Vol. 30 (1999) ACTA PHYSICA POLONICA B No 11

STRUCTURE OF NEUTRON STARS * **
JAMES LATTIMER

Department of Physics & Astronomy, State University of New York
Stony Brook, NY 11794-3800, USA

(Received October 29, 1999)

Several aspects of the structure of neutron stars are considered from
theoretical and observational perspectives. Theoretical limits on the mass
and radius are considered, and these are compared with new observations
of isolated neutron stars and quasi-periodic oscillators (QPOs). A radius
determination provides information concerning the nuclear symmetry en-
ergy and its density dependence, but does not much constrain the stiffness
of the EOS, contrary to popular belief. Three analytic structure solutions
are discussed which shed light on other structural aspects of neutron stars,
including their moments of intertia and binding energies. Pulsar glitches
may constrain the distribution of the moment of inertia inside a star and
supernova neutrinos, marking the birth of a neutron star, may constrain
the neutron star’s binding energy.

PACS numbers: 26.60.+c, 97.60.Jd

1. Introduction and theoretical considerations

The theoretical study of the structure of neutron stars is essential if new
observations of masses and radii are to lead to effective constraints on the
dense matter equation of state (EOS). The long-standing inability to obtain
tight limits on the EOS at supernuclear densities makes such analyses ever
more important. This lecture summarizes our understanding of neutron star
structure, and compares theory and observations for neutron star masses,
radii, moments of inertia and binding energies.

The composition of a neutron star chiefly depends on the nature of strong
interactions, which are not well understood in dense matter. The several
possible models investigated [15,25] can be conveniently grouped into three
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broad categories: nonrelativistic potential models, relativistic field theoreti-
cal models, and relativistic Dirac-Brueckner—Hartree—Fock models. In each
of these approaches, the presence of additional softening components such as
hyperons, Bose condensates or quark matter, can be incorporated. Details
of the equations of state considered in this paper are summarized in Table I.

TABLE 1

Equations of State-Approaches: V=Variational, FT=Field Theoretical,
DBHF=Dirac-Brueckner—Hartree-Fock, SP= Schematic Potential, SQM=Strange
Quark Matter; S.I.C.=Strongly interacting components (n=neutrons, p=protons,
H=hyperons, K=kaons, Q=quarks).

Symbol Reference Approach | S.I.C.
FP Friedman & Pandharipande [7] 4 np
WFF(1-3) | Wiringa, Fiks & Fabrocine [40] v np
AP(1-3) Akmal & Pandharipande [1] v np
MS(1-2) Miiller & Serot [18] FT np
MPA(1-2) | Miither, Prakash & Ainsworth [19] | DBHF np
ENG Engvik et al. [6] DBHF np
PAL(1-5) | Prakash, Ainsworth & Lattimer [24] | SP np
GMH(1-3) | Glendenning & Moszkowski [9] FT npH
GS(1-2) Glendenning & Schaffner [10] FT npK
PCL(1-2) | Prakash, Cooke & Lattimer [26] FT npHQ
SQM(1-3) | Prakash, Cooke & Lattimer [26] SQM Q

Fig. 1 displays the mass-radius relations for cold, catalyzed matter using
these EOSs. Normal stars, those with zero density at the stellar surface,
have minimum masses of about 0.1 Mg, primarily determined by the EOS
below ng. At the minimum mass, the radii are generally in excess of 100
km. Self-bound stars have finite density (but zero pressure) at the surface,
and are represented here by strange quark matter (SQM) stars, in which
SQM is the ultimate ground state of matter. Such stars have no minimum
mass. Valid EOSs must result in maximum masses greater than 1.4 Mg, the
lower observational limit obtained from PSR 1913-+16. Uncertainties in the
high-density behavior of the EOS, due to the poorly constrained many-body
interactions, result in a significant uncertainty in the neutron star maximum
mass, which can lie in the range from 1.4-2.8 M. Rhoades & Ruffini [27]
demonstrated that the assumption of causality and knowledge of the EOS up
a fiducial density py set an upper limit to the maximum mass of a neutron
star: 4.24/ps/py M@, where p; = 2.7 - 10" g em™3. A practical lower mass
limit for neutron stars of 1.1 — 1.2 M, follows from the minimum mass of a
protoneutron star, estimated by examining a lepton-rich configuration with
a low-entropy inner core of ~ 0.6 Mg and a high-entropy envelope [12].
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Fig.1. M — R curves for several recent EOSs listed in Table I. Contours of constant

Rs = R/4/1—2GM/Rc? are shown as dotted curves. The causal limit and the
glitch constraint (Eq. 27) are shown as dashed and solid lines, respectively.

