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A brief review of relativistic two-body equations in QED and their non-
relativistic reductions is presented, beginning with the atomic Dirac—Breit
equation. The emphasis is on lepton-antilepton bound states (leptonium),
with a look at possible extensions to quarkonium.
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1. Introduction

Theorists working on QCD tend to prefer heavier quarkonia over lighter
ones, not only because of smaller confining potential effects, but also be-
cause of the approximate validity of the nonrelativistic two-body Schrédinger
equation. The latter point may be unessential, however, in view of the quan-
titative successes of relativistic calculations for QED bound states. Modern
atomic theory is largely based on the n-electron Dirac-Breit equation, in
which the binding arises from a nucleus of charge Ze. As Z can reach 100
and €? = a = 1/137 (h = ¢ = 1), the effective expansion parameter Za can
get close to 1, where nonrelativistic expansions break down.

As particle theorists we are more interested in simpler systems such as
atomic hydrogen or “leptonium” (essentially e et and e ™), where an ex-
ternal nuclear Coulomb potential is absent, and the total leptonium momen-
tum is conserved,

(p1 +po)Y = K¢, p;=-V,. (1.1)

Relativistic effects are small here but have been calculated and verified ex-
perimentally to reasonably high orders of a. In the hyperfine structure

* Presented at the XXIII International School of Theoretical Physics
“Recent Developments in Theory of Fundamental Interactions”, Ustron, Poland,
September 15-22, 1999.

(3429)



3430 H. PILKUHN

of muonium, the leading term of order o® is already experimentally rele-

vant [17]. The corresponding QCD hyperfine structure is particularly inter-
esting, because it is surprisingly large in light quarkonium.

The new tricks in the second half of this lecture require a symmetric
treatment of the two fermions. Atomic hydrogen is presently excluded; the
proton’s large anomalous magnetic moment requires a special “anomalous
Dirac equation”, which is mentioned in many textbooks.

Whereas the calculation of relativistic two-body effects has enjoyed
steady progress over the past 70 years, the use of relativistic two-fermion
equations has had several drastic oscillations. One year after Dirac pub-
lished his relativistic one-electron equation, Breit [4] published his equation
for two relativistic electrons in the presence of the nuclear Coulomb poten-
tial. Breit hoped that his electron—electron operator would be exact, but
already next year [5] he found that it gave too large effects in second-order
perturbation theory. This defect was largely eliminated by the inclusion of
“positive-energy projectors”, which account for the fact that the negative-
energy solutions of the Dirac equation turn into antielectrons (positrons) of
positive energies upon second quantization. An early account of the argu-
ments is found in the standard book of Bethe and Salpeter [2]. The problems
created by the negative-energy states in higher-order perturbation theory
were first pointed out by Brown [6] and went under the name “Brown’s dis-
ease”. Sucher [22] emphasized the “continuum dissolution”, which is caused
already by the Coulomb repulsion between the two electrons: One elec-
tron is excited into the positive-energy continuum, the other falls into the
negative-energy continuum, without any change in the sum of the two en-
ergies. An exact form of the required projectors exists only for products of
single-particle orbitals, where the electronic Coulomb repulsion is neglected.
A good starting point for such cases is the “Furry picture” of QED, which is
QED in an external static potential [12].

But relativistic effects are normally small even in atomic physics. For
two electrons, the 4 x 4 = 16-component wavefunction 1) of Dirac—Breit
may then be reduced to a 2 x 2 = 4-component Schréodinger wavefunction
Psch, on which an effective Hamiltonian Heg acts. Instead of the Dirac
matrices 7, it contains only the Pauli matrices o1 and o5 of the two electrons.
For a single electron, the reduction was written down by Pauli and then
more systematically by Foldy and Wouthuysen [11]. For two fermions of
arbitrary masses, it was done by Chraplyvy [8]. For example, the Dirac
kinetic energies a;p; (see below) become p?/2m; + pi/8m? to order o in
Heg, and the commutator between o;p; and the external Coulomb potentials
Vei = —Za/r; produces the famous spin—orbit potentials,

Wei oilii (1.2)

dr; erimz2 '

Visi =



Old and New Tricks in Relativistic Two-Body Equations 3431

Important for leptonium is the nonrelativistic reduction of the Breit opera-
tor, because in the absence of V; (Z = 0), it is the only operator in addition
to the Coulomb potential between the two leptons,

Vi) =82 gy, (1.3)

T

Among the reduced Breit operators, there are again two spin—orbit opera-
tors,

o r X r X r X r X
VLSZT—3[0'1< P PQ) _0_2< P> Pl)]’ (1.4)

4m% 2m1 mo 4m% 2m1m2

and also a tensor operator which mixes S-states with D-states. So at least
for leptonium, the first fully relativistic approach ended in nonrelativistic
reductions for both particles.

