Vol. 30 (1999) ACTA PHYSICA POLONICA B No 11

TOP QUARK PAIR PRODUCTION IN ete~
ANNIHILATION NEAR THRESHOLD*

M. JEZABEK

Institute of Nuclear Physics
Kawiory 26a, 30-055 Cracow, Poland
and Institute of Physics, University of Silesia

Uniwersytecka 4, 40-007 Katowice, Poland

(Received November 4, 1999)

Recent progress in calculations of the total cross section for top quark
pair production near threshold is reviewed. Different top quark mass def-
initions adequate for threshold studies are discussed. A relation between
the potential subtracted mass and the 1S mass is studied. The potential
subtracted 1S mass is defined which incorporates attractive features of both
schemes.
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1. Introduction

Recently an impressive progress has been achieved in calculations of cross
sections for top quark pair production in ete™ annihilation near threshold.
A future linear collider (LC) operating at energies close to ¢t threshold will
be an ideal machine to study properties of the top quark. Prospects that
LC will be built during the next decade stimulate growing interest in precise
theoretical description of this reaction. In this article I concentrate only on
new developments in the years 1998-99. Older calculations are described in
reviews, see e.g. [1-7] and references cited therein. In Sec. 2 a considerable
increase of precision is described due to new mass definitions [8,9] which
are more adequate than the pole mass [10,11] for threshold studies of the
total cross section. The potential subtracted 1S mass is proposed as a com-
bination of the potential subtracted [8] and the 1S [9] mass definitions for
the top quark. In Sec. 3 a brief review of recent calculations of higher order
corrections is presented.
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2. Mass definitions

2.1. Pole mass and potential subtracted mass

One of the main goals of top quark physics at LC is a precise determina-
tion of top quark mass. Expected luminosities and beam energy resolutions
are so good that a measurement of this mass with precision better than
100 MeV is conceivable from experimental point of view. Even better preci-
sion of theoretical studies is therefore mandatory. At present there are a few
sources of theoretical uncertainties. One of them, relativistic corrections are
considered in the following section. In this section we use non-relativistic ap-
proximation and consider the top quark as a stable particle characterized by
the pole mass mpore. In this approximation interactions between ¢ and ¢ are
described by an instantaneous chromostatic potential which in momentum
space is conventionally written as

dray(q
Vo) = ~Co )
where ¢? = |q|? denotes the square of (three)momentum transfer g and

Cr = 4/3. This formula looks quite similar to the well known Coulomb
potential. However, for our purposes we need a better precision and cannot
neglect ¢ dependence of the function ay . In QCD the coupling arys is running
and at present its evolution is known up to two-loop accuracy [12,13] in
perturbative calculations. The coupling ayy can be expressed in terms of the

conventional strong coupling constant a._ and the relation including terms
3

a’_ has been derived in [12]. The coupling a -(q) is also running and the
first four coefficients (fy, ... , 83) are known for its renormalization group /3
function. Two-loop accuracy means that all these coefficients are included in
the renormalization group equation for a_ and ay is calculated including
also terms o> . We shall also use ay- calculated in one-loop accuracy, i.e.
including one order less in the relation between ay and o _ as well as in
the renormalization group equation for a__(q). Conventionally o (Mz),
i.e. the value of the strong coupling constant at Z° peak is used as a starting
point for the evolution.

The coupling ay (gq) grows with decreasing ¢ and around 1 GeV becomes
comparable to or larger than 1, and eventually at some point even infinite.
In this range of ¢ we cannot trust perturbative expansions and are forced
to use some non-perturbative methods or extra phenomenological input to
calculate the potential V'(¢). Unfortunately the Lippmann-Schwinger equa-
tion for the energy levels of ¢t system contains an integral over momentum
transfers including the dangerous region of low g. Therefore, we have to
estimate how much are the energies of toponium states affected by contri-
butions from this region. In other words we have to estimate theoretical
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uncertainties due to present poor knowledge of the non-perturbative QCD
potential. Let g, be a momentum transfer such that for ¢ > ¢, a per-
turbative formula Vjer¢(q) is sufficiently accurate whereas for ¢ < ¢, some
non-perturbative expression should be used. In the following discussion we
assume that mpge = 175 GeV and ¢, = 3 GeV. As the non-perturbative
potential we choose the one proposed by Richardson [14]. Richardson po-
tential depends on a non-perturbative parameter Agr which after Fourier
transformation to the position space can be determined from the slope of
the linear confining potential. A successful description of bb and ¢z nS states
is obtained for Ag = 0.4 GeV. A formula for the Richardson potential as
well as a description of its numerical implementation are given in [15], see
Appendix A therein. For the perturbative part of the potential we use oy (q)
calculated with one-loop accuracy and a__(Mz) = 0.118 . In the pole mass
scheme the binding energies of toponium states are defined as

EP® = M, — 2m0pe (2)

where M, denotes the rest mass of the state r. Thus E’fgle is the binding
energy of the 15 state.

