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ASYMPTOTIC EXPANSIONS � METHODSAND APPLICATIONS �Robert HarlanderHET, Physis Department, Brookhaven National LaboratoryUpton, NY 11973(Reeived Otober 27, 1999)Di�erent viewpoints on the asymptoti expansion of Feynman diagramsare reviewed. The relations between the �eld theoreti and diagrammatiapproahes are skethed. The fous is on problems with large masses orlarge external momenta. Several reent appliations also for other limit-ing ases are touhed upon. Finally, the pros and ons of the di�erentapproahes are brie�y disussed.PACS numbers: 12.38.Bx, 11.80.Fv, 13.65.+i1. IntrodutionFeynman diagrams are the most important theoretial tool for partilephysiists. They are an e�ient link between theory and experiment. How-ever, their translation into atual numerial preditions is often very tediousif not impossible. Huge e�orts have been devoted to their evaluation, andseveral powerful methods have been developed to systemize their treatment.The more omplex a Feynman diagram is, the more important is it to �ndapproximation proedures that allow to solve the problem with �nite butreasonable auray. In this paper we will desribe methods that have beendeveloped over the reent years in order to systematially expand Feynmandiagrams in their external parameters.
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3444 R. Harlander2. Status of multi-loop alulationsThe omplexity of a Feynman diagram with a ertain number of loopsmainly depends on its number of sales (i.e., masses and external momenta).In the one-loop ase, the problem an be onsidered as solved. Any tensorintegral an be redued to integrals of unit numerator whih have beenstudied extensively. Nowadays there are powerful software tools, on theone hand onerned with the tensor redution, on the other hand with thenumerial or analytial evaluation of the integrals (see, e.g., [1℄).At two-loop level the solution is not as general as in the one-loop ase.However, the important lass of two-point funtions is well under ontrol,and the development for three- and four-point funtions is under ontinuousprogress (see [2℄ for a list of referenes).Therefore, two-loop alulations in theories like the eletro-weak stan-dard model and even in supersymmetri models whose partile spetra giverise to Feynman diagrams with several di�erent sales have beome feasi-ble (e.g. [3℄).Calulations at three-loop level mostly reside on two di�erent lasses ofanalytially solvable Feynman integrals. These two lasses are� massless propagator-type diagrams where all internal lines are masslessand only one external momentum is di�erent from zero. Shematially:I(n1; : : : ; n�) = Z dDk1dDk2dDk3 P (q; k1; k2; k3)(p21)n1 � � � (p2�)n� ; (1)where � is the number of propagators and the pi are linear ombina-tions of the kj and the external momentum q.� massive tadpole diagrams not arrying any external momenta andinternal lines being either massless or arrying a ommon mass m.Shematially:J(n1; : : : ; n�) = Z dDk1dDk2dDk3 P (k1; k2; k3)(m21 + p21)n1 � � � (m2� + p2�)n� ; (2)where the mi are either equal to zero or m, and the pi are linearombinations of the loop momenta kj .P (: : : ) is a polynomial of produts of its arguments. The method how tosolve suh integrals is alled the integration-by-parts algorithm [4℄. It isbased on identities derived from the fat that the D-dimensional integralover a total derivative is equal to zero:Z dDp ��p� f(p; : : : ) = 0 : (3)