Lattimer et al. [15] (see also Glendenning [8] ) have shown that causality
also sets a lower limit to the radius: R 2 3.04GM/RC2, which is plotted
in Fig. 1. In the mass range from 1 to 1.5 Mg or more, the radius is
generally insensitive to the stellar mass. The major exception illustrated
is the model GS1, in which a mixed phase containing a kaon condensate
appears at a relatively low density. This leads to considerable softening and
a large increase in central density for M > 1 Mg. Softening, while not as
dramatic, also occurs in models GS2 and PCL2, which contain mixed phases
containing a kaon condensate and strange quarks, respectively.

2. Observations of neutron star masses and radii

To date, several accurate mass determinations of neutron stars in binary
radio pulsars are available [34], and they all lie in a narrow range (1.25—1.44
Mg). One neutron star in an X-ray binary, Cyg X-2, has an estimated
mass of 1.8 £ 0.2 Mg [20], but this determination is not as clean as for a
radio binary. Another X-ray binary, Vela X-1, has been claimed to have
a mass around 1.9 Mg [37], although Stickland et al. [33] argue it to be
about 1.4 Mg. It would not, however, be surprising if neutron stars in
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X-ray binaries had larger masses than those in radio binaries, since the latter
have presumably not accreted any mass since their formation. Alternatively,
Cyg X-2 could be the first of a new and rarer population of neutron stars
formed with high masses which could originate from more massive, rarer,
supernovae. If the high masses for Cyg X-2 or Vela X-1 are confirmed,
significant constraints on the equation of state would be realized.

Unfortunately, a precise direct measurement of the radius does not yet
exist. Observations from the Earth of thermal radiation from neutron star
surfaces could yield values of the “radiation radius”

R = R/y\/1 —2GM/Rc?, (1)

which results from comparison of luminosities emitted from the star’s surface
L = 4wR?0T* and observed at infinity Lo, = 47 R% 0T (for blackbodies).
Leo = L(1 —2GM/Rc?) and Ty = T4/1 —2GM/Rc? are the redshifted
luminosity and temperature, respectively. Contours of R, are compared
with M — R trajectories for several recent, representative EOSs (references
and notes are listed in Table I) in Fig. 1. Values of R, in the range of 12-20
km are possible for neutron stars with masses & 1 Mg,.

Estimates of neutron star radii from observations have given a wide range
of results. Those pulsars with at least some suspected thermal radiation
generically yield effective values of Ry so small that it is believed that the
radiation originates from polar hot spots rather than from the surface as
a whole. For example, Golden & Shearer [11] found that upper limits to
the unpulsed emission from Geminga, coupled with a parallactic distance of
160 pc, yielded values of Ry < 9.5 km for a blackbody source and Ry S
10 km for a magnetized H atmosphere. Similarly, Schulz [30] estimated
emission radii of less than 5 km, assuming a blackbody for eight low mass
X-ray binaries. Other attempts to deduce a radius include analyses [35] of
X-ray bursts from sources 4U 1705-44 and 4U 1820-30 which also implied
relatively small values, 9.5 $ Ro S 14 km. Recently, Rutledge et al. [29]
found that thermal emission from neutron stars of a canonical 10 km radius
was indicated by the interburst emission. However, the modeling of the
photospheric expansion and touchdown on the neutron star surface requires a
model dependent relationship between the color and effective temperatures,
rendering these estimates uncertain. Absorption lines in X-ray spectra have
also been investigated [13] with a view to deducing the neutron star radius.
Candidates for the matter producing the absorption lines are either the
accreted matter from the companion star or the products of nuclear burning
in the bursts. In the former case, the most plausible element is thought to be
Fe, which would imply R =~ 3.2GM/c?, only slightly larger than the causal
limit. In the latter case, plausible candidates are Ti and Cr, and larger values
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of the radius would be obtained. In both cases, serious difficulties remain in
interpreting the large line widths, of order 100-500 eV, in the 4.1 £ 0.1 keV
line observed from many sources.

