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OLD AND NEW TRICKS IN RELATIVISTICTWO-BODY EQUATIONS�Hartmut PilkuhnInstitut für Theoretis
he Teil
henphysik, Universität KarlsruheD-76128 Karlsruhe, Germany(Re
eived O
tober 22, 1999)A brief review of relativisti
 two-body equations in QED and their non-relativisti
 redu
tions is presented, beginning with the atomi
 Dira
�Breitequation. The emphasis is on lepton-antilepton bound states (leptonium),with a look at possible extensions to quarkonium.PACS numbers: 03.65.Pm, 11.30.Er1. Introdu
tionTheorists working on QCD tend to prefer heavier quarkonia over lighterones, not only be
ause of smaller 
on�ning potential e�e
ts, but also be-
ause of the approximate validity of the nonrelativisti
 two-body S
hrödingerequation. The latter point may be unessential, however, in view of the quan-titative su

esses of relativisti
 
al
ulations for QED bound states. Modernatomi
 theory is largely based on the n-ele
tron Dira
�Breit equation, inwhi
h the binding arises from a nu
leus of 
harge Ze. As Z 
an rea
h 100and e2 = � = 1=137 (~ = 
 = 1), the e�e
tive expansion parameter Z� 
anget 
lose to 1, where nonrelativisti
 expansions break down.As parti
le theorists we are more interested in simpler systems su
h asatomi
 hydrogen or �leptonium� (essentially e�e+ and e��+), where an ex-ternal nu
lear Coulomb potential is absent, and the total leptonium momen-tum is 
onserved, (p1 + p2) =K ; pi = �ri : (1.1)Relativisti
 e�e
ts are small here but have been 
al
ulated and veri�ed ex-perimentally to reasonably high orders of �. In the hyper�ne stru
ture� Presented at the XXIII International S
hool of Theoreti
al Physi
s�Re
ent Developments in Theory of Fundamental Intera
tions�, Ustro«, Poland,September 15�22, 1999. (3429)



3430 H. Pilkuhnof muonium, the leading term of order �8 is already experimentally rele-vant [17℄. The 
orresponding QCD hyper�ne stru
ture is parti
ularly inter-esting, be
ause it is surprisingly large in light quarkonium.The new tri
ks in the se
ond half of this le
ture require a symmetri
treatment of the two fermions. Atomi
 hydrogen is presently ex
luded; theproton's large anomalous magneti
 moment requires a spe
ial �anomalousDira
 equation�, whi
h is mentioned in many textbooks.Whereas the 
al
ulation of relativisti
 two-body e�e
ts has enjoyedsteady progress over the past 70 years, the use of relativisti
 two-fermionequations has had several drasti
 os
illations. One year after Dira
 pub-lished his relativisti
 one-ele
tron equation, Breit [4℄ published his equationfor two relativisti
 ele
trons in the presen
e of the nu
lear Coulomb poten-tial. Breit hoped that his ele
tron�ele
tron operator would be exa
t, butalready next year [5℄ he found that it gave too large e�e
ts in se
ond-orderperturbation theory. This defe
t was largely eliminated by the in
lusion of�positive-energy proje
tors�, whi
h a

ount for the fa
t that the negative-energy solutions of the Dira
 equation turn into antiele
trons (positrons) ofpositive energies upon se
ond quantization. An early a