The second fully relativistic approach was the Bethe-Salpeter (BS) equa-
tion [1], an integral equation for the 16-component 1. Its applications in
atomic physics were not important and are skipped here. For leptonium,
the BS-equation is a covariant integral equation in the variables r and
At =t — tg. Its claim of exactness was disproved by Wick [23] , who
discovered unphysical excited states in At in addition to the physical ra-
dial excitations (which have nodes in the radial wavefunction R(r)). The
BS-equation is normally solved in momentum space, where the variable cor-
responding to At is the energy transfer ¢ = K9 — K¥' = —K9 + KY' (the
total energy is conserved, K = K? + K9 = K}’ + KJ'). The At-excitations
disappear when the kernel K of the integral equation is divided into an
unperturbed Coulomb kernel Ky and various perturbations K. The ¢°-
integration must be done explicitly for Iy in the cms, where the system’s
total momentum K (1.1) vanishes. The ¢%-integration of §K must be done
in a perturbative series. The value of K in the cms will be called E; it is
simply the leptonium mass:

K#ms = (KoaK)CmS = (Ea O)a Py = —P2 =D (15)
Thus the covariance of the BS-equation is deceiving: The equation must
be solved in the cms (1.5) and may then be Lorentz transformed to other
values of K#. In practice of course, the same procedure is applied to the
Schrédinger equation. In the cms, the kinetic energy operators to order a?
combine into

2 2
by D mims

) ,Um":(

2
P1 + _ .
m1+m2)

2m1 - 2mo 2y

(1.6)
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The eigenvalues of Hegthseh = Epsa to order o in the cms are the familiar

2
Q" [y

. (1.7)

E,=mi+mo —
They may then be Galilei transformed to a lab system with K # 0. The
essential property of the cms for the BS-equation is the vanishing of ¢° for the
mass-shell particles, which enter the first Born approximation for K: The
factor (g,q")™" = (¢"> — ¢*)~! in the photon propagator is then reduced
to (—g?)~!; it is independent of the integration variable ¢”. In coordinate
space, —a/q? provides the Coulomb potential V (r).

An important two-photon exchange contribution to 6K gives the so called
Salpeter shift, which is of the order o®/7 and vanishes in the static limit
m1 < me. Calculations with the BS equation contain unexplained cancel-
lations between different operators 6/C, beginning at the order o*. A fairly
recent review of the application of the BS-equation to leptonium is given by
Sapirstein and Yennie [21].

Sooner or later in BS-calculations, a nonrelativistic expansion is used
for at least one of the two particles. Beyond a certain order of «, one
sets, for mo > my, (Fa + mg) ! ~ (2mo) !, implying that E, is near
my. This approximation is particularly useful for atomic hydrogen, with
ma/my =~ 2000. Grotch and Yennie [13] found that this case could be
treated more easily by an extension of the Dirac equation, of the form

(Hip + Hopy)1ip = E1tip,  E1 = E —mg, (1.8)

where Hip is the one-electron Dirac operator. Hs,, is approximately
p?/2mg, better forms are given below. Braun [3] found a form for Hy
that gives all corrections of order m?/my to the Dirac equation, includ-
ing the corrections to the radiative corrections (in the case of the Salpeter
shift, the exact mass dependence had already been calculated from the BS
equation). For positronium, however, the Braun method is insufficient. Es-
sential progress here came from Caswell and Lepage [7] , who pushed the
calculation of Heg for 1gu to the order a®. There method is nowadays
called nonrelativistic quantum electrodynamics (NRQED). It was extended
by Pachucki [19] to the unequal mass case. In this manner, also the second
fully relativistic approach ended in nonrelativistic reductions for both par-
ticles. But for mo > my, one may still use (1.8) for the highest orders in «,
say o and o®.

