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ASYMPTOTIC EXPANSIONS � METHODSAND APPLICATIONS �Robert HarlanderHET, Physi
s Department, Brookhaven National LaboratoryUpton, NY 11973(Re
eived O
tober 27, 1999)Di�erent viewpoints on the asymptoti
 expansion of Feynman diagramsare reviewed. The relations between the �eld theoreti
 and diagrammati
approa
hes are sket
hed. The fo
us is on problems with large masses orlarge external momenta. Several re
ent appli
ations also for other limit-ing 
ases are tou
hed upon. Finally, the pros and 
ons of the di�erentapproa
hes are brie�y dis
ussed.PACS numbers: 12.38.Bx, 11.80.Fv, 13.65.+i1. Introdu
tionFeynman diagrams are the most important theoreti
al tool for parti
lephysi
ists. They are an e�
ient link between theory and experiment. How-ever, their translation into a
tual numeri
al predi
tions is often very tediousif not impossible. Huge e�orts have been devoted to their evaluation, andseveral powerful methods have been developed to systemize their treatment.The more 
omplex a Feynman diagram is, the more important is it to �ndapproximation pro
edures that allow to solve the problem with �nite butreasonable a

ura
y. In this paper we will des
ribe methods that have beendeveloped over the re
ent years in order to systemati
ally expand Feynmandiagrams in their external parameters.
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3444 R. Harlander2. Status of multi-loop 
al
ulationsThe 
omplexity of a Feynman diagram with a 
ertain number of loopsmainly depends on its number of s
ales (i.e., masses and external momenta).In the one-loop 
ase, the problem 
an be 
onsidered as solved. Any tensorintegral 
an be redu
ed to integrals of unit numerator whi
h have beenstudied extensively. Nowadays there are powerful software tools, on theone hand 
on
erned with the tensor redu
tion, on the other hand with thenumeri
al or analyti
al evaluation of the integrals (see, e.g., [1℄).At two-loop level the solution is not as general as in the one-loop 
ase.However, the important 
lass of two-point fun
tions is well under 
ontrol,and the development for three- and four-point fun
tions is under 
ontinuousprogress (see [2℄ for a list of referen
es).Therefore, two-loop 
al
ulations in theories like the ele
tro-weak stan-dard model and even in supersymmetri
 models whose parti
le spe
tra giverise to Feynman diagrams with several di�erent s
ales have be
ome feasi-ble (e.g. [3℄).Cal
ulations at three-loop level mostly reside on two di�erent 
lasses ofanalyti
ally solvable Feynman integrals. These two 
lasses are� massless propagator-type diagrams where all internal lines are masslessand only one external momentum is di�erent from zero. S
hemati
ally:I(n1; : : : ; n�) = Z dDk1dDk2dDk3 P (q; k1; k2; k3)(p21)n1 � � � (p2�)n� ; (1)where � is the number of propagators and the pi are linear 
ombina-tions of the kj and the external momentum q.� massive tadpole diagrams not 
arrying any external momenta andinternal lines being either massless or 
arrying a 
ommon mass m.S
hemati
ally:J(n1; : : : ; n�) = Z dDk1dDk2dDk3 P (k1; k2; k3)(m21 + p21)n1 � � � (m2� + p2�)n� ; (2)where the mi are either equal to zero or m, and the pi are linear
ombinations of the loop momenta kj .P (: : : ) is a polynomial of produ
ts of its arguments. The method how tosolve su
h integrals is 
alled the integration-by-parts algorithm [4℄. It isbased on identities derived from the fa
t that the D-dimensional integralover a total derivative is equal to zero:Z dDp ��p� f(p; : : : ) = 0 : (3)
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ations 3445These identities 
an be arranged in su
h a way that they yield re
urren
erelations that allow to redu
e some of the �indi
es� n1; : : : ; n� in (1), (2) tozero. At three-loop level, these relations have been derived in [4℄ for masslesspropagators and in [5, 6℄ for massive tadpole integrals. Their appli
ation toa general three-loop diagram may generate huge intermediate expressionsthat easily ex
eed several hundreds of megabytes on a 
omputer. This iswhy one needs to implement the relations to powerful 
omputer algebrasystems like FORM or REDUCE. Two su
h implementations are MINCER [7℄,
on
erned with the massless propagator diagrams and MATAD [8℄, dealingwith the massive tadpoles (see [2℄ for a review on automati
 
