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In the unconstrained MSSM, we reanalyze the constraints on the phases
of supersymmetric flavour conserving couplings that follow from the elec-
tron and neutron electric dipole moments. We find that the constraints
become weak if at least one exchanged superpartner mass is > O(1 TeV)
or if we accept large cancellations among different contributions. However,
such cancellations have no evident underlying symmetry principle. For light
superpartners, models with small phases look like the easiest solution to
the experimental EDM constraints. This conclusion becomes stronger the
larger is the value of tan 8. We discuss also the dependence of e, Amp
and b — sy decay on those phases. We show that even in the absence
of genuinely supersymmetric sources of CP violation MSSM contributions
may affect the determination of the Kobayashi-Maskawa phase dxu.

PACS numbers: 11.30.Er, 12.60.Jv, 13.40.Er

1. Introduction

In the Minimal Supersymmetric Standard Model (MSSM) there are new
potential sources of the CP non-conservation effects. One can distinguish
two categories of such sources. One is independent of the physics of flavour
non-conservation in the neutral current sector and the other is closely related
to it. To the first category belong, in principle arbitrary, the phases of the
parameters 4, gaugino masses M;, trilinear scalar couplings A; and m?2,.
They can be present even if the sfermion sector is flavour conserving.
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The other potential phases may appear in flavour off-diagonal sfermion
mass matrix elements Am?j and in flavour off-diagonal LR mixing param-
eters A;;. These potentially new sources of CP violation are, therefore,
closely linked to the physics of flavour and, for instance, vanish in the limit
of flavour diagonal (in the basis where quarks are diagonal) sfermion mass
matrices. It is, therefore, quite likely that the two categories of the potential
CP violation in the MSSM are controlled by different physical mechanisms.
They should be clearly distinguished and discussed independently.

Experimental constraints on the “flavour-conserving” phases come main-
ly from the electric dipole moments (EDM) of electron [1] and neutron [2]:

E®P <43.107%¢- cm,
E®? <6.3-10 %¢-cm.

The common belief was that the constraints from the electron and neu-
tron EDM are strong [3,4] and the new phases must be very small. More
recent calculations performed in the framework of the minimal supergrav-
ity [5,6] and non-minimal models [7] indicated the possibility of cancellations
between various phases and, therefore, of weaker limits on the phases in some
non-negligible range of parameter space. However, the new detailed analysis
of Ref. [8] shows that such cancellations are accidental (there is no under-
lying symmetry principle) and require strong fine-tuning between various
phases.

The new flavour-conserving phases in the MSSM may appear in the
following terms in the superpotential and in the soft breaking Lagrangian:

Wep = pH'H? . (1)

Loofi—cp = % (Mgéaéa + MQWZWZ + Mléé) + m%QHIHQ

+Y, A H'LE® + Y;AjH'QD® + Y, A,H>QU® + H.c. (2)
We define phases as:
: 2

eitn — 1 el = M; e'Par = Ar en = m;2 . (3)

|l | M;] |Ar] m1y|
Phases alone are not physical. In the absence of terms (1),(2) the MSSM
Lagrangian has two global U(1) symmetries, an R symmetry and the Peccei-
Quinn symmetry [9]. Terms (1),(2) may be treated as spurions breaking
those symmetries, with appropriate charge assignments. Physical observ-

ables depend only on the phases of parameter combinations neutral under
both U(1)’s transformation:

Mip(miy)* Arp(miy)* ATM; . (4)
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Not all of them are independent. The two U(1) symmetries may be used to
get tid of two phases. The common choice is to keep m?, real in order to
have real tree level Higgs field VEV’s and tan 5. The second re-phasing may
be used e.g. to make one of the gaugino mass terms real.

In Section 2 we discuss in detail the electron EDM - the magnitude of
various contributions to the electron EDM and the pattern of possible cancel-
lations. In Section 3 we analyze the neutron EDM with similar conclusions.
In Section 4 we discuss the role of the u phase in the ex measurement and
in the b — sy decay. In Section 5, we consider supersymmetric contribu-
tions to the CP violating processes assuming no new supersymmetric phases
and discuss the influence of new MSSM contributions on predictions for the
Kobayashi-Maskawa (KM) phase determination.

2. Electric dipole moment of the electron
2.1. Mass eigenstate vs. mass insertion calculation

The electric dipole moments of leptons and quarks, defined as the coef-
ficient F of the operator

Ly =~ 5 Bfou sy F*, (5)

can be generated in the MSSM already at 1-loop level, assuming that super-
symmetric parameters are complex.

