described in Fig. 1d) : a banana-like one and a “bag-like”
Euclidean region with an infinitely long narrow throat (the curves bounding
the upper Euclidean region are asymptotically clinging to the ordinate axis).

Third, if
A\ 2/3
§> Q_
48
and P
16
5>&4Q,
27mP

we shall have one open from above bag-like Euclidean region which again
has an infinitely long narrow throat (see Fig. 1i). Thus, we have seen that
the inclusion of the charge @), the non-minimal coupling ¢ # 0, and the self-
interaction of the scalar field imply a large variety of possible geometries of
Euclidean regions in minisuperspace.

4. Equations of motion, instantons and initial
conditions for inflation

Now using the Lagrangian (10) and choosing the gauge N = 1, we can
get the following equations of motion:

9 .9 .9 9 . 9 .9
p(.,a 1 & fatx ax .. &rta
167r<a+2a+2a 2>+ o T g TemEat S
TIa 2 ai?  m2z2a 2 Azta
JSwda  Sa”  adm Cﬁ ~ —0 (15)
2 4a 8 8 da°x 96
and
3 6 6¢ar 6 2 Ar?
oy ota Gtwd  GCatw  6&x . 207 AT 4
a a a? a? abz3 6

Besides we can write down the first integral of motion of our dynamical
system which can be obtained from the super-Hamiltonian constraint (9):

3 3
—8—m%ad2 — 3¢ad’z? — 6¢xiaa’® + %:bg —U(a,x) = 0. (17)
T
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It is obvious that Euclidean counterparts of Egs. (15)-(17) can be obtained
by the change of sign before terms containing time derivatives. Integrating
numerically the Euclidean analog of the system of equations (15)-(16), we
can investigate the question about the presence of instantons. Under instan-
tons we shall understand solutions of Euclidean equations of motion which
have vanishing velocities & and & on the boundaries of the Euclidean regions
which are given by Eq. (14). In our recent letter [17] we have investigated
numerically this question and have found instanton solutions at some con-
figurations of the Euclidean regions. Here we would like to complement the
numerical investigation the equations of motion of our system by some qual-
itative analysis. First of all it makes sense to resolve the equations (15)-(16)
with respect to the second derivatives a and Z. The obtained expressions
look as follows:

1 22 2 2
(ﬁ &y 352352) a s
_:b2a(4f +1)  asz m%  miAa B Ex2(126 4 1)
8 2 32ma 327 4a
+m2$2a(4§ +1) Q*(4+1)  Az'a(BE+1)Y (18)
8 adz? 96 ’
. 1 y ( 3miia  3E(1 + 4€)iaz?
i = > — —
(;né_l;’r + % + 3§2$2) 167a 2a
3miLéa’y _ 31+ 4632z 3mibéx  3¢%q3 B mbm?z
167a? 4 167a? 2a? 167
+5m2x3 m%Q? Q%  miAxd  Aéx®  3miiAx (19)
4 8mabz3  2aSx 967 48 167 ’

Looking at Eq. (17) one can easily see that in the Euclidean region, where
U(a,z) > 0, it is possible to have @ = 0, i.e. that the cosmological radius can
achieve an extremum amin Or Gmax- 1t is interesting to learn which points
of Euclidean region can play the role of points of minimal contraction and
which ones can be the points of maximal expansion. To understand that, it
is necessary to put in Eq. (18) @ = 0, and to express % as a function of x
and a from Eq. (17). We shall have

1 y <_m%(1 + 3¢) N m%Aa(1 + 2€)
2 2
(TZ—’; Ly 35%2) 8ma 167

x2(14+68)  m2z%a(l1448)  Azta(l + 6¢)
a a + 4 a 48 > '

a =

(20)
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Apparently, if we have at some point ¢ > 0, this point would correspond to
the possible minimal contraction of the Universe, while ¢ < 0 corresponds
to the possible maximal expansion. We can obtain the curve separating
the points of possible minimal contraction from those of possible maximal
expansion by putting the right-hand side of Eq. (7) equal to zero. In the sim-
plest case when all the parameters besides m are equal to zero, we reproduce
the simple hyperbolic curve

PR N0
2T ma
separating the points of minimal contraction from those of maximal expan-
sion which was discussed in paper [10] and in also in paper [11], where it
was written down in terms of phase space. This curve repeats that of the
hyperbola
3 mp