A first attempt at using pulsar light curves and pulse fractions to explore
the M — R relation suggested relatively large radii, of order 15 km [22].
However, this method, which assumed dipolar magnetic fields, was unable
to satisfactorily reconcile the calculated magnitudes of the pulse fractions
and the shapes of the light curves with observations.

The discovery of Quasi-Periodic Oscillations (QPOs) from X-ray emit-
ting neutron stars in binaries provides a possible way of limiting neutron
star masses and radii. These oscillations are manifested as quasi-periodic
X-ray emissions, with frequencies ranging from tens to over 1200 Hz. Some
QPOs show multiple frequencies, in particular, two frequencies v and 14 at
several hundred Hz. In the beat frequency model, the highest frequency v» is
associated with the Keplerian frequency vk of inhomogeneities or blobs an
accretion disc. The largest such frequency measured to date is vpax = 1230
Hz. However, general relativity predicts the existence of a maximum orbital
frequency, since the inner edge of an accretion disc must remain outside of the
innermost stable circular orbit at a radius of r; = 6GM/c? = 8.86(M /M)
km, corresponding to a frequeny of vx = \/GM/r3 /2 (if the star is non-
rotating). Equating vmax with v, one deduces

M $1.78 Me; R < 15.80 km. (2)

The lower frequency v is associated with a beat frequency between vg and
the spin frequency of the star [2]. This spin frequency is large enough, of
order 250-350 Hz, to increase the theoretical mass limit in Eq. (2) to about
2.1 M. This is strictly an upper limit, unless further observations support
the interpretation that v,y is associated with orbits at the innermost stable
orbit.

However, evidence is mounting that v5 — vy changes with time in a given
source and so cannot be a rotation frequency. Osherovich & Titarchuk [21]
proposed that v; is the Keplerian frequency and 15 is a hybrid frequency
of the Keplerian oscillator under the influence of a magnetospheric Coriolis
force, with

vy = y/vE + (v/27)2. (3)

This relation can fit the observations. The Keplerian frequency in this model
is now at most 800 Hz, leading to an upper mass limit that is nearly 3
Mg and of little practical use. An alternative model, proposed by Stella &
Vietri [31], associates 15 with vk and vo — 1y with the precession frequency of
the periastron of slightly eccentric orbiting blobs at radius r in the accretion
disc, so that v; = vg+/1 — 6GM/rc2. Note that (vx —vq) ! is the timescale
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that an orbiting blob recovers its original orientation relative to the neutron
star and the Earth, so that variations in flux are expected to be observed at
both frequencies vg and vg — 1. Presumably, even eccentricities of order
1075 lead to observable effects. This model predicts that

viJvs = 1= /1= 6(GMuy)2/3 /2, (4)

a relation that depends only upon M. Eq. (4) agrees with observations of
QPOs, but only if 1.9 < M/Mg < 2.1. This result is not very sensitive to
complicating effects due to stellar rotation: the Lense—Thirring effect and
oblateness. This mechanism only depends on gravitometric effects, and may
apply also to accreting black hole systems (Stella et al. 1999), lending it
credence.

