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OLD AND NEW TRICKS IN RELATIVISTICTWO-BODY EQUATIONS�Hartmut PilkuhnInstitut für Theoretishe Teilhenphysik, Universität KarlsruheD-76128 Karlsruhe, Germany(Reeived Otober 22, 1999)A brief review of relativisti two-body equations in QED and their non-relativisti redutions is presented, beginning with the atomi Dira�Breitequation. The emphasis is on lepton-antilepton bound states (leptonium),with a look at possible extensions to quarkonium.PACS numbers: 03.65.Pm, 11.30.Er1. IntrodutionTheorists working on QCD tend to prefer heavier quarkonia over lighterones, not only beause of smaller on�ning potential e�ets, but also be-ause of the approximate validity of the nonrelativisti two-body Shrödingerequation. The latter point may be unessential, however, in view of the quan-titative suesses of relativisti alulations for QED bound states. Modernatomi theory is largely based on the n-eletron Dira�Breit equation, inwhih the binding arises from a nuleus of harge Ze. As Z an reah 100and e2 = � = 1=137 (~ =  = 1), the e�etive expansion parameter Z� anget lose to 1, where nonrelativisti expansions break down.As partile theorists we are more interested in simpler systems suh asatomi hydrogen or �leptonium� (essentially e�e+ and e��+), where an ex-ternal nulear Coulomb potential is absent, and the total leptonium momen-tum is onserved, (p1 + p2) =K ; pi = �ri : (1.1)Relativisti e�ets are small here but have been alulated and veri�ed ex-perimentally to reasonably high orders of �. In the hyper�ne struture� Presented at the XXIII International Shool of Theoretial Physis�Reent Developments in Theory of Fundamental Interations�, Ustro«, Poland,September 15�22, 1999. (3429)



3430 H. Pilkuhnof muonium, the leading term of order �8 is already experimentally rele-vant [17℄. The orresponding QCD hyper�ne struture is partiularly inter-esting, beause it is surprisingly large in light quarkonium.The new triks in the seond half of this leture require a symmetritreatment of the two fermions. Atomi hydrogen is presently exluded; theproton's large anomalous magneti moment requires a speial �anomalousDira equation�, whih is mentioned in many textbooks.Whereas the alulation of relativisti two-body e�ets has enjoyedsteady progress over the past 70 years, the use of relativisti two-fermionequations has had several drasti osillations. One year after Dira pub-lished his relativisti one-eletron equation, Breit [4℄ published his equationfor two relativisti eletrons in the presene of the nulear Coulomb poten-tial. Breit hoped that his eletron�eletron operator would be exat, butalready next year [5℄ he found that it gave too large e�ets in seond-orderperturbation theory. This defet was largely eliminated by the inlusion of�positive-energy projetors�, whih aount for the fat that the negative-energy solutions of the Dira equation turn into antieletrons (positrons) ofpositive energies upon seond quantization. An early aount of the argu-ments is found in the standard book of Bethe and Salpeter [2℄. The problemsreated by the negative-energy states in higher-order perturbation theorywere �rst pointed out by Brown [6℄ and went under the name �Brown's dis-ease�. Suher [22℄ emphasized the �ontinuum dissolution�, whih is ausedalready by the Coulomb repulsion between the two eletrons: One ele-tron is exited into the positive-energy ontinuum, the other falls into thenegative-energy ontinuum, without any hange in the sum of the two en-ergies. An exat form of the required projetors exists only for produts ofsingle-partile orbitals, where the eletroni Coulomb repulsion is negleted.A good starting point for suh ases is the �Furry piture� of QED, whih isQED in an external stati potential [12℄.But relativisti e�ets are normally small even in atomi physis. Fortwo eletrons, the 4 � 4 = 16-omponent wavefuntion  of Dira�Breitmay then be redued to a 2 � 2 = 4-omponent Shrödinger wavefuntion Sh, on whih an e�etive Hamiltonian He� ats. Instead of the Diramatries , it ontains only the Pauli matries �1 and �2 of the two eletrons.For a single eletron, the redution was written down by Pauli and thenmore systematially by Foldy and Wouthuysen [11℄. For two fermions ofarbitrary masses, it was done by Chraplyvy [8℄. For example, the Dirakineti energies �ipi (see below) beome p2i =2mi + p4i =8m3i to order �4 inHe� , and the ommutator between �ipi and the external Coulomb potentialsVei = �Z�=ri produes the famous spin�orbit potentials,VLSi = dVeidri �iLi4rim2i : (1.2)