ount of the argu-ments is found in the standard book of Bethe and Salpeter [2℄. The problems
reated by the negative-energy states in higher-order perturbation theorywere �rst pointed out by Brown [6℄ and went under the name �Brown's dis-ease�. Su
her [22℄ emphasized the �
ontinuum dissolution�, whi
h is 
ausedalready by the Coulomb repulsion between the two ele
trons: One ele
-tron is ex
ited into the positive-energy 
ontinuum, the other falls into thenegative-energy 
ontinuum, without any 
hange in the sum of the two en-ergies. An exa
t form of the required proje
tors exists only for produ
ts ofsingle-parti
le orbitals, where the ele
troni
 Coulomb repulsion is negle
ted.A good starting point for su
h 
ases is the �Furry pi
ture� of QED, whi
h isQED in an external stati
 potential [12℄.But relativisti
 e�e
ts are normally small even in atomi
 physi
s. Fortwo ele
trons, the 4 � 4 = 16-
omponent wavefun
tion  of Dira
�Breitmay then be redu
ed to a 2 � 2 = 4-
omponent S
hrödinger wavefun
tion S
h, on whi
h an e�e
tive Hamiltonian He� a
ts. Instead of the Dira
matri
es 
, it 
ontains only the Pauli matri
es �1 and �2 of the two ele
trons.For a single ele
tron, the redu
tion was written down by Pauli and thenmore systemati
ally by Foldy and Wouthuysen [11℄. For two fermions ofarbitrary masses, it was done by Chraplyvy [8℄. For example, the Dira
kineti
 energies �ipi (see below) be
ome p2i =2mi + p4i =8m3i to order �4 inHe� , and the 
ommutator between �ipi and the external Coulomb potentialsVei = �Z�=ri produ
es the famous spin�orbit potentials,VLSi = dVeidri �iLi4rim2i : (1.2)
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ks in Relativisti
 Two-Body Equations 3431Important for leptonium is the nonrelativisti
 redu
tion of the Breit opera-tor, be
ause in the absen
e of Vei (Z = 0), it is the only operator in additionto the Coulomb potential between the two leptons,V (r) = q1q2r ; r = r1 � r2 : (1.3)Among the redu
ed Breit operators, there are again two spin�orbit opera-tors,VLS = �r3 ��1�r � p14m21 � r � p22m1m2�� �2�r � p24m22 � r � p12m1m2�� ; (1.4)and also a tensor operator whi
h mixes S-states with D-states. So at leastfor leptonium, the �rst fully relativisti
 approa
h ended in nonrelativisti
redu
tions for both parti
les.The se
ond fully relativisti
 approa
h was the Bethe�Salpeter (BS) equa-tion [1℄, an integral equation for the 16-
omponent  . Its appli
ations inatomi
 physi
s were not important and are skipped here. For leptonium,the BS-equation is a 
ovariant integral equation in the variables r and�t = t1 � t2. Its 
laim of exa
tness was disproved by Wi
k [23℄ , whodis
overed unphysi
al ex
ited states in �t in addition to the physi
al ra-dial ex
itations (whi
h have nodes in the radial wavefun
tion R(r)). TheBS-equation is normally solved in momentum spa
e, where the variable 
or-responding to �t is the energy transfer q0 = K01 �K01 0 = �K02 +K02 0 (thetotal energy is 
onserved, K0 = K01 +K02 = K01 0+K02 0). The �t-ex
itationsdisappear when the kernel K of the integral equation is divided into anunperturbed Coulomb kernel KV and various perturbations ÆK. The q0-integration must be done expli
itly for KV in the 
ms, where the system'stotal momentum K (1.1) vanishes. The q0-integration of ÆK must be donein a perturbative series. The value of K0 in the 
ms will be 
alled E; it issimply the leptonium mass:K�
ms = (K0;K)
ms = (E;0); p1 = �p2 � p: (1.5)Thus the 
ovarian
e of the BS-equation is de
eiving: The equation mustbe solved in the 
ms (1.5) and may then be Lorentz transformed to othervalues of K�. In pra
ti
e of 
ourse, the same pro
edure is applied to theS
hrödinger equation. In the 
ms, the kineti
 energy operators to order �2
ombine into p212m1 + p222m2 = p22�nr ; �nr = m1m2(m1 +m2) : (1.6)