New prospects for a radius determination have emerged with the de-
tection of a nearby, non-pulsing, neutron star, RX J185635-3754, in X-ray
and optical radiation [38,39]. The observed X-rays, from the ROSAT satel-
lite, are consistent with blackbody emission with an effective temperature
of about 57 eV and very little extinction. In addition, the fortuitous loca-
tion of the star in the foreground of the R CrA molecular cloud limits the
distance to D < 120 pc. The fact that the source is not observable in radio
and its lack of variability in X-rays implies that it is not a pulsar unlike
other identified radio-silent isolated neutron stars. This gives the hope that
the observed radiation is not contaminated with non-thermal emission as
is the case for pulsars. The X-ray observations of RX J185635-3754 alone
yield Ry /D = 0.06 pc km™! for a best-fit blackbody. Such a value, even
combined with the maximum distance of 120 pc, yields too small a value to
be consistent with any neutron star with mass greater than 1 M. But the
optical flux was discovered to be about a factor of 4 brighter than the X-
ray blackbody predicts. This is consistent with there being a heavy-element
atmosphere [28] but not a H-dominated atmosphere [3]. The total flux is
dominated by X-rays, and is proportional to the fourth power of the star’s
temperature if the emission is approximately blackbody. But the optical flux,
being on the Rayleigh—Jeans tail, is proportional to only the first power of
the temperature. Requiring that both X-ray and optical data be matched
therefore raises the estimated value of R /D by a factor 42/3; detailed at-
mospheric models predict a factor 3 [3]. Fig. 2 shows representative model
fits to the data for various compositions. Only heavy-element (i.e., pure Fe,
Si, or typical results of Si-burning [“Si-ash”]) compositions give reasonable
fits. The measurement of a parallax from this star could set meaningful lim-
its to Rs. Another possibility is that new space-based X-ray observatories,
such as Chandra or XMM, will detect line features that could pin down the
atmospheric composition, M/R via the redshift, and M and R individually
if the star’s gravity can be inferred.
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Fig.2. Observations of RX J185635-3754 in X-rays (ROSAT), UV (EUVE) and
optical (HST, NTT) radiation. Representative fits, and their parameters, for black-
body (BB), hydrogen (H) and Si-ash (Si) atmosphere models are shown.

The recent discovery of an X-ray point source in the Cas A supernova
remnant, presumably a neutron star formed in the explosion 320 years ago,
has aroused interest. However, its large distance, 2.8 kpc, and the presence
of a significant amount of interstellar absorption in the line-of-sight, about
50-100 times that towards RX J185635-3754, precludes the detection of an
optical counterpart.

3. Consequences for the EOS of a radius determination

It is incorrect to state that a stiff EOS implies both a large maximum
mass and a large radius. Counter examples, such as GM3 and MS3, have
relatively large radii compared to most other EOSs with larger maximum
masses. Nevertheless, for stars with mass greater than 1 Mg, only models
with a large degree of softening can attain R, < 12 km. Should the radius
of a neutron star ever be accurately determined to be this small, a strong
case could be made for the existence of extreme softening at high densities.

The insensitivity of radius with mass is mimicked by a Newtonian poly-
trope with n = 1, for which R is independent of both M and the central
density (p). In fact, numerical relativists have often approximated dense
matter EOSs with an n = 1 polytrope, which also has the property that
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R x VK, where K = P/pH'l/”. This suggests that there might be a quan-
titative relation between the radius and the pressure at a given density that
does not depend upon the EOS at higher densities, which determines the
overall softness or stiffness (and hence, the maximum mass).
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Fig.3. Empirical relation between P, in units of MeV fm~2, and R, in km, for
EOSs listed in Table I. The upper panel shows results for 1 Mg (gravitational
mass) stars; the lower panel is for 1.4 Mg stars. The different symbols show values
of PR~1/4 evaluated at three fiducial densities.

In fact, this conjecture is true. Fig. 3 shows the remarkable empirical
correlation which exists between the radii of 1 and 1.4 Mg stars and the
matter’s pressure evaluated at fiducial densities of 1, 1.5 and 2 ng, where
ng = 0.16 fm™3. Despite the relative insensitivity of radius to mass for a
particular EOS in this mass range, the nominal radius Rjs, which is defined
as the radius at a particular mass M in solar units, still varies widely with
the EOS employed. Up to ~ 5 km differences are seen in R; 4, for example.
Of the EOSs in Table I, the only severe violation of this correlation occurs
for PCL2 at 1.4 Mg, which has extreme softening due to the existence of
a mixed phase with quark matter. (Had GS1 produced a 1.4 Mg, star, it
would have violated this correlation also.) This correlation is valid only for
cold, catalyzed neutron stars, i.e., not for protoneutron stars which have
finite entropies and possibly trapped neutrinos.
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Numerically, the correlation has the form of a power law:
R ~ constant [P(n)]*2370-26 (5)

where P is the total pressure inclusive of leptonic contributions evaluated
at the density n. An exponent of 1/4 was chosen for display in Fig. 3, but
the correlation holds for a small range of exponents about this value. The
correlation is marginally tighter for the baryon density n = 1.5ns and 2ng
cases. Note that this power is not 1/2 as the n = 1 Newtonian polytrope
predicts. The exponent of 1/4 can be quantitatively understood by using a
relativistic generalization of the n = 1 polytrope due to Buchdahl (1967).
He found that the EOS

p=12/p.P — 5P, (6)

where p, is a constant, has an analytic solution of Einstein’s equations. In
this solution, R is given in terms of p, and § = GM/Rc? by