omputation ofFeynman diagrams).The two 
lasses of single-s
ale diagrams mentioned above already havea huge number of important appli
ations. The most popular one probablyis the total 
ross se
tion for hadron produ
tion in e+e� annihilation (see,e.g., [9℄), usually written as the hadroni
 R ratio, in the limit of vanishingquark masses. Using the opti
al theorem, it 
an be expressed through theimaginary part of the photon polarization fun
tion:R(s) = 12� Im�(q2)����q2=s+i� ; (4a)where �(q2) = �g�� + q�q�=q2q2(D � 1) ���(q) ; (4b)and ���(q) = iZ d4xeiq�xh0jTj�(x)j�(0)j0i ; j� = � 
� : (4
) is a quark �eld of massm. The diagrams 
ontributing to ���(q) up to two-loop order are shown in Fig. 1. Up to three-loop order, su
h diagrams 
andire
tly be 
omputed by the program MINCER mentioned before (nota benein the massless limit!). Another important appli
ation is the 
omputationof moments of the polarization fun
tion, �n=�(q2)n � �(q2)jq2=0. They 
anbe obtained by applying the derivatives and the nulli�
ation of q2 beforeperforming the loop integrations [10℄. Furthermore, sin
e renormalizationgroup fun
tions like the QCD � fun
tion or anomalous dimensions in theMS s
heme are independent of any masses and momenta, their evaluation
an be performed by 
omputing single-s
ale diagrams.However, returning to the R ratio de�ned above, the limit of vanishingquark mass may not be satisfa
tory, espe
ially if one is interested in energyregions not too far above one of the quark thresholds. As long as the exa
tevaluation of three-loop diagrams involving a non-vanishing mass as well asan arbitrary external momentum is not possible, one may hope to redu
ethe integrals to single-s
ale diagrams by performing an expansion in thequark mass. In the optimal 
ase, a �nite number of terms in the expansion
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Fig. 1. Diagrams 
ontributing to the photon polarization fun
tion �(q). The outerline denotes a photon of momentum q, the plain lines are quarks and the spiralones denote gluons.will approximate the full result to reasonable a

ura
y, and the in
lusion ofhigher order terms will gradually de
rease the error. To get an idea on whatthe result should look like, let us 
onsider the exa
t one-loop result for thephoton polarization fun
tion:�(0)(q2) = 316�2 � 43� + 209 + 43 l�m + 43z � 4(1 � z)(1 + 2z)3z G(z)� ;whereG(z) = 2u lnuu2 � 1 ; u = p1� 1=z � 1p1� 1=z + 1 ; z = q24m2 ; l�m = ln �2m2 ; (5)and � is the renormalization s
ale. The pole1 in � = (D�4)=2, whereD is thespa
e-time dimension, will eventually disappear upon global renormalization(e.g., by requiring �(0) = 0). The result of (5) 
an be expanded in terms ofsmall mass m, yielding:�(0)(q2) = 316�2 � 43� + 209 � 43 lq�+ 8 m2q2 +�m2q2 �2 �4 + 8 lqm��+ : : : ; (6)with lq� = ln(�q2=�2) and lqm = ln(�q2=m2). One observes that the 
o-e�
ients of the series in m2=q2 
ontain non-analyti
al pie
es in terms oflogarithms. They develop an imaginary part by means ofln(�s� i�) = �i� + ln s for s > 0: (7)The hadroni
 R ratio is therefore given by (see (4a)):R(s) = 3 1� 6�m2s �2 + : : :! : (8)1 The a

ompanying ln 4� and 
E are suppressed throughout the paper.
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ations 3447The question is now if it is possible to obtain the expansion given in (6)dire
tly from the Feynman integrals, i.e. without having to know the exa
tresult. As a �rst guess one may try to perform a Taylor expansion of theintegrand, thereby arriving at massless propagator diagrams. However, it is
lear that su
h a �naive Taylor expansion� 
an not be the whole answer. Forexample, it is impossible to reprodu
e the logarithmi
 mass dependen
e inthis way. Nevertheless, let us look at the result:Tm�(0) = 316�2� 43� + 209 � 43 lq�+ 8 m2q2 +�m2q2 �2 �� 8� � 8 + 8 lq���+ � � � : (9)In fa
t, the �rst two orders in m2=q2 are reprodu
ed 
orre
tly. The m4=q4term, however, is 
ompletely di�erent, and there is even an additional polein �. Only the logarithmi
 q2 dependen
e is reprodu
ed. Thus, in generalthe naive Taylor expansion is not su�
ient to arrive at the desired result.However, in the next se
tion we will see that by in
luding well-de�ned ad-ditional terms one indeed 
an obtain the 
orre
t expansion.3. Asymptoti
 behaviorThis se
tion is divided into three parts, all 
on
erned with the problem ofexpanding Feynman diagrams in their external parameters, as it was raisedin Se
tion 2. Cross-referen
es between the three parts of this se
tion willdemonstrate the 
lose 
orresponden
e of the individual formulations.In Se
tion 3.1, the problem will be approa
hed from a �eld theoreti
alpoint of view. The resulting expansion will be derived from the operatorprodu
t expansion formulated in the MS s
heme. The viewpoint of Se
-tion 3.2, on the other hand, examines the individual Feynman integrals that
ontribute to a 
ertain problem. By a thorough investigation of the inte-gration regions for the loop momenta and a subsequent Taylor expansionin the appropriate variables, one 
an derive rules that allow to obtain theexpansion of the full result in a very e�
ient way.In 
ertain 
ases these rules 
ould be phrased in a mainly diagrammati
allanguage. For diagrams involving large external momenta or large massesthis graphi
al formulation will be des
ribed in Se
tion 3.3.
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t ExpansionThe asymptoti
 behavior of the two-point 
orrelator of (4
) in the limit�q2 = Q2 !1 is formally known to all orders of perturbation theory. It isgiven by an operator produ
t expansion (OPE):���(q) = iZ d4xeiq�xh0jTj�(x)j�(0)j0i �q2!1! Xn Cn;��hOni : (10)The Cn;�� are 
omplex fun
tions, and the On are operators 
omposite of�elds of the QCD Lagrangian. We keep only Lorentz s
alar operatorsbe
ause all others vanish when sandwi
hed between the va
uum states.Transversal 
oe�
ient fun
tions Cn will be de�ned in analogy to the Eq. (4b).The operators are usually sorted a