Several other fully relativistic methods have been proposed which repro-
duce the known results to order a*, but which are unable to calculate higher
orders. Among these, the “constraint Hamiltonian” method may be men-
tioned, which was originally proposed by Dirac and elaborated by Crater
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and Van Alstine [9]. It uses two different equations at two different times
for one wavefunction t(xy,z%), which exclude the excitations in At found
by Wick for the BS-equation.

The new tricks promised in this lecture refer to a fairly recent fully rel-
ativistic two-fermion equation [14]. For the nS-states, it has been evaluated
to the order o® [15]. At the order af, it misses a hyperfine operator which
was found by Pachucki from the exchange of three photons, and which has
not yet been calculated by the new equation. The equation is analogous
to Dirac—Breit in its differential form and to BS in its integral form. Its
essential point is that the QED interaction is included only after the free
equation has been reduced from 16 to 8 components.

2. The old tricks

In our units & = ¢ = 1, the Dirac equation is (for ¢ = —e)
(D" —m)yp =0, D, =0, —ieA,. (2.1)

An external potential V' is part of Ag. Multiplication of (2.1) by v° produces
the Hamiltonian form, i0y1) = Hptp, where ieAq is now included in the Dirac
Hamiltonian Hp. For two particles of masses m; one needs

Hp; = miyy + Vi(ri) + pviy; - (2.2)

Dirac needed only 74, which he called a;, and 7? which he called g; (the
y-matrices came later and had to use the third letter in the alphabet). We
shall use yet another nomenclature, calling

Ny =i =70 (2.3)

This will be necessary in order to decouple the algebra of the two sets of
Pauli matrices, o1 and o9, from the two sets of “proper” Dirac matrices,
7, 49, 47, 75. The Pauli matrices act only on spin components; they do not
distinguish between the upper and lower Dirac components (or equivalently
between the right- and left-handed Weyl or “chirality” components); the
“proper” Dirac matrices do not act on spin components, they will be used
here in the Weyl basis, where the 7 are diagonal:

5 1 0 o_( 0 1

In this sense, all our matrices are 2 x 2, which is also typographically con-
venient. The Dirac—Breit equation has the form

Hppt = E+p, Hppg = Hpy + Hpo +V(r) + Hg, (2.5)
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with Hp given below. As ) has 16 components, every term of Hpp is strictly
a 16 x 16-matrix, including the Coulomb potential V' (r). For example, the
operator a o is written mathematically correct as

aja; =7 ® 7 ® 01 ® o). (2.6)

Physicists normally suppress ® symbols and unit matrices. With these con-
ventions, the Breit operator reads

HB = —%V’yi’fyg(alo@ + Ulr02r)a T4r — O'Z"l"/T. (27)

Breit found it by postulating that its expectation values should be identical
with the energy shifts obtained in second-order perturbation theory from
the vacuum expectation values of the vector field operators A; and As
which occur in Dy and D3 in (2.1). This explains the absence of these
operators in (2.5). The Lambshift has a similar origin, but is not easily
replaced by an equivalent first-order operator. Breit used instead of the
Weyl basis Dirac’s “low-energy” basis, in which the two matrices of (2.4) are
simply exchanged. This basis is also called the parity basis because it hat
7? (which is part of the parity operator) diagonal. 'yf’ is off-diagonal then,
it connects the upper, large components with the lower, small ones. For
positive-energy states, the relevant matrix elements are small; fyfai may be
viewed as velocity operators. However, ¥ and 75 also have large matrix
elements, which ensure (77)? = 1. In second-order perturbation theory for
Hg, the 'yf disappear, and the resulting energy shift is much too large. This
large contribution is eliminated by the positive-energy projectors mentioned
before.

