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COMPLEX SCALAR FIELD IN QUANTUMCOSMOLOGY: FROM INSTANTON TO INFLATION�I.M. KhalatnikovL.D.Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
esKosygin Street, Mos
ow, 117940, RussiaTel Aviv University, Raymond and Beverly Sa
klerFa
ulty of Exa
t S
ien
es, S
hool of Physi
s and AstronomyRamat Aviv, 69978 Tel Aviv, IsraelLandau Network Centro VoltaVilla Olmo, Como 22100, Italy(Re
eived August 4, 1999)We investigate the 
osmologi
al model with the 
omplex s
alar self-intera
ting in�aton �eld non-minimally 
oupled to gravity. The di�erentgeometries of the Eu
lidean 
lassi
ally forbidden regions are represented.The instanton solutions of the 
orresponding Eu
lidean equations of mo-tion are found by numeri
al 
al
ulations supplemented by the qualitativeanalysis of Lorentzian and Eu
lidean traje
tories. The appli
ations of thesesolutions to the no-boundary and tunneling proposals for the wave fun
tionof the Universe are studied. Possible interpretation of obtained results andtheir 
onne
tion with in�ationary 
osmology is dis
ussed.PACS numbers: 98.80.Hw 1. Introdu
tionIt is widely re
ognized that in�ationary 
osmologi
al models give a goodbasis for the des
ription of the observed stru
ture of the Universe [1℄. Mostof these models in
lude the so 
alled in�aton s
alar �eld possessing non-zero
lassi
al average value whi
h provides the existen
e of an e�e
tive 
osmolog-i
al 
onstant on an early stage of the 
osmologi
al evolution. On one handin�ationary 
osmology has re
eived the strong support due to dis
overy ofthe anisotropy of the mi
rowave ba
kground radiation [2℄, while on the otherhand it is 
onne
ted with su
h an ex
iting �eld of modern theoreti
al physi
sas quantum 
osmology. The main task of quantum 
osmology is the 
onsid-eration of the Universe as a unique quantum obje
t whi
h 
an be des
ribed� Presented at �The Infeld Centennial Meeting�, Warsaw, Poland, June 22�23, 1998.(3009)



3010 I.M. Khalatnikovby the wave fun
tion of the Universe, obeying to the Wheeler�DeWitt equa-tion. Studying this wave fun
tion of the Universe one 
an hope to get theprobability distribution of the initial 
onditions for the Universe. Duringthe last de
ade quantum 
osmology has been developing intensively on thebasis of two proposals for the boundary 
onditions for the wave fun
tionof the Universe: the so-
alled �no-boundary� [3℄ and �tunneling� [4℄ pro-posals. Both these proposals use the apparatus of Eu
lidean quantum �eldtheory 
ombined with the ideas of the theory of quantum tunneling transi-tions and instantons. However, these proposals taken in tree semi
lassi
alapproximation 
annot provide the normalizability of the wave fun
tion ofthe Universe [5℄ and to predi
t the initial 
onditions for the 
osmologi
alevolution providing su�
ient amount of in�ation [6℄. One 
an look for dif-ferent ways out from this situation. Consideration of the wave fun
tion ofthe Universe in one-loop approximation [7℄ gives us an opportunity to obtainthe normalizability of the wave fun
tion of the Universe and the existen
eof the suitable probability distribution for the initial 
onditions for in�ationprovided proper parti
le 
ontent of the theory is 
hosen. Another possibledire
tion of the development of quantum 
osmology is the 
onsideration ofmore wide theories than the traditional s
heme with a real s
alar �eld. Thusin the series of re
ent papers [8, 9℄ the model with a 
omplex s
alar in�aton�eld was studied. One of the reasons for the 
onsideration of a 
omplexs
alar �eld 
onsists in the fa
t that su
h �elds and the non-Abelian mul-tiplets of s
alar �elds appear naturally in the modern theories of parti
lephysi
s. The most natural representation of the 
omplex s
alar �eld has theform � = x exp(i�); (1)where x is the absolute value of the 
omplex s
alar �eld, while � is its phase.This phase is a 
y
li
al variable 
orresponding to the 
onserved quantity �a 
lassi
al 
harge of the Universe, whi
h plays the role of the new quasi-fundamental 
onstant of the theory [8℄. Appearan
e of this new 
onstantessentially modi�es the stru
ture of the Wheeler�DeWitt equation. Namely,the form of the superpotential U(x; a), where a is the 
osmologi
al radiusof the Universe, displays now a new and interesting feature: the Eu
lideanregion, i.e. the 
lassi
ally forbidden region where U > 0, is bounded by a
losed 
urve in the minisuperspa
e (x; a) for a large range of parameters.Thus, in 
ontrast with the pi
ture of �tunneling from nothing�[4℄ and withthe �no-boundary proposal� for the wave fun
tion of the Universe [3℄ wehave the Lorentzian region at the very small values of 
osmologi
al radius aand hen
e a wave 
an go into the Eu
lidean region from one side and outgofrom the other. These new features of the model require re
onsideration oftraditional s
hemes [3, 4℄ and give some additional possibilities. Here, it isne
essary to stress that speaking about the �Eu
lidean� or �
lassi
ally forbid-
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alar Field in Quantum Cosmology... 3011den� regions one should understand that in the 
ase of the quantum gravityand 
osmology these terms 
an be used only in a �loose� sense, be
ause due toinde�niteness of the supermetri
 the �Eu
lidean� region is not impenetrablefor Lorentzian traje
tories. It is well-known that in the 
osmologi
al modelswith a in�aton s
alar �eld the Lorentzian traje
tories 
an penetrate into theEu
lidean region just like as the traje
tories 
orresponding to the Eu
lideanequations of motion 
an leave the Eu
lidean region for the Lorentzian one(see, for example, [10�12℄). However, one 
an use su
h terms as Eu
lideanand Lorentzian regions as people usually do investigating the tunneling typepro
esses in 
osmology [3�12℄ and in instanton physi
s [13℄ even in the 
aseof inde�nite supermetri
. Moreover, one 
an give to the term �Eu
lideanregion� quite de�nite value as the region where the points of the minimal
ontra
tion and maximal expansion of the Universe 
an exist. In prin
iple,investigating the 
osmologi
al models with the 
omplex s
alar �eld one 
anuse instead of parametrization (1.1) the pair of real s
alar �elds, representingthe real and imaginary part of � as it was done in [14℄. However, in this 
asethe presen
e of the symmetry 
orresponding to a new 
onstant is hiddenand results obtained in [14℄ for the 
ase of �at Freedman�Robertson�Walkermodel 
oin
ide with those obtained for the 
ase of the real s
alar �eld [11℄.In re
ent years quite a few papers were devoted to the investigation of the
osmologi
al models with the non-minimal 
oupling between in�aton s
alar�eld and gravity [15, 7℄. On one hand su
h models give a lot of opportunitiesfor mat
hing with the observational data and ideas of parti
le physi
s, onthe other hand they 
an be treated as more 
onsistent from the point ofview of quantum gravity [16℄. In re
ent papers [17℄, we have 
onsidered anon-minimally 
oupled 
omplex s
alar �eld. It was shown that in
lusion ofnon-minimal 
oupling makes the model ri
her. In parti
ular the geometryof Eu
lidean regions have a large diversity and depends on the 
hoi
e ofparameters of the theory. In the model with the minimally 
oupled 
omplexs
alar �eld it was shown that one instanton solution exists [8℄. This instan-ton solution 
an be 
ontinued into the Lorentzian region in a