3432 H. PilkuhnThe eigenvalues of He� S
h = E S
h to order �2 in the 
ms are the familiarEn = m1 +m2 � �2�nr2n2 : (1.7)They may then be Galilei transformed to a lab system with K 6= 0. Theessential property of the 
ms for the BS-equation is the vanishing of q0 for themass-shell parti
les, whi
h enter the �rst Born approximation for K: Thefa
tor (q�q�)�1 = (q02 � q2)�1 in the photon propagator is then redu
edto (�q2)�1; it is independent of the integration variable q0. In 
oordinatespa
e, ��=q2 provides the Coulomb potential V (r).An important two-photon ex
hange 
ontribution to ÆK gives the so 
alledSalpeter shift, whi
h is of the order �5=� and vanishes in the stati
 limitm1 � m2. Cal
ulations with the BS equation 
ontain unexplained 
an
el-lations between di�erent operators ÆK, beginning at the order �4. A fairlyre
ent review of the appli
ation of the BS-equation to leptonium is given bySapirstein and Yennie [21℄.Sooner or later in BS-
al
ulations, a nonrelativisti
 expansion is usedfor at least one of the two parti
les. Beyond a 
ertain order of �, onesets, for m2 > m1, (E2 + m2)�1 � (2m2)�1, implying that E2 is nearm2. This approximation is parti
ularly useful for atomi
 hydrogen, withm2=m1 � 2000. Grot
h and Yennie [13℄ found that this 
ase 
ould betreated more easily by an extension of the Dira
 equation, of the form(H1D +H2;nr) 1D = E1 1D; E1 = E �m2; (1.8)where H1D is the one-ele
tron Dira
 operator. H2;nr is approximatelyp2=2m2, better forms are given below. Braun [3℄ found a form for H2;nrthat gives all 
orre
tions of order m21=m2 to the Dira
 equation, in
lud-ing the 
orre
tions to the radiative 
orre
tions (in the 
ase of the Salpetershift, the exa
t mass dependen
e had already been 
al
ulated from the BSequation). For positronium, however, the Braun method is insu�
ient. Es-sential progress here 
ame from Caswell and Lepage [7℄ , who pushed the
al
ulation of He� for  S
h to the order �6. There method is nowadays
alled nonrelativisti
 quantum ele
trodynami
s (NRQED). It was extendedby Pa
hu
ki [19℄ to the unequal mass 
ase. In this manner, also the se
ondfully relativisti
 approa
h ended in nonrelativisti
 redu
tions for both par-ti
les. But for m2 > m1, one may still use (1.8) for the highest orders in �,say �7 and �8.Several other fully relativisti
 methods have been proposed whi
h repro-du
e the known results to order �4, but whi
h are unable to 
al
ulate higherorders. Among these, the �
onstraint Hamiltonian� method may be men-tioned, whi
h was originally proposed by Dira
 and elaborated by Crater
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 Two-Body Equations 3433and Van Alstine [9℄. It uses two di�erent equations at two di�erent timesfor one wavefun
tion  (x�1 ; x�2 ), whi
h ex
lude the ex
itations in �t foundby Wi
k for the BS-equation.The new tri
ks promised in this le
ture refer to a fairly re
ent fully rel-ativisti
 two-fermion equation [14℄. For the nS-states, it has been evaluatedto the order �8 [15℄. At the order �6, it misses a hyper�ne operator whi
hwas found by Pa
hu
ki from the ex
hange of three photons, and whi
h hasnot yet been 
al
ulated by the new equation. The equation is analogousto Dira
�Breit in its di�erential form and to BS in its integral form. Itsessential point is that the QED intera
tion is in
luded only after the freeequation has been redu
ed from 16 to 8 
omponents.2. The old tri
ksIn our units ~ = 
 = 1, the Dira
 equation is (for q = �e)(iD�
� �m) = 0; D� = �� � ieA� : (2.1)An external potential V is part of A0. Multipli
ation of (2.1) by 
0 produ
esthe Hamiltonian form, i�0 = HD ; where ieA0 is now in
luded in the Dira
Hamiltonian HD. For two parti
les of masses mi one needsHD;i = mi
0i + Vi(ri) + pi
0i 
i : (2.2)Dira
 needed only 
0i 
i whi
h he 
alled �i, and 
0i whi
h he 
alled �i (the
-matri
es 
ame later and had to use the third letter in the alphabet). Weshall use yet another nomen
lature, 
alling
0i 
i = �i = 
5i �i : (2.3)This will be ne
essary in order to de
ouple the algebra of the two sets ofPauli matri
es, �1 and �2, from the two sets of �proper� Dira
 matri
es,
01 ; 
02 ; 
51 ; 
52 . The Pauli matri
es a
t only on spin 
omponents; they do notdistinguish between the upper and lower Dira
 
omponents (or equivalentlybetween the right- and left-handed Weyl or �
hirality� 
omponents); the�proper� Dira
 matri
es do not a
t on spin 
omponents, they will be usedhere in the Weyl basis, where the 
5i are diagonal:
5i = � 1 00 �1 �i ; 
0i = � 0 11 0 �i : (2.4)In this sense, all our matri
es are 2 � 2, whi
h is also typographi
ally 
on-venient. The Dira
�Breit equation has the formHDB = E ; HDB = HD1 +HD2 + V (r) +HB ; (2.5)



