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DA®NE will offer an opportunity to check Chiral Perturbation Theory
predictions at higher order. In this talk I have selected a few topics for
which it is expected that the lowest order calculation will not be sufficient
in order to compare with the experimental results. In particular T will
discuss pion pair production in two photon collisions, K;, and K, decays.

PACS numbers: 12.38.Lg

1. Introduction

Quantum Chromodynamics is by now established as the proper theory
to describe Strong Interactions and, consequently, it is the theory behind
hadronic physics. Unfortunately, the QCD coupling constant at the energies
needed to bind quarks and antiquarks into mesons and baryons is too large
to allow for a sensible perturbative expansion. Alternative ways to describe
hadron interactions are needed. Lattice QCD with MonteCarlo simulations
provides a very promising way to study hadronic properties. However, only
masses and simple processes have been calculated with this method. A huge
increase in the computer power (which is not foreseeable in the near future) is
needed in order to deal with more involved quantities, such as cross-sections
and decay widths. These quantities are better studied in the framework of
effective theories. Chiral Perturbation Theory (ChPT) is such an effective
theory in which the quark and gluon degrees of freedom are replaced by
the pseudoscalar fields. The Lagrangian of the theory is written in terms of
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these fields, taking care that all the symmetries of the QCD Lagrangian are
included in the effective theory. The perturbative expansion is performed in
terms of the momenta involved in the processes, with the lowest order being
O(p?). In the second section of this talk I will present a short introduction
to Chiral Perturbation Theory with a view on what will be needed in the
rest of the talk. More complete reviews of the status of ChPT can be found
in Ref. [1,2].

The new @-factory, DA®NE (Double Accelerator for Nice Experiments),
will offer the possibility of experimentally studying many processes that
can be described by ChPT. The design luminosity of DA®NE, £ = 5 x
1032 cm™2sec™!, will allow to reach an experimental precision that can
only be matched with the precision obtained at Next to Leading Order
(and in some cases Next to Next to Leading Order) theoretical calcula-
tions. DA®NE has recently started operating although the luminosity is
only 1.5 x 10%° cm™2sec™!. The physics possibilities of this accelerator are
very wide and they are covered by three experiments: KLOE (K Long Ob-
servation Experiment) for Particle Physics, FINUDA (FIsica NUcleare at
DAphne) for Nuclear Physics and DEAR (Daphne Exotic Atom Research)
for Atomic Physics.

The main goal of DA®NE is the study of CP violation. With the nominal
luminosity one expects 7.5 x 10° KgKE pairs a year. This large number of
K pairs will allow to measure Re(e’/e) with an error §(¢'/e) = 1 x 1074
through the measurement of the double ratio

N7 /NE™ AWK = nta ) JAKY — otn) [P L+ 6Re (€ )
NOO/NY | A(K? — 7079) JA(KS — n0n0) | '

The present experimental values for €' /e have been obtained with the study
of the same ratio and are summarized in Table I. The errors are still larger
than the expected sensitivity at DA®NE, although it is expected that they
will also be able to reduce their errors down to d(¢’/e) = 1 x 10~*. However,
it is important to notice that all the present experiments are performed
in hadronic colliders. Thus, the systematic errors will be very different at
DA®NE than in the other experiments. Hopefully, with the combined efforts
of all the experimental groups we will soon have a clear situation concerning
the experimental value of €'/e. The present world average shown in Table I
is compatible with the Standard Model prediction, although one has to go
into one corner of the allowed region in the parameter space [8].