ordan
e withLorentzian equations of motion and thus it 
an provide the beginning ofthe in�ation. This s
heme gives the strong preferen
e to the �no-boundary�proposal for the wave fun
tion of the Universe [9℄. At the same time in the
ase of non-minimally 
oupled 
omplex s
alar �eld, we 
an have a 
ouple ofinstantons one of whi
h is suitable for the �no-boundary� wave fun
tion ofthe Universe while the other is suitable for the tunneling one. This paperwill be devoted to the more detailed investigation of the properties of themodel represented in [17℄. Here it is ne
essary to tell that stri
tly speakingthe Hartle�Hawking or �no-boundary� proposal 
an literally not be appliedto the 
ase of 
omplex s
alar �eld [9℄. Indeed, in the semi
lassi
al approxi-mation and in a minisuperspa
e model the �no-boundary� proposal 
an be



3012 I.M. Khalatnikovboiled down to the path integration from a = 0 up to some small value ofthe 
osmologi
al radius a over 
ompa
t metri
s and regular matter �elds.However, in the presen
e of the phase variable � and a 
onne
ted with it new
onstant � the 
harge of the Universe � the 
entrifugal term arises in thesuper-potential whi
h prevents the regularity of matter �elds at a = 0. Thuswe need some extension of the Hartle�Hawking proposal. Throughout thispaper we shall use the extension of no-boundary proposal dis
ussed in [9℄.The idea 
onsists in the 
onsideration of the fa
t that the Hartle�Hawkingproposal is equivalent to the requirement that the wave fun
tion of the Uni-verse should be exponentially growing in the 
lassi
ally forbidden region andshould be in semi
lassi
al approximation proportional toexp(�I);where I is the 
orresponding 
lassi
al Eu
lidean a
tion. Instantons 
onsid-ered in [8, 9, 17℄ 
orrespond to just this de�nition of the �no-boundary� wavefun
tion of the Universe. It is ne
essary to add that another approa
h tothe 
omplex s
alar �eld in 
osmology was dis
ussed in [18�21℄ mainly in the
ontext of wormhole solutions. It was noti
ed [19℄, that �nonzero 
harge
an play the same role in wormhole dynami
s that nonzero angular momen-tum does in the dynami
s of a parti
le in an attra
tive 
entral potential, ornonzero magneti
 
harge in the dynami
s of a 't Hooft�Polyakov monopole.Nonzero angular momentum keeps the parti
le from falling into the origin;nonzero magneti
 