3434 H. Pilkuhnwith HB given below. As  has 16 
omponents, every term of HDB is stri
tlya 16 � 16-matrix, in
luding the Coulomb potential V (r). For example, theoperator �1�2 is written mathemati
ally 
orre
t as�1�2 = 
51 
 
52 
 �1 
 �2: (2.6)Physi
ists normally suppress 
 symbols and unit matri
es. With these 
on-ventions, the Breit operator readsHB = �12V 
51
52(�1�2 + �1r�2r); �ir = �ir=r: (2.7)Breit found it by postulating that its expe
tation values should be identi
alwith the energy shifts obtained in se
ond-order perturbation theory fromthe va
uum expe
tation values of the ve
tor �eld operators A1 and A2whi
h o

ur in D1 and D2 in (2.1). This explains the absen
e of theseoperators in (2.5). The Lambshift has a similar origin, but is not easilyrepla
ed by an equivalent �rst-order operator. Breit used instead of theWeyl basis Dira
's �low-energy� basis, in whi
h the two matri
es of (2.4) aresimply ex
hanged. This basis is also 
alled the parity basis be
ause it hat
0i (whi
h is part of the parity operator) diagonal. 
5i is o�-diagonal then,it 
onne
ts the upper, large 
omponents with the lower, small ones. Forpositive-energy states, the relevant matrix elements are small; 
5i �i may beviewed as velo
ity operators. However, 
51 and 
52 also have large matrixelements, whi
h ensure (
5i )2 = 1. In se
ond-order perturbation theory forHB, the 
5i disappear, and the resulting energy shift is mu
h too large. Thislarge 
ontribution is eliminated by the positive-energy proje
tors mentionedbefore.The nonrelativisti
 redu
tions of Pauli, Foldy and Wouthuysen assumepositive-energy states in their derivations. Proje
tors are then unne
essary.On the other hand, the resulting operators are so singular at r = 0, thatthey 
annot be used beyond �rst-order perturbation theory: r�3 in VLS , andÆ(r), for example in the Fermi 
onta
t hyper�ne intera
tion:HF = 83 ���1�2Æ(r)m1m2 : (2.8)In NRQED, these operators are 
onsistently regularized, su
h that also theirsquares and produ
ts exist. The �nal results 
ontain only 
ertain 
ombina-tions in whi
h the divergen
es 
an
el out. For the 
al
ulation of leptoniumlevels to the order �6, Pa
hu
ki [19℄ usedV = �(�=r) lim�!1(1� e��m�r); (2.9)su
h that V (r ! 0) = ��2�m for �nite �. Correspondingly, the 
ombi-nation 4�Æ(r) in (2.8) is repla
ed by r2V: A more elegant method is the
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ks in Relativisti
 Two-Body Equations 3435dimensional regularization [10℄. The origin of the 
an
ellations is of 
ourse aless singular stru
ture of the relativisti
 operators, but these are not alwaysknown.The Bethe�Salpeter equation will be dis
ussed only brie�y: It is a four-dimensional integral equation for the four-point fun
tion of fermion-fermions
attering: G = S + Z d4qSKG; (2.10)where S is the produ
t of two free fermion propagators:S = (=p1 �m1)�1(=p2 �m2)�1; =pi = pi;�
�i ; (2.11)and K is the kernel. Despite the elegant notation, the q0 integration mustbe performed in the 
ms, as explained in the Introdu
tion. Moreover, S is a4� 4� 4� 4 matrix, and K is 
orrespondingly large. This is 
onne
ted withthe 
an
ellations mentioned in the Introdu
tion. There exists an equivalent8 � 8-
omponent version whi
h should be free from 
an
ellations [14℄. The
orresponding di�erential equation is dis
ussed in the next se
tion.When one of the two fermions is nonrelativisti
, the problem is equallywell treated by di�erential equations. The total Hamiltonian is taken asthe sum of the relativisti
 ele
tron Hamiltonian H1D and the nonrelativisti
H2;nr as in (1.8). For a spinless parti
le 2, one has [13℄H2;nr = p222m2 +H 0B; H 0B = �12V 
51�1 �p2 + rp2rr �m2 ; (2.12)with p2r = �i�=�r2. This form is obtained from (2.7) by repla
ing the�relativisti
 velo
ity� operator 
52�2 by the nonrelativisti
 velo
ity v2 =p2=m2, whi
h is �p=m2 in the 
ms. The 
ombination of a relativisti
 formwith a nonrelativisti
 one is only tested to �rst order in 1=m2. It is probablynot possible to just add 
orre
tions su
h as p42=8m32. A more pre
ise form ofH2;nr is [3℄ H2;nr = (p2 � eA(r2))22m2 : (2.13)It produ
es all �rst-order re
oil 
orre
tions to the Dira
 energy levels, in-
luding the Salpeter shift and the re
oil 
orre
tions to the radiative 
orre
-tions [20℄. 3. The new tri
ksNonrelativisti
ally, the 
ms p1 = �p2 � p allows one to 
ombine the twokineti
 energies p21=2m1 and p22=2m2 into an e�e
tive single-parti
le kineti