The measurement of ¢'/e can also be performed with a new method.
The idea is to identify the 777~ and 7%7° production points in the process
& - KK — ntn %70 and build the asymmetry:

_ N(@>0)-N(d<0) e 4
S N@S0) T N@<0)  r(@Re <E) +Ar(d)Im <E) - @)
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TABLE I

Experimental results for &'/e

e'/e Group
(23+£7)x10°* | NA31 [3]
(7.4+5.9) x 107* | E731 [4]
(28.0 £4.1) x 10=* | KTeV [5]
(18.5+£7.3) x 10~* | NA48 [6]
(21.2 £ 2.8) x 10~* | World Average [7]

N is the number of events with positive or negative values of d = d. — dj
where d. and d,, are the distances between the interaction point and the
charged and neutral pion pair production points, respectively. The functions
Agr(d) and Aj(d) have a very simple asymptotic behavior for large values
of d:

Thus, a measurement of the asymmetry (2) for large values of d provides a
new measurement of Re (¢'/¢). The sensitivity of this method is, however,
a bit worse than the one of the double ratio (1): §(Re (¢'/¢e)) ~ 1.8 x 1074,
Moreover, a fit to the whole dependence of the asymmetry on d also pro-
vides a value for Im (¢’/e) although the expected error will be rather large:
§(Im (g'/e)) ~ 3.4 x 1073 [9].

2. Chiral perturbation theory: a brief introduction

The QCD Lagrangian can be written in terms of ¢ = column(u d s) in
the form:

Lqcp = i@y Dyugr, + iGry" Dyugr + Grmgqr + Grmgaqr, + L7+ L8 (4)

where the term £#F includes the contribution from heavy quarks, £& con-

tains only gluonic terms and m, = diag(m, mq m,) contains the quark
masses. It is clear that in the limit where m, = 0 the Lagrangian is invari-
ant under independent transformations of the left and right-handed quark
fields, 4.e. under the group SU(3);, x SU(3)r

. — grnqn, gr — grgr  with  gr,g9r € SUB)LR - (5)

In view of this symmetry, one would expect that all hadrons appear in multi-
plets of opposite parity. However, there is no evidence for such a symmetry.
We cannot blame the small quark masses this big effect. Instead, before
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the appearance of QCD it was already recognized that SU(3) was a rather
good symmetry [10]. The chiral symmetry is, thus, spontaneously broken:
SU(@3)1, x SU(3)r — SU(3)y through the non-zero value of the quark con-
densate:

(0[zu|0) = (0dd|0) = (0[3s|0) ~ —(250 MeV)?/2, (6)
which becomes the order parameter of the spontaneous chiral symmetry
breaking. The Goldstone theorem assures that in this process eight gold-
stone bosons appear (one for each broken generator) [11]. These bosons are
massless in the limit of massless quarks, but the small explicit chiral symme-
try breaking through the quark masses gives a small mass to the goldstone
bosons.

The idea of ChPT is to write down an effective Lagrangian where the
quarks and gluons have been replaced by the goldstone bosons appearing in
the spontaneous chiral symmetry breaking. A convenient parametrization is
in terms of a 3 X 3 unitary matrix:

0

7T N + +
T - K
V2 V6 .
=M with M= i T ko . (7
x/i_o V6
K- K 2L

V6

and f is a free constant. This matrix transforms under SU(3)1, x SU(3)g as:
X — gLYg) - (8)

The effective Lagrangian contains an infinite number of terms, but it can
be expanded according to the number of derivatives. This is something
more than a convenient classification. Physically, it means an expansion in
terms of powers of momenta that have to be small compared with the chiral
symmetry breaking scale, which is ~ 1 GeV. Lorentz invariance requires the
number of derivatives to be even. Thus, the first term is:

2
Ly = tr O Xon st (9)

This is the only relevant term with two derivatives, because other possible
terms one can think off, such as EBM(?“ET, differ from (9) only in a total
derivative. Expanding X' it is obvious that the Lagrangian in Eq. (9) con-
tains the kinetic terms for all the pseudoscalar mesons and interaction terms
involving 4, 6 and a larger number of pseudoscalars. Moreover, taking the
axial current, one has:
: L ,l'f2 a t

frPr, with J o= —Ttr (T*0, 25",  (10)

1

V2

Ly
(017, 2] ™) =



Tests of Chiral Perturbation Theory at DA®NE 3289

leading to the identification at this order of the free constant f with the
well-known pion decay constant f, = f = 132 MeV. Note that at this
point there is a complete SU(3) symmetry among the three decay constants:
f T = f n = f K-

The effects of the explicit chiral symmetry breaking through the non-
vanishing values of the quark masses can be included in the Lagrangian (9)
adding some new terms:

f?