In the mass eigenstate basis for all particles, two diagrams contribute
to the electron EDM (see Fig. 1). The result for the lepton electric dipole
moment reads (summation over all charginos, neutralinos, sleptons and sneu-
trinos in the loops is understood):

I 2 3
em IKj IKj
Ell = wé Z Z me;Im ((W,}C)L T Vise)g J*) Cll(m%j,mgK)
=1 K=1
6
Ik Ikj
~ e Z Nlm( (Vi P (Vg )R) Cuam? ), (6)

where (Vise)n, (Vise)r, (Viin)n. (Vi) r are, respectively, the left- and
right- electron-sneutrino-chargino and electron-selectron-neutralino vertices
and C11, C19 are the loop integrals (explicit form of the vertices and integrals
can be found in [8,10]). Eq. (6) is completely general, but as we discussed
already in the Introduction, in the rest of this paper we assume no flavour
mixing in the slepton sector. Hence, in the formulae below we skip the
slepton flavour indices.
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Fig. 1. Diagrams contributing to lepton EDM

We present now the calculation of the electron EDM in the mass insertion
approximation, for easier understanding of cancellations of various contribu-
tions. We use the “generalized mass insertion approximation”, i.e. we treat
as mass insertions both the L-R mixing terms in the squark mass mixing
matrices and the off-diagonal terms in the chargino and neutralino mass
matrices (see [8] for more details). Therefore we assume that the diagonal
entries in the latter: |u|, |M; 2| are sufficiently larger than the off-diagonal
entries, which are of the order of M.

There are four diagrams with wino and charged Higgsino exchange,
shown in Fig. 2.

Fig.2. Chargino contribution to lepton EDM in mass insertion expansion.
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Their contribution to the electron EDM is (E. = E}):

2eg’m,
(4m)?

Ci1(|pf?,m2) — Ci1(|Ma|?,m2)

(Ee)c =
¢ |u]? — | My ?

T (Mays) tan 3 (7)
Neutral wino, bino and neutral Higgsino contributions can be split into two
classes: with mass insertion on the fermion or on the sfermion line. Contri-

bution of diagrams belonging to the first class has a structure very similar
to that given by Eq. (7):

2 2 2 2 2
eg*me Cra(my, |p]?) — Cra(miy, |Ma]?)
(Be)nf = ———oIm(Mapu) tan 3
eINf 2(4r)? |uf? — | Ma]?
12 2 2 2 2
eg'“me Cia(mi, |u]?) — Cra(my, |M1]?)
T Sz m(Mip) tan PIEEYAE
12 2 2 2 2
eg'“me Cia(mpe, |u|*) — Cra(mige, | M%)
Im(M t 8
(47‘(’)2 m( IM) a‘n/B |M|2 — |M1|2 9 ( )

where mp, mpe and mj are the masses of left- and right- selectron and
electron sneutrino, respectively. Between diagrams with mass insertions on
the selectron line, only the two with bino line in the loop give sizeable con-
tributions. The result is:

eq'>m
(Be)ws = I [M1(utan  + A7)
X012(m2E7|M1|2) _012(m%,‘ca|M1|2) (9)
My — M. '

Egs. (7)—-(9) have a simple structure: they are linear in the invariants (4),
with coefficients that are functions of the real mass parameters. Thus, the
possibility of cancellations depends primarily on the relative amplitudes and
signs of those coefficients. An immediate conclusion following from (7)-(9) is
that limits on the M;u phases are inversely proportional to tan 8. Therefore,
we discuss limits on sin ¢, tan 8 rather than on the p phase itself.

The approximate formulae (7)—(9) work very well already for relatively
small |u|, |M;| and |Ms| values, not much above the My scale (see Fig. 3).
The accuracy of the mass insertion expansion may become reasonable al-
ready for |u| > 150 GeV and becomes very good for |u| > 200 — 250 GeV.
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Fig.3. Ratio of the electron EDM calculated in the mass insertion approximation
to the exact 1-loop result. Thinner lines: ¢, = 0, thicker lines: ¢4 = 0.

2.2. Limits on u and Ae phases

It is useful to consider two classes of models: one with My /a1 = My /s
= M3 /a3 for gaugino masses, that is universal gaugino masses at the GUT
scale (the universal phase can be set to zero by convention), and the other
with non-universal gaugino masses and arbitrary relative phase between M;
and Ms. In the universal case we choose i and A, phases as the independent
ones, in the second case the M7, My phases are the additional free param-
eters. In all figures presented in this Section we assume the GUT-related
gaugino masses and equal left and right slepton mass parameters, M1, = Mg,
so that the physical masses of the left and right selectron differ by D-terms
only. In addition, in the text we discuss possible effects of departure from
those assumptions.