Asymptoti Expansions � Methods and Appliations 3445These identities an be arranged in suh a way that they yield reurrenerelations that allow to redue some of the �indies� n1; : : : ; n� in (1), (2) tozero. At three-loop level, these relations have been derived in [4℄ for masslesspropagators and in [5, 6℄ for massive tadpole integrals. Their appliation toa general three-loop diagram may generate huge intermediate expressionsthat easily exeed several hundreds of megabytes on a omputer. This iswhy one needs to implement the relations to powerful omputer algebrasystems like FORM or REDUCE. Two suh implementations are MINCER [7℄,onerned with the massless propagator diagrams and MATAD [8℄, dealingwith the massive tadpoles (see [2℄ for a review on automati omputation ofFeynman diagrams).The two lasses of single-sale diagrams mentioned above already havea huge number of important appliations. The most popular one probablyis the total ross setion for hadron prodution in e+e� annihilation (see,e.g., [9℄), usually written as the hadroni R ratio, in the limit of vanishingquark masses. Using the optial theorem, it an be expressed through theimaginary part of the photon polarization funtion:R(s) = 12� Im�(q2)����q2=s+i� ; (4a)where �(q2) = �g�� + q�q�=q2q2(D � 1) ���(q) ; (4b)and ���(q) = iZ d4xeiq�xh0jTj�(x)j�(0)j0i ; j� = � � : (4) is a quark �eld of massm. The diagrams ontributing to ���(q) up to two-loop order are shown in Fig. 1. Up to three-loop order, suh diagrams andiretly be omputed by the program MINCER mentioned before (nota benein the massless limit!). Another important appliation is the omputationof moments of the polarization funtion, �n=�(q2)n � �(q2)jq2=0. They anbe obtained by applying the derivatives and the nulli�ation of q2 beforeperforming the loop integrations [10℄. Furthermore, sine renormalizationgroup funtions like the QCD � funtion or anomalous dimensions in theMS sheme are independent of any masses and momenta, their evaluationan be performed by omputing single-sale diagrams.However, returning to the R ratio de�ned above, the limit of vanishingquark mass may not be satisfatory, espeially if one is interested in energyregions not too far above one of the quark thresholds. As long as the exatevaluation of three-loop diagrams involving a non-vanishing mass as well asan arbitrary external momentum is not possible, one may hope to reduethe integrals to single-sale diagrams by performing an expansion in thequark mass. In the optimal ase, a �nite number of terms in the expansion
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Fig. 1. Diagrams ontributing to the photon polarization funtion �(q). The outerline denotes a photon of momentum q, the plain lines are quarks and the spiralones denote gluons.will approximate the full result to reasonable auray, and the inlusion ofhigher order terms will gradually derease the error. To get an idea on whatthe result should look like, let us onsider the exat one-loop result for thephoton polarization funtion:�(0)(q2) = 316�2 � 43� + 209 + 43 l�m + 43z � 4(1 � z)(1 + 2z)3z G(z)� ;whereG(z) = 2u lnuu2 � 1 ; u = p1� 1=z � 1p1� 1=z + 1 ; z = q24m2 ; l�m = ln �2m2 ; (5)and � is the renormalization sale. The pole1 in � = (D�4)=2, whereD is thespae-time dimension, will eventually disappear upon global renormalization(e.g., by requiring �(0) = 0). The result of (5) an be expanded in terms ofsmall mass m, yielding:�(0)(q2) = 316�2 � 43� + 209 � 43 lq�+ 8 m2q2 +�m2q2 �2 �4 + 8 lqm��+ : : : ; (6)with lq� = ln(�q2=�2) and lqm = ln(�q2=m2). One observes that the o-e�ients of the series in m2=q2 ontain non-analytial piees in terms oflogarithms. They develop an imaginary part by means ofln(�s� i�) = �i� + ln s for s > 0: (7)The hadroni R ratio is therefore given by (see (4a)):R(s) = 3 1� 6�m2s �2 + : : :! : (8)1 The aompanying ln 4� and E are suppressed throughout the paper.



Asymptoti Expansions � Methods and Appliations 3447The question is now if it is possible to obtain the expansion given in (6)diretly from the Feynman integrals, i.e. without having to know the exatresult. As a �rst guess one may try to perform a Taylor expansion of theintegrand, thereby arriving at massless propagator diagrams. However, it islear that suh a �naive Taylor expansion� an not be the whole answer. Forexample, it is impossible to reprodue the logarithmi mass dependene inthis way. Nevertheless, let us look at the result:Tm�(0) = 316�2� 43� + 209 � 43 lq�+ 8 m2q2 +�m2q2 �2 �� 8� � 8 + 8 lq���+ � � � : (9)In fat, the �rst two orders in m2=q2 are reprodued orretly. The m4=q4term, however, is ompletely di�erent, and there is even an additional polein �. Only the logarithmi q2 dependene is reprodued. Thus, in generalthe naive Taylor expansion is not su�ient to arrive at the desired result.However, in the next setion we will see that by inluding well-de�ned ad-ditional terms one indeed an obtain the orret expansion.3. Asymptoti behaviorThis setion is divided into three parts, all onerned with the problem ofexpanding Feynman diagrams in their external parameters, as it was raisedin Setion 2. Cross-referenes between the three parts of this setion willdemonstrate the lose orrespondene of the individual formulations.In Setion 3.1, the problem will be approahed from a �eld theoretialpoint of view. The resulting expansion will be derived from the operatorprodut expansion formulated in the MS sheme. The viewpoint of Se-tion 3.2, on the other hand, examines the individual Feynman integrals thatontribute to a ertain problem. By a thorough investigation of the inte-gration regions for the loop momenta and a subsequent Taylor expansionin the appropriate variables, one an derive rules that allow to obtain theexpansion of the full result in a very e�ient way.In ertain ases these rules ould be phrased in a mainly diagrammatiallanguage. For diagrams involving large external momenta or large massesthis graphial formulation will be desribed in Setion 3.3.