ording to their mass dimension. It is
onvenient to allow only operators of even mass dimension whi
h is a
hievedby appropriate fa
tors of the quark mass m (only one quark shall be 
onsid-ered as massive for the sake of 
larity). Up to dimension four, the followingset of operators is relevant:O(0) = 1 ; O(2) =m2 ; (11)O(4)1 = G2�� ; O(4)2 = m �  ; O(4)3 =m4 ;where G�� is the gluoni
 �eld strength tensor and  is again the quark�eld (the supers
ript �(4)� of the dimension-4 operators will be dropped inwhat follows). If the operators are understood to be normal ordered, theva
uum expe
tation values of the non-trivial (i.e. not proportional to unity)operators are equal to zero in perturbation theory. In su
h an approa
h theseoperators are used to parameterize non-perturbative e�e
ts.On the other hand, if one abandons normal ordering and applies minimalsubtra
tion, the va
uum expe
tation values of the �eld operators re
eivealso perturbative 
ontributions. The 
orresponding diagrams are massivetadpoles whi
h by de�nition only depend on the quark mass and the renor-malization s
ale �. Examples are shown in Fig. 2. They lead to the followingO1 O2 O2
Fig. 2. Sample diagrams 
ontributing to hO1i and hO2i.
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ations 3449results: h1i = 1 ; hm2i = m2 ; hm4i = m4 ;hOB1 i = 316�2 m4��s� � 2�2 + 1� �143 + 4 l�m�+ 10 + 2 �2 + 283 l�m + 4 l2�m�+ � � �� ;hOB2 i = 316�2 m4�4� + 4 + 4 l�m + �s� � � � � �+ � � �� : (12)
Only the �rst non-vanishing order in �s is quoted here. However, the resultsfor the operators that are proportional to unity (m2n; n = 0; 1; 2) are validto all orders of perturbation theory by de�nition. Note that there are stillpoles in � whi
h is why the operators are marked with the supers
ript B.These poles disappear upon global renormalization, thereby indu
ing mixingof the operators a

ording toOn =Xm ZnmOBm : (13)For the dimension-4 operators the renormalization matrix Znm in the MSs
heme was 
omputed in [11℄ by expressing it in terms of the 
harge andmass renormalization 
onstants of QCD, plus the one for the QCD va
uumenergy. They are 
urrently known to O(�4s) [12, 13℄ and O(�3s) [14℄, respe
-tively. The results for the renormalized va
uum expe
tation values of O1and O2 up to O(�s) 
an be found in [15℄.The 
ru
ial observation about using the MS s
heme was made in [16℄:It appears that in this approa
h the 
oe�
ient fun
tions are independentof the quark masses. They only depend on the external momentum q andthe renormalization s
ale �. It was shown that their 
omputation 
an beredu
ed to the evaluation of massless propagator-type diagrams. The mostre�ned method for this purpose is 
alled the �method of proje
tors� [17℄: letus de�ne �bare� 
oe�
ient fun
tions throughXn Cn;BOBn �Xn CnOn : (14)