We shall begin our discussion by presenting the magnitude of each con-
tribution (7), (8) and of the p and A, terms in Eq. (9), separately. A
sample of results is shown in Fig. 4. We identify there the parameter region
where at least one of the terms is such that for sin ¢, tan 3 fixed at some
assumed value, its contribution to E, is larger than E¢°. Barring poten-
tial cancellations, the fixed value of sin¢,tan is then the limit on this
phase in the identified parameter region. In the left (right) plot of Fig. 4 we
show the regions of masses (below the plotted surface) where the limits on
| sin¢,| tan 8 are stronger then 0.2 (0.05), respectively. The regions below
the plotted surfaces are the regions of interest for potential cancellations.
We observe, however, that even without cancellations, there are interest-
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Fig.4. Regions (below the dark surface) for which generic limits on |sin ¢,|tan 8
are stronger then, respectively, 0.2 (left plot) and 0.05 (right plot).
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Fig. 5. Limits on |sin¢g,| tanf given by the electron EDM measurements. sin ¢4, =0
assumed.

ing regions of small |u| and |Ms| and mg > O(1 TeV) or small mg and
|| ~ | M| > O(500 TeV) where the phase of u is weakly constrained. One
should also note that for very large || and the other masses fixed the limits
on the u phase get stronger again. This is due to the term (9), which does
not decouple for large |u|.

In Fig. 5 we show again the limits on p phase (given now by the sum
of all terms (7)-(9), not by the largest of them like in Fig. 4), this time
as a two-dimensional plot in the (mg, |Ms|) plane, assuming ¢4, = 0. In
Fig. 6 we show similar limits on the A, phase on (mg,|M;]|) plane, assuming
¢, = 0. The limits on the A, parameter phase are significantly weaker and
decrease more quickly with increasing particle masses.
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Fig.6. Limits on |A./mp sin ¢ 4,| given by the electron EDM measurements (|u| =

200 GeV and sin ¢, = 0).
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Fig.7. Relative signs and amplitudes of various contributions to the electron EDM,
normalized to (divided by) the experimental limit. Solid, dashed, dotted lines:
coefficients of sin ¢, tan § given by chargino (Eq. (7)) and neutralino contributions
(Egs. (8) and (9)) respectively. Dotted-dashed line: coefficient of |A. sin ¢4, |/mp.

The magnitude and signs of individual contributions as a function of mg
are illustrated in Fig. 7. We plot there the coefficients of y and A, phases
obtained from the exact 1-loop result and normalized by dividing them by
the experimental limit on the electron EDM. Their shape depends mostly
on the mp/|u| ratio, much less on the |u/Ms| ratio and scales like 1/m%.
We see that either the chargino contribution to the term proportional to the
p phase dominates (for small |u|), or, if they become comparable (possible
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only for larger values of |u| > 700 GeV), the chargino and the dominant
neutralino contribution, given by Eq. (9), to the u phase coefficient are of
the same sign. Thus, the full coefficient of the p phase cannot vanish and
the only possible cancellations are between the A, and u phases.

Since the A, phase coefficient is in the interesting region much smaller
such cancellations always require large A, in the selectron sector, A./mg >
1. This is shown in Fig. 8, where we assume “maximal” CP violation ¢, =

da, =m/2.
—~ 700 R —~ 700rrT S —
> > i :
3 w =100 GeV 3 i w = 1000 GeV
= 600, =6 ‘j 1
500 {  soof
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Fig.8. Regions of mg — M; plane allowed by the electron EDM measurement

assuming ¢, = ¢4, = 7/2 and some values of A./mg (marked on the plots).

Better understanding of the u—A, cancellation can be achieved after some
approximations. For supersymmetric fermions significantly lighter than slep-
tons, chargino exchanges dominate, whereas in the opposite limit the biggest
contribution is given by the diagrams with bino exchanges. Eqs. (7)-(9) can
be greatly simplified in both cases, giving for degenerate slepton masses
mMmeE < MEe T My
1) [Myal, |4 < mi

2m. Im(Mopu)t 2 2 Tm( My A*
€g 7’7126 an( 22:“) anﬁ2 log |:u’| - +€g m28 m( 41 e); (10)
(4m)2 my(|p?| — |M2|?) | M| 2(4m) mpg
2) Myl |p| > mpg

eg*m, ITm(Map) tan B B eg'*me Im(Mi 1) tan 8

E, =

FE =
7 R Ty VAR T PR W) YA
12 * 2
eg/*me Tm [M; (1 tan  + A%)] m?
— 54+ 21 . 11
2am)? AR T2log (372 (1
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The behaviour of the lepton EDM is different in both limits. For heavy
sleptons, | M 2|, |¢| < mp the coefficient of the 1 phase decreases with the
increasing slepton mass as 1/m%. The coefficient of the A, phase decreases
faster, as 1 /m4E Therefore, in this limit the exact cancellation between A,
and u phases requires large A, value, growing with increasing mg. How-
ever, because all contributions simultaneously decrease with increasing mg,
partial cancellation between p and A, phase is already sufficient to push
the electron EDM below the experimental limits, what may be observed in
Fig. 8 as a widening of the allowed regions for large mpg.