L=t (aﬂzaﬂzT (=t + XET)) , (11)
where x contains the external scalar and pseudoscalar fields in the following
way':

x = B(s —ip), where s=m+---. (12)

B is again a free constant that can be calculated in terms of the pseudoscalar
and quark masses:

2 2m2 6m>
p=—"r _ K _ J— (13)
My, + My My + Mg My + Mg + Mg

From this relations, eliminating the quark masses, one can obtain the Gell-
Mann—Okubo mass relation [12]

4m3 —m? = 3m727. (14)
The new term in the Lagrangian also contains more interaction terms, which
are proportional to the pseudoscalar masses. The expansion, thus, is not only
in powers of the momenta, but also in powers of the pseudoscalar masses.
External vector fields can be introduced in the theory converting the

derivatives appearing in the Lagrangian in covariant derivatives:

2
Ly = %tr (DMED“ET + Dyt +X2T)) :
DY = 8,5 +iL,5 —i¥R, (15)

and adding the appropriate kinetic terms for the vector fields L, and R,,.
These fields transform under SU(3)1, x SU(3)g as:

Ly = gulug! —igrougf ,

R, — gRRMgL — z'gRBMgL. (16)

In particular, we can introduce electromagnetic interactions involving pho-
tons and pseudoscalars with the identification L, = R, = eA,(Q, where Q)
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is the quark charge matrix:

O Wi
| ja)

Wl

o O

Q= (17)

o
o
|
W

Weak processes with external W fields can also be introduced with the iden-
tification: R, = 0 and

e n 0 Vud Vus
L,=—W' T, +hec) T_= 0 o0 0 . 18
« = Zaaimay Wi Tethe) Te= |0 00 (18)

We will use this form in our discussion of K;3 and K, decays.

In this way we complete the description of the lowest order ChPT La-
grangian. With this Lagrangian we can reproduce all the current algebra
results obtained in the sixties. The advantage now is that we have a tool
that allows to calculate in a systematic way corrections to these results.

The next order corrections are O(p*). It is interesting to notice that one
loop diagrams contribute to terms at this order. Indeed, in any one loop
diagram the number of vertices must be the same as the number of internal
lines. Since each internal line contributes at O(p~2) (they are pseudoscalar
propagators), the total dimension of the loop contribution is given by the
momentum integral, i.e. O(p*). This result can be easily generalized for any
L-loop diagram containing N, vertices of dimension d [14]

D=2L+2+) (d—2)N,. (19)
d

Thus, any loop diagram contributes to terms with a dimension larger than
the dimensions of the vertices involved in the diagram.

In order to be consistent in the chiral expansion we have to consider
the higher dimension terms in the Lagrangian together with the loop cal-
culations. In particular, since one loop calculations give a result O(p*) we
have to add to the Lagrangian the terms of this order that have been ne-
glected up to now. The complete set of O(p*) terms invariant under parity,
charge conjugation and chiral transformations were first written by Gasser
and Leutwyler [13]:

2
£i=1Ly [t (D,Z'D %)+ Lot (D, 2D, %) tx (DM 5D )
+Lytr (D, Z'D*ED, D) + Latr (D, 20" 2) tr (Stx + x12)

2
+Lstr [DMETD“E (ZTX + XTEH + Lg [tr (ETX + XTEH
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+ Ly [tr (ZTX — XTZ’)T + Lgtr (XTEXTZ + EU(ZU()

—iLgtr (R"D, D, 3! + 1D, 5D, %) + Ligtr (SR SL,, )

FHytr (R BM + Ly L") + Hotr (XT ) : (20)
where

Ry, = O,R, —9,R, —i[Ru, R,
Ly, = 0,L, —8,L, —i|Ly, L) (21)

The equations of motion of the O(p?) have been used to remove the terms
than contain second derivatives. In this Lagrangian we have introduced 12
new free constants.