™

R=(1- ﬁ)02\/288p*G(1 —25) M

Note that R increases very slowly with 8 (or M) for a given value of p,
exactly as expected from the properties of an n = 1 Newtonian polytrope.
It is instructive to analyze the response of R to a change of pressure at some
fiducial density p, for a fixed mass M. One finds

din R
dln P

dlnR
dInp,

din R
dlnp (8)
P Px

_1 5 [P\ (1-p8)(1-28)
- 5(1_6\/;*> (1-38+382) " )

In the limit f — 0, one has P — 0 and dlnR/dInP|, s — 1/2, the
value characteristic of an » = 1 Newtonian polytrope. Finite values of g
and P must render the exponent smaller than 1/2. For example, if the
stellar radius is about 15 km, Eq. (7) gives Gp./c* = 7/(288R?) ~ 4.85 -
10~® km~2. Furthermore, if the fiducial density is p ~ 1.5myns ~ 2.02 -
10~4c* /G km~? (with m; the baryon mass), Eq. (6) implies that GP/c* ~
8.5-107% km 2. For M = 1.4 Mg, the value of 3 is 0.14, and one then
obtains dlnR/dIn P ~ 0.31. While this is not exactly 1/4, the Buchdahl
solution is only an approximation of realistic EOSs and provides a reasonable
explanation of Eq. (5).

dInp,
dln P
B

psM
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The existence of this correlation is significant because the pressure of
degenerate neutron-star matter near ng is primarily determined by the sym-
metry properties of the EOS, as we now discuss. Thus, the measurement of
a neutron star radius, if not so small as to indicate extreme softening, could
provide an important clue to the symmetry properties of matter. In either
case, valuable information is obtained.

Studies of pure neutron matter strongly suggest that the energy of nu-
clear matter near ng may be expanded in the asymmetry (1 — 2z), where x
is the proton fraction, and the expansion can be terminated after only one
term [24]. In this case, the energy per particle and pressure of cold, beta
stable nucleonic matter is

E(n,z) ~ E(n,1/2) + Sy(n)(1 — 2z)?,
P(n,z) ~ n?[E'(n,1/2) + S.(n)(1 — 2z)?], (10)

where F(n,1/2) is the specific energy of symmetric matter and S,(n) is
the density-dependent bulk symmetry energy. Primes denote derivatives
with respect to density. At ng, the symmetry energy can be estimated from
nuclear masses and has the value S, = S,(ns) =~ 27 — 36 MeV. Attempts
to further restrict this range from consideration of fission barriers and the
energies of giant resonances have been ambiguous. Both the magnitude of S,
and its density dependence S,(n) are uncertain. Degenerate noninteracting
nucleonic matter has a symmetry energy which is proportional to n?/3, but
interactions contribute significantly.

Leptonic contributions must to be added to Eq. (10) to obtain the total
energy and pressure; the electron energy per baryon is (3/4)kcz(3m2nz)'/3.
Matter in neutron stars is in beta equilibrium, i.e., e = pp, —pp = —0F [0z,
so the electronic contributions may be eliminated to cast the total pressure
P at a particular density in terms of fundamental nuclear parameters. The
pressure at ng is simply

Py = ng(1 — 2x4)[nsS, (ns) (1 — 2z5) + Spxs] (11)
where the equilibrium proton fraction at ng is
zy ~ (3n°ns) 1 (48, /hc)® ~0.04, (12)

for S, = 30 MeV. Due to the small value of z,, we find that Ps ~ nyS) (ns).