3448 R. Harlander3.1. Operator Produt ExpansionThe asymptoti behavior of the two-point orrelator of (4) in the limit�q2 = Q2 !1 is formally known to all orders of perturbation theory. It isgiven by an operator produt expansion (OPE):���(q) = iZ d4xeiq�xh0jTj�(x)j�(0)j0i �q2!1! Xn Cn;��hOni : (10)The Cn;�� are omplex funtions, and the On are operators omposite of�elds of the QCD Lagrangian. We keep only Lorentz salar operatorsbeause all others vanish when sandwihed between the vauum states.Transversal oe�ient funtions Cn will be de�ned in analogy to the Eq. (4b).The operators are usually sorted aording to their mass dimension. It isonvenient to allow only operators of even mass dimension whih is ahievedby appropriate fators of the quark mass m (only one quark shall be onsid-ered as massive for the sake of larity). Up to dimension four, the followingset of operators is relevant:O(0) = 1 ; O(2) =m2 ; (11)O(4)1 = G2�� ; O(4)2 = m �  ; O(4)3 =m4 ;where G�� is the gluoni �eld strength tensor and  is again the quark�eld (the supersript �(4)� of the dimension-4 operators will be dropped inwhat follows). If the operators are understood to be normal ordered, thevauum expetation values of the non-trivial (i.e. not proportional to unity)operators are equal to zero in perturbation theory. In suh an approah theseoperators are used to parameterize non-perturbative e�ets.On the other hand, if one abandons normal ordering and applies minimalsubtration, the vauum expetation values of the �eld operators reeivealso perturbative ontributions. The orresponding diagrams are massivetadpoles whih by de�nition only depend on the quark mass and the renor-malization sale �. Examples are shown in Fig. 2. They lead to the followingO1 O2 O2
Fig. 2. Sample diagrams ontributing to hO1i and hO2i.



Asymptoti Expansions � Methods and Appliations 3449results: h1i = 1 ; hm2i = m2 ; hm4i = m4 ;hOB1 i = 316�2 m4��s� � 2�2 + 1� �143 + 4 l�m�+ 10 + 2 �2 + 283 l�m + 4 l2�m�+ � � �� ;hOB2 i = 316�2 m4�4� + 4 + 4 l�m + �s� � � � � �+ � � �� : (12)
Only the �rst non-vanishing order in �s is quoted here. However, the resultsfor the operators that are proportional to unity (m2n; n = 0; 1; 2) are validto all orders of perturbation theory by de�nition. Note that there are stillpoles in � whih is why the operators are marked with the supersript B.These poles disappear upon global renormalization, thereby induing mixingof the operators aording toOn =Xm ZnmOBm : (13)For the dimension-4 operators the renormalization matrix Znm in the MSsheme was omputed in [11℄ by expressing it in terms of the harge andmass renormalization onstants of QCD, plus the one for the QCD vauumenergy. They are urrently known to O(�4s) [12, 13℄ and O(�3s) [14℄, respe-tively. The results for the renormalized vauum expetation values of O1and O2 up to O(�s) an be found in [15℄.The ruial observation about using the MS sheme was made in [16℄:It appears that in this approah the oe�ient funtions are independentof the quark masses. They only depend on the external momentum q andthe renormalization sale �. It was shown that their omputation an beredued to the evaluation of massless propagator-type diagrams. The mostre�ned method for this purpose is alled the �method of projetors� [17℄: letus de�ne �bare� oe�ient funtions throughXn Cn;BOBn �Xn CnOn : (14)