3450 R. HarlanderThen the ones up to dimension four, for example, are obtained in the fol-lowing way (only sample diagrams are displayed here) [18℄:[C(0)B ; C(2)B ; C3;B℄ == [1; ��m2B ; 12 �2�(m2B)2 ℄24 + + � � �35mB=0 ;C1;B = P1� ��p; ��mB�24 + � � �35mB=p=0 ;C2;B = P2� ��p; ��mB�24 + � � �+ + � � �35mB=p=0 ;(15)where p is the momentum 
arried by the external quark-, gluon-, and ghost-lines (the latter arise only at higher orders in �s). P1 and P2 are �proje
tors�depending polynomially on the derivatives w.r.t. p and mB. For example,P2� ��p; ��mB� [� � � ℄ = 14n
Tr� ��mB + 1D
� ��p�� [� � � ℄ : (16)It is understood that the derivatives a
t on the integrands and the nulli�
a-tion of p and mB is performed before integration. Note, however, that themomentum 
arried by the external 
urrents (wavy lines), is q 6= 0. Obvi-ously, C(0)B , C(2)B , and C3;B are just the 
oe�
ients of m0B, m2B, and m4B ofthe naive Taylor expansion, respe
tively. The expressions for C1;B and C2;B,on the other hand, read as follows:C1;B = 1q4��s� � 112 + � � 772 � 112 lq���+ : : :� ;C2;B = 1q4�2 + �+ �s� �23 + � �53 � 23 lq���+ : : :� ; (17)where we have kept the terms up to O(�) be
ause they 
ontribute to the�nite part of �(q2). In fa
t, with these ingredients it is possible to 
omputethe polarization fun
tion up to order �0sm4. Diagrammati
ally one �nds�q2!1! TmB + 2 ? ; (18)
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ations 3451where in the se
ond term on the right hand side the proje
tion with P2 from(16) is impli
it. The fa
tor 2 arises from the symmetri
al diagram that also
ontributes to C2;B. Note that there is no 
ontribution from O1 at this order.The Taylor expansion in the �rst term is to be 
arried out up to m4B. This�rst term is given by Eq. (9), sin
e m = mB +O(�s). Using the results of(12) and (17) for C2;B and hOB2 i, one obtains the result for the se
ond termof (18): 2C2;BhOB2 i = 316�2 �m2q2 �2 �8� + 12 + 8 l�m�+O(�s) : (19)Adding it to (9) exa
tly reprodu
es the result for �(q2) up to O(m4) givenin (6).The 
on
lusion from these 
onsiderations is that in addition to the naiveTaylor expansion of (9) one should in
lude an extra term, given by 2C2;BhOB2 i,in order to arrive at the 
orre
t result for the polarization fun
tion. However,the important point about Eq. (18) is that the original diagram is redu
edto single-s
ale fa
tors (i.e., massless propagators and massive tadpoles).3.2. Strategy of regions [19,20℄Let us for the moment forget about OPE again and 
onsider only theFeynman integral for the one-loop diagram, 
on
entrating on the s
alar 
asefor the sake of 
larity: s
alar= Z 1m2 + k2 1m2 + (k �Q)2 ; (20)where the momenta are taken in Eu
lidean spa
e and integration is over k.Assume now that m2 � Q2 (= �q2). The integral may be split into thefollowing regions:(i) : k2 � m2 and (k �Q)2 � m2(ii) : k2 � m2 ) (k �Q)2 � m2(iii) : (k �Q)2 � m2 ) k2 � m2 ; (21)where �means �of the order of�. In region (i), the integrand 
an be expandedin terms of small m:Z(i) 1m2 + k2 1m2 + (k �Q)2 � Z(i) Tm 1m2 + k2 1m2 + (k �Q)2= Z(i) 1k2 1(k �Q)2 �1� m2k2 + : : :��1� m2(k �Q)2 + : : :� : (22)