Old and New Triks in Relativisti Two-Body Equations 3431Important for leptonium is the nonrelativisti redution of the Breit opera-tor, beause in the absene of Vei (Z = 0), it is the only operator in additionto the Coulomb potential between the two leptons,V (r) = q1q2r ; r = r1 � r2 : (1.3)Among the redued Breit operators, there are again two spin�orbit opera-tors,VLS = �r3 ��1�r � p14m21 � r � p22m1m2�� �2�r � p24m22 � r � p12m1m2�� ; (1.4)and also a tensor operator whih mixes S-states with D-states. So at leastfor leptonium, the �rst fully relativisti approah ended in nonrelativistiredutions for both partiles.The seond fully relativisti approah was the Bethe�Salpeter (BS) equa-tion [1℄, an integral equation for the 16-omponent  . Its appliations inatomi physis were not important and are skipped here. For leptonium,the BS-equation is a ovariant integral equation in the variables r and�t = t1 � t2. Its laim of exatness was disproved by Wik [23℄ , whodisovered unphysial exited states in �t in addition to the physial ra-dial exitations (whih have nodes in the radial wavefuntion R(r)). TheBS-equation is normally solved in momentum spae, where the variable or-responding to �t is the energy transfer q0 = K01 �K01 0 = �K02 +K02 0 (thetotal energy is onserved, K0 = K01 +K02 = K01 0+K02 0). The �t-exitationsdisappear when the kernel K of the integral equation is divided into anunperturbed Coulomb kernel KV and various perturbations ÆK. The q0-integration must be done expliitly for KV in the ms, where the system'stotal momentum K (1.1) vanishes. The q0-integration of ÆK must be donein a perturbative series. The value of K0 in the ms will be alled E; it issimply the leptonium mass:K�ms = (K0;K)ms = (E;0); p1 = �p2 � p: (1.5)Thus the ovariane of the BS-equation is deeiving: The equation mustbe solved in the ms (1.5) and may then be Lorentz transformed to othervalues of K�. In pratie of ourse, the same proedure is applied to theShrödinger equation. In the ms, the kineti energy operators to order �2ombine into p212m1 + p222m2 = p22�nr ; �nr = m1m2(m1 +m2) : (1.6)



3432 H. PilkuhnThe eigenvalues of He� Sh = E Sh to order �2 in the ms are the familiarEn = m1 +m2 � �2�nr2n2 : (1.7)They may then be Galilei transformed to a lab system with K 6= 0. Theessential property of the ms for the BS-equation is the vanishing of q0 for themass-shell partiles, whih enter the �rst Born approximation for K: Thefator (q�q�)�1 = (q02 � q2)�1 in the photon propagator is then reduedto (�q2)�1; it is independent of the integration variable q0. In oordinatespae, ��=q2 provides the Coulomb potential V (r).An important two-photon exhange ontribution to ÆK gives the so alledSalpeter shift, whih is of the order �5=� and vanishes in the stati limitm1 � m2. Calulations with the BS equation ontain unexplained anel-lations between di�erent operators ÆK, beginning at the order �4. A fairlyreent review of the appliation of the BS-equation to leptonium is given bySapirstein and Yennie [21℄.Sooner or later in BS-alulations, a nonrelativisti expansion is usedfor at least one of the two partiles. Beyond a ertain order of �, onesets, for m2 > m1, (E2 + m2)�1 � (2m2)�1, implying that E2 is nearm2. This approximation is partiularly useful for atomi hydrogen, withm2=m1 � 2000. Groth and Yennie [13℄ found that this ase ould betreated more easily by an extension of the Dira equation, of the form(H1D +H2;nr) 1D = E1 1D; E1 = E �m2; (1.8)where H1D is the one-eletron Dira operator. H2;nr is approximatelyp2=2m2, better forms are given below. Braun [3℄ found a form for H2;nrthat gives all orretions of order m21=m2 to the Dira equation, inlud-ing the orretions to the radiative orretions (in the ase of the Salpetershift, the exat mass dependene had already been alulated from the BSequation). For positronium, however, the Braun method is insu�ient. Es-sential progress here ame from Caswell and Lepage [7℄ , who pushed thealulation of He� for  Sh to the order �6. There method is nowadaysalled nonrelativisti quantum eletrodynamis (NRQED). It was extendedby Pahuki [19℄ to the unequal mass ase. In this manner, also the seondfully relativisti approah ended in nonrelativisti redutions for both par-tiles. But for m2 > m1, one may still use (1.8) for the highest orders in �,say �7 and �8.Several other fully relativisti methods have been proposed whih repro-due the known results to order �4, but whih are unable to alulate higherorders. Among these, the �onstraint Hamiltonian� method may be men-tioned, whih was originally proposed by Dira and elaborated by Crater