harge keeps the monopole from de
aying into mesons;nonzero 
harge �owing down the throat keeps the wormhole from pun
h-ing o� two dis
onne
ted manifolds�. Some di�eren
es between our approa
hand that of [18�21℄ will be dis
ussed below. The stru
ture of our paper is asfollows: in Se
. 2 we obtain a new fundamental 
onstant of our model � the
lassi
al 
harge � and dis
uss its in�uen
e on the stru
ture of the superpo-tential and on the tunneling pro
ess; in Se
. 3 we 
onsider di�erent formsof the Eu
lidean region depending on the 
hoi
e of parameters; in Se
. 4 wepresent the equations of motion for our theory and des
ribe the results ofnumeri
al sear
h of instantoni
 solutions of Eu
lidean equations of motionand their 
onne
tion with di�erent versions of the boundary 
onditions forthe wave fun
tion of the Universe.2. Complex s
alar �eld and the new quasi-fundamental 
onstantWe shall 
onsider the model with the following a
tion:S = Z d4xp�g m2P16� (R� 2�) +12g������� + 12�R��� � 12m2���� 14!�(���)2!: (2)
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alar Field in Quantum Cosmology... 3013Here � is the parameter of non-minimal 
oupling (we 
hoose for 
onvenien
ethe sign whi
h is opposite to the generally a

epted), � is the parameter ofthe self-intera
tion of the s
alar �eld, � is the 
osmologi
al 
onstant, m isthe mass of the s
alar �eld. The 
omplex s
alar �eld � 
an be representedin the form given by Eq. (1). We shall 
onsider the minisuperspa
e modelwith the spatially homogeneous variables a (the 
osmologi
al radius in theFreedman- Robertson-Walker metri
), x, and �. In terms of these variablesthe a
tion (2) looks as follows:S = 2�2 Z dtNa3�m2P16� �6� _a2N2a2 + �aN2a + 1a2�� 2��+ 12N2 _x2+ 12N2x2 _�2 + 3�� _a2N2a2 + �aN2a + 1a2�x2 � 12m2x2 � 14!�x4� ; (3)where N is the lapse fun
tion. Now, by integrating by parts one may get ridof the terms 
ontaining �a and write down the a
tion (3) in a more 
onvenientformS = 2�2 Z dtN �m2P16� �6�� _a2aN2 + a�� 2�a3�+ 12N2 _x2 + 12N2x2 _�2+3��� _a2aN2 + a�x2 � 6� _a _xa2xN2 + 12N2 _x2a3 � 12m2x2a3 � 14!�x4a3� :(4)Let us noti
e that the phase variable � is 
y
li
al and, 
orrespondingly, its
onjugate momentum p� should be 
onserved. We shall 
all its value the
harge of the Universe and shall denote it by Qp� = Q = a3x2 _�: (5)Now, 
oming over to the 
anoni
al formalism and using the relation (5), one
an rewrite the a
tion (4) in the following form:S = 2�2 Z dt(pa _a+ px _x�NH); (6)where the super-Hamiltonian H has the following formH = � p2a24a�m2P16� + �x22 + 3�2x2� � �pxpax2a2 �m2P16� + �x22 + 3�2x2�+ p2x2a3 �m2P16� + �x22 ��m2P16� + �x22 + 3�2x2� � U(a; x) : (7)
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tion U(a; x), whi
h we shall 
all the superpotential, looks as follows:U(a; x) = a�m2P16� (6� 2�a2)) + 3�x2 � Q2a4x2 � 12m2x2a2 � 124�x4a2� :(8)The variation of the a
tion with respe
t to the lapse fun
tion N gives us thesuper-Hamiltonian 
onstraint H = 0 ; (9)whose quantum analog is the well-known Wheeler�DeWitt equation. Nowit is 
onvenient to go ba
k to the Lagrangian formalism and to write downthe Lagrangian, depending only on two minisuperspa
e variables a and xand their derivatives (the lapse fun
tion N is 
hosen to be equal to 1):L = �m2P16� �6 �� _a2a+ a�� 2�a3�+ 3� �� _a2a+ a�x2�6� _a _xa2x+ 12 _x2a3 � Q22a3x2 � 12m2x2a3 � 14!�x4a3� : (10)This Lagrangian gives us the equations of motion for the minisuperspa
evariables a and x whi
h will be written down expli
itly and investigatedin Se
. 4. (Let us noti
e that the simple substitution of the value of _�from Eq. (5) with the subsequent variation of (3) with respe
t to a andx does not give us the 
orre
t equations of motion). It is 
lear that thetransition from the Lorentzian equations of motion whi
h 
an be obtainedfrom the Lagrangian (10) to their Eu
lidean 
ounterparts should be doneby a simple 
hange of sign of the terms 
ontaining time derivatives of aand x. However, if we make the transition to Eu
lidean (imaginary) timebefore we have got rid of _� due to Eq. (5), we shall have another 
ouple ofEu
lidean equations of motion. These equations of motion shall di�er fromthe previous ones by the sign before the terms 
ontaining the new 
hargeQ. The question arises: what pair of equations is �
orre
t� and what isthe reason of the �dis
repan
y�? These problems were dis
ussed in [18℄ andillustrated by the example of the parti
le in the 
entral potential, wherethe angular momentum plays the role of the 
harge, while 
y
li
al angularvariable plays the role of the phase. Assuming that the 
orre
t Eu
lideanequations of motion are those whi
h are obtained when the transition to theEu
lidean time is 
arried out after the ex
lusion of 
y
li
 variables the authorof [18℄ proposed two ways to 
ure the situation. One proposal 
onsists inthe idea that it is ne
essary to add to the Eu
lidean a
tion, where all thevariables are on the equal footing, the term whi
h represents a Lagrangemultiplier multiplied by a 
onstraintdQd� ; (11)
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alar Field in Quantum Cosmology... 3015where � is the Eu
lidean time. Indeed, the addition of the term propor-tional to (11) to the a
tion 
hanges the Eu
lidean equations of motion in adesirable way. However, in our opinion, the very pro
edure of adding (11)is unne
essary and illegitimate simultaneously. It is unne
essary, be
ausethe Lagrangian of the theory implies the 
onservation of 
harge (i.e. of themomentum 
onjugate to a 
y
li
 variable). Moreover, it is illegitimate, be-
ause the term (11) 
ontains the se
ond derivative of our variable � andits addition to the a
tion is equivalent to a for
eful 
hange of sign of theterms 
ontaining Q. (One 
an say also that if the pro
edure of additionof (11) is legitimate, then an analogous pro
edure 
an be 
arried out withthe Lorentzian equations of motion as well, and we shall have apparentlyin
orre
t signs before some terms in these equations). Another idea usesthe known rules for mat
hing the solutions of 
lassi
al Lorentzian equationsof motion with their Eu
lidean 
ounterparts [12, 26℄. To satisfy the prin-
iple of minimal a
tion it is ne
essary not only to require the dynami
alvariables to obey Lorentzian and Eu
lidean equations of motion along theLorentzian and Eu
lidean se
tions of their traje
tories 
orrespondingly, butalso to 
hoose the point of mat
hing of Lorentzian and Eu
lidean traje
to-ries in su
h a way that provide the vanishing of the �rst derivatives of thesevariables at this point. If this is impossible, then the 
omplexi�
ation ofthe traje
tories is ines
apable and at the points of mat
hing the following
onditions should be satis�ed:Re _qE = Im _qL; Im _qE = �Re _qL : (12)Now looking at Eq. (5) it is easy to understand that _� 
annot vanishand thus if we want to in
lude � into the set of our minisuperspa
e variablesand to treat it on the equal footing with x and a, then the 
omplexi�
ationat least of the phase variable is ne
essary. In this 
ase at 
oming to Eu-
lidean region and at the transition from Lorentzian equations of motion toEu
lidean ones it is ne
essary using the 
onditions (12) to go from the realphase � to the 
omplex one having imaginary 
omponent. Carrying this pro-
edure out simultaneously with the transition to the Eu
lidean (imaginary)time, we again obtain the Eu
lidean equations of motion whi
h 
oin
idewith those obtained from the e�e
tive Lagrangian (10) in
luding only twovariables a and x. Summing up one 
an say that Eu
lidean equations ofmotion whi
h are obtained from the Lorentzian ones before the ex
lusionof phase variable � 
oin
ide with those obtained after the ex
lusion � pro-vided the 
omplexi�
ation of phase was 
arried out. Su
h a pro
edure isquite 
orre
t from the mathemati
al point of view, however the appearan
eof an imaginary phase 
an evoke some di�
ulties 
onne
ted with the in-terpretation. From our point of view there is no ne
essity to 
onsider theimaginary phases at the transition to the Eu
lidean equations of motion.
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h more reasonable to think that the phase variable � need not besubje
ted to the transition from the Lorentzian time to the Eu
lidean andduring the tunneling transition 
ontinues to �live� in the Lorentzian time.In the framework of su
h an approa
h we naturally obtain the e�e
tive La-grangian (10) and the 
orresponding Eu
lidean equations of motion. Thisapproa
h a