3450 R. HarlanderThen the ones up to dimension four, for example, are obtained in the fol-lowing way (only sample diagrams are displayed here) [18℄:[C(0)B ; C(2)B ; C3;B℄ == [1; ��m2B ; 12 �2�(m2B)2 ℄24 + + � � �35mB=0 ;C1;B = P1� ��p; ��mB�24 + � � �35mB=p=0 ;C2;B = P2� ��p; ��mB�24 + � � �+ + � � �35mB=p=0 ;(15)where p is the momentum arried by the external quark-, gluon-, and ghost-lines (the latter arise only at higher orders in �s). P1 and P2 are �projetors�depending polynomially on the derivatives w.r.t. p and mB. For example,P2� ��p; ��mB� [� � � ℄ = 14nTr� ��mB + 1D� ��p�� [� � � ℄ : (16)It is understood that the derivatives at on the integrands and the nulli�a-tion of p and mB is performed before integration. Note, however, that themomentum arried by the external urrents (wavy lines), is q 6= 0. Obvi-ously, C(0)B , C(2)B , and C3;B are just the oe�ients of m0B, m2B, and m4B ofthe naive Taylor expansion, respetively. The expressions for C1;B and C2;B,on the other hand, read as follows:C1;B = 1q4��s� � 112 + � � 772 � 112 lq���+ : : :� ;C2;B = 1q4�2 + �+ �s� �23 + � �53 � 23 lq���+ : : :� ; (17)where we have kept the terms up to O(�) beause they ontribute to the�nite part of �(q2). In fat, with these ingredients it is possible to omputethe polarization funtion up to order �0sm4. Diagrammatially one �nds�q2!1! TmB + 2 ? ; (18)



Asymptoti Expansions � Methods and Appliations 3451where in the seond term on the right hand side the projetion with P2 from(16) is impliit. The fator 2 arises from the symmetrial diagram that alsoontributes to C2;B. Note that there is no ontribution from O1 at this order.The Taylor expansion in the �rst term is to be arried out up to m4B. This�rst term is given by Eq. (9), sine m = mB +O(�s). Using the results of(12) and (17) for C2;B and hOB2 i, one obtains the result for the seond termof (18): 2C2;BhOB2 i = 316�2 �m2q2 �2 �8� + 12 + 8 l�m�+O(�s) : (19)Adding it to (9) exatly reprodues the result for �(q2) up to O(m4) givenin (6).The onlusion from these onsiderations is that in addition to the naiveTaylor expansion of (9) one should inlude an extra term, given by 2C2;BhOB2 i,in order to arrive at the orret result for the polarization funtion. However,the important point about Eq. (18) is that the original diagram is reduedto single-sale fators (i.e., massless propagators and massive tadpoles).3.2. Strategy of regions [19,20℄Let us for the moment forget about OPE again and onsider only theFeynman integral for the one-loop diagram, onentrating on the salar asefor the sake of larity: salar= Z 1m2 + k2 1m2 + (k �Q)2 ; (20)where the momenta are taken in Eulidean spae and integration is over k.Assume now that m2 � Q2 (= �q2). The integral may be split into thefollowing regions:(i) : k2 � m2 and (k �Q)2 � m2(ii) : k2 � m2 ) (k �Q)2 � m2(iii) : (k �Q)2 � m2 ) k2 � m2 ; (21)where �means �of the order of�. In region (i), the integrand an be expandedin terms of small m:Z(i) 1m2 + k2 1m2 + (k �Q)2 � Z(i) Tm 1m2 + k2 1m2 + (k �Q)2= Z(i) 1k2 1(k �Q)2 �1� m2k2 + : : :��1� m2(k �Q)2 + : : :� : (22)