The nonrelativistic reductions of Pauli, Foldy and Wouthuysen assume
positive-energy states in their derivations. Projectors are then unnecessary.
On the other hand, the resulting operators are so singular at r = 0, that
they cannot be used beyond first-order perturbation theory: =3 in Vg, and
d(r), for example in the Fermi contact hyperfine interaction:

_ 8 maocio24(r)

Hy (2.8)

3 mi19
In NRQED, these operators are consistently regularized, such that also their
squares and products exist. The final results contain only certain combina-
tions in which the divergences cancel out. For the calculation of leptonium
levels to the order af, Pachucki [19] used

V = —(a/r) lim (1 — e~*mar), (2.9)
A—00
such that V(r — 0) = —a?Am for finite A\. Correspondingly, the combi-

nation 47d(r) in (2.8) is replaced by V2V. A more elegant method is the
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dimensional regularization [10]. The origin of the cancellations is of course a
less singular structure of the relativistic operators, but these are not always
known.

The Bethe-Salpeter equation will be discussed only briefly: It is a four-
dimensional integral equation for the four-point function of fermion-fermion
scattering:

G=25+ / d*qSKaG, (2.10)
where S is the product of two free fermion propagators:

S=@h—m) ' Wo—m2)", #i=pipl (2.11)

and K is the kernel. Despite the elegant notation, the ¢° integration must
be performed in the cms, as explained in the Introduction. Moreover, S is a
4 x 4 x 4 x 4 matrix, and K is correspondingly large. This is connected with
the cancellations mentioned in the Introduction. There exists an equivalent
8 x 8-component version which should be free from cancellations [14]. The
corresponding differential equation is discussed in the next section.

When one of the two fermions is nonrelativistic, the problem is equally
well treated by differential equations. The total Hamiltonian is taken as
the sum of the relativistic electron Hamiltonian Hip and the nonrelativistic
Hy py as in (1.8). For a spinless particle 2, one has [13]

2 Tpar
p 1 (P + )
Hypr = ﬁ +Hg, Hp= _§V’YfUITTa (2.12)
with po, = —i0/0ry. This form is obtained from (2.7) by replacing the

“relativistic velocity” operator ¥5o5 by the nonrelativistic velocity ve =
Py /mo, which is —p/mg in the cms. The combination of a relativistic form
with a nonrelativistic one is only tested to first order in 1/mg. It is probably
not possible to just add corrections such as p3/8m3. A more precise form of
Hy py is [3]

(py — eA(r2))?

HQ,nr = m
2

(2.13)

It produces all first-order recoil corrections to the Dirac energy levels, in-
cluding the Salpeter shift and the recoil corrections to the radiative correc-
tions [20].

3. The new tricks

Nonrelativistically, the cms p; = —py = p allows one to combine the two
kinetic energies p?/2m; and p3/2mg into an effective single-particle kinetic
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energy, p?/2iny. This is extended to the relativistic case by two new tricks.

The 16-component, free-particle version of (2.5) for p, = —p is
16
(B —min} = may — poier =o' = 0. (3.1)

The operator y3pos is completely eliminated by these tricks. In the first
place, 1/1(()16) is divided into two chiral octets,

— 1/}7"7" _ ¢rl
¢0_< 1/}” )a X0_<1/}l7")’ (32)

in which the first chirality index (r=righthanded, I=lefthanded) refers to
particle 1, the other to particle 2. We call 4§ = 75 and find in the chiral
basis (2.4)

Y30 = Y510,  V3X0 = —V5Xo- (3-3)
The matrix fy?'yg which exchanges ry with [; and ry with Iy will be called 5:
0 1

When acting on the upper and lower chirality components of g and X, it
is only a 2 x 2 matrix, just as 5. The matrix 49 exchanges only the second
index, it thus exchanges 1 with xo. Finally, 4? is evaluated as 875. We also
introduce abbreviations for the sum and difference of the two Pauli matrices:

o=01+0y, Ao=o01— 0. (3.5)

With all these abbreviations, the decomposition of (3.1) into two separate
equations for 1y and xg remains reasonably compact:

(E —yspAa)ipo = (ma+ fmi)xo, (E—v5p0)x0 = (ma+ Bm1)o. (3.6)

Elimination of x¢ gives the equation for 1)q:

(E — yspo)(mg + ﬁml)_l(E — Y5pAT)ihy = (Mo + Smy)hg. (3.7)

Its second-order derivatives vanish, (po)(pAa) = (poy)?— (poy)? = 0. The
remainder gives