epting the simultaneous evolution of di�erent variables in theLorentzian and Eu
lidean times 
an �nd justi�
ation in the fa
t that thevery idea of introdu
tion of Eu
lidean equations of motion and instantonsis 
onne
ted with the impossibility to des
ribe the pro
ess of tunneling interms of 
lassi
al traje
tories. However, not all the variables of the quantumsystem whi
h undergoes the pro
ess of tunneling should be treated on theequal footing. Some of them are not involved in the pro
ess of tunnelingand their evolution 
an be des
ribed in terms of Lorentzian equation of mo-tion. This fa
t is well-known in the non-relativisti
 quantum me
hani
s [23℄.Moreover, the existen
e of the variables whi
h do not undergo the tunnelingtransition, while the system in the whole does, 
an be used for the de�nitionand measurement of time spent by the system under barrier [24℄, be
ausethese �non-tunneling� variables 
an be used as a �quantum 
lo
k� [25℄. Theproblem 
onsists in the fa
t that there is not a pro
edure of subdividingthe degrees of freedom of the system under 
onsideration onto ones whi
hundergo tunneling and those whi
h do not. This problem is rather 
om-pli
ated even in non-relativisti
 multidimensional quantum me
hani
s, leftalone the quantum gravity, where one additionally en
ounters the problemof inde�niteness of the supermetri
. However, in the situation when we have
y
li
al variables the problem is simpler, be
ause we 
an express these vari-ables through the other 
onserved quantities, and redu
e in su
h a way theproblem of tunneling to that of lower dimensionality. Thus, in the rest of ourpaper we shall think that the phase � does not undergo tunneling and 
ansafely be expressed through a new quasi-fundamental 
onstant - the 
lassi
al
harge Q and the variables x and a with a help of relation (5). Dynami
sof these variables is des
ribed by the Lagrangian (10) and will be studied inSe
. 4. In the next se
tion we shall 
onsider the geometry of the so-
alledEu
lidean or �
lassi
ally-forbidden� regions whi
h 
an be determined as theregions of the positivity of the superpotential U(a; x).3. Geometry of Eu
lidean regionsWe have already mentioned that the very notion of the Eu
lidean re-gion for the multidimensional problems, and espe
ially in problems with theinde�nite supermetri
, as in the 
ase of quantum gravity and 
osmology,be
omes �fuzzy�. Nevertheless, we shall use this terminology, be
ause it isgenerally a