3436 H. Pilkuhnenergy, p2=2�nr. This is extended to the relativisti
 
ase by two new tri
ks.The 16-
omponent, free-parti
le version of (2.5) for p2 = �p is[E �m1
01 �m2
02 � p(
51�1 � 
52�2)℄ (16)0 = 0 : (3.1)The operator 
52p�2 is 
ompletely eliminated by these tri
ks. In the �rstpla
e,  (16)0 is divided into two 
hiral o
tets, 0 = �  rr ll � ; �0 = �  rl lr � ; (3.2)in whi
h the �rst 
hirality index (r=righthanded, l=lefthanded) refers toparti
le 1, the other to parti
le 2. We 
all 
51 � 
5 and �nd in the 
hiralbasis (2.4) 
52 0 = 
5 0; 
52�0 = �
5�0: (3.3)The matrix 
01
02 whi
h ex
hanges r1 with l1 and r2 with l2 will be 
alled �:� = 
01
02 = � 0 11 0 � : (3.4)When a
ting on the upper and lower 
hirality 
omponents of  0 and �0, itis only a 2� 2 matrix, just as 
5. The matrix 
02 ex
hanges only the se
ondindex, it thus ex
hanges  0 with �0. Finally, 
01 is evaluated as �
02 . We alsointrodu
e abbreviations for the sum and di�eren
e of the two Pauli matri
es:� = �1 + �2; �� = �1 � �2: (3.5)With all these abbreviations, the de
omposition of (3.1) into two separateequations for  0 and �0 remains reasonably 
ompa
t:(E� 
5p��) 0 = (m2+�m1)�0; (E� 
5p�)�0 = (m2+�m1) 0: (3.6)Elimination of �0 gives the equation for  0:(E � 
5p�)(m2 + �m1)�1(E � 
5p��) 0 = (m2 + �m1) 0: (3.7)Its se
ond-order derivatives vanish, (p�)(p��) = (p�1)2�(p�2)2 = 0. Theremainder gives[(m2 +�m1)�1(E2 �E
5p��)�E
5p�(m2 + �m1)�1 � (m2 + �m1)℄ 0 = 0 : (3.8)The 16 
oupled �rst-order di�erential equations are now redu
ed to 8 
oupled�rst-order di�erential equations.
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 Two-Body Equations 3437The se
ond tri
k was originally introdu
ed to remove the denominators(m2+�m1) from (3.8). Multipli
ation by (m2+�m1) from the left alone doesnot remove the denominator of the term in the middle: The anti
ommutator�
5 = �
5� (3.9)transforms this term into �E
5p�m2 � �m1m2 + �m1 : (3.10)The quotient is removed by a somewhat intri
ate transformation of  0, 0 = 
 ; 
 = (m22 �m21)�1=2[m2 + �m1 12 (1 + �1�2)℄ : (3.11)In addition, (3.8) is multiplied by 1=
 from the left. One has 
�1
5 = 
5
and 
��
 = ��; 
�
 = �m2 + �m1m2 � �m1 ; (3.12)whi
h 
an
els the quotient of (3.10). To understand 
, one must know that12(1 + �1�2) has the eigenvalue +1 for triplet spin states and �1 for thesinglet spin state. All three matri
es � vanish when applied to the singletstate, while the �� transform the singlet state into triplet states.After the transformation (3.11), p� and p�� appear in the 
ombinationp� + p�� = 2p�1. Noting moreover(m2 + �m1)2 = m21 +m22 + 2m1m2�; (3.13)the �nal version of (3.8) is(E2 � 2
5Ep�1 �m21 �m22 � 2m1m2�) = 0: (3.14)By a minor mira
le, p�2 has been removed by 
 that was 
onstru
ted toremove the bra
kets of (3.10).The remainder has the form of an e�e
tive Dira
 equation. To see thismore 
learly, (3.14) may be divided by 2E. With the de�nitions of a redu
edmass � and a redu
ed energy ",� = m1m2E ; " = E2 �m21 �m222E ; (3.15)one gets ("� 
5p�1 � ��) = 0 : (3.16)