For sufficiently small slepton masses the full cancellation between g and
A, terms occurs approximately for

. . WAE 3 )
singa,|Ae| = sin tan 3 (1 + . 12
PaclAd = sin dulid WP 5+ 21og(m /1) 2

Since this result is valid for |u|, |M;|,|M2| > mpg we see that for comparable
¢, and ¢4, the cancellation is again possible only for large A./mp > 1. For
large |p| > | M|, when one can neglect the second term in the parenthesis
in Eq. (12), the A, giving maximal cancellation is almost independent of
|M1]|, what can be observed in the right plot of Fig. 8. The allowed regions
also widen with increasing | M|, but slower then for large mp because the p
and A, phases are in this case suppressed by lower powers of |My|: 1/| M|
and 1/|M; |3 respectively, instead of 1/m?% and 1/m?%,.

In the most interesting region of light SUSY masses, where the limits
on phases are strongest, the cancellation between (fixed) u and A, phases
may occur only for very precisely correlated mass parameters, i.e. it re-
quires strong fine tuning between |u|, | M 2| and |A.|. Analogously, for fixed
light mass parameters one needs strong fine tuning of the order of O(10?)
between the phases.

We shall discuss now the general case, with non-universal gaugino masses.
The results for the magnitude of individual terms remain qualitatively simi-
lar to those shown in Fig. 4. The region of strong constraints on the x4 phase
shrinks in mp with increasing M;. The magnitude of individual contribu-
tions as a function of m g has very similar behaviour as in the universal case —
again, for small || chargino contribution dominates for all values of | M| and
|Ms|. The only possible cancellations for this |u| range are between p and
A, phases. For larger values of |u| > 700 GeV the magnitude of individual
terms may become comparable. With arbitrary relative phase of My and My
it is possible to cancel the terms proportional to the y phase. To study this
possibility it is more convenient to consider the contributions proportional
to Im(uMy) and Im(puMs). They are comparable for mpg/|u| ~ 1/5 —1/3,
depending on | My /M| ratio. It is clear that choosing ¢1 and ¢2 phases such
that sin(¢, + ¢2) and sin(¢, + ¢1) have opposite signs, e.g. $1 — ¢ ~ m,
would give cancellation at these points.
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3. EDM of the neutron
3.1. Formulae for the neutron EDM

The structure of the neutron EDM is more complicated then in the elec-
tron case. It can be approximately calculated as the sum of the electric
dipole moments of the constituent d and u quarks plus additional contribu-
tions coming from the chromoelectric dipole moments of quarks and gluons.
The chromoelectric dipole moment (CDM) C, of a quark is defined as:

Lo = —%CQQUW%T‘I(]G“W . (13)

The gluonic CDM (), is defined as:
1 a bp e _uvio
Ly = _gcgfachquu GSy€ . (14)

Exact calculation of the neutron EDM requires the full knowledge of its
wave function. We use the “naive” chiral quark model approximation [12],
which gives the following expression:

engAx

e
E,="ug, - B)+ 40, -c,) +
3 47

= Cy (15)

where 7; and Ax are the QCD correction factors and chiral symmetry break-
ing scale: n, ~ 1.53, n. = 1y = 3.4 [13|, Ax = 1.19 GeV [12]. For the light
quark masses we use mgq(Ax) = 10 MeV, m,(Ax) =7 MeV [14].

Eq. (15) contains sizeable theoretical uncertainties due to non-perturba-
tive strong interactions. However, as we show in the next section, for most
parameter choices Ey alone gives the leading contribution to the neutron
EDM. Therefore, one may hope that those uncertainties affect mainly the
overall normalization of the neutron EDM'. They do not affect significantly
the possible cancellations between the phases (or in their coefficients), as long
as such cancellations must occur predominantly inside the E;. At present
the limits on the phases given by the electron EDM are more precise and
better established.

It was recently pointed out [15] that 2-loop contributions to the neutron
EDM may be numerically significant, especially for large tan 8 regime. Un-
like most of the terms in Eq. (15), they depend mainly on the masses and
mixing parameters of the third generation of squarks. Therefore, they are

1 Any theoretical calculation of the overall normalization of the neutron EDM should
be considered as a qualitative one - QCD correction may even change the sign of the
factor multiplying F4 (see discussion in [8]).
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especially important in the case of the third generation of squarks signifi-
cantly lighter than the first two generation, so that the 1-loop contributions
are suppressed. We do not include such corrections in the present analysis.

The explicit exact and mass insertion formulae for the up- and down
quark electric and chromoelectric dipole moments, the gluonic chromoelec-
tric dipole moment are given in Ref. [8].