3452 R. HarlanderIn region (ii), k is onsidered to be of the same order of magnitude as m, soone should expand in m and k at the same time:Z(ii) 1m2 + k2 1m2 + (k �Q)2 � Z(ii) Tm;k 1m2 + k2 1m2 + (k �Q)2= Z(ii) 1m2 + k2 1Q2 �1� m2 + k2 � 2k �QQ2 + : : :� : (23)Region (iii) an be mapped onto region (ii) by substituting k0 = Q � k,meaning k02 � m2 ) (k0 � Q)2 � m2, and we arrive at an expressionanaloguous to (23).Now we add and subtrat the omplementary regions to the integralsabove and �nd:Z 1m2 + k2 1m2 + (k �Q)2� Z Tm 1m2 + k2 1m2 + (k �Q)2 + 2Z 1m2 + k2Tm;k 1m2 + (k �Q)2� C ; (24)whereC = Z(ii)[(iii) Tm 1m2 + k2 1m2 + (k �Q)2 + Z(i)[(iii) 1m2 + k2� Tm;k 1m2 + (k �Q)2 + Z(i)[(ii) 1m2 + k02Tm;k0 1m2 + (k0 �Q)2 : (25)In eah of the di�erent regions, one an again expand w.r.t. the appropriateparameters, for example:Z(ii) Tm 1m2 + k2 1m2 + (k �Q)2� Z(ii) �Tm 1m2 + k2��Tm;k 1m2 + (k �Q)2� : (26)Finally, for C one �nds:C = 2 Z(i)[(ii)[(iii) �Tm 1m2 + k2��Tm;k 1m2 + (k �Q)2� ; (27)



Asymptoti Expansions � Methods and Appliations 3453whih orresponds to massless tadpole integrals and therefore vanishes indimensional regularization whih we are using throughout.2The seond term on the r.h.s. of Eq. (24) an be represented graphiallyas 2 � ; (28)meaning that the solid line should be expanded in all quantities but Q.Doing this, the atual integral will be of the tadpole type, with a more orless ompliated vertex insertion. It is obtained from the original diagramby shrinking the solid lines shown in (28) to a point. In this sense, one anagain use the diagrammatial equation (18) in order to represent Eq. (24).However, the interpretation is slightly di�erent: In the seond term, thediagram left of �?� means the solid line of (28), and the one right of �?� isthe tadpole whih remains when shrinking the expanded lines to a point.But the main di�erene between both interpretations of Eq. (18) is thataording to Setion 3.1 it is only valid up to terms of order (m2=q2)2;aording to Setion 3.2, however, one may obtain the diagram to the r.h.s.up to arbitrary high powers in m2=q2 by pushing the Taylor expansions onthe l.h.s. to su�iently large order.3.3. Large momentum and hard mass proedure [16,17,21�24℄So far, two di�erent viewpoints for the small-mass expansion of the po-larization funtion have been presented. One is based on OPE and uses thelanguage of quantum �elds, while the seond one examines the very Feyn-man integrals. The third viewpoint we will fous on is formulated mainly interms of Feynman diagrams. Given a ertain Feynman diagram with a par-tiular distribution of masses and external momenta, the method generatesa set of simpler diagrams whih orrespond to the asymptoti form of theoriginal diagram in ertain limits of the external parameters.The partiular ase of a large external momentum as it was onsideredso far is usually referred to as �large momentum proedure�. The oppositease of a mass being muh larger than any other sale is alled �hard massproedure� and will be addressed below.The presription for the asymptoti expansion of Feynman diagrams anbe summarized by the following formula [24℄:F(�) ! X F(�n) ? T F() : (29)2 I aknowledge a useful onversation with K. Melnikov on this issue.



3454 R. HarlanderHere, � is the Feynman diagram under onsideration, and F(�) is the or-responding Feynman integral. It shall ontain either a set of large externalmomenta fQg or of large masses fMg. The arrow (!) denotes that the r.h.s.is valid in the asymptoti limit of the M or Q going to in�nity. The sumgoes over all subgraphs  of � that ful�ll ertain onditions to be desribedbelow. �n means the diagram that results when, within �, all lines of  areshrunk to points. T means Taylor expansion w.r.t. all masses and externalmomenta that are not large. In partiular, also those external momentaof  that appear to be integration momenta in � have to be onsidered assmall. The Taylor expansions are understood to be applied before any loopintegrations are performed. In the following we will refer to the  as hardsubgraphs or simply subgraphs, to �n as the orresponding o-subgraphs.The �?� means that T F() shall be inserted into F(�n) at the point towhih  was ontrated.In other words: within �, all propagators of  have to be expanded w.r.t.the masses and external momenta of  that are not large.3.3.1. Large momentum proedureFor the partiular ase of the large momentum proedure, the onditionsthat speify the hard subgraphs are as follows:Every  has to (i) ontain all verties where a large momentum entersor leaves the graph and (ii) be one-partile irreduible if these verties wereonneted by an extra line.As an example, onsider again the one-loop diagram ontributing to thephoton polarization funtion, Fig. 1(a), in the limit of large external momen-tum. The set of hard subgraphs that emerge onsists of three diagrams: �rstthere is the diagram itself; the orresponding o-subgraph is just a point.The seond subgraph is the one shown in (28) if the dashed line is omitted,and the third subgraph is the one symmetrial to that. The orrespondingo-subgraphs are one-loop tadpole diagrams. In this way one again arrivesat Eq. (18). The interpretation of the terms is the same as it was in theapproah of Setion 3.2.As a two-loop example, let us examine the diagram shown in Fig. 1 (b):�q2!1! ? 1+ 4 ? + 2 ?+ 2 ? + ? ; (30)