3438 H. PilkuhnThis looks familiar but 
ompli
ates the E-dependen
e. It is better to dividethe equation by 2m1m2, whi
h gives the Dira
 equation in units of �:� "� � 
5p�1� � �� = 0; "� = E2 �m21 �m222m1m2 : (3.17)The third tri
k is a simple res
aling of r,� = �r ; p� = p� : (3.18)Then E is eliminated in favour of E2 everywhere. The equation is nowinvariant under the transformation E ! �E, and we shall see below that theinvarian
e is not violated by the addition of the QED intera
tion operator.The last new tri
k 
on
erns the redu
tion of the 16 � 16 T-matrix of QEDto an 8 � 8 form M . In terms of the free Dira
 spinors u1; u2 of the twoin
oming fermions and u01; u02 for the outgoing ones, one hasTif = u01u02T̂ u1u2 : (3.19)The �rst Born approximation is the familiar T̂ = �
�1 
2;�=q2: The eight-
omponent free-parti
le spinors of  0 and �0 analogous to ui are 
alled vand w, respe
tively. By using the free-parti
le equations (3.6), Tif may beredu
ed to one of the two asymmetri
 formsTif = w0+Mv = v0+M�w : (3.20)The �rst form gives the intera
tion in the  -equation, the other one theintera
tion in an equivalent equation for �. The intera
tion potential itselfis essentially the Fourier transform of M . The 
omplete  -equation withthe potential from the �rst Born approximation T (1)if is� "� � V (�)� � � 
5�1p� + i
5(�1 � �2)V (�)p��E � = 0 : (3.21)The last operator is a re
oil-
orre
ted hyper�ne operator; in the originalvariable r, one has V (�)p��=E = V (r)p=�E. With �E = m1m2 a

ord-ing to (3.15), one re
overs the mass dependen
e of the nonrelativisti
 limitHF (2.8) (the stati
 atomi
 hyper�ne operator 
ontains the nu
lear Bohrmagneton, whi
h would be e=2m2 in our notation. HF is already re
oil
orre
ted).
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ussion and outlookBy the res
aling tri
k (3.18), the new equation (3.21) has be
ome in-variant under the repla
ement E ! �E. This symmetry is shared by allrelativisti
 two-body equations in
luding Dira
�Breit; it is merely violatedby later approximations. Its physi
al basis is 
harge 
onjugation invarian
e.It would even survive the in
lusion of C and P violating atomi
 intera
tions;the physi
al basis would then be CP or even CPT . If the eigenvalue +Erefers to an atom su
h as muonium (e��+), the eigenvalue �E refers tothe 
orresponding antiatom (antimuonium e+��). In parti
le theory, a �eldhas the operator stru
ture ae�iEt + ay�eiEt, where a destroys a parti
le ofenergy E, and ay� 
reates an antiparti
le of the same energy. In prin
iplethen, one may introdu
e �elds for whole atoms. This is unlikely to be of anyuse, but in the analogous 
ase of QCD, it should be possible to 
ombine theequations for the inner stru
ture of mesons with a meson �eld formalism.From the point of view of Feynman rules, antiparti
les 
orrespond toparti
les moving ba
kwards in time, with all additive quantum numbersreversed. One 
ould add that antiatoms also have negative distan
es betweentheir 
onstituents: To �nd the spe
trum of a di�erential equation, one mustspe
ify the range of its variables. For a spheri
ally symmetri
 V (r), one has0 � r < 1. The relativisti
 formulation has 0 � � < 1. For E < 0, this
orresponds to the interval �1 < r � 0. With r = (x2 + y2 + z2)1=2 this isequivalent to a 
ontinuation on the other bran
h of the square root.A point of more pra
ti
al importan
e is the absen
e of 
an
ellations.When the intera
tion is introdu
ed at the 16-
omponent level, E and thedominant Coulomb potential V (r) o