Old and New Triks in Relativisti Two-Body Equations 3433and Van Alstine [9℄. It uses two di�erent equations at two di�erent timesfor one wavefuntion  (x�1 ; x�2 ), whih exlude the exitations in �t foundby Wik for the BS-equation.The new triks promised in this leture refer to a fairly reent fully rel-ativisti two-fermion equation [14℄. For the nS-states, it has been evaluatedto the order �8 [15℄. At the order �6, it misses a hyper�ne operator whihwas found by Pahuki from the exhange of three photons, and whih hasnot yet been alulated by the new equation. The equation is analogousto Dira�Breit in its di�erential form and to BS in its integral form. Itsessential point is that the QED interation is inluded only after the freeequation has been redued from 16 to 8 omponents.2. The old triksIn our units ~ =  = 1, the Dira equation is (for q = �e)(iD�� �m) = 0; D� = �� � ieA� : (2.1)An external potential V is part of A0. Multipliation of (2.1) by 0 produesthe Hamiltonian form, i�0 = HD ; where ieA0 is now inluded in the DiraHamiltonian HD. For two partiles of masses mi one needsHD;i = mi0i + Vi(ri) + pi0i i : (2.2)Dira needed only 0i i whih he alled �i, and 0i whih he alled �i (the-matries ame later and had to use the third letter in the alphabet). Weshall use yet another nomenlature, alling0i i = �i = 5i �i : (2.3)This will be neessary in order to deouple the algebra of the two sets ofPauli matries, �1 and �2, from the two sets of �proper� Dira matries,01 ; 02 ; 51 ; 52 . The Pauli matries at only on spin omponents; they do notdistinguish between the upper and lower Dira omponents (or equivalentlybetween the right- and left-handed Weyl or �hirality� omponents); the�proper� Dira matries do not at on spin omponents, they will be usedhere in the Weyl basis, where the 5i are diagonal:5i = � 1 00 �1 �i ; 0i = � 0 11 0 �i : (2.4)In this sense, all our matries are 2 � 2, whih is also typographially on-venient. The Dira�Breit equation has the formHDB = E ; HDB = HD1 +HD2 + V (r) +HB ; (2.5)



3434 H. Pilkuhnwith HB given below. As  has 16 omponents, every term of HDB is stritlya 16 � 16-matrix, inluding the Coulomb potential V (r). For example, theoperator �1�2 is written mathematially orret as�1�2 = 51 
 52 
 �1 
 �2: (2.6)Physiists normally suppress 
 symbols and unit matries. With these on-ventions, the Breit operator readsHB = �12V 5152(�1�2 + �1r�2r); �ir = �ir=r: (2.7)Breit found it by postulating that its expetation values should be identialwith the energy shifts obtained in seond-order perturbation theory fromthe vauum expetation values of the vetor �eld operators A1 and A2whih our in D1 and D2 in (2.1). This explains the absene of theseoperators in (2.5). The Lambshift has a similar origin, but is not easilyreplaed by an equivalent �rst-order operator. Breit used instead of theWeyl basis Dira's �low-energy� basis, in whih the two matries of (2.4) aresimply exhanged. This basis is also alled the parity basis beause it hat0i (whih is part of the parity operator) diagonal. 5i is o�-diagonal then,it onnets the upper, large omponents with the lower, small ones. Forpositive-energy states, the relevant matrix elements are small; 5i �i may beviewed as veloity operators. However, 51 and 52 also have large matrixelements, whih ensure (5i )2 = 1. In seond-order perturbation theory forHB, the 5i disappear, and the resulting energy shift is muh too large. Thislarge ontribution is eliminated by the positive-energy projetors mentionedbefore.The nonrelativisti redutions of Pauli, Foldy and Wouthuysen assumepositive-energy states in their derivations. Projetors are then unneessary.On the other hand, the resulting operators are so singular at r = 0, thatthey annot be used beyond �rst-order perturbation theory: r�3 in VLS , andÆ(r), for example in the Fermi ontat hyper�ne interation:HF = 83 ���1�2Æ(r)m1m2 : (2.8)In NRQED, these operators are onsistently regularized, suh that also theirsquares and produts exist. The �nal results ontain only ertain ombina-tions in whih the divergenes anel out. For the alulation of leptoniumlevels to the order �6, Pahuki [19℄ usedV = �(�=r) lim�!1(1� e��m�r); (2.9)suh that V (r ! 0) = ��2�m for �nite �. Correspondingly, the ombi-nation 4�Æ(r) in (2.8) is replaed by r2V: A more elegant method is the