3452 R. HarlanderIn region (ii), k is 
onsidered to be of the same order of magnitude as m, soone should expand in m and k at the same time:Z(ii) 1m2 + k2 1m2 + (k �Q)2 � Z(ii) Tm;k 1m2 + k2 1m2 + (k �Q)2= Z(ii) 1m2 + k2 1Q2 �1� m2 + k2 � 2k �QQ2 + : : :� : (23)Region (iii) 
an be mapped onto region (ii) by substituting k0 = Q � k,meaning k02 � m2 ) (k0 � Q)2 � m2, and we arrive at an expressionanaloguous to (23).Now we add and subtra
t the 
omplementary regions to the integralsabove and �nd:Z 1m2 + k2 1m2 + (k �Q)2� Z Tm 1m2 + k2 1m2 + (k �Q)2 + 2Z 1m2 + k2Tm;k 1m2 + (k �Q)2� C ; (24)whereC = Z(ii)[(iii) Tm 1m2 + k2 1m2 + (k �Q)2 + Z(i)[(iii) 1m2 + k2� Tm;k 1m2 + (k �Q)2 + Z(i)[(ii) 1m2 + k02Tm;k0 1m2 + (k0 �Q)2 : (25)In ea
h of the di�erent regions, one 
an again expand w.r.t. the appropriateparameters, for example:Z(ii) Tm 1m2 + k2 1m2 + (k �Q)2� Z(ii) �Tm 1m2 + k2��Tm;k 1m2 + (k �Q)2� : (26)Finally, for C one �nds:C = 2 Z(i)[(ii)[(iii) �Tm 1m2 + k2��Tm;k 1m2 + (k �Q)2� ; (27)
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ations 3453whi
h 
orresponds to massless tadpole integrals and therefore vanishes indimensional regularization whi
h we are using throughout.2The se
ond term on the r.h.s. of Eq. (24) 
an be represented graphi
allyas 2 � ; (28)meaning that the solid line should be expanded in all quantities but Q.Doing this, the a
tual integral will be of the tadpole type, with a more orless 
ompli
ated vertex insertion. It is obtained from the original diagramby shrinking the solid lines shown in (28) to a point. In this sense, one 
anagain use the diagrammati
al equation (18) in order to represent Eq. (24).However, the interpretation is slightly di�erent: In the se
ond term, thediagram left of �?� means the solid line of (28), and the one right of �?� isthe tadpole whi
h remains when shrinking the expanded lines to a point.But the main di�eren
e between both interpretations of Eq. (18) is thata

ording to Se
tion 3.1 it is only valid up to terms of order (m2=q2)2;a

ording to Se
tion 3.2, however, one may obtain the diagram to the r.h.s.up to arbitrary high powers in m2=q2 by pushing the Taylor expansions onthe l.h.s. to su�
iently large order.3.3. Large momentum and hard mass pro
edure [16,17,21�24℄So far, two di�erent viewpoints for the small-mass expansion of the po-larization fun
tion have been presented. One is based on OPE and uses thelanguage of quantum �elds, while the se
ond one examines the very Feyn-man integrals. The third viewpoint we will fo
us on is formulated mainly interms of Feynman diagrams. Given a 
ertain Feynman diagram with a par-ti
ular distribution of masses and external momenta, the method generatesa set of simpler diagrams whi
h 
orrespond to the asymptoti
 form of theoriginal diagram in 
ertain limits of the external parameters.The parti
ular 
ase of a large external momentum as it was 
onsideredso far is usually referred to as �large momentum pro
edure�. The opposite
ase of a mass being mu
h larger than any other s
ale is 
alled �hard masspro
edure� and will be addressed below.The pres
ription for the asymptoti
 expansion of Feynman diagrams 
anbe summarized by the following formula [24℄:F(�) ! X
 F(�n
) ? T F(
) : (29)2 I a
knowledge a useful 
onversation with K. Melnikov on this issue.