Were we to evaluate the pressure at a larger density, other nuclear pa-
rameters, including the nuclear incompressibility Ks = 9(dP/dn)|,, and the
skewness K! = —27n3(d3E/dn3)|,, also become significant. For analytical
purposes, the nuclear matter energy per baryon, in MeV, may be approxi-
mated in the vicinity of n, as

B(n,1/2) = —16 + 22 <nﬁ - 1)2 K, <ﬁ - 1)3 : (13)

162 \ n,
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Experimental limits to the compression modulus K, most importantly from
analyses of giant monopole resonances [4,41] give K = 220 MeV. From the
scaling model of the nucleus, Pearson [23] found the skewness parameter K
to lie in the range 1500-2500 MeV, but he neglected contributions from the
surface symmetry energy. For skewnesses this large, Eq. (13) cannot be used
beyond 1.5n,. Nevertheless, evaluating the pressure for n = 1.5n,, we find

P(1.5ns) = 2.25n,[K,/18 — K. /216 + n,(1 — 22)%S{]. (14)

The K and K terms nearly cancel, so that the symmetry term still com-
prises most of the total.

At present, experimental guidance concerning the density dependence
of the symmetry energy is limited and mostly based upon the division of
the nuclear symmetry energy between volume and surface contributions.
Upcoming experiments involving heavy-ion collisions, which might sample
densities up to ~ (3 — 4)ns, will be limited to analyzing properties of the
nearly symmetric nuclear matter EOS through a study of matter, momen-
tum, and energy flow of nucleons. Thus, studies of heavy nuclei far off the
neutron drip lines will be necessary in order to pin down the properties of
the neutron-rich regimes encountered in neutron stars.

4. Constraints from moments of inertia and binding energies

Besides the stellar radius, other global attributes of neutron stars are
potentially observable, including the moment of inertia and the binding en-
ergy. These quantities depend primarily upon the ratio M /R as opposed to
details of the EOS, as can be readily seen by evaluating them using ana-
lytic solutions to Einstein’s equations. There are three analytic solutions of
particular interest: 1) the Schwarzschild interior solution for an incompress-
ible fluid (“Inc”), p = p., where p is the mass-energy density; 2) the Buch-
dahl [5] solution (“Buch”) described above; and 3) Tolman’s [36] VII solution
(“T VII”), in which the density profile is p = p.[1 — (r/R)?].

The moment of inertia, which, for a star uniformly rotating with angular
velocity 2, is

R
I = (8n/3) / (p + P/c?)eP )2 (w/) Q2)dr . (15)
0

Here, the metric functions er = grr and €” = gi;. The metric function w is
a solution of the equation

d | a,~()/290 d ()2 _
dr[ = + 473 woe =0 (16)
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with the surface boundary condition

R dw
—n-=
WR 3 dr

=0 [1 - 12%?;] . (17)

Unfortunately, an analytic representation of w or the moment of inertia for
any of the three exact solutions is not available. However, approximations
which are valid to within 0.5% are [14]

R

Irne/MR? ~ 2(1—0.876 —0.35%)7"/5, (18)
Iguen/MR? ~ (2/3 —4/7%)(1 — 1.818 4 0.476%)7", (19)
Irvir/MR?* ~ 2(1 —1.18 —0.68%)71/7. (20)

In each case, the small § limit reduces to the Newtonian results. Fig. 4
compares these approximations with several recent EOSs (see Table I for
details), and indicates that the Tolman VII approximation is especially good,
except for very soft EOSs.

The binding energy formally represents the energy gained by assem-
bling N baryons. If the baryon mass is my, the binding energy is simply
BE = Nmy — M in mass units. However, the quantity m; has various inter-
pretations in the literature. Some authors assume it is about 940 MeV /c2,
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the same as the neutron or proton mass. Others assume it is about 930
MeV /c?, corresponding to the mass of C*2/12 or Fe?® /56. The latter would
yield the energy released in a supernova explosion and represents the energy
released by the collapse of a white-dwarf-like iron core, which itself is already
considerably bound. The difference, 10 MeV per baryon, corresponds to a
shift of 10/940 ~ 0.01 in the value of BE/M. In any case, the binding en-
ergy is directly observable from the detection of neutrinos from a supernova
event; indeed, it might be the most precisely determined aspect.

0.20

0.05¢

0.10 0.15 0.20 0.25 0.30 0.35
GM /Rc?

Fig.5. The binding energy per unit gravitational mass as a function of compact-
ness for the EOSs listed in Table I and for three analytic solutions of Einstein’s
equations. The shaded region shows the prediction of Eq. (22).