Asymptoti Expansions � Methods and Appliations 3455where the subgraphs are given by the solid lines of the diagrams left of �?�.The �rst term on the r.h.s. orresponds to the naive Taylor expansion. Notethat the last diagram is zero in dimensional regularization.It is interesting to relate this set of terms to the viewpoints of the pre-vious setion. In the operator language, the �rst term orresponds to thetrivial operators m2n. The seond one (atually only its m4=q4 ontribu-tion) is related to C2;BhOB2 i, the last one to C1;BhOB1 i. The other two terms,however, have no orrespondene to any of the operators of Setion 3.1. Thisis due to the fat that we onsidered only operators up to dimension four.But relation (30) is valid up to arbitrary orders in m2=q2. So the onlu-sion is that the third and fourth term on the l.h.s. are of order (m2=q2)3 orhigher.The viewpoint desribed in Setion 3.2, on the other hand, reproduesexatly the same terms as shown above.3.3.2. Hard mass proedureSo far only the ase of an external momentum being muh larger thanany other sale of the problem was onsidered. In this setion the so-alledhard mass proedure will be disussed. Here it is assumed that the diagramarries a mass that is muh larger than all other masses and external mo-menta. Equation (29) remains valid, only the lassi�ation of the subgraphsis di�erent. In the ase of the hard mass proedure,  must (i) ontain alllines arrying a large mass (ii) be one-partile irreduible in its onnetedparts after ontrating the heavy lines. Consider the following two-loopdiagram as an example:
q+k+l q+k

k+l k

l ; (31)
where q is the external momentum �owing through the diagram from rightto left. The mass of the thik line will be denoted byM . The imaginary partof (31) ontributes to the eletro-weak one-loop orretions of the proessZ ! b�b if top-quarks are attributed to the thik lines, b quarks to the plainthin lines, W bosons to the inner, and Z bosons to the outer wavy lines(see also Setion 4 below). In the limit q2 �M2, the following subdiagrams



3456 R. Harlanderemerge: k2 �M2l2 �M2 : ? ,k2 �M2l2 �M2 : ? ,k2 �M2l2 � M2 : ? ,k2 �M2l2 �M2 : ? ,
(32)

where we have indiated the region of loop momenta that generates theorresponding subdiagram aording to the onsiderations or Setion 3.2. Itis again understood that the solid lines are to be expanded w.r.t. all externalmomenta and masses exept M . The o-subgraphs, shown right of �?�, areobtained by ontrating the solid lines to points.3.3.3. Suessive appliation of large momentum and hard mass proedureIn theories with many di�erent partiles of various masses, a realistiproess generally involves several sales. The suessive appliation of thelarge momentum and the hard mass proedure an be used to redue anyFeynman diagram to single-sale fators in this ase, as long as a hierarhyamong the di�erent sales an be de�ned. This strategy was applied, forexample, in the alulation of the anomalous magneti moment of the muon[25℄, and later, using an automated setup, to the deay of the Z boson intob quarks [26℄ (see Setion 4 below).3.4. Expansions in other limits and range of appliabilityTwo onluding remarks shall be made to omplete this formal setion.First it should be noted that asymptoti expansions have been developed forvarious limiting ases (see, e.g., [19,27℄). Only the two most straightforwardones have been desribed above. Other situations arise, for example, if theexternal momentum is either lose to a mass or a threshold of the diagram.It appears that the most onvenient way to formulate these expansions is interms of the language of Setion 3.2. Appliations will be disussed brie�yin the next setion.The seond remark that should be made onerns the appliability ofasymptoti expansions, or in other words, the onvergene properties of