[(ma  +Bmy) ' (E* — EyspAo)
—Evyspo(ma + Bmy) ™" — (ma + Bma)|ihe = 0. (3.8)

The 16 coupled first-order differential equations are now reduced to 8 coupled
first-order differential equations.
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The second trick was originally introduced to remove the denominators
(ma+Bmy) from (3.8). Multiplication by (mso+Bmq) from the left alone does
not remove the denominator of the term in the middle: The anticommutator

Bys = =758 (3.9)
transforms this term into
meo — By
—Eyspo————. 3.10
VP B (3.10)

The quotient is removed by a somewhat intricate transformation of 1),
o =ctp, = (mi—m?) V2[my+ pmit(1+o109)]. (3.11)

In addition, (3.8) is multiplied by 1/c from the left. One has ¢~ ly5 = y5¢
and

ma + fmy
mo — fmy’

cAoc= Ao, coc=o0o (3.12)
which cancels the quotient of (3.10). To understand ¢, one must know that
%(1 + o103) has the eigenvalue +1 for triplet spin states and —1 for the
singlet spin state. All three matrices o vanish when applied to the singlet
state, while the Ao transform the singlet state into triplet states.

After the transformation (3.11), po and pAe appear in the combination
po + pAo = 2po,. Noting moreover

(g + Bmy)? = m? 4+ m3 + 2mymaf, (3.13)
the final version of (3.8) is
(E% — 2vsEpoy, —m? —m3 — 2mimaf)1p = 0. (3.14)

By a minor miracle, poy has been removed by ¢ that was constructed to
remove the brackets of (3.10).

The remainder has the form of an effective Dirac equation. To see this
more clearly, (3.14) may be divided by 2E. With the definitions of a reduced
mass p and a reduced energy e,

mimso E? —m? — m2
n=— &?:#, (3.15)

one gets
(e —vspoy — pB)p = 0. (3.16)
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This looks familiar but complicates the E-dependence. It is better to divide
the equation by 2mimes, which gives the Dirac equation in units of u:

(E‘W—E’pal —ﬁ>¢=o, E_Pomiom (3.17)
7’ i’ 12 2m1m2
The third trick is a simple rescaling of 7,
p
p=pur, p,="=. (3.18)

1

Then E is eliminated in favour of E? everywhere. The equation is now
invariant under the transformation £ — —FE, and we shall see below that the
invariance is not violated by the addition of the QED interaction operator.
The last new trick concerns the reduction of the 16 x 16 T-matrix of QED
to an 8 x 8 form M. In terms of the free Dirac spinors uy, us of the two
incoming fermions and ), u) for the outgoing ones, one has

Ty = @ ahTujus . (3.19)

The first Born approximation is the familiar T = ayy You/ ¢*. The eight-
component free-particle spinors of 9y and yg analogous to u; are called v
and w, respectively. By using the free-particle equations (3.6), T;; may be
reduced to one of the two asymmetric forms

T =w'* Mv=v Mw. (3.20)

The first form gives the interaction in the -equation, the other one the
interaction in an equivalent equation for y. The interaction potential itself
is essentially the Fourier transform of M. The complete -equation with

the potential from the first Born approximation Tz(f1 ) is

V(p)p,h

= |v=0. (3.21)

3 .
0 V(p) = B —v501p, +iv5(01 X 02)

The last operator is a recoil-corrected hyperfine operator; in the original
variable 7, one has V(p)p,u/E = V(r)p/pE. With uE = mimg accord-
ing to (3.15), one recovers the mass dependence of the nonrelativistic limit
Hp (2.8) (the static atomic hyperfine operator contains the nuclear Bohr
magneton, which would be e/2mgy in our notation. Hp is already recoil
corrected).
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4. Discussion and outlook

By the rescaling trick (3.18), the new equation (3.21) has become in-
variant under the replacement £ — —F. This symmetry is shared by all
relativistic two-body equations including Dirac—Breit; it is merely violated
by later approximations. Its physical basis is charge conjugation invariance.
It would even survive the inclusion of C' and P violating atomic interactions;
the physical basis would then be CP or even CPT. If the eigenvalue +F
refers to an atom such as muonium (e u™), the eigenvalue —F refers to
the corresponding antiatom (antimuonium e® ™). In particle theory, a field

has the operator structure ae %t 4 aT_eiEt, where a destroys a particle of

energy F, and al creates an antiparticle of the same energy. In principle
then, one may introduce fields for whole atoms. This is unlikely to be of any
use, but in the analogous case of QCD, it should be possible to combine the
equations for the inner structure of mesons with a meson field formalism.