T =44/——
41 ma

separating the Euclidean region from the Lorentzian one and differs from it
by the multiplicative factor \/g . It is interesting to mention that the form

of the curve given by Eq. (20) does not depend of the charge Q. One can
get also an analogous curve separating the points of possible maximum and
minimum values of the absolute value of the scalar field . These points can
exist only in the Lorentzian region U(z,a) < 0, as one sees from Eq. (17).
Putting in Eq. (19) ¢ = 0 and expressing a through variables # and a by
resolving Eq. (17), we have got the following equation:

P 2 1 2 <m§3§/1x 3mie2z3  3¢32°
: 2 2 4 2 2 2 4 2
(717:3_1;_’_ %+3€2$2> (;Té_}:r + %) 647 327a a
m‘};m% &2m2ad m%Q? mbQ*¢ Q% m‘};/lav‘3
25672 8 128720823~ 16mabx 4ab 153672
mLeArS AT 3mEE2AL8
1927 96 327

In the simplest case, when only m # 0, the separating curve has an extremely
simple form

r = 0.

Thus all the points > 0 can play the role of points of possible maximum
value of z. Here it is important to add that Eqs. (20)-(21) can also be used
for the analysis of Euclidean equations of motion as well. In this case the
points of maximal expansion and minimal contraction can be placed only
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Fig.2. Short-dashed lines depict boundaries between Euclidean and Lorentzian
regions; bold lines represent instanton trajectories; long-dashed lines represent Lo-
rentzian trajectories; and thin lines denote z- and a-separating curves.

in the Lorentzian region, while the points where z can take minimal and
maximal values can exist only in the Euclidean region.

Now, recalling that an instanton is the solution of the classical Euclidean
equations of motion which begins and ends at the boundary of Euclidean
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and Lorentzian regions with vanishing velocities @ and , one can notice that
an instantonic trajectory should cross both separating curves (in @ and in z)
at least once. Thus, studying the location of separating curves, we can get
some information about the possible existence and form of instantons. One
can easily see that in the case of the simplest model with a real scalar field
with or without the cosmological constant A (see Fig. 1a) instantons cannot
exist (except for the trivial case z = 0). However, in the case when the non-
zero charge Q is switched on, both separating curves (we shall call them
an z-separating curve and an a-separating curve correspondingly) intersect
the Euclidean field and the instanton can exist. And it really exists as the
numerical calculation confirms (see Fig. 2a). Using the end point of the
instanton on the right part of the boundary of the Euclidean “banana-like”
region as an initial point for the Lorentzian trajectory, one can see that this
Lorentzian trajectory has quasi-inflationary behaviour [8, 9, 17|. Let us now
consider the model with a non-minimally coupled complex scalar field. To
begin with, we choose the value of ¢ to be small enough and we have two
disconnected Euclidean regions (such situation was presented in Fig. 1d).
In Fig. 2b depicted is not only the configuration of the Euclidean regions
but also the form of a- and z-separating curves. One can see that as in the
previous case instanton can exist in the closed “banana-like” region and it
does exist and can provide the suitable initial conditions for the beginning
of inflationary Lorentzian trajectory. At the same time another solution of
Euclidean equations of motion with vanishing initial and final velocities is
present. This solution connects different Euclidean regions and at first glance
looks rather strange, because it goes through the Lorentzian region, while
the more habitual instantons used to intersect Euclidean regions. However,
the Lorentzian trajectory beginning from the final point of this instanton has
a rather peculiar non-inflationary behaviour and hardly can be used for the
description of quantum tunneling of the Universe from nothing. Then, while
the non-minimal coupling constant £ is growing, the path covered by this
“peculiar” instanton is getting smaller and at the moment when two region
meet at one point (see Fig. le) this second instanton degenerates into the
point and disappears. With further increasing of &, we have one Euclidean
region open from above. In this case, if £ is not very high, we have two
instantons which lie inside of the Euclidean region [17] and intersect both
separating curves (see Fig. 2c¢). Lower instanton corresponds to the local
maximum of absolute value of action of the Euclidean trajectories going
through the Euclidean region, while the upper instanton corresponds to the
local minimum of the absolute value of action. It is necessary to add that
taking the growing initial values of  on the boundary of the Euclidean region
under consideration (above the second instanton), we shall get the Euclidean
trajectories with the unboundedly growing action. Both the end points of
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instantons can be used as initial points of Lorentzian trajectories having
quasi-inflationary behaviour (see Fig. 2c¢). It is important to notice that
the upper instanton corresponding to the minimum of the absolute value of
the Euclidean action provides the existence of the peak of the probability
distribution in the tunneling wave function of the Universe [4], because this
function in the tree-level approximation has the behaviour

U ~ exp(—|I]).