A second consequence of the previous dimension counting for the one loop
diagrams is that their result will, in general, be divergent. These divergences
can, however, be removed with the help of the 12 constants appearing in
Eq. (20). Since this Lagrangian contains all the terms at O(p*), the divergent
terms appearing in the loop calculation have to be contained in Eq. (20).
We can define the constants in terms of a finite, measurable part and an
infinite part: !

Li = Li(W®) + A i=1,10,
H;, = \A; 1=1,2. (22)
Using dimensional regularization,

1 1 )
=397 |2 +1—vy—logpu”+ log(4m)| , (23)

where ¢ is related to the number of dimensions through the usual expression:
d =4 — 2¢ and v is the Euler constant. The I; and A; in Eq. (22) can be
determined to cancel all the divergences appearing in one loop calculations
[13]:

3 3 1 3
I = I=— I =0 I, == =2
17 39 27 16 3 178 578
11 5 1 1
I T I7=0 Iy 18 Iy 1 I 1 (24)
1 5
Al =—= Ay = =
! 8 27 g

! The constants H;, H, do not have a physical relevance. They are only needed to
cancel the divergences appearing in the loop calculations.
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In this way we can get finite results for all the physical amplitudes in spite
of the fact that we are dealing with a non-renormalizable theory. The price
we have to pay is the introduction of 10 free constants. This procedure
can be repeated at any order with the introduction of new free constants
at each order in the expansion. The theory is non-renormalizable because
we need an infinite number of constants to renormalize the whole theory, in
contrast to what happens in a renormalizable theory where a finite number
of constants allows to absorb all the divergences appearing at any order in
the perturbative expansion.

The finite parts of the constants L7, ..., L], depend of the renormaliza-
tion scale u as it was explicitly noted in Eq. (22). Indeed, since the physical
amplitudes are renormalization scale independent the p dependence of the
finite part of the one loop diagrams will cancel renormalization scale depen-
dence of the constants. This dependence can, thus, be easily expressed using
the definition (22):

I; H1
Lt =Ll “ log —.
F2) = L (1) + 755 log (25)

The values of these constants have to be fixed by experiment. In Table II
we show their values at the scale 1 = m, together with an indication of the
experimental data from which these numbers have been obtained [2]

TABLE II

The values of the L; coefficients and the input used to determine them, they are
quoted at a scale p = m,.

L; | Value 103 Input

1 044+0.3 K.y and mm — 7w

2] 1.35+£0.3 K.y and nm = @

3| -35+1.1 K.y and 7w — 7w

4| -0.3£0.5 1/N, arguments

5 1.4£0.5 Fr/F;

6| —-02+03 1/N, arguments

71 —-04£0.2 Gell-Mann—Okubo, Ls, Lg

8 09+0.3 mpgo — Mg+, Ly, baryon mass ratios

9 6.9+0.7 pion electromagnetic charge radius
10 | =5.5+£0.7 T — evy

Let us discuss, as an example, the situation in 77 scattering. It is a
simple exercise to obtain from the Lagrangian in Eq. (11) the Weinberg
amplitude [14]:

s —m2

Als,tyu) = —3

(26)
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that fixes the scattering amplitude for 7¢(p,)7®(py) — 7¢(pe)7%(pg) through
the isospin decomposition:

Tab,cd = 5ab50dA(5a t, U) + 5acébdA(ta S, U) + 5ad5bcA(u7 t, S)a (27)

with s = (pa + pp)? , t = (pa — pe)? and u = (py — pg)?. The amplitudes of
definite isospin can be expanded in partial wave amplitudes according to:

Al(s,cos0) =i 32my/s 2(21 + 1) Py(cos 6) (1 - 6%5‘1(5)) ) (28)

Vs —4mZ =

where (5{ are the phase shifts. The corresponding scattering lengths, alI ,
are defined as the slopes of the phase shifts at threshold. The lowest order
predictions from Eq. (26) are:

ad = 0.156 ad — ad = 0.201, (29)
to be compared with the experimental data [15]:
ad = 0.26 & 0.05 ad — ad = 0.29 + 0.04. (30)

It is clearly important to evaluate the correction to these results.