3.2. Limits on phases

The neutron EDM depends on more phases than the electron EDM. All
electric and chromoelectric dipole moments depend on the common p phase,
but some of them are proportional to utan 8 and others to u cot 3, hence the
limit on p phase does not scale simply like 1/tan 5. In addition, the quark
moments depend on the phases of the two LR mixing parameters of the first
generation of squarks, Az and A,. The gluonic CDM depends mainly on
the parameters of the 3rd generation of squarks, mr and A;. In practice,
the analysis of the dependence of the neutron EDM on SUSY parameters
appears less complicated than suggested by the above list, as some of the
parameters have small numerical importance.

The number of free parameters can be reduced by assuming GUT unifi-
cation with universal boundary conditions. Such a variant was thoroughly
discussed in [6], so we do not repeat the full RGE analysis here. However
its results can be qualitatively read also from the figures presented in this
Section with the use of the following observations:

(i) The neutron EDM is sensitive mostly to the masses of the first gen-
eration of squarks. Assuming universal sfermion masses at the GUT
scale one can to a good approximation keep them degenerate also at
M scale. The remnant of the GUT evolution is their relation to the

2~ ~ m3 + 10| Ms|?,

: 2 2 2 2
gaugino masses: mq & mp X my & mi + 6.5M1/2

which leads to the relation mg ~ my =~ mp > 3Ms.
(ii) The p phase does not run. It is a free parameter anyway.

(i4i) The imaginary parts of the first generation A parameters, ImA, and
ImA,, do not run, apart from the small corrections proportional to
the Yukawa couplings of light fermions. Real parts of A, and A4 run
approximately in the same way. Hence universal boundary conditions
at the GUT scale lead simply to ¢4, = ¢4, at the My scale.

(iv) RGE running suppresses the A; phase (present in the CDM of gluons
Cy). Therefore, the low energy constraints are easy to satisfy even
with large ¢4, at the GUT scale. The limits on ¢4, at the electroweak
scale appear themselves to be rather weak.
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v) With universal gaugino masses and phases, M /a1 = My /as = M3/ as,
the common gaugino phase can be completely rotated away.

Using (i)-(v) one can use our plots for the universal GUT case, just assuming
common A phase, neglecting ¢4, and looking at the part of plots for which
mg > 3Ms. Again, in all figures of this Section we keep GUT related
gaugino masses and degenerate squark mass parameters Mg = Mp = My,
so that the physical masses differ by D-terms only. We plot the results in
terms of the physical mass of the D-squark mp.
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Fig.9. Regions for which generic limits on |sin¢,|tan 3 given by neutron EDM
are stronger then 0.05.

We consider first the limits on the p phase, neglecting the possibility of
1 — A cancellations. In Fig. 9 we show where the generic limits for the p
phase given by the neutron EDM are strong. We plot there the area where
the limit on |sin ¢,|tan 8 given separately by the chargino, neutralino and
gluino contributions to Ey and by the other contribution present in Eq.(15)
summed up is stronger then 0.05. For small |u|, |Ms|, squark masses mg ~
mp ~ my > 750 GeV are required to avoid the assumed limit.

The dominant contributions to the coefficient multiplying sin ¢, come
from the first term of Eq. (15), i.e. from the d-quark EDM. The only excep-
tion is large || and light gauginos case, where also Cy becomes comparable
to the other term. Both Ey, C; are proportional to ptan 8 so the y phase
coefficient again scales approximately as tan 8. The largest contributions
to u phase coefficient are given by the chargino and gluino (for small and
large |p|, respectively) diagrams. They have the same sign, so, like in the
electron case, the total p phase coefficient may disappear only if one allows
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Fig. 10. Limits on |sin ¢, |tan 8 given by the neutron EDM measurements. ¢4, =
da, = da, = 0 assumed.
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Fig.11.  Coefficients of sin¢,tanf, |Aq|/mpsinga,, |Ay|/musinga, and
|Ai|/mrsingya, terms in the neutron EDM (solid, dashed, dotted and dashed-
dotted lines respectively).

the non-universal gaugino phases. The limits on |sin¢,|tan 8 on mp —|Mj|
plane are plotted in Fig. 10.

Some differences with the electron case may be observed in the structure
of possible p — A cancellations. For E, the term proportional to A, orig-
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Fig.12. Regions of mp — |M;| plane allowed by the neutron EDM measurement
assuming ¢, = ¢4, = ¢4, = 7/2, A, = 0 and various values of Ag/mp = A,/mu
(marked on the plots).

inates from the neutralino exchange diagram. For the neutron, additional
contributions proportional to A,,, A4 and A; are given by the diagrams with
gluino exchange and they have larger magnitude than those induced by neu-
tralino loops, as illustrated in Fig. 11 (this effect is particularly strong for
large |p| and light gauginos). This means that constraints on the A; phases
are somewhat stronger than in the electron case but, on the other hand,
smaller Ay values are necessary for cancellations. For small |u] ~ 100 GeV
one needs A./mpr > 14 but only Ay/mp ~ Ay/my > 3. Furthermore, in
unconstrained MSSM we have bigger freedom because of several different
Aj parameters present in the formulae for F,. Therefore, one has to take
into account all A; phases. In Fig. 12 we plot the regions of mp — | M|
plane allowed by the neutron EDM measurement assuming “maximal” CP
violation ¢, = ¢4, = ¢4, = 7/2 and various values of A, /my = Aq/mp.