Old and New Triks in Relativisti Two-Body Equations 3435dimensional regularization [10℄. The origin of the anellations is of ourse aless singular struture of the relativisti operators, but these are not alwaysknown.The Bethe�Salpeter equation will be disussed only brie�y: It is a four-dimensional integral equation for the four-point funtion of fermion-fermionsattering: G = S + Z d4qSKG; (2.10)where S is the produt of two free fermion propagators:S = (=p1 �m1)�1(=p2 �m2)�1; =pi = pi;��i ; (2.11)and K is the kernel. Despite the elegant notation, the q0 integration mustbe performed in the ms, as explained in the Introdution. Moreover, S is a4� 4� 4� 4 matrix, and K is orrespondingly large. This is onneted withthe anellations mentioned in the Introdution. There exists an equivalent8 � 8-omponent version whih should be free from anellations [14℄. Theorresponding di�erential equation is disussed in the next setion.When one of the two fermions is nonrelativisti, the problem is equallywell treated by di�erential equations. The total Hamiltonian is taken asthe sum of the relativisti eletron Hamiltonian H1D and the nonrelativistiH2;nr as in (1.8). For a spinless partile 2, one has [13℄H2;nr = p222m2 +H 0B; H 0B = �12V 51�1 �p2 + rp2rr �m2 ; (2.12)with p2r = �i�=�r2. This form is obtained from (2.7) by replaing the�relativisti veloity� operator 52�2 by the nonrelativisti veloity v2 =p2=m2, whih is �p=m2 in the ms. The ombination of a relativisti formwith a nonrelativisti one is only tested to �rst order in 1=m2. It is probablynot possible to just add orretions suh as p42=8m32. A more preise form ofH2;nr is [3℄ H2;nr = (p2 � eA(r2))22m2 : (2.13)It produes all �rst-order reoil orretions to the Dira energy levels, in-luding the Salpeter shift and the reoil orretions to the radiative orre-tions [20℄. 3. The new triksNonrelativistially, the ms p1 = �p2 � p allows one to ombine the twokineti energies p21=2m1 and p22=2m2 into an e�etive single-partile kineti



3436 H. Pilkuhnenergy, p2=2�nr. This is extended to the relativisti ase by two new triks.The 16-omponent, free-partile version of (2.5) for p2 = �p is[E �m101 �m202 � p(51�1 � 52�2)℄ (16)0 = 0 : (3.1)The operator 52p�2 is ompletely eliminated by these triks. In the �rstplae,  (16)0 is divided into two hiral otets, 0 = �  rr ll � ; �0 = �  rl lr � ; (3.2)in whih the �rst hirality index (r=righthanded, l=lefthanded) refers topartile 1, the other to partile 2. We all 51 � 5 and �nd in the hiralbasis (2.4) 52 0 = 5 0; 52�0 = �5�0: (3.3)The matrix 0102 whih exhanges r1 with l1 and r2 with l2 will be alled �:� = 0102 = � 0 11 0 � : (3.4)When ating on the upper and lower hirality omponents of  0 and �0, itis only a 2� 2 matrix, just as 5. The matrix 02 exhanges only the seondindex, it thus exhanges  0 with �0. Finally, 01 is evaluated as �02 . We alsointrodue abbreviations for the sum and di�erene of the two Pauli matries:� = �1 + �2; �� = �1 � �2: (3.5)With all these abbreviations, the deomposition of (3.1) into two separateequations for  0 and �0 remains reasonably ompat:(E� 5p��) 0 = (m2+�m1)�0; (E� 5p�)�0 = (m2+�m1) 0: (3.6)Elimination of �0 gives the equation for  0:(E � 5p�)(m2 + �m1)�1(E � 5p��) 0 = (m2 + �m1) 0: (3.7)Its seond-order derivatives vanish, (p�)(p��) = (p�1)2�(p�2)2 = 0. Theremainder gives[(m2 +�m1)�1(E2 �E5p��)�E5p�(m2 + �m1)�1 � (m2 + �m1)℄ 0 = 0 : (3.8)The 16 oupled �rst-order di�erential equations are now redued to 8 oupled�rst-order di�erential equations.