Lattimer & Yahil [16] suggested that the binding energy could be ap-
proximated as

BE ~ 1.5 - 101 (M/M)? ergs = 0.084(M/Mg)* M, . (21)

This formula, in general, is accurate to +20%. However, a more accurate
representation of the binding energy is given by [14]

BE/M ~ 0.63/(1 — 0.58), (22)

which incorporates some radius dependence. Thus, the observation of su-
pernova neutrinos, and the estimate of the total radiated neutrino energy,
will yield more accurate information about M/R than about M alone.
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In the cases of the incompressible fluid and the Buchdahl solution, ana-
lytic results for the binding energy can be found:

BEn./M = 7587 '[(28)"/?sin~" /28 — /1 —-26] -1, (23)
BEguen /M = (1—1.58)(1—28)""?(1-p)"" - 1. (24)

These analytic results, numerical results for T VII, and the fit of Eq. (22)
are compared to some recent EOSs in Fig. 5.

A new observational constraint involving I concerns pulsar glitches. Oc-
casionally, the spin rate of a pulsar will suddently increase (by about a part
in 10%) without warning after years of almost perfectly predictable behav-
ior. However, Link, Epstein & Lattimer [17] argue that these glitches are not
completely random: the Vela pulsar experiences a sudden spinup about every
three years, before returning to its normal rate of slowing. Also, the size of a
glitch seems correlated with the interval since the previous glitch, indicating
that they represent self-regulating instabilities for which the star prepares
over a waiting time. The angular momentum requirements of glitches in
Vela imply that > 1.4% of the star’s moment of inertia drives these events.

Glitches are thought to represent angular momentum transfer between
the crust and another component of the star. In this picture, as a neutron
star’s crust spins down under magnetic torque, differential rotation develops
between the stellar crust and this component. The more rapidly rotating
component then acts as an angular momentum reservoir which occasionally
exerts a spin-up torque on the crust as a consequence of an instability. A
popular notion at present is that the freely spinning component is a super-
fluid flowing through a rigid matrix in the thin crust, the region in which
dripped neutrons coexist with nuclei, of the star. As the solid portion is
slowed by electromagnetic forces, the liquid continues to rotate at a con-
stant speed, just as superfluid He continues to spin long after its container
has stopped. This superfluid is usually assumed to locate in the star’s crust,
which thus must contain at least 1.4% of the star’s moment of inertia.

The high-density boundary of the crust is located at the phase boundary
between nuclei and uniform matter, where the pressure is P; and the density
is ny. The low-density boundary is the neutron drip density, or for all practi-
cal purposes, simply the star’s surface since the amount of mass between the
neutron drip point and the surface is negligible. AR is the crust thickness:
the distance between the surface and the point where P = P,. One can
utilize Eq. (15) to determine the moment of inertia of the crust alone using
the assumptions that P/c? << p, m(r) ~ M, and we~ #*+tY/2 ~ wp in the

crust:
Py

R
~ Srwr i gy ~ ST _Wr [ 6
Al ~ /predr_?)GMQ/rdP, (25)
—AR 0
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where M is the star’s total mass and the TOV equation of hydrostatic equi-
librium was used in the last step. The fact that the crustal EOS is of the
approximate polytropic form P ~ Kp*/3 can be used to approximate the
integral [r%dP. With this and Eqs. (22) and (17), the quantity AI/I
becomes [14]

Al 28nPR° (1167 —0.66°) [, L 2P(1+56 - 145217

~ 2
I 3Mc? Ié; nympc2 32 (26)

The EOS parameter P;, in the units of MeV fm—3, varies over the range
0.25 < P; < 0.65 for realistic EOSs. Like the fiducial pressure at and above
nuclear density which appears in the relation Eq. (5), P, should depend
sensitively upon the behavior of the symmetry energy near nuclear density.
Link, Epstein & Lattimer [17] established a lower limit to the radii of neutron
stars of a given mass using Eq. (26) with P, at its maximum value and the
glitch constraint AI/I > 0.014. Stellar models that are compatible with
this constraint must fall to the right of the AI/I = 0.014 contour in Fig. 1.
This is equivalent to the relation

R > 3.9+ 3.5M/Mg — 0.08(M/Mg)? km, (27)

which is somewhat more restrictive than the one based upon causality.

I would like to thank Henryk Czyz, the local organizers and students for
their gracious hospitality during the USTRON’99 meeting.
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