epted. Moreover, one 
an show that the notion of Eu
lidean
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Fig. 1. The geometries of Eu
lidean regions at di�erent values of the parameters:a) Q = � = � = � = 0; m 6= 0; b) Q = � = � = 0; m 6= 0; � 6= 0;
) � = � = 0; m 6= 0; � 6= 0; Q 6= 0; d) � = 0; m 6= 0; � 6= 0; Q 6= 0; � 6= 0;e) � = 0; � = 16�2m4Q227m4P ; f) � = 0; � > 16�2m4Q227m4P ; g) � = 0; � � 16�2m4Q227m4P ;h) � 6= 0; � < �Q�48 �2=3; i) � > �Q�48 �2=3 ; � > 16�2m4Q227m4P .region has a quite well-de�ned physi
al sense (see Ref. [17℄). Thus we shall
all the Eu
lidean region that one where the following 
ondition takes pla
e:U(a; x) > 0: (13)Correspondingly the boundary of this region is given by the equationU(a; x) = 0: (14)



3018 I.M. KhalatnikovResolving this equation we 
an get the form of the Eu
lidean region in theplane of minisuperspa
e variables (a; x). It is interesting to 
ompare the formof these regions for di�erent values of parameters entering the superpotentialU (Eq. (8)). In the simplest 
ase of Q = � = � = � = 0 we have a non-
ompa
t Eu
lidean region bounded by the hyperboli
 
urve x = �q 34� mPma(see Fig. 1a). In
lusion of the 
osmologi
al term � 6= 0 implies the 
losing ofthe Eu
lidean region �on the right� at a =q 3� (see Fig. 1b). In
lusion of thenon-zero 
lassi
al 
harge of the s
alar �eld Q 6= 0 implies the 
losing of theEu
lidean region �on the left� and we have obtained �banana-like� stru
tureof this region [8℄ (see Fig. 1
). After the in
lusion of the small term des
ribingthe non-minimal 
oupling between the s
alar �eld and gravity (� 6= 0) weobtain the se
ond Eu
lidean region in the upper left 
orner of the plane(x; a) [17℄. This new region is non-
ompa
t and unbounded from above(see Fig. 1d). While in
reasing the value of the parameter �, this se
ondEu
lidean region drops down and at some value of � joins with the �rstbanana-like Eu
lidean region (see Fig. 1e). It is easy to �nd this value of �in the absen
e of self-intera
tion of the s
alar �eld:� = 16�2m4Q227m4P :With the growing of the value of � we shall have the uni�ed Eu
lideanregion. The boundary of this uni�ed region is partially 
onvex, partially
on
ave (see Fig. 1f), and after further in
reasing of � it be
omes 
onvex(see Fig. 1g). After the in
lusion of self-intera
tion of the s
alar �eld � 6= 0we 
an have, depending on the values of the parameters Q;�; �, and m,various geometri
al 
on�gurations of the Eu
lidean regions. It is easy toestimate the 
ondition for 
losing the Eu
lidean region from above: It is� < �Q�48 �2=3 :Now remembering that the 
ondition for the existen
e of the two non-
onne
ted Eu
lidean regions is� < 16�2m4Q227m4P ;one 
an see that we have three options. First, if� < 16�2m4Q227m4P ;
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losed banana-like Eu
lidean region (see Fig. 1h). Se
ond,if 16�2m4Q227m4P > �Q�48 �2=3and 16�2m4Q227m4P > � > �Q�48 �2=3 ;we shall have two non-
onne
ted Eu
lidean regions (the 
orresponding pi
-ture is 
lose to that des
ribed in Fig. 1d) : a banana-like one and a �bag-like�Eu
lidean region with an in�nitely long narrow throat (the 
urves boundingthe upper Eu
lidean region are asymptoti
ally 
linging to the ordinate axis).Third, if � > �Q�48 �2=3and � > 16�2m4Q227m4P ;we shall have one open from above bag-like Eu
lidean region whi
h againhas an in�nitely long narrow throat (see Fig. 1i). Thus, we have seen thatthe in
lusion of the 
harge Q, the non-minimal 
oupling � 6= 0, and the self-intera
tion of the s
alar �eld imply a large variety of possible geometries ofEu
lidean regions in minisuperspa
e.4. Equations of motion, instantons and initial
onditions for in�ationNow using the Lagrangian (10) and 
hoosing the gauge N = 1, we 
anget the following equations of motion:m2P16� ��a+ _a22a + 12a � �a2 �+ � _a2x24a + ��ax22 + �x _x _a+ � _x2a2+�x�xa2 + �x24a + a _x28 � m2x2a8 + Q24a5x2 � �x4a96 = 0 (15)and �x+ 3 _x _aa � 6�x�aa � 6� _a2xa2 � 6�xa2 +m2x� 2Q2a6x3 + �x36 = 0: (16)Besides we 
an write down the �rst integral of motion of our dynami
alsystem whi
h 
an be obtained from the super-Hamiltonian 
onstraint (9):� 38�m2Pa _a2 � 3�a _a2x2 � 6�x _x _aa2 + a32 _x2 � U(a; x) = 0: (17)