The overall conclusion is that eventual cancellations in neutron EDM are
more likely than in the electron case. They require somewhat smaller values
of A parameters when one considers ;4 — A phases cancellations. Assuming
non-universal A; parameters it is possible to suppress simultaneously both
E. and E,, values below the experimental constraints, at the cost of rather
strong fine-tuning if the SUSY mass parameters are light.
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4. p phase dependence of e , Amp and b — sv

Analyzing the dependence of K°K° and BB mixing on the SUSY phases,
we assume again that there is no flavour violation in the squark mass ma-
trices, so that only chargino and charged Higgs contributions to the matrix
element do not vanish. Furthermore, only chargino exchange contribution
depends on the i, Ms and A phases and is interesting for our analysis. We
consider the simplest case |u|,|M3| > 2M . In this case we can expand the
matrix element in the mass insertion approximation:

2 11
(Moo ~ (K'YZK) [gDz(luF, [l miy, miy)

+ M3 Re [(1* cos B + Moy sin B) (ucos 4+ A% sin B)]
9 D2(|:u‘|2a|:u‘|27m2Uam(2]) _D2(|,U|2a|M2|2am2U7m2U)
omy, |ul? — | Ma? ’

(16)

where one should put I = 2,J = 1 for K°K° mixing, I = 3,J = 1 for
ByBg mixing and I = 3,J = 2 for B;B; mixing (see [8] for the expression
for loop function Ds). ex and Amp are proportional, respectively, to the
imaginary and real part of the matrix element. One can see immediately
from the equation above that in the leading order it is sensitive only to |u|
and to the real parts of the Mou, A, and My A} products, i.e. to cosines
of the appropriate phase combinations, not sins like the EDM’s. Eventual
effects of the phases can be thus visible only for large phase values. Even
then, they are suppressed by the small numerical coefficient multiplying
them. An example of the e dependence on the y and A,, phases is presented
in Fig. 13. As can be seen from the Figure, even for light SUSY particle
masses the change of the e value with variation of u and A phases is smaller
than 5%.

In contrast to exg and Amp, b — sy decay appears to depend strongly
on the p (see Fig. 14) and A; phases. The branching ratio Br(B — X,v)
depends, like in the e case, on the real parts of the y and A; parameters, i.e.
on cosines of the phases. However, contrary to the ex case, this dependence
is quite strong and growing with increase of tan 8 and of the stop LR-mixing
A; parameter. Also, as follows from the discussion in the previous Section,
the limits on A; phase are rather weak, independently on tan 3, so one can
expect large effects of this phase in Br(B — X,v) decay.
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5. KM phase determination in MSSM

Because of the weak dependence of ex and Amp on flavour conserving
supersymmetric CP phases, the determination of the KM matrix phase dxm
is basically unaffected by their eventual presence. However, even assuming
no supersymmetric sources of CP violation at all, MSSM predictions for
K°K° and BB mixing are different from the SM one because the potentially
significant contribution to CP violating transitions may come [16] from the
(charged Higgs)-top and Chargino stop loops with Yukawa couplings and KM
angles and phase in the vertices?. Since, in addition, several arguments based
on GUT theories suggest that charglnos and 3rd generation of sfermions may
be among the lightest superpartners, it is interesting to discuss in more detail
their impact on CP violation in SUSY models.

The present section is devoted to discussing such a scenario. The only
extra MSSM contributions to the CP violating processes we consider are the
(charged Higgs)-top and chargino-stop loops. Our results depend then on
(apart from the SM parameters) tan 3, physical masses of the lighter and
heavier stop (my, and my, , respectively), their mixing angle 61, chargino
mass and mixing parameters - lightest chargino mass m, and the ratio

Ms/p and on the charged Higgs boson mass m g+ .
In the considered approach to the MSSM, Amp, and ek read as [19]:

2 2

Ot m
Amp, = Uanmf%dBBded|KtbKt*d|2|A|a (17)
\/_aemm
= —“" ° _f°B TmS) 18
lek| 85’ Oy MY, fi KA " 1zma), (18)
where
m2 mQ
0 = K. K et (Ko K5 K —c 1
7ICC( cs c) + 77ct( esBheqtits )f<MI%V’MI%V>
2
K K52 LA 19
+ nu(Kis Kig) 2 (19)

c

The charged Higgs and the chargino boxes enter, together with the SM
terms, only into the quantity A in the above equations (SM loops only give
Agn = 0.53). The QCD correction factors 1, and ngcp are given in [20].