3454 R. HarlanderHere, � is the Feynman diagram under 
onsideration, and F(�) is the 
or-responding Feynman integral. It shall 
ontain either a set of large externalmomenta fQg or of large masses fMg. The arrow (!) denotes that the r.h.s.is valid in the asymptoti
 limit of the M or Q going to in�nity. The sumgoes over all subgraphs 
 of � that ful�ll 
ertain 
onditions to be des
ribedbelow. �n
 means the diagram that results when, within �, all lines of 
 areshrunk to points. T means Taylor expansion w.r.t. all masses and externalmomenta that are not large. In parti
ular, also those external momentaof 
 that appear to be integration momenta in � have to be 
onsidered assmall. The Taylor expansions are understood to be applied before any loopintegrations are performed. In the following we will refer to the 
 as hardsubgraphs or simply subgraphs, to �n
 as the 
orresponding 
o-subgraphs.The �?� means that T F(
) shall be inserted into F(�n
) at the point towhi
h 
 was 
ontra
ted.In other words: within �, all propagators of 
 have to be expanded w.r.t.the masses and external momenta of 
 that are not large.3.3.1. Large momentum pro
edureFor the parti
ular 
ase of the large momentum pro
edure, the 
onditionsthat spe
ify the hard subgraphs are as follows:Every 
 has to (i) 
ontain all verti
es where a large momentum entersor leaves the graph and (ii) be one-parti
le irredu
ible if these verti
es were
onne
ted by an extra line.As an example, 
onsider again the one-loop diagram 
ontributing to thephoton polarization fun
tion, Fig. 1(a), in the limit of large external momen-tum. The set of hard subgraphs that emerge 
onsists of three diagrams: �rstthere is the diagram itself; the 
orresponding 
o-subgraph is just a point.The se
ond subgraph is the one shown in (28) if the dashed line is omitted,and the third subgraph is the one symmetri
al to that. The 
orresponding
o-subgraphs are one-loop tadpole diagrams. In this way one again arrivesat Eq. (18). The interpretation of the terms is the same as it was in theapproa
h of Se
tion 3.2.As a two-loop example, let us examine the diagram shown in Fig. 1 (b):�q2!1! ? 1+ 4 ? + 2 ?+ 2 ? + ? ; (30)
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ations 3455where the subgraphs are given by the solid lines of the diagrams left of �?�.The �rst term on the r.h.s. 
orresponds to the naive Taylor expansion. Notethat the last diagram is zero in dimensional regularization.It is interesting to relate this set of terms to the viewpoints of the pre-vious se
tion. In the operator language, the �rst term 
orresponds to thetrivial operators m2n. The se
ond one (a
tually only its m4=q4 
ontribu-tion) is related to C2;BhOB2 i, the last one to C1;BhOB1 i. The other two terms,however, have no 
orresponden
e to any of the operators of Se
tion 3.1. Thisis due to the fa
t that we 
onsidered only operators up to dimension four.But relation (30) is valid up to arbitrary orders in m2=q2. So the 
on
lu-sion is that the third and fourth term on the l.h.s. are of order (m2=q2)3 orhigher.The viewpoint des
ribed in Se
tion 3.2, on the other hand, reprodu
esexa
tly the same terms as shown above.3.3.2. Hard mass pro
edureSo far only the 
ase of an external momentum being mu
h larger thanany other s
ale of the problem was 
onsidered. In this se
tion the so-
alledhard mass pro
edure will be dis
ussed. Here it is assumed that the diagram
arries a mass that is mu
h larger than all other masses and external mo-menta. Equation (29) remains valid, only the 
lassi�
ation of the subgraphsis di�erent. In the 
ase of the hard mass pro
edure, 
 must (i) 
ontain alllines 
arrying a large mass (ii) be one-parti
le irredu
ible in its 
onne
tedparts after 
ontra
ting the heavy lines. Consider the following two-loopdiagram as an example:
q+k+l q+k

k+l k

l ; (31)
where q is the external momentum �owing through the diagram from rightto left. The mass of the thi
k line will be denoted byM . The imaginary partof (31) 
ontributes to the ele
tro-weak one-loop 
orre
tions of the pro
essZ ! b�b if top-quarks are attributed to the thi
k lines, b quarks to the plainthin lines, W bosons to the inner, and Z bosons to the outer wavy lines(see also Se
tion 4 below). In the limit q2 �M2, the following subdiagrams



3456 R. Harlanderemerge: k2 �M2l2 �M2 : ? ,k2 �M2l2 �M2 : ? ,k2 �M2l2 � M2 : ? ,k2 �M2l2 �M2 : ? ,
(32)

where we have indi
ated the region of loop momenta that generates the
orresponding subdiagram a

ording to the 
onsiderations or Se
tion 3.2. Itis again understood that the solid lines are to be expanded w.r.t. all externalmomenta and masses ex
ept M . The 
o-subgraphs, shown right of �?�, areobtained by 
ontra
ting the solid lines to points.3.3.3. Su

essive appli
ation of large momentum and hard mass pro
edureIn theories with many di�erent parti
les of various masses, a realisti
pro
ess generally involves several s
ales. The su