Asymptoti Expansions � Methods and Appliations 3457the series. By investigating the global struture of the problem, one oftenan read o� regions of onvergene for the funtion to be approximated.These regions may extend to values of the expansion parameter that areway beyond the initially required onditions.Restritions on the region of onvergene, on the other hand, are mostlyindued by the presene of thresholds. Thus, it often appears that withinreasing number of loops the range of validity for the result dereasesdue to additional thresholds that are absent at lower order of perturbationtheory. 4. Asymptoti expansions in pratial appliationsR(s) to O(�2s): in [28℄ the method of Setion 3.3.1 was diretly appliedto the three-loop polarization funtion. For this purpose, the diagrammati-al presriptions were implemented in a omputer program, alled lmp [29℄,in order to ope with the large number of subdiagrams that had to be gen-erated. For details on the alulation and the disussion of the results andtheir onvergene properties we refer to [28, 30℄.RG funtions in MOM sheme: the large momentum proedure wasalso used to evaluate the relations between the renormalization onstantsof QCD in the MS sheme to the ones in other shemes, in partiular theMOM sheme, at O(�3s). See [31℄ for more details.Z ! b�b to order GF�s: a sample diagram whose imaginary partontributes at O(GF) is shown in Eq. (31). At order GF�s, an additionalgluon has to be attahed. One an apply the hard mass proedure w.r.t. Mtin this ase, and it turns out that the leading term is proportional toM2t dueto the large mass splitting between the bottom and the top quark. There aretwo other sales in the problem,MW andMZ . In [26℄ they were fatorized bya suessive appliation of the hard mass proedure aording toMW �MZ ,an inequality whose use learly has to be justi�ed (see [26, 32℄). The wholealulation would not have been possible without the omputer programEXP [33℄. As ompared to lmp, it also performs the hard mass proedure andits ombination with the large momentum proedure. Meanwhile the resultsof [26℄ have been on�rmed by a di�erent approah [34℄.t ! bW to O(�2s): the problem here is that the ontributing three-loop diagrams are atually on-shell, q2 = M2t . Two di�erent methods havebeen used to ompute this proess: The �rst alulation [35℄ used asymptotiexpansions in the limit 1�M2b =M2t � 1, the seond one [36℄ evaluated the o�-shell diagrams for q2 �M2t with the help of the hard mass proedure, takingthe limit q2 ! M2t after performing a Padé approximation (see [36, 37℄ fordetails). The perfet agreement and the fairly high auray of the resultsin both approahes is a lear demonstration of the power of asymptotiexpansions.



3458 R. Harlandere+e� ! t�t near threshold: the development of asymptoti expan-sions in the threshold limit allowed to ompute this proess up to O(v2,�sv, �2s) [38℄, where v is the veloity of the top quarks in the ms system.It turned out that the orretions are huge and exhibit a strong dependeneon the renormalization sale. The interpretation of this result and its impli-ations are still an ongoing disussion (see [39℄ and referenes therein).MS to pole mass onversion at O(�3s): among other things, theprogress in threshold alulations mentioned above makes it very importantto be able to express the MS mass in terms of the pole mass at O(�3s). Theorresponding alulation of this relation was based on asymptoti expan-sions in the limit of small and large quark mass and interpolated the resultfor the atual on-shell diagrams with the help of Padé approximations [40℄.� deay and semileptoni b deays: for speial �nal state on�g-urations the deay b ! l�� was omputed up to O(�2s) using asymptotiexpansions in the limit 1 �M2 =M2b � 1 [41℄. For b ! ul��, the full inlu-sive result was obtained through a four-loop alulation, where the atualintegrals were alulated by performing an asymptoti expansion and re-summing the full series [42℄. The same tehnique was applied to the 2-loopQED orretions to muon deay [43℄. Using an approah similar to the oneof [36℄ (see above), the results of [42, 43℄ were reently on�rmed [44℄.5. Bak to OPE: RG improvementThe advantages of the approah of Setions 3.2 and 3.3 in omparisonto the one of Setion 3.1 when alulating Feynman diagrams are obvious:In the OPE language one needs to de�ne a full set of operators for everyorder in m2 and to apply the appropriate projetors in order to obtain theoe�ient funtions. Using the large momentum proedure, all operationsan be performed on the level of Feynman diagrams. The depth of theexpansion in m2 is just a matter of evaluating the Taylor expansions tosu�iently high orders. However, the loss of ontat to the quantum �eldtheoreti level has its prie. In this setion two advantages of the OPElanguage over the strit appliation of the large momentum proedure willbe desribed. 5.1. Resummation of logarithms [45℄Consider the expansion of the polarization funtion w.r.t. small m2=q2(see Eq. (6)). The oe�ients of this series ontain logarithms of the formln(�2=m2) and ln(��2=q2). The former arise from the tadpole diagrams (inthe OPE language: the vauum expetation values; in the large momentumproedure: the o-subgraphs), the latter from the massless propagator di-agrams (oe�ient funtions/hard subgraphs). Working at �xed order in