% Chargino-shottom loops could be important in D°D° mixing in large tan 3 scenario.
We do not consider here this possibility.
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The KM elements appearing in Eqs. (17)-(19) can be conveniently ex-
pressed in terms of the Wolfenstein parameters A\, A, p and 7 [21]

-4 A AN (p — in) \
K~ —X—iA2Nn 1-2 +i0(\5) AN +O(X), (20)
AN (1 —p—in) —AXN —iA)\y 1

where A = 0.22 is known from semileptonic kaon and hyperon decays.

The theoretical predictions for ex and Amp, have some uncertainty
due to non-perturbative parameters By, f}_%dBB , which are known from
lattice calculations, but not very precisely. Moreover, the KM element
Kiqg = AX3(1 — p — in) which appears in Eqs. (17)—(19) is not directly mea-
sured. Its SM value fitted to the observables in Eqs. (17)-(18) can change
after inclusion of new contributions. Thus, the correct approach is to fit
the parameters A, p, n and A in a model independent way to the experi-
mental values of ex and Amp, [19]. The quantities |Kq| and |Kyp/ K
are known from tree level processes. They are practically unaffected by new
physics which contributes only at one and more loops.

Here, we give the results of such a fit, with Bg and f%dB B, varied in a

the following ranges: [18]: 0.6 < Bg < 0.9 and 0.160 GeV < 1/f}_2?dBBd <
0.240 GeV. In our fit, we use the following experimental results [18]:

|Ke| = 0.039 +0.002, (21
|Kup/ K] = 0.08 £0.02, (22
lex| = (2.26 £0.02) 1073, (23
Amp, = (3.01£0.13)107" GeV. (24

— — ~— ~—

Scanning over allowed range for By and fg,(Bg,)'/?, gives the “abso-

lute” bounds® on A. Such bounds are not very tight. After including lo
errors on A, they are roughly

025 A520. (25)

In Fig. 15, we plot the allowed ranges of p and 7 for several fixed val-
ues of A = %ASM,ASM,2A5M,3A5M and changing By, de(BBd)l/2 in
the ranges specified above. The allowed half-ring visible in the plots of
Fig. 15 originates from |K,;/ K| given in Eq. (22). The measurement of
Amp, allows another ring in the (p,n) plane. Its interesting part is approx-
imately parallel to the n axis and moves towards larger p when A increases.

3 We assume that A is real. This is true in the SM and in the considered approach to
the MSSM. However, in a general MSSM, A could develop a sizable imaginary part.



3398 J. ROSIEK
e 05 =w77] O A TR
0.4} { 0.4f -
0.3 1 o03f ;
0.2] 1 o2} ;
0.1} 1 o1f -
2050250 02505 2050250 0.250.
905;”‘“W”“9g¢O5;“”“W”eﬁ&¢
0.4} 1 0.4f :
0.3} é 0.3} ;
02§ é 0.2} ;
on? Wl o .

9950550 02505

0

—05—0250 02505

0

Fig.15. Allowed regions in the (p,n) plane for four values of A: (A) - allowed by
ek, (B) - allowed by Amp,, (C) - allowed by ex and Amgp,.

The range bounded by ek is approximately parallel to the p axis. It moves
towards smaller 1 with increasing A. Taking both effects into account, we
can see that small A prefers negative p and large n, A ~ Agys gives the
biggest allowed range for p and 1 with both p < 0 and p > 0 possible,
whereas larger A > 1 requires positive p and smaller 7.

Theoretical analysis shows that in considered here scenario the values of
A in the MSSM are always bigger than in the SM, i.e. the new contributions
to A from the Higgs and chargino sectors have the same sign as Agas.
The charged Higgs contribution increases A by at most about 0.15 for light
mpg+ = 100. The value of the chargino-stop contribution to A depends
strongly on the ratio Ma/u. For small values of |My/p|, when the lighter
chargino is predominantly gaugino, it is very small (of order 10-2). It grows
with increasing |Ms/p|, when lighter chargino consists predominantly of
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Higgsino, up to 0.5 — 0.7 for some parameter choices. In general, MSSM
predicts A in the range 0.5 — 1.5. Comparing with the experimental fit to
A illustrated in Fig. 15, one can see that even in the complete absence of
genuinely supersymmetric sources of CP violation, MSSM may give for the
KM phase dxnr significantly different from the SM one.

6. Conclusions

We have reanalyzed the constraints on the phases of flavour conserving
supersymmetric couplings that follow from the electron and neutron EDM
measurements. We find that the constraints on the phases (particularly on
the phase of p) are generically strong ¢ < 1072 if all relevant supersym-
metric masses are light, say < O(500 GeV). However, we also find that the
constraints disappear or are substantially relaxed if just one of those masses,
e.g. slepton mass, is large, mg > O(1 TeV). Thus, the phases can be large
even if some masses, e.g. the chargino masses, are small.