3020 I.M. KhalatnikovIt is obvious that Eu
lidean 
ounterparts of Eqs. (15)�(17) 
an be obtainedby the 
hange of sign before terms 
ontaining time derivatives. Integratingnumeri
ally the Eu
lidean analog of the system of equations (15)�(16), we
an investigate the question about the presen
e of instantons. Under instan-tons we shall understand solutions of Eu
lidean equations of motion whi
hhave vanishing velo
ities _x and _a on the boundaries of the Eu
lidean regionswhi
h are given by Eq. (14). In our re
ent letter [17℄ we have investigatednumeri
ally this question and have found instanton solutions at some 
on-�gurations of the Eu
lidean regions. Here we would like to 
omplement thenumeri
al investigation the equations of motion of our system by some qual-itative analysis. First of all it makes sense to resolve the equations (15)�(16)with respe
t to the se
ond derivatives �a and �x. The obtained expressionslook as follows:�a = 1�m2P16� + �x22 + 3�2x2� ��� _a2a �m2P32� + �x22 + 3�2x2�� _x2a(4� + 1)8 + � _a _xx2 � m2P32�a + m2P�a32� � �x2(12� + 1)4a+m2x2a(4� + 1)8 � Q2(4� + 1)a5x2 + �x4a(8� + 1)96 � ; (18)�x = 1�m2P16� + �x22 + 3�2x2� ���3m2P _x _a16�a � 3�(1 + 4�) _x _ax22a+3m2P � _a2x16�a2 � 3�(1 + 4�) _x2x4 + 3m2P �x16�a2 + 3�2x32a2 � m2Pm2x16�+�m2x34 + m2PQ28�a6x3 � �Q22a6x � m2P�x396� � ��x548 + 3m2P ��x16� � :(19)Looking at Eq. (17) one 
an easily see that in the Eu
lidean region, whereU(a; x) > 0, it is possible to have _a = 0, i.e. that the 
osmologi
al radius 
ana
hieve an extremum amin or amax. It is interesting to learn whi
h pointsof Eu
lidean region 
an play the role of points of minimal 
ontra
tion andwhi
h ones 
an be the points of maximal expansion. To understand that, itis ne
essary to put in Eq. (18) _a = 0, and to express _x as a fun
tion of xand a from Eq. (17). We shall have�a = 1�m2P16� + �x22 + 3�2x2� ���m2P (1 + 3�)8�a + m2P�a(1 + 2�)16���x2(1 + 6�)a + m2x2a(1 + 4�)4 � �x4a(1 + 6�)48 � : (20)
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alar Field in Quantum Cosmology... 3021Apparently, if we have at some point �a > 0, this point would 
orrespond tothe possible minimal 
ontra
tion of the Universe, while �a < 0 
orrespondsto the possible maximal expansion. We 
an obtain the 
urve separatingthe points of possible minimal 
ontra
tion from those of possible maximalexpansion by putting the right-hand side of Eq. (7) equal to zero. In the sim-plest 
ase when all the parameters besidesm are equal to zero, we reprodu
ethe simple hyperboli
 