Old and New Triks in Relativisti Two-Body Equations 3437The seond trik was originally introdued to remove the denominators(m2+�m1) from (3.8). Multipliation by (m2+�m1) from the left alone doesnot remove the denominator of the term in the middle: The antiommutator�5 = �5� (3.9)transforms this term into �E5p�m2 � �m1m2 + �m1 : (3.10)The quotient is removed by a somewhat intriate transformation of  0, 0 =  ;  = (m22 �m21)�1=2[m2 + �m1 12 (1 + �1�2)℄ : (3.11)In addition, (3.8) is multiplied by 1= from the left. One has �15 = 5and �� = ��; � = �m2 + �m1m2 � �m1 ; (3.12)whih anels the quotient of (3.10). To understand , one must know that12(1 + �1�2) has the eigenvalue +1 for triplet spin states and �1 for thesinglet spin state. All three matries � vanish when applied to the singletstate, while the �� transform the singlet state into triplet states.After the transformation (3.11), p� and p�� appear in the ombinationp� + p�� = 2p�1. Noting moreover(m2 + �m1)2 = m21 +m22 + 2m1m2�; (3.13)the �nal version of (3.8) is(E2 � 25Ep�1 �m21 �m22 � 2m1m2�) = 0: (3.14)By a minor mirale, p�2 has been removed by  that was onstruted toremove the brakets of (3.10).The remainder has the form of an e�etive Dira equation. To see thismore learly, (3.14) may be divided by 2E. With the de�nitions of a reduedmass � and a redued energy ",� = m1m2E ; " = E2 �m21 �m222E ; (3.15)one gets ("� 5p�1 � ��) = 0 : (3.16)



3438 H. PilkuhnThis looks familiar but ompliates the E-dependene. It is better to dividethe equation by 2m1m2, whih gives the Dira equation in units of �:� "� � 5p�1� � �� = 0; "� = E2 �m21 �m222m1m2 : (3.17)The third trik is a simple resaling of r,� = �r ; p� = p� : (3.18)Then E is eliminated in favour of E2 everywhere. The equation is nowinvariant under the transformation E ! �E, and we shall see below that theinvariane is not violated by the addition of the QED interation operator.The last new trik onerns the redution of the 16 � 16 T-matrix of QEDto an 8 � 8 form M . In terms of the free Dira spinors u1; u2 of the twoinoming fermions and u01; u02 for the outgoing ones, one hasTif = u01u02T̂ u1u2 : (3.19)The �rst Born approximation is the familiar T̂ = ��1 2;�=q2: The eight-omponent free-partile spinors of  0 and �0 analogous to ui are alled vand w, respetively. By using the free-partile equations (3.6), Tif may beredued to one of the two asymmetri formsTif = w0+Mv = v0+M�w : (3.20)The �rst form gives the interation in the  -equation, the other one theinteration in an equivalent equation for �. The interation potential itselfis essentially the Fourier transform of M . The omplete  -equation withthe potential from the �rst Born approximation T (1)if is� "� � V (�)� � � 5�1p� + i5(�1 � �2)V (�)p��E � = 0 : (3.21)The last operator is a reoil-orreted hyper�ne operator; in the originalvariable r, one has V (�)p��=E = V (r)p=�E. With �E = m1m2 aord-ing to (3.15), one reovers the mass dependene of the nonrelativisti limitHF (2.8) (the stati atomi hyper�ne operator ontains the nulear Bohrmagneton, whih would be e=2m2 in our notation. HF is already reoilorreted).