The m7 scattering amplitude at O(p*) receive contributions from one loop
diagrams involving vertices from Lo, tree diagrams involving vertices from
L4 and wave function renormalization. In Fig. 1 we show the experimental
values of the phase shift difference 6] — df as a function of the 7n center
of mass energy compared to the O(p?) (dashed line) and O(p*) (dot-dashed
line) results [13]. The solid line is the result of an O(p®) calculation [16].
The results for the scattering lengths are:

ad = 0.156 4 0.044 + 0.017 = 0.217,
ay —ay = 0.201 +0.042 + 0.016 = 0.258. (31)

The three terms in the right hand side correspond to the O(p?), O(p*) and
O(p%), respectively. In these results we can see that the inclusion of the
higher order terms tend to improve the agreement between the theoretical
values and the experimental data. We should also note the nice convergence
shown by the perturbative expansion, even though the first correction is
quite large.

The example we just discussed is also relevant for DA®NE because the
experimental data for the mm phase shifts and scattering lengths are ex-
tracted from K, decays [15,17]. Since the agreement between the theoret-
ical and experimental results is at the 1o level for af (and just a bit better
for ad — aY), it is clear that a significant reduction of the experimental error
at DA®NE will provide an stringent test of the ChPT result.
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Fig. 1. Phase shift difference as a function of the center of mass energy. The dashed
line stands for the lowest order calculation, the dot-dashed line for the O(p*) and
the solid line for the O(p%), assuming that the constants of the O(p%) Lagrangian
vanish.

3. vy =» 7w

We will first discuss charged pion pair production in two photon pro-
cesses, where the photons are assumed to be real. The lowest order ampli-
tude is easily calculated from the Feynman rules for scalar electrodynamics
that can be found in any textbook on Quantum Field Theory. The total
cross section as a function of the y+ center of mass energy is:

o(s) = 7;—0;2[3 <2|a|2 —4(2—0)Rea+4|2-25+(1—-p% <1+%5)D,
(32)
where
_1-p 148
0= 7 lnm (33)

and ( is the velocity of the pions in their center of mass system. The lowest
order cross section is obtained from Eq. (32) with the identification a = 1
and it is plotted in Fig. 2 compared to the experimental data from Ref. [18].
The O(p*) result can also be obtained from Eq. (32) with [19]

4s

a:1+f2

1 3 1
(LE + LTy) — TP <§3 +m2In®Q, + E'm%( In? QK) (34)
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Fig.2. vy — 7T m~ cross-section as a function of the center of mass energy. The
dotted line stands for the lowest order prediction, the dashed line is the result of
the O(p*) calculation and the solid line is the result of the full, O(p®), calculation.
The dashed- double dotted line is the result of a dispersive calculation [21].

where @); is given by:
\/s —4m? + /s
Q; = . (35)
s —4m? — /s

The second and third term on this expression correspond to the O(p*) tree
contributions and the loop contributions, respectively. In Eq. (34) there is
a dependence on the sum of two unknown constants from the O(p%) La-
grangian, namely Lj and L7,. This sum also contributes to the structure
dependent term in m — evy. From the experimental data (see Ref. [13]) one
obtains

L5+ L5y = (1.4+0.4) x 1073, (36)

Thus, at this order we also have a parameter free prediction for the total
cross section, which is shown in Fig. 2 (dashed line). Comparing it with the
lowest order prediction we can see that there is a 13% increase in the value
of the cross section at the peak. The O(p®) corrections to this cross-section
have also been calculated [20] and they are also shown in Fig. 2 (solid line).