urve x = �r 12� mPma ;separating the points of minimal 
ontra
tion from those of maximal expan-sion whi
h was dis
ussed in paper [10℄ and in also in paper [11℄, where itwas written down in terms of phase spa
e. This 
urve repeats that of thehyperbola x = �r 34� mPma ;separating the Eu
lidean region from the Lorentzian one and di�ers from itby the multipli
ative fa
tor q23 . It is interesting to mention that the formof the 
urve given by Eq. (20) does not depend of the 
harge Q. One 
anget also an analogous 
urve separating the points of possible maximum andminimum values of the absolute value of the s
alar �eld x. These points 
anexist only in the Lorentzian region U(x; a) < 0, as one sees from Eq. (17).Putting in Eq. (19) _x = 0 and expressing _a through variables x and a byresolving Eq. (17), we have got the following equation:�x = 1�m2P16� + �x22 + 3�2x2��m2P16� + �x22 � �m4P ��x64�2 + 3m2P �2x332�a2 + 3�3x54a2�m4Pm2x256�2 + �2m2x58 + m2PQ2128�2a6x3 + m2PQ2�16�a6x � �2Q2x4a6 � m4P�x31536�2�m2P ��x5192� � ��2x796 + 3m2P �2�x332� � : (21)In the simplest 
ase, when onlym 6= 0, the separating 
urve has an extremelysimple form x = 0:Thus all the points x > 0 
an play the role of points of possible maximumvalue of x. Here it is important to add that Eqs. (20)�(21) 
an also be usedfor the analysis of Eu
lidean equations of motion as well. In this 
ase thepoints of maximal expansion and minimal 
ontra
tion 
an be pla
ed only
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Fig. 2. Short-dashed lines depi
t boundaries between Eu
lidean and Lorentzianregions; bold lines represent instanton traje
tories; long-dashed lines represent Lo-rentzian traje
tories; and thin lines denote x- and a-separating 
urves.in the Lorentzian region, while the points where x 
an take minimal andmaximal values 
an exist only in the Eu
lidean region.Now, re
alling that an instanton is the solution of the 
lassi
al Eu
lideanequations of motion whi
h begins and ends at the boundary of Eu
lidean
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alar Field in Quantum Cosmology... 3023and Lorentzian regions with vanishing velo
ities _a and _x, one 
an noti
e thatan instantoni
 traje
tory should 
ross both separating 
urves (in a and in x)at least on
e. Thus, studying the lo
ation of separating 
urves, we 
an getsome information about the possible existen
e and form of instantons. One
an easily see that in the 
ase of the simplest model with a real s
alar �eldwith or without the 
osmologi
al 
onstant � (see Fig. 1a) instantons 
annotexist (ex
ept for the trivial 
ase x = 0). However, in the 
ase when the non-zero 
harge Q is swit
hed on, both separating 
urves (we shall 
all theman x-separating 
urve and an a-separating 
urve 
orrespondingly) interse
tthe Eu
lidean �eld and the instanton 
an exist. And it really exists as thenumeri
al 
al
ulation 
on�rms (see Fig. 2a). Using the end point of theinstanton on the right part of the boundary of the Eu
lidean �banana-like�region as an initial point for the Lorentzian traje
tory, one 
an see that thisLorentzian traje
tory has quasi-in�ationary behaviour [8, 9, 17℄. Let us now
onsider the model with a non-minimally 
oupled 
omplex s
alar �eld. Tobegin with, we 
hoose the value of � to be small enough and we have twodis
onne
ted Eu
lidean regions (su
h situation was presented in Fig. 1d).In Fig. 2b depi
ted is not only the 
on�guration of the Eu
lidean regionsbut also the form of a- and x-separating 
urves. One 
an see that as in theprevious 
ase instanton 
an exist in the 
losed �banana-like� region and itdoes exist and 
an provide the suitable initial 
onditions for the beginningof in�ationary Lorentzian traje
tory. At the same time another solution ofEu
lidean equations of motion with vanishing initial and �nal velo
ities ispresent. This solution 
onne
ts di�erent Eu
lidean regions and at �rst glan
elooks rather strange, be
ause it goes through the Lorentzian region, whilethe more habitual instantons used to interse
t Eu
lidean regions. However,the Lorentzian traje
tory beginning from the �nal point of this instanton hasa rather pe
uliar non-in�ationary behaviour and hardly 
an be used for thedes
ription of quantum tunneling of the Universe from nothing. Then, whilethe non-minimal 
oupling 
onstant � is growing, the path 
overed by this�pe
uliar� instanton is getting smaller and at the moment when two regionmeet at one point (see Fig. 1e) this se
ond instanton degenerates into thepoint and disappears. With further in
reasing of �, we have one Eu
lideanregion open from above. In this 
ase, if � is not very high, we have twoinstantons whi
h lie inside of the Eu
lidean region [17℄ and interse
t bothseparating 
urves (see Fig. 2
). Lower instanton 
orresponds to the lo
almaximum of absolute value of a
tion of the Eu
lidean traje
tories goingthrough the Eu
lidean region, while the upper instanton 
orresponds to thelo
al minimum of the absolute value of a
tion. It is ne
essary to add thattaking the growing initial values of x on the boundary of the Eu
lidean regionunder 
onsideration (above the se
ond instanton), we shall get the Eu
lideantraje
tories with the unboundedly growing a
tion. Both the end points of
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an be used as initial points of Lorentzian traje
tories havingquasi-in�ationary behaviour (see Fig. 2
). It is important to noti
e thatthe upper instanton 
orresponding to the minimum of the absolute value ofthe Eu
lidean a
tion provides the existen
e of the peak of the probabilitydistribution in the tunneling wave fun
tion of the Universe [4℄, be
ause thisfun
tion in the tree-level approximation has the behaviour	T � exp(�jIj):At the same time the lower instanton 
orresponding to the maximum of theabsolute value of the Eu
lidean a
tion provides the existen
e of the peakof the probability distribution in the Hartle�Hawking wave fun
tion of theUniverse [3℄, having the behaviour	T � exp(+jIj):Thus if we 
hoose the no-boundary proposal for the wave fun
tion of theUniverse, we should use the end point of the lower instanton for the de�-nition of the most probable initial 
ondition for the 
osmologi
al evolution,while if we 
hoose the tunneling proposal for the wave fun
tion of the Uni-verse, we should use the end point of the upper instanton to �x the mostprobable initial boundary 
onditions for in�ation. As was already shownin [17℄, in the 
ase when the parameter � is large and the boundary of theEu
lidean region has a 
onvex form (see Fig. 1g), we do not have instantonsat all. This is quite understandable now, be
ause for su
h a 
hoi
e of pa-rameters the x-separating 
urve does not go through the Eu
lidean region(see Fig. 2d) and the ne
essary 
onditions for the existen
e of instantons arenot satis�ed. It is interesting to noti
e that in both these 
ases (Fig. 2
 andFig. 2d), due to the inde�nite in
reasing of the absolute value of the a
tionwith the in
rease of the initial value of the s
alar �eld x at right boundarybetween the Lorentzian and Eu
lidean regions, the tunneling wave fun
-tion of the Universe is normalizable already in tree-level approximation (
f.[5, 7℄). Now we 
an investigate the instantoni
 solutions and initial 
ondi-tions for the in�ation for the 
ase when the self-intera
tion of the in�aton�eld (� 6= 0) is taken into a