Old and New Triks in Relativisti Two-Body Equations 34394. Disussion and outlookBy the resaling trik (3.18), the new equation (3.21) has beome in-variant under the replaement E ! �E. This symmetry is shared by allrelativisti two-body equations inluding Dira�Breit; it is merely violatedby later approximations. Its physial basis is harge onjugation invariane.It would even survive the inlusion of C and P violating atomi interations;the physial basis would then be CP or even CPT . If the eigenvalue +Erefers to an atom suh as muonium (e��+), the eigenvalue �E refers tothe orresponding antiatom (antimuonium e+��). In partile theory, a �eldhas the operator struture ae�iEt + ay�eiEt, where a destroys a partile ofenergy E, and ay� reates an antipartile of the same energy. In priniplethen, one may introdue �elds for whole atoms. This is unlikely to be of anyuse, but in the analogous ase of QCD, it should be possible to ombine theequations for the inner struture of mesons with a meson �eld formalism.From the point of view of Feynman rules, antipartiles orrespond topartiles moving bakwards in time, with all additive quantum numbersreversed. One ould add that antiatoms also have negative distanes betweentheir onstituents: To �nd the spetrum of a di�erential equation, one mustspeify the range of its variables. For a spherially symmetri V (r), one has0 � r < 1. The relativisti formulation has 0 � � < 1. For E < 0, thisorresponds to the interval �1 < r � 0. With r = (x2 + y2 + z2)1=2 this isequivalent to a ontinuation on the other branh of the square root.A point of more pratial importane is the absene of anellations.When the interation is introdued at the 16-omponent level, E and thedominant Coulomb potential V (r) our linearly, in the ombination E �V (r). A redution to 8 omponents produes the square of this opera-tor, E2 � 2EV (r) + V 2(r). The seond Born approximation provides ad-ditional operators, the dominant one being �V (r)2. The net e�et is thusE2 � 2EV (r) = E2 � 2m1m2V (�). This agrees with the �rst-order inter-ation introdued at the 8-omponent level. Consequently, this interationis not only simpler than the 16-omponent version, but it also inludes thedominant operator of the seond-order potential of that version.The anellations our also in NRQED.How muh of this is appliable to QCD? At the level of NRQCD, thesituation is good, as mentioned in the introdution. Only the nonrelativistiredutions of Breit and hyper�ne operators are needed here. But is thereany hane of desribing the lighter pseudosalar mesons and their vetorpartners by a single di�erential equation? In the extreme ase of the � and� mesons, the hyper�ne operator would have to explain m2�=m2� � 30. The



3440 H. Pilkuhnfator �=E = m1m2=E2 in (3.21) of the hyper�ne operator does inreasefor dereasing E2, but its singularity for r ! 0 exludes a nonperturbativetreatment. In NRQED, a three-photon exhange orretion to the hyper�neoperator has been found by Pahuki [19℄, whih shows a possibility fora nonperturbative treatment: It may be inluded by substituting in thehyper�ne operator �E ! m1m2[E2 � 2m1m2�2 ln(�)℄�1; (4.1)with  = eC and C = 0:5772 =Euler's onstant.A still larger problem is posed by the formal use of S-matrix theory.In QCD, this theory requires the existene of free in- and outgoing quarkstates. The requirement is also present in the Bethe�Salpeter equation,where it leads to the free-quark-propagators (2.11). Is it possible to avoidthe onept of free quarks altogether? Again, the answer ould be yes.The derivation of the potential V (r) (r = jr1 � r2j) in the old Dira�BreitHamiltonian (2.5) did not require the existene of free leptons. The V arisesfrom the operator form of A0 in the Coulomb gauge,A0(r2) = �eZ d3r0 yD(r0) D(r0)jr2 � r0j (4.2)and from the equal-time ommutation relation of the �eld operator  yD(r0)with  D(r1) [18℄ . The Breit operator proper (2.7) is less general; it assumesthe existene of a free photon �eld, whih would have to be replaed by afree gluon �eld in QCD. In any ase, this shows that the standard S-matrixtheory for free fermions is avoidable.From this point of view, it is relevant to know that the 8-omponentequation has an approximate derivation from the 16-omponent Dira�Breitequation [18℄. The derivation requires a transformation of the radial variable,whih we now all r12, ontrary to (1.3):r = r212r12 + �=2E : (4.3)For V = ��=r12, this removes the operator V 2 from the 8-omponent re-dution of the Dira�Breit equation:(E + V (r12))2 = E2 + 2EV (r): (4.4)The square of the Breit operator is omitted by hand, whih dispenses withthe otherwise neessary projetors. Finally, r12 ombines with the terms
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