From the point of view of Feynman rules, antiparticles correspond to
particles moving backwards in time, with all additive quantum numbers
reversed. One could add that antiatoms also have negative distances between
their constituents: To find the spectrum of a differential equation, one must
specify the range of its variables. For a spherically symmetric V'(r), one has
0 < r < oco. The relativistic formulation has 0 < p < co. For E < 0, this
corresponds to the interval —oo < r < 0. With 7 = (22 + 2 + 22)1/2 this is
equivalent to a continuation on the other branch of the square root.

A point of more practical importance is the absence of cancellations.
When the interaction is introduced at the 16-component level, E and the
dominant Coulomb potential V(r) occur linearly, in the combination E —
V(r). A reduction to 8 components produces the square of this opera-
tor, B2 — 2EV (r) + V%(r). The second Born approximation provides ad-
ditional operators, the dominant one being —V(r)2. The net effect is thus
E? —2EV(r) = E? — 2mimaV (p). This agrees with the first-order inter-
action introduced at the 8-component level. Consequently, this interaction
is not only simpler than the 16-component version, but it also includes the
dominant operator of the second-order potential of that version.

The cancellations occur also in NRQED.

How much of this is applicable to QCD? At the level of NRQCD, the
situation is good, as mentioned in the introduction. Only the nonrelativistic
reductions of Breit and hyperfine operators are needed here. But is there
any chance of describing the lighter pseudoscalar mesons and their vector
partners by a single differential equation? In the extreme case of the = and
p mesons, the hyperfine operator would have to explain m% /m2 =~ 30. The
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factor u/E = mims/E? in (3.21) of the hyperfine operator does increase
for decreasing E2, but its singularity for » — 0 excludes a nonperturbative
treatment. In NRQED, a three-photon exchange correction to the hyperfine
operator has been found by Pachucki [19], which shows a possibility for
a nonperturbative treatment: It may be included by substituting in the
hyperfine operator

% — myma[E? — 2mimaa® In(yp)] "L, (4.1)
with v = e“ and C = 0.5772 =Euler’s constant.

A still larger problem is posed by the formal use of S-matrix theory.
In QCD, this theory requires the existence of free in- and outgoing quark
states. The requirement is also present in the Bethe-Salpeter equation,
where it leads to the free-quark-propagators (2.11). Is it possible to avoid
the concept of free quarks altogether? Again, the answer could be yes.
The derivation of the potential V(r) (r = |r; — r2|) in the old Dirac-Breit
Hamiltonian (2.5) did not require the existence of free leptons. The V arises
from the operator form of A% in the Coulomb gauge,

A(ry) = —e/dsr'—l/}]];(rl)l/}])(rl) (4.2)

[ro — 7|

and from the equal-time commutation relation of the field operator 1/1;5 (r")
with 1p(r1) [18] . The Breit operator proper (2.7) is less general; it assumes
the existence of a free photon field, which would have to be replaced by a
free gluon field in QCD. In any case, this shows that the standard S-matrix
theory for free fermions is avoidable.

From this point of view, it is relevant to know that the 8-component
equation has an approximate derivation from the 16-component Dirac—Breit
equation [18]. The derivation requires a transformation of the radial variable,
which we now call 12, contrary to (1.3):

2

T2
r=—=—". 4.3
ri2 + a/2FE (4.3)
For V = —a/ry2, this removes the operator V2 from the 8-component re-

duction of the Dirac—Breit equation:
(E +V(r12))? = E?> + 2EV (r). (4.4)

The square of the Breit operator is omitted by hand, which dispenses with
the otherwise necessary projectors. Finally, V12 combines with the terms
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linear in the Breit operators into the operators of (3.21). A more direct
derivation of an eight-component Dirac—Breit equation does not yet exist.
In such a derivation, the transformation (4.3) would be absent. The QCD
extension to a potential which is essentially non-Coulombic could then also
be possible.
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