ount. As was des
ribed in the pre
eding se
-tion, three possible 
on�gurations of Eu
lidean regions 
an exist. In the 
asewhen only one 
losed Eu
lidean region exists (see Fig. 1h), one 
an �nd onlyone instanton as usual. In the 
ase when we have two disjoint Eu
lidean re-gions, we 
an dis
over two instantoni
 
on�gurations: one going through the
losed �banana-like� region, and one �pe
uliar� 
onne
ting the boundaries oftwo Eu
lidean regions and going through the Lorentzian region. The 
on-�guration of these instantons 
losely resembles that of Fig. 2b. The mostinteresting is the situation when we have one open from above Eu
lidean
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ase depending on values of parameters �; �;Qand m one 
an observe three di�erent situations. In the �rst 
ase depi
tedin Fig. 2e we have two instantons 
orresponding to the minimum and max-imum of absolute value of Eu
lidean a
tion. In the se
ond 
ase we do nothave instantons at all. For this 
on�guration the large value of the param-eter of non-minimal 
oupling � is essential. The absolute value of a
tionis growing monotoni
ally with the in
reasing of the initial value of s
alar�eld x on the right boundary of Eu
lidean region, and tends to some �xedvalue (this value is �nite in 
ontrast with the 
ase of the s
alar �eld withoutself-intera
tion). And in the third 
ase we have only one instantoni
 solu-tion 
orresponding to the maximum of absolute value of Eu
lidean a
tion.To realize this 
ase it is ne
essary to have the value of the 
onstant of self-intera
tion � large enough to provide the de
reasing of the absolute value ofa
tion at the in
reasing of initial value of x, however, this value of � mustnot to be too large to es
ape the 
losing of the Eu
lidean region from above.It is interesting also to 
onsider the 
ase when the 
osmologi
al 
onstantdisappears (� = 0). The disappearan
e of the 
osmologi
al 
onstant impliesthe opening of the Eu
lidean region on the right. The most interesting situ-ation o

urs when we have one Eu
lidean region open from above and fromthe right (see Fig. 2f) Here instead of two instantons we have only one: that
orresponding to the minimum of the absolute value of the Eu
lidean a
tionand 
orrespondingly to the probability peak in the tunneling wave fun
tionof the Universe. The se
ond �lower� instanton (
f. Fig. 2
) turns into thetraje
tory in�nitely travelling through Eu
lidean region without rea
hingits boundary with Lorentzian region (see Fig. 2f). Thus in this 
ase onlythe tunneling wave fun
tion of the Universe 
an predi
t the most probableinitial 
onditions for the beginning of the 
osmologi
al evolution in 
ontrastwith the situation when we have only one 
losed Eu
lidean region where theHartle�Hawking wave fun
tion of the Universe is preferable. The re
eivedinstantoni
 traje
tories giving us the initial 
onditions for the in�ationarystage of 
osmologi
al evolution 
an be studied from the point of view ofthe restri
tions on the parameters of the model whi
h 
an be obtained fromphenomenologi
al 
onsiderations. Here we shall dis
uss the restri
tions onthe parameters of the model provided we 
hoose the tunneling pres
riptionfor the wave fun
tion of the Universe and we wish to have the su�
ientnumber of e-foldings (usually it is taken equal to 60). One 
an show usingnumeri
al investigations that for the model without self-intera
tion (� = 0)su
h restri
tions have the following form:� < 0:002; ; Q < 50m2Pm2 :
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tion (� 6= 0) the restri
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ompli
ated form. First, to provide the beginning of the upperinstanton more high it is ne
essary to have the following 
onne
tion between�; � and Q: � � 148� �m2Pm2 :And to es
ape the 
losing of the Eu
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