In Table I the values of Efgle are given for a few values of Ar. As already
explained the realistic values are obtained for Ar around 0.4 GeV. In the

TABLE I
Binding energies and energy shifts for toponium resonances in the pole mass and in
the potential subtracted mass scheme for different values of Ag and py = 5 GeV.

An | EPS® 20m(uy)  EY§(uy) ESS(us) ESS(ns)  ERS(uys)
0.01 | — 2.273 0.827 — 1.446 0.152 0.559 0.668
0.1 — 2.616 1.171 — 1.445 0.163 0.602 0.786
0.2 — 2.785 1.340 — 1.445 0.171 0.629 0.848
0.4 — 2.956 1.511 — 1.445 0.184 0.679 0.949
0.6 — 3.014 1.567 — 1.447 0.197 0.725 1.042
1.0 — 2.928 1.474 — 1.454 0.228 0.828 1.234

range 0.2-0.6 GeV the variation of Efgle is reasonably moderate and one
can conclude that determination of mpye from a measurement of 1S state
mass Mig is possible with theoretical uncertainty of order 100 MeV due
to contributions from the non-perturbative region. Even for a very drastic
change of the phenomenological potential and Ag = 0.01 GeV the change
in myple for fixed Myg is about 350 MeV. All this means that 1S toponium
state is too small to be affected significantly by momentum transfers below
gm- In fact the situation is much better than it follows from a moderate



3320 M. JEZABEK

dependence of Efgle on Agr. The latter is due to a dependence of mygle on

small momentum transfers. Beneke proposed [8] to replace mpoe by the
potential subtracted (PS) mass

mPS(Nf) = Mpole — 5m(ﬂf) s (3)
where ,
sminp) =3 [ (;ZT‘;V@ . (4)
q<py

In Eq. (4) puy is an arbitrary parameter larger than g, i.e. uy should be
chosen in the region of momentum transfers where the perturbative expan-
sion is sufficiently accurate. Furthermore it can be demonstrated that such
a definition corresponds to a mass parameter which is not sensitive to small
momentum transfers [8]. Let us define the energy shift! for a state r in the
PS scheme as

B (ng) = My — 2mps () - (5)

It follows that
EFS(ug) = B + 25m(y) (6)

In Table I the values of 20m () are given for py = 5 GeV and a few values
of Ar. As expected this quantity also changes with Agr. It is remarkable,
however, that the variations of 2dm (4 ) and Efgle cancel each other and the
energy shift for 1S bound state becomes surprisingly stable, see Table 1. The
energy shifts for nS bound states up to n=4 are also given in Table I. It is
seen that the dependence on Ay is reasonably small for 2S state. However for
3S and 4S a significant dependence on Ag persists which means that these
radial excitations are spatially large enough to be affected by low momentum
transfers.

Coming back to 1S state we observe that the precision which can be
achieved in determination of mpg is dominated by the measurement of Mg,
cf. Eq. (5). Contrary to a widespread belief in this case the large width of
the top quark does not help at all by cutting off non-perturbative dynamics
at low momentum transfers and large spatial distances. In the real world the
toponium 1S resonance has the width of about 3 GeV which is a large number
when compared to 100 MeV precision to be achieved in determination of the
top quark mass. Of course, for larger energies, say 2 GeV or more above
1S level the top width helps. However, for a measurement located in energy
close to 1S state a real problem is how to unravel its effects.