essive appli
ation of thelarge momentum and the hard mass pro
edure 
an be used to redu
e anyFeynman diagram to single-s
ale fa
tors in this 
ase, as long as a hierar
hyamong the di�erent s
ales 
an be de�ned. This strategy was applied, forexample, in the 
al
ulation of the anomalous magneti
 moment of the muon[25℄, and later, using an automated setup, to the de
ay of the Z boson intob quarks [26℄ (see Se
tion 4 below).3.4. Expansions in other limits and range of appli
abilityTwo 
on
luding remarks shall be made to 
omplete this formal se
tion.First it should be noted that asymptoti
 expansions have been developed forvarious limiting 
ases (see, e.g., [19,27℄). Only the two most straightforwardones have been des
ribed above. Other situations arise, for example, if theexternal momentum is either 
lose to a mass or a threshold of the diagram.It appears that the most 
onvenient way to formulate these expansions is interms of the language of Se
tion 3.2. Appli
ations will be dis
ussed brie�yin the next se
tion.The se
ond remark that should be made 
on
erns the appli
ability ofasymptoti
 expansions, or in other words, the 
onvergen
e properties of
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ations 3457the series. By investigating the global stru
ture of the problem, one often
an read o� regions of 
onvergen
e for the fun
tion to be approximated.These regions may extend to values of the expansion parameter that areway beyond the initially required 
onditions.Restri
tions on the region of 
onvergen
e, on the other hand, are mostlyindu
ed by the presen
e of thresholds. Thus, it often appears that within
reasing number of loops the range of validity for the result de
reasesdue to additional thresholds that are absent at lower order of perturbationtheory. 4. Asymptoti
 expansions in pra
ti
al appli
ationsR(s) to O(�2s): in [28℄ the method of Se
tion 3.3.1 was dire
tly appliedto the three-loop polarization fun
tion. For this purpose, the diagrammati-
al pres
riptions were implemented in a 
omputer program, 
alled lmp [29℄,in order to 
ope with the large number of subdiagrams that had to be gen-erated. For details on the 
al
ulation and the dis
ussion of the results andtheir 
onvergen
e properties we refer to [28, 30℄.RG fun
tions in MOM s
heme: the large momentum pro
edure wasalso used to evaluate the relations between the renormalization 
onstantsof QCD in the MS s
heme to the ones in other s
hemes, in parti
ular theMOM s
heme, at O(�3s). See [31℄ for more details.Z ! b�b to order GF�s: a sample diagram whose imaginary part
ontributes at O(GF) is shown in Eq. (31). At order GF�s, an additionalgluon has to be atta
hed. One 
an apply the hard mass pro
edure w.r.t. Mtin this 
ase, and it turns out that the leading term is proportional toM2t dueto the large mass splitting between the bottom and the top quark. There aretwo other s
ales in the problem,MW andMZ . In [26℄ they were fa
torized bya su

essive appli
ation of the hard mass pro
edure a

ording toMW �MZ ,an inequality whose use 
learly has to be justi�ed (see [26, 32℄). The whole
al
ulation would not have been possible without the 
omputer programEXP [33℄. As 
ompared to lmp, it also performs the hard mass pro
edure andits 
ombination with the large momentum pro
edure. Meanwhile the resultsof [26℄ have been 
on�rmed by a di�erent approa
h [34℄.t ! bW to O(�2s): the problem here is that the 
ontributing three-loop diagrams are a
tually on-shell, q2 = M2t . Two di�erent methods havebeen used to 
ompute this pro
ess: The �rst 
al
ulation [35℄ used asymptoti
expansions in the limit 1�M2b =M2t � 1, the se
ond one [36℄ evaluated the o�-shell diagrams for q2 �M2t with the help of the hard mass pro
edure, takingthe limit q2 ! M2t after performing a Padé approximation (see [36, 37℄ fordetails). The perfe
t agreement and the fairly high a

