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We report on the analytical calculation of the O(a?) conversion factor
between the MS quark mass and the one defined in the so-called “Regular-
ization Invariant” scheme.
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1. Introduction

Although the quark masses are fundamental parameters of the QCD
Lagrangian, their relation to measurable physical quantities is not direct.
They depend on the renormalization scheme and, within a given one, on the
renormalization scale p.

In the realm of perturbative QCD the most frequently used mass defini-
tion is the so-called short distance MS mass, based on the MS-scheme [1,2].
Unfortunately it is difficult to obtain precise information on the quark masses
from pQCD, as the mass dependence of it’s predictions is relatively weak.

One possibility to obtain such information is to make lattice QCD cal-
culations, which provide a direct way to determine quark masses from first
principles (for recent discussions see [5-9] ). The resulting quark mass is the
(short distance) bare lattice quark mass. A scheme that is directly accessi-
ble in lattice calculations is the “Regularization Independent” scheme, which
has been used in some recent lattice calculations and was proposed in [4].

* Presented by A. Rétey at the XXIII International School of Theoretical Physics
“Recent Developments in Theory of Fundamental Interactions”, Ustron, Poland,
September 15-22, 1999.

T Permanent address: Institute for Nuclear Research, Russian Academy of Sciences,
60th October Anniversary Prospect 7a, Moscow 117312, Russia.

(3373)



3374 K.G. CHETYRKIN, A. RETEY

To relate lattice quark masses to those defined in a continuum pertur-
bative scheme as the MS one requires the calculation of the corresponding
renormalization constants. These constants can be defined and computed
only perturbatively. The conversion factor for the mass defined in the RI
scheme and the MS scheme is now known at next-to-next-to-leading order
(NNLO) from [10] and happens to be numerically significant. This makes
mandatory to know the NNNLO O(ca?) term in the conversion factor.

In this work we report on the calculation of this term. It turns out that
the size of this term is comparable to the previous one at a renormalization
scale of 2 GeV — the typical scale currently used in lattice calculations of
the light quark masses.

2. Scheme dependence of the quark mass

In order to calculate the conversion factors, we start with the bare quark
propagator (for simplicity we stick to the Landau gauge and do not explicitly
display the gauge dependence)

So(a, ., mo) = i/diﬁeiqx<T[¢o($)1/70(0)]> =(mo—¢—%0)"" (1)

with the quark mass operator Xy being conveniently decomposed into Lorentz
invariant structures according to Xy = ij?, + mOEg. Here mg and 1y are
the bare quark mass and field respectively and a® = o% /7w = ¢*/(47?), where
g is the bare QCD gauge coupling.

Higher order corrections to physical quantities in pQCD will give finite
results only after regularization and reparameterization of all parameters
and fields of the theory. Moreover, Greens functions as (1) also need to be
renormalized. To be precise we assume that (1) is dimensionally regulated by
going to non-integer values of the space-time dimension D =4 — 2¢ [11,12].
Then the MS renormalized Green function (1) reads:

S(qa ozs,m,u) = (m_ﬁ_z)_l = ZEISO(q, ag,m0)| (2)

mo=2Zmm, ag:;ﬁ ZoOg

where ¢ = Z, 1 2¢0 is the renormalized quark field and the ’t Hooft mass
parameter p is a scale at which the renormalized quark mass is defined. The
renormalization constants Zs, Z, and Z,, are series of the generic form

Zo =1+ ZZ&% 7 =" 7 (0‘?)] ?=2a,m.  (3)

i>0 §>i
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The quark propagator renormalized according to a different subtraction pro-
cedure reads (parameters marked with a prime belong to the other scheme)

1 ~1 0
Sl(Qa 01{9, mla }u) = m = (Zé) SO(qa Qg m0)|m0:Z;nm,a2:u5Z(’lasa
(4)
where without essential loss of generality we have set /' = p. The finiteness
of the renormalized fields and parameters in both schemes implies that,
within perturbation theory, the relation between them is uniquely:

Z! 75
m=Zem = O, = | 22 = o, (5)
m 2

with the “conversion functions” being themselves finite series in o, i.e.

I\ 1
=1+ c% <O‘—) . 7=m,2 (6)
In general the coefficients C’% may depend on the ratio m//u. If such a
dependence is absent the corresponding scheme is called a “mass indepen-
dent” one. In what follows, we will assume that the function C\ is known
and, thus, will deal with series of the type (6) in terms of the MS a
From Egs. (1) it is easy to see that

Cg(l—i-zv):l—l-Z{/, CQCm(l—Zs):l—Eig (7)

These equations together with renormalization conditions for the non-MS
scheme provide then the necessary information to determine the conversion
factors C,, and Cy, once the MS renormalized Xy and Xg are given.

A mass independent MOM! scheme has recently been suggested in [4]
under the name of RI (“Regularization Invariant”) and is defined by?:

2 (4(1 +2&”))] -1
q

(8)

1 1
lim —Tr =1, lim —Tr [1 — ¥R
s [7“ dq, " 30 12 [ o ]42=—M

2__U2

2

From these we get the conversion constants (¢ = log(—“—Q)):

L azv(0)]™ 1+ %y +1.92v(0
CRI: 1 3 I S CRI: 5 o7 |
i [ VT o Jp=p2’ ™ 1-2Ys 2=—p2
m=0

(9)
! The so-called momentum subtraction schemes require the values of Green Functions

with fixed p dependent external momentum configurations to be fixed
2 Traces are to be taken over color, Lorentz and Dirac indices
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3. Three loop MS quark propagator

We have analytically computed the functions Xy and Xg in the massless
limit to order 3. In addition, we have calculated the first 6 (3 for the 3-loop
case) terms in a small mass expansion of these functions. The calculation
was making intensive use of computer algebra programs. In particular, we
have used QGRAF [14] for the generation of diagrams and LMP [17]| for the
asymptotic expansions (for an introduction see [3]). The resulting massless
propagator diagrams and massive tadpole diagrams have been evaluated
with the form packages MINCER [15] and MATAD [16]. Up to 2 loops the
analytical mass dependence of the functions Xy and Yg are known [18].
These results have been used as cross checks for our results and we found
full agreement in numerical evaluation and small and large mass expansions
of their result. The full results of these functions are published in [13].

4. Results

Our result for the conversion function for the RI mass to the MS mass
reads® as function of n IE

47 3 9
( a )3 6663911 408007 2960 236650
Arr 648 108 2 9 7T a3 M

16 a\2 [ 1990 152 89
CRI =1 & - <_5) _ = -~
m + A TGty

1936 80 8918 , 32
- o7 CSnf+?C4nf_ 799 nf_ﬁ<3nf:| :

At a scale 4 = 2 GeV and ny = 4, the numerical contributions of the leading
order to NNNLO terms are as follows (with a,(2 GeV)/m = 0.1)

CRU— 1. —0.133333 — 0.0754071 — 0.0495357

One observes that the sizes of the NNLO and NNNLO contributions to CR!

at this scale amount to about 7.5% and 5% respectively. This shows that the
NNNLO term is numerically significant and should be taken into account
when transforming the RI quark masses to the MS ones. Indeed, the size of
the NNNLO term makes the applicability of pQCD at this scale doubtful.
For a more elaborate discussion on the result see [13].

3 (» are the values of Riemann’s Zeta function, note that CR! is gauge independent
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