! ‘Binding energy’ would be a misleading terminology because, depending on the values
of s the energy shifts for some or even all bound states can be positive.
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2.2. Potential subtracted 1S mass

Recently Hoang and Teubner have observed [9] that it is very convenient
to perform calculations in a scheme in which the mass of the top quark is
defined simply as one half of Mjg in the limit of zero top width. They
proposed the name 1S mass for such mass parameter and demonstrated
that it is a short distance one, i.e. unlike the pole mass is not sensitive
to dynamics at large distances. I think that it is useful to consider their
proposal as a condition on the mass parameter py in PS scheme. In fact it
is straightforward to find p1g such that

Eré(ms) = 0. (7)

One can also show that pg is in the perturbative regime and corresponds
to a typical momentum transfer for 1S bound state. The corresponding
potential subtracted mass

mpis = mps(p1s) = s Mis (8)

is by definition a 1S mass. It is also clear why 1S mass is a better scheme
than 2S or 3S mass schemes. The energies of higher radial excitations are
simply more affected by non-perturbative small momentum transfers.

A very good stability of ETS (u 7 = 5GeV) guarantees that the mass pa-
rameter u1g does not depend on non-perturbative parameters like Agr. On
the other hand it depends on the dynamics in the perturbative regime. In
particular pqg depends on the value of am(M 7) and on the order of pertur-
bative calculations. For example: at one-loop accuracy and for . (Mz)=
0.15, 0.18 and 0.21 the corresponding values of 15 are equal to 13.26 GeV,
13.63 GeV and 14.00 GeV, respectively.

2.8. Remarks

It is evident that the short distance masses discussed in this section are
superior and more convenient than the pole mass in studies of the total cross
section near threshold. Does it mean that the pole mass is a totally useless
concept which should be abandoned for permanently confined quarks? I
believe that the answer to this question will be no. I do so because there are
other cross sections and distributions which can be measured in experimental
studies near threshold. They are less inclusive than the total annihilation
cross section and in consequence more difficult from theoretical point of
view. It is not precluded that the pole mass can be a good parameter to
describe some of them. For example: it is plausible that the invariant mass
distribution of top quark decay products has a maximum close to the pole
mass rather than to 1S mass. Of course the corresponding mass parameter
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can be extracted with a limited accuracy. At some level of precision it will
be necessary to decide if a pion, which is slow in ¢¢ center of mass, belongs
to decay products of ¢ or to decay products of ¢ and this may be impossible
even in principle.

3. Top width and higher order corrections

For center-of-mass energies close to the ¢f threshold the top quarks are
produced with nonrelativistic velocities v < 1. Therefore nonrelativistic
approximation is a good starting point. However a high precision determi-
nation of the top quark mass requires a systematic study of higher order
corrections including relativistic and radiative corrections. In comparison
to bound state problems like spectroscopy of positronium or hydrogen-like
ions, which have been studied in QED, a novel feature of #¢ production near
threshold is a very large width of this system. In their pioneering work
Fadin and Khoze [16] showed how to incorporate the top width into theoret-
ical descriptions. They proposed to use Green function rather than binding
energies and wave functions for individual resonances. Their Leading Order
approach (LO) was further developed in [17-19]. In particular QCD static
potential was included at one-loop accuracy level and Next-to-Leading Order
(NLO) contributions in nonrelativistic expansion were calculated to forward—
backward asymmetry [20] and top quark polarization [21,22]|. These early
studies were done in the pole mass scheme, so a considerably better accu-
racy can be obtained by using one of the short distance masses discussed
in Sec. 2. Further progress cannot be achieved without performing calcu-
lations at Next-to-Next-to-Leading Order (NNLO) including corrections of
order v2, ayv and o2. This problem is very complicated because in calcula-
tions of Green function relativistic and radiative corrections do not factorize
and have to be consider simultaneously.

During last two years a number of papers appeared presenting calcula-
tions at NNLO level and using completely different techniques [9,23-31]. In
particular in [9,28-31] a complete NNLO results are presented. Qualita-
tively all these calculations agree quite well. NNLO corrections produce an
important shift in the binding energies, ¢.e. in the position of the threshold,
and a significant increase of the normalization for the total cross section.
However, a rather large uncertainty remains in the normalization due to
scale dependence in NNLO corrections. At a more quantitative level a de-
tailed comparison is difficult because different mass definitions are used by
different groups.

An important new theoretical development is the so-called Potential
Non-Relativistic QCD [32]. In this framework a systematic study of QCD
potential in even higher orders can be accomplished. In particular calcula-
tions of quarkonium spectrum at order o Ina, have been presented [32].
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