In the parameter range where the constraints are generically strong, there
exist fine-tuned regions where cancellations between different contributions
to the EDM can occur even for large phases. However, such cancellations
have no obvious underlying symmetry principle. From the low energy point
of view they look purely accidental and require not only 1 — A, p— Mgaugino
or M — M> phase adjustment but also strongly correlated with the phases
and among themselves values of soft mass parameters. Therefore, with all
soft masses, say < O(1 TeV), models with small phases look like the easi-
est solution to the experimental EDM constraints. This conclusion becomes
stronger the higher is the value of tan 3, as the constraints on u phase scale
as 1/tan . Nevertheless, since the notion of fine tuning is not precise,
particularly from the point of view of GUT models, it is not totally incon-
ceivable that the rationale for large cancellations exists in the large energy
scale physics. Therefore all experimental bounds on the supersymmetric pa-
rameters, and particularly on the Higgs boson masses [17], should include
the possibility of large phases even if with large cancellations, to claim full
model independence.

The dependence of ex and Amp on the supersymmetric phases is weak
and gives no clue about their values. The dkxyr determination remains essen-
tially unaffected by the presence of SUSY phases but its value may change
significantly (comparing to value fitted in SM) due to new charged Higgs
and chargino contributions, depending on the real masses and mixing pa-
rameters. Large effects of SUSY phases may be observed in b — s decay,
but, apart from the ¢, and ¢4, phases, b — sy amplitude depends on many
free mass parameters, so it does not produce limits on the phases alone.



3400 J. ROSIEK

REFERENCES

[1] E. Commins et al., Phys. Rev. A50, 2960 (1994); K. Abdullah et al., Phys.
Rev. Lett. 65, 234 (1990).

[2] P. G. Harris et al., Phys. Rev. Lett. 82, 904 (1999).

[3] J. Ellis, S. Ferrara, D.V. Nanopoulos, Phys. Lett. 114B, 231 (1982); W. Buch-
miiller, D. Wyler, Phys. Lett. 121B, 321 (1983); J. Polchinski, M.B. Wise Phys.
Lett. 125B, 393 (1983).

[4] P. Nath, Phys. Rev. Lett. 66, 2565 (1991); Y. Kizuruki, N. Oshimo, Phys.
Rev. D45, 1806 (1992); Phys. Rev. D46, 3025 (1992); R. Garisto, Nucl. Phys.
B419, 279 (1994).

[5] T. Falk, K.A. Olive Phys. Lett. B439, 71 (1998); Phys. Lett. B375, 196 (1996).

[6] T.Ibrahim, P. Nath, Phys. Lett. B418, 98 (1998); Phys. Rev. D57, 478 (1998);
Phys. Rev. D58, 111301 (1998); A. Bartl et al., hep-ph/9903402.

[7] M. Brhlik, G.J. Good, G.L. Kane, Phys. Rev. D59,115004 (1999).

[8] S. Pokorski, J. Rosiek, C. Savoy, hep-ph/9906206.

[9] M. Dugan, B. Grinstein, L. Hall, Nucl. Phys. B255, 413 (1985).
[10] J. Rosiek, Phys. Rev. D41, 3464 (1990), erratum hep-ph/9511250.

[11] F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, Nucl. Phys. B477, 321
(1996).

[12] A. Manohar, H. Georgi, Nucl. Phys. B234, 189 (1984).

[13] R. Arnowitt, J. Lopez, D.V. Nanopoulos Phys. Rev. D42, 2423 (1990); R.
Arnowitt, M. Duff, K. Stelle, Phys. Rev. D43, 3085 (1991).

[14] S. Weinberg, Phys.Rev. Lett. 63, 2333 (1989); E. Braaten, C.S. Li, T.C. Yuan,
Phys.Rev. Lett. 64, 1709 (1990).

[15] D. Chang, W.Y. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999).

[16] M. Misiak, J. Rosiek, S. Pokorski, hep-ph/9703442, published in A. Buras,
M. Lindner (eds.), Heavy flavours II, pp. 795-828, World Scientific Co.

[17] A. Pilaftsis, C.E. Wagner, hep-ph/9902371.
[18] A.J. Buras, hep-ph/9610461 and references therein.
[19] A. Brignole, F. Feruglio, F. Zwirner, Z. Phys. C71, 679 (1996).

[20] A.J. Buras, M Jamin and P.H. Weisz, Nucl. Phys. B347, 491 (1990); S. Her-
rlich, U. Nierste, Nucl. Phys. B419, 292 (1994), Phys. Rev. D52, 6505 (1995).

[21] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).