ur linearly, in the 
ombination E �V (r). A redu
tion to 8 
omponents produ
es the square of this opera-tor, E2 � 2EV (r) + V 2(r). The se
ond Born approximation provides ad-ditional operators, the dominant one being �V (r)2. The net e�e
t is thusE2 � 2EV (r) = E2 � 2m1m2V (�). This agrees with the �rst-order inter-a
tion introdu
ed at the 8-
omponent level. Consequently, this intera
tionis not only simpler than the 16-
omponent version, but it also in
ludes thedominant operator of the se
ond-order potential of that version.The 
an
ellations o

ur also in NRQED.How mu
h of this is appli
able to QCD? At the level of NRQCD, thesituation is good, as mentioned in the introdu
tion. Only the nonrelativisti
redu
tions of Breit and hyper�ne operators are needed here. But is thereany 
han
e of des
ribing the lighter pseudos
alar mesons and their ve
torpartners by a single di�erential equation? In the extreme 
ase of the � and� mesons, the hyper�ne operator would have to explain m2�=m2� � 30. The
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tor �=E = m1m2=E2 in (3.21) of the hyper�ne operator does in
reasefor de
reasing E2, but its singularity for r ! 0 ex
ludes a nonperturbativetreatment. In NRQED, a three-photon ex
hange 
orre
tion to the hyper�neoperator has been found by Pa
hu
ki [19℄, whi
h shows a possibility fora nonperturbative treatment: It may be in
luded by substituting in thehyper�ne operator �E ! m1m2[E2 � 2m1m2�2 ln(
�)℄�1; (4.1)with 
 = eC and C = 0:5772 =Euler's 
onstant.A still larger problem is posed by the formal use of S-matrix theory.In QCD, this theory requires the existen
e of free in- and outgoing quarkstates. The requirement is also present in the Bethe�Salpeter equation,where it leads to the free-quark-propagators (2.11). Is it possible to avoidthe 
on
ept of free quarks altogether? Again, the answer 
ould be yes.The derivation of the potential V (r) (r = jr1 � r2j) in the old Dira
�BreitHamiltonian (2.5) did not require the existen
e of free leptons. The V arisesfrom the operator form of A0 in the Coulomb gauge,A0(r2) = �eZ d3r0 yD(r0) D(r0)jr2 � r0j (4.2)and from the equal-time 
ommutation relation of the �eld operator  yD(r0)with  D(r1) [18℄ . The Breit operator proper (2.7) is less general; it assumesthe existen
e of a free photon �eld, whi
h would have to be repla
ed by afree gluon �eld in QCD. In any 
ase, this shows that the standard S-matrixtheory for free fermions is avoidable.From this point of view, it is relevant to know that the 8-
omponentequation has an approximate derivation from the 16-
omponent Dira
�Breitequation [18℄. The derivation requires a transformation of the radial variable,whi
h we now 
all r12, 
ontrary to (1.3):r = r212r12 + �=2E : (4.3)For V = ��=r12, this removes the operator V 2 from the 8-
omponent re-du
tion of the Dira
�Breit equation:(E + V (r12))2 = E2 + 2EV (r): (4.4)The square of the Breit operator is omitted by hand, whi
h dispenses withthe otherwise ne
essary proje
tors. Finally, r12 
ombines with the terms
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 Two-Body Equations 3441linear in the Breit operators into the operators of (3.21). A more dire
tderivation of an eight-
omponent Dira
�Breit equation does not yet exist.In su
h a derivation, the transformation (4.3) would be absent. The QCDextension to a potential whi
h is essentially non-Coulombi
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