At the same time the lower instanton corresponding to the maximum of the
absolute value of the Euclidean action provides the existence of the peak
of the probability distribution in the Hartle-Hawking wave function of the
Universe [3], having the behaviour

Up ~ exp(+|I]).

Thus if we choose the no-boundary proposal for the wave function of the
Universe, we should use the end point of the lower instanton for the defi-
nition of the most probable initial condition for the cosmological evolution,
while if we choose the tunneling proposal for the wave function of the Uni-
verse, we should use the end point of the upper instanton to fix the most
probable initial boundary conditions for inflation. As was already shown
in [17], in the case when the parameter ¢ is large and the boundary of the
Euclidean region has a convex form (see Fig. 1g), we do not have instantons
at all. This is quite understandable now, because for such a choice of pa-
rameters the z-separating curve does not go through the Euclidean region
(see Fig. 2d) and the necessary conditions for the existence of instantons are
not satisfied. It is interesting to notice that in both these cases (Fig. 2c and
Fig. 2d), due to the indefinite increasing of the absolute value of the action
with the increase of the initial value of the scalar field z at right boundary
between the Lorentzian and Euclidean regions, the tunneling wave func-
tion of the Universe is normalizable already in tree-level approximation (cf.
[5, 7]). Now we can investigate the instantonic solutions and initial condi-
tions for the inflation for the case when the self-interaction of the inflaton
field (A # 0) is taken into account. As was described in the preceding sec-
tion, three possible configurations of Euclidean regions can exist. In the case
when only one closed Euclidean region exists (see Fig. 1h), one can find only
one instanton as usual. In the case when we have two disjoint Euclidean re-
gions, we can discover two instantonic configurations: one going through the
closed “banana-like” region, and one “peculiar” connecting the boundaries of
two Euclidean regions and going through the Lorentzian region. The con-
figuration of these instantons closely resembles that of Fig. 2b. The most
interesting is the situation when we have one open from above Euclidean
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region (see Fig. 1i). In this case depending on values of parameters £, A, Q
and m one can observe three different situations. In the first case depicted
in Fig. 2e we have two instantons corresponding to the minimum and max-
imum of absolute value of Euclidean action. In the second case we do not
have instantons at all. For this configuration the large value of the param-
eter of non-minimal coupling £ is essential. The absolute value of action
is growing monotonically with the increasing of the initial value of scalar
field z on the right boundary of Euclidean region, and tends to some fixed
value (this value is finite in contrast with the case of the scalar field without
self-interaction). And in the third case we have only one instantonic solu-
tion corresponding to the maximum of absolute value of Euclidean action.
To realize this case it is necessary to have the value of the constant of self-
interaction A large enough to provide the decreasing of the absolute value of
action at the increasing of initial value of z, however, this value of A must
not to be too large to escape the closing of the Euclidean region from above.
It is interesting also to consider the case when the cosmological constant
disappears (A = 0). The disappearance of the cosmological constant implies
the opening of the Euclidean region on the right. The most interesting situ-
ation occurs when we have one Euclidean region open from above and from
the right (see Fig. 2f) Here instead of two instantons we have only one: that
corresponding to the minimum of the absolute value of the Euclidean action
and correspondingly to the probability peak in the tunneling wave function
of the Universe. The second “lower” instanton (cf. Fig. 2¢) turns into the
trajectory infinitely travelling through Euclidean region without reaching
its boundary with Lorentzian region (see Fig. 2f). Thus in this case only
the tunneling wave function of the Universe can predict the most probable
initial conditions for the beginning of the cosmological evolution in contrast
with the situation when we have only one closed Euclidean region where the
Hartle-Hawking wave function of the Universe is preferable. The received
instantonic trajectories giving us the initial conditions for the inflationary
stage of cosmological evolution can be studied from the point of view of
the restrictions on the parameters of the model which can be obtained from
phenomenological considerations. Here we shall discuss the restrictions on
the parameters of the model provided we choose the tunneling prescription
for the wave function of the Universe and we wish to have the sufficient
number of e-foldings (usually it is taken equal to 60). One can show using
numerical investigations that for the model without self-interaction (A = 0)
such restrictions have the following form:

50m%
m2

£<0.002; ; Q<
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In the case when we have self-interaction (A # 0) the restrictions have
the more complicated form. First, to provide the beginning of the upper
instanton more high it is necessary to have the following connection between
&, A and Q:

1 Am?

~N —

487 m?

And to escape the closing of the Euclidean region from above one should
have

1 Am?
Q< L _Amp,
V48w m
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