Asymptoti Expansions � Methods and Appliations 3459perturbation theory, one has to hoose some value for � in order to makepreditions for physial quantities. It is lear that one should hoose � suhthat the oe�ients of the perturbative series are small. However, with thetwo types of logarithms above this might be impossible. In the OPE ap-proah this problem an be solved in the following way: the operators ful�llthe renormalization group (RG) equation�2 dd�2On =Xn nmOm ; (33)where nm is their anomalous dimension related to the renormalization ma-trix Znm of (13) by nm =Xk ��2 dd�2Zmk� (Z�1)kn : (34)The solution of (33) is of the formOn(�) =Xm RnmOm(�0) ; (35)where Rnm depends on � and �0 only impliitly through its dependene on�s. One an now rewrite the OPE as�(q2) =Xn Cn(�)On(�) =Xn;mCn(�)RnmOm(�0) : (36)Setting �2 = q2 and �20 = m2 removes both types of logarithms disussedabove. Using the diagram-wise expansions of Setions 3.2 or 3.3, suh kindof resummation is not possible in a straightforward way.5.2. Reonstrution of higher orders in �sConsider the expansion of �(q2) in small m2=q2 at (l + 1)-loop level.It appears that the only proper (l + 1)-loop diagrams that ontribute arisefrom the naive Taylor expansion, or in other words, from the trivial operatorsm2n. All the additional terms are produts of diagrams with a lower numberof loops. In the following we will show that this fat allows to derive thephysially relevant quantity R = Im� at (l + 1)-loop level from an l-loopalulation assuming the OPE approah of Setion 3.1.To be spei�, onsider the alulation of the m4 terms of �(q2). Thedimension-4 piee of the OPE ful�lls the following RG equation:�2 dd�2 3Xn=1CnOn = 0 : (37)



3460 R. HarlanderThe e�et of the derivative on the On is again determined by (33). On theother hand, beause the Cn do not depend on masses, we an write�2 dd�2Cn = � ��L + �s� ���s�Cn ; (38)where L = ln(��2=q2). Inserting this into (37), olleting the oe�ientsof O3 and using 33 = 4m (this an be seen by realling �2 dd�2m = mm),one obtains [15℄:��LC3 = �4mC3 � �s� ���sC3 � Xn=1;2 n3Cn : (39)Performing an l-loop alulation, C1 and C2 are known to order �ls, C3 onlyto �l�1s . But sine � and m do not ontain terms of order �0s, the r.h.s.is known to O(�ls) (assuming that the anomalous dimensions are known toappropriate order), and so is the l.h.s. The logarithmi terms (and thus thedesired imaginary part) of C3 an therefore be obtained to O(�ls) by trivialintegration.This strategy was �rst followed in [15℄ to derive the m4�2s terms of R(s).The extension to m4�3s was performed in [46℄ (see also [47℄).6. ConlusionsIn this leture we have disussed the methods for asymptoti expansionsof Feynman integrals. The �eld theoretial approah via operator produtexpansion has been ompared to the diagram-wise methods, and the advan-tages of both strategies have been outlined. We hope that the importaneof the numerous appliations � we ould sketh only a few of them � hasonvined the reader of the power and �exibility of these expansions.I would like to thank K.G. Chetyrkin, J.H. Kühn, T. Seidenstiker, andM. Steinhauser for fruitful ollaboration on various topis and areful readingof the manusript. I am indebted to A. Czarneki, K. Melnikov, and A. Réteyfor several enlightening disussions and useful omments on the text. Iwould further like to thank the organizers of the shool for the invitationand the pleasant atmosphere. This work was supported by the DeutsheForshungsgemeinshaft.
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