The process with neutral pion pair production is very interesting from
the theoretical point of view. Inspecting the Lagrangians £9 and L4 one can
easily realize that there are no tree level contributions to this process. Thus,
the lowest order contribution is O(p*) and is given by one loop contribu-
tions. Since there are no O(p*) terms in the Lagrangian contributing to this
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process, one knows that the one loop calculation must be finite (otherwise,
there would be no way to cancel the divergence from the loop calculation)
and contain no free parameter. The result of this calculation is shown in
Fig. 3 [19] (dashed line), compared to the experimental data from Crystall
Ball [22]. In this case, the O(p®) corrections have also been calculated (solid
line) and turn out to be important [23]. Indeed, in this case they are the
Next to Leading Order corrections!

2Q T T T T
18 | -
16 | '
14
12
10

CROSS SECTION {nd); Z=0.8

D : L L L L L L L L
250 300 350 400 450 S5O0 550 800 650 VOO
E (MeV)

Fig.3. vy — 7970 cross-section as a function of the center of mass energy at O(p*)
(dashed line) and O(p®) (solid line). The result of a dispersive calculation from [24]
is shown with a dashed-dotted line.

The discussion above on pion pair production have been performed as-
suming that the incoming photons are real, which is a good approximation
for a no-tag experiment. However, this is not a feasible experimental situ-
ation at DA®NE, where both, electrons and positrons, must be tagged in
order to have a reliable measurement. The minimum deflection angle for the
incoming electron is 10°. One should, thus, extend the previous calculations
to the whole ete™ — ete~mTn™ process. This is work in progress. The
expected number of events with a w7 invariant mass lower than 600 MeV at
DA®NE is O(10%) for charged pions and O(10) for neutral pions. Since the
two photon effective luminosity is larger for lower v+ center of mass energy,
one can expect to be able to discriminate the O(p*) effects in the charged
pion channel. For neutral pion pair production, the number of events is too
low to allow for any precision measurements.
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4. Semileptonic K decays: K;3 and K4

The subject of semileptonic K decays have been extensively studied by
Bijnens and collaborators [25]. In this talk I will only cover two channels.
The first one I want to discuss consists of K;3 decays, i.e.

Kt = 7TOZ+VZ,
K Sailty,

where [ can be an electron or a muon. The matrix element for KT decay
has the general structure:

Gr
T= T};VusluFJ(papl) ’ (37)

where G is the Fermi coupling constant, Vs is the corresponding matrix
element of the CKM matrix, [, is the leptonic current and Flj' (p,p’) is the
hadronic current that depends on the KT and 7 momenta, respectively.
The general form of this current involves two form factors:

Fi(p,p) = (+0)ufL7 )+ (p—p)uf57 (1), (38)

where ¢t = (p — p’)2. Similar expressions can be obtained for K decays.
Instead of f f ™ and fX™ one normally uses f f ™ and the scalar form factor
1
Kr Kn Kn
o =St = /E (39)
m2 —m2

and, for simplicity, the dependence on t of both form factors is assumed to
be linear:
50 = 1570 (142015 ). (40
mﬂ'

The experimental situation for the values of the slope parameters is very
clear for A} 28] and is shown in Table III. The situation, however, is much
more confusing for Ag [28], but the most recent measurement was performed
18 years ago. At lowest order in ChPT, both slope parameters vanish (i.e.
the form factors are independent of ) but they receive contributions at
O(p*). These contributions are given by a typical function for loop calcula-
tions, but this function approximates in a very nice way to a straight line,
justifying the empirical approximation made in (40). It depends on the pa-
rameter Lg. This parameter also appears in the pion electromagnetic form
factor. From a fit to this quantity we obtain L§ = (6.8 £ 0.2) x 1073 [19]



3298 F. CORNET

and we have again a parameter free prediction for the slope parameters. In
this way we obtain:

Ay =0.031 Ao = 0.017. (41)

The result for A4 is in very good agreement with the experimental data
and it will be interesting to compare the value obtained for Ay at DA®NE
with this prediction. In order to asses the improvement one can expect at
DA®NE in the precision of the measurements we should take into account
that the number of Kt and K° decays in the previous measurements are
10° and 4 x 10°, respectively, while at DA®NE one expects 3 x 10® events
per year in each channel.