ura
y of the resultsin both approa
hes is a 
lear demonstration of the power of asymptoti
expansions.
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 expan-sions in the threshold limit allowed to 
ompute this pro
ess up to O(v2,�sv, �2s) [38℄, where v is the velo
ity of the top quarks in the 
ms system.It turned out that the 
orre
tions are huge and exhibit a strong dependen
eon the renormalization s
ale. The interpretation of this result and its impli-
ations are still an ongoing dis
ussion (see [39℄ and referen
es therein).MS to pole mass 
onversion at O(�3s): among other things, theprogress in threshold 
al
ulations mentioned above makes it very importantto be able to express the MS mass in terms of the pole mass at O(�3s). The
orresponding 
al
ulation of this relation was based on asymptoti
 expan-sions in the limit of small and large quark mass and interpolated the resultfor the a
tual on-shell diagrams with the help of Padé approximations [40℄.� de
ay and semileptoni
 b de
ays: for spe
ial �nal state 
on�g-urations the de
ay b ! 
l�� was 
omputed up to O(�2s) using asymptoti
expansions in the limit 1 �M2
 =M2b � 1 [41℄. For b ! ul��, the full in
lu-sive result was obtained through a four-loop 
al
ulation, where the a
tualintegrals were 
al
ulated by performing an asymptoti
 expansion and re-summing the full series [42℄. The same te
hnique was applied to the 2-loopQED 
orre
tions to muon de
ay [43℄. Using an approa
h similar to the oneof [36℄ (see above), the results of [42, 43℄ were re
ently 
on�rmed [44℄.5. Ba
k to OPE: RG improvementThe advantages of the approa
h of Se
tions 3.2 and 3.3 in 
omparisonto the one of Se
tion 3.1 when 
al
ulating Feynman diagrams are obvious:In the OPE language one needs to de�ne a full set of operators for everyorder in m2 and to apply the appropriate proje
tors in order to obtain the
oe�
ient fun
tions. Using the large momentum pro
edure, all operations
an be performed on the level of Feynman diagrams. The depth of theexpansion in m2 is just a matter of evaluating the Taylor expansions tosu�
iently high orders. However, the loss of 
onta
t to the quantum �eldtheoreti
 level has its pri
e. In this se
tion two advantages of the OPElanguage over the stri
t appli
ation of the large momentum pro
edure willbe des
ribed. 5.1. Resummation of logarithms [45℄Consider the expansion of the polarization fun
tion w.r.t. small m2=q2(see Eq. (6)). The 
oe�
ients of this series 
ontain logarithms of the formln(�2=m2) and ln(��2=q2). The former arise from the tadpole diagrams (inthe OPE language: the va
uum expe
tation values; in the large momentumpro
edure: the 
o-subgraphs), the latter from the massless propagator di-agrams (
oe�
ient fun
tions/hard subgraphs). Working at �xed order in
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ations 3459perturbation theory, one has to 
hoose some value for � in order to makepredi
tions for physi
al quantities. It is 
lear that one should 
hoose � su
hthat the 
oe�
ients of the perturbative series are small. However, with thetwo types of logarithms above this might be impossible. In the OPE ap-proa
h this problem 
an be solved in the following way: the operators ful�llthe renormalization group (RG) equation�2 dd�2On =Xn 
nmOm ; (33)where 
nm is their anomalous dimension related to the renormalization ma-trix Znm of (13) by 
nm =Xk ��2 dd�2Zmk� (Z�1)kn : (34)The solution of (33) is of the formOn(�) =Xm RnmOm(�0) ; (35)where Rnm depends on � and �0 only impli
itly through its dependen
e on�s. One 
an now rewrite the OPE as�(q2) =Xn Cn(�)On(�) =Xn;mCn(�)RnmOm(�0) : (36)Setting �2 = q2 and �20 = m2 removes both types of logarithms dis
ussedabove. Using the diagram-wise expansions of Se
tions 3.2 or 3.3, su
h kindof resummation is not possible in a straightforward way.5.2. Re
onstru
tion of higher orders in �sConsider the expansion of �(q2) in small m2=q2 at (l + 1)-loop level.It appears that the only proper (l + 1)-loop diagrams that 
ontribute arisefrom the naive Taylor expansion, or in other words, from the trivial operatorsm2n. All the additional terms are produ
ts of diagrams with a lower numberof loops. In the following we will show that this fa
t allows to derive thephysi
ally relevant quantity R = Im� at (l + 1)-loop level from an l-loop
al
ulation assuming the OPE approa
h of Se
tion 3.1.To be spe
i�
, 
onsider the 
al
ulation of the m4 terms of �(q2). Thedimension-4 pie
e of the OPE ful�lls the following RG equation:�2 dd�2 3Xn=1CnOn = 0 : (37)
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t of the derivative on the On is again determined by (33). On theother hand, be
ause the Cn do not depend on masses, we 
an write�2 dd�2Cn = � ��L + �s� ���s�Cn ; (38)where L = ln(��2=q2). Inserting this into (37), 
olle
ting the 
oe�
ientsof O3 and using 
33 = 4
m (this 
an be seen by re
alling �2 dd�2m = 
mm),one obtains [15℄:��LC3 = �4
mC3 � �s� ���sC3 � Xn=1;2 
n3Cn : (39)Performing an l-loop 
al
ulation, C1 and C2 are known to order �ls, C3 onlyto �l�1s . But sin
e � and 
m do not 
ontain terms of order �0s, the r.h.s.is known to O(�ls) (assuming that the anomalous dimensions are known toappropriate order), and so is the l.h.s. The logarithmi
 terms (and thus thedesired imaginary part) of C3 
an therefore be obtained to O(�ls) by trivialintegration.This strategy was �rst followed in [15℄ to derive the m4�2s terms of R(s).The extension to m4�3s was performed in [46℄ (see also [47℄).6. Con
lusionsIn this le
ture we have dis
ussed the methods for asymptoti
 expansionsof Feynman integrals. The �eld theoreti
al approa
h via operator produ
texpansion has been 
ompared to the diagram-wise methods, and the advan-tages of both strategies have been outlined. We hope that the importan
eof the numerous appli
ations � we 
ould sket
h only a few of them � has
onvin
ed the reader of the power and �exibility of these expansions.I would like to thank K.G. Chetyrkin, J.H. Kühn, T. Seidensti
ker, andM. Steinhauser for fruitful 
ollaboration on various topi
s and 
areful readingof the manus
ript. I am indebted to A. Czarne
ki, K. Melnikov, and A. Réteyfor several enlightening dis
ussions and useful 
omments on the text. Iwould further like to thank the organizers of the s
hool for the invitationand the pleasant atmosphere. This work was supported by the Deuts
heFors
hungsgemeins
haft.
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