TABLE III

Experimental results for the slope parameter in K;3 decays, At

At Decay Channel
0.0286 + 0.0022 Kf,
0.032 £+ 0.008 K:‘S
0.0300 + 0.0016 K?,
0.034 + 0.005 K:‘3

Let us finally turn our attention into the Kj, decays, i.e.;

Kt —sato iy,

Kt =070y,

K %z ity (42)
In this case there are four independent form factors. F, G, R, and H.
The form factor R cancels for m, = 0 and has not been measured up to

now, so we will neglect it in our discussion. The other form factors can be
parametrized in the form

F = fsei‘s8 + fpei‘s% cos 0, + D-wave ,

G = gei‘si + D-wave,

H = he®l + D-wave, (43)
where the phase shifts are the same ones as in 77 scattering discussed in

Section 2. @, is the angle between the 7 in the two pion rest frame and the
dipion line of flight in the K rest frame. Neglecting the D-wave contribution
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and assuming f, = 0 and a linear dependence of the form factors:

fs(q2) = fs(o)(1+>‘q2)a
9(q®) = g(0)(1+ Ag?),
h(g®) = h(0)(1+ Ag?), (44)
2

m
o T and s, being the two pion invariant mass, Rosselet and

m’iT
collaborators have obtained the following experimental values [15]:

s p—
with ¢ = =

£(0) = 559 +0.14, g(0) =4.77 £0.27,
h(0) = —2.68+0.68, A =0.080.02. (45)

The first non-vanishing contribution to the form factor H is due to the
chiral anomaly [26] and one obtains H = —2.66, in good agreement with the
experimental data. The next order corrections have also been evaluated and
turns out to be very small [27].

The theoretical calculation of the F' and G form factors is now much
more involved than in the previous cases. The lowest order result for both
form factors is 3.74, but the O(p*) corrections receive contributions from
many of the unknown constants. In particular, they receive contributions
from L7, L} and Lf that cannot be determined from any other process. One
should use data on these decays to precisely determine the values of these
parameters. One could use the form factors and slope parameters to obtain
values for these constants and in this way obtain a parameter free prediction
for the low energy parameters in 77 scattering. Alternatively, one could also
perform a fit to the whole set of data [25]. The authors of Refs. [25] and [29]
have also estimated the higher order corrections and they have found that
their effects might be sizeable.

5. Conclusions

The main purpose of this talk was to show that the experiments that
will be performed at DA®NE will be sensitive to higher order corrections
in Chiral Perturbation Theory. I have not gone through the whole list pro-
cesses that have been studied. They can be found in [30]. In all the cases
we have discussed (except in two neutral pion production in two photon
processes) we have seen that the great improvement that can be expected in
the experimental data from DA®NE with respect to previous experiments
will require Next to Leading Order Calculations (O(p*)) and, as it looks in
K, decays Next to Next to Leading Order (O(p®)). It should also be noted
that ChPT provides clear expressions that can be used to directly compare
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with the experimental data, instead of using a number of assumptions (as
the linear dependence of the form factors).

I am grateful to H. Czyz and M. Zralek for their kind invitation to
this school and their successful efforts to create a nice atmosphere during
this week and to A. Farilla for her information on the status of DA®NE.
This work has been partially supported by the EEC, TMR-CT98-0169 (EU-
RODAPHNE network), CICYT, under contract AEN96-1672 and Junta de
Andalucia, under contract FQM 101.
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