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A non traditional method to calculate multi-point Feynman functions
is presented. In the approach, D-dimensional loop integrals defining a
Feynman amplitude are not directly performed, but a system of linear
differential equations for the Feynman amplitudes themselves is found. The
solution of the differential equations provides then with the actual value of
the amplitudes.

PACS numbers: 11.10.-z, 11.10.Kk, 11.15.Bt

1. Introduction

The importance of more and more accurate tests of Quantum Field The-
ory push physicists to the evaluation of quantum corrections at higher and
higher level in perturbation theory, i.e. to the calculation of multi-loop Feyn-
man diagrams.

A new method, proposed in [1] and developed in [2], consists in estab-
lishing a system of linear differential equations for the required Feynman
amplitudes. This system of equations can always be solved numerically
without a big effort, even if the analytic solution is not available.

In this paper the method is recalled and its application to the 1-loop box
graph, relevant for the Bhabha scattering, is considered.

We will work in D-dimensional Euclidean space (the corresponding
Minkowski integrals are recovered by the Wick rotation) in a scalar
theory.
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2. System of differential equations

Let us take the 1-loop scalar box diagram (see Fig.1(a) ) with external
momenta p; and pe (initial particles), ps and p4 (final particles) and with
two massless and two massive propagators (with mass squared m? = a).
The corresponding amplitude is the following:

dPk 1
=/ 2D {k G —p)? T al[(ktp)? 1 (k—p1+p3)2}' @

k
—P'ﬁ { p —P—{ }—P—
— D1
k —
P k+p2 p
(a) Box dia- Vertex (c) Ball dia-
gram. dlagram gram.

Fig.1. 1-loop diagrams

We know, from kinematical considerations, that F' is a function of six
invariants M; with ¢ = 1,...,6. We can choose them to be the Mandelstam
variables My = s = —(p; + p2)?, My =t = —(p; — p3)? and the external
square momenta M; 9 = —p?, which we will put later on the mass-shell.

Let us construct the following object:
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By derivation of the function F' with respect to M;, we have:
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where 4,5 = 1,...,3 (from the conservation of 4-momentum, ps can be ex-
pressed in terms of pi, po and p3) and where the functions ag;;(M;) are
linear combinations of invariants.

On the other hand, if we perform the direct derivation of the integrand
in Eq. (1), we find a combination of integrals: F' itself, integrals with one
denominator squared and integrals in which we have one denominator less.
In this way a linear system is derived that we can solve with respect to the
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derivatives aawF to obtain a system of partial differential equations of the
¢
first order:
oF ,
8—1\45 = aU(Ml) F{,U(al,ag,ag,oui) + bf(Ml) F+ Qg s (4)

where o(aq, ag, ag, ag) is a permutation of (aq, ag, o, ay), with only one «;
set equal to 2 and the others equal to 1 and where _Qé is a term containing
all the functions with a smaller number of denominators.

3. Integration by parts identities

The system of Eq. (4) is not useful because it still involves the functions
Fo\ a0,03,04- We want to find a system expressed only in terms of F' and
some other known terms.

We know that the following identities, called Integration by Parts Iden-
tities [3], hold:
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(5)
for every value of a; and with v, = ky, p1 4> D2 s P3 -

Egs. (5) form a linear system with Fy,, q,.a4,04 8 unknown functions and
using it we can reexpress Fu, as.as,04, appearing in Eq. (4), in terms of F
and functions with a smaller number of denominators. This gives us the
possibility to construct for F' a system od partial differential equations of
the first order, solved with respect to the derivatives.

If we put the external momenta on the mass-shell, we remain with two
differential equations, with respect to M7 = s and My = t:

oF :g(sataa)F+‘Qla

Js

OF (6)
E:h(s,t,a)F—i—Qg.

Let us comment the structure of the system, which is a general feature of
the method. The equations involve the function under consideration, F', and
a function (2, which is considered known, containing multi-point Feynman
functions with a smaller number of denominators. One can proceed in the
following way: At first one finds the two-point two-denominators bubble
function. It appears as inhomogeneous term in the system of differential
equations for three-point three-denominators vertex function. One solves
this system and the solution appears in the system of differental equations
for the four-point four-denominators box function, and so on.
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In special cases (like, e.g., the box in figure 1(a)) some cancelations hold
and (2 does not contain all the sub-diagrams of F', but only some of them.
It is also possible to find some problems in which F' is determined entirely in
terms of (2, without solving any differential equation, but solving only the
Integration by Parts Identities.

4. 1-loop case

Let us come back to the problem of the determination of the function F
(Eq. (1)).
The system in Eq. (6) can be written explicitely as follows:
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where V' (t) is the vertex function of figure 1(b), as a function of ¢, B(a,a, s)
is the bubble function of figure 1(c), with equal internal masses m? = a and
T is the tadpole. Let us note that in this case we can find the solution of
the problem using only one of the equations of the system (7), (8). In fact,
we are able to give the boundary conditions F(s = 0,t) and F(s,t = 0),
respectively. Let us multiply, for example, Eq. (7) by s. As F is regular
with all its derivatives in s = 0, we can obtain:

F(s = O,t) = Mv(t) — M

2a at

B(0,0.1). 9)

Now we need the espressions for V and B.



Differential Equations for Multi-Point Feynman... 3467

For the vertex function V, we can construct the following differential
equation in s = —p3:

oV _1[(D-5) (D-3) (D — 3)

av _1 B (D -2)
s 2 s (s—4a)] V+s(s—4a)

B(0,0 —_—
(0, ’8)+2a3(3—4a)

T, (10)

where B(0,0,s) is the 1 loop bubble function with zero internal masses, [1].
as a function of s. The initial condition, derived in the same way as Eq. (9),
reads: e

1 D a2
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Let us note that Eq. (10) contains two scales, s and a, and then we can
reexpress it in terms of some dimensionless ratio. As a result we can write
the solution in terms of hypergeometric functions [4]:
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For the bubble function B(a,a,s), we can construct the following differ-

ential equation in s = —p?:

0B _ 1 <1_M)B_M<1_M)T, (13)

ds 2 \s s —4a 4a s  s—4a
with the initial condition B(s = 0) = — (DQ_aQ)T, which gives the following
solution:
(D-2)
2r (3—-2) a2 (D-1) . 3 s
B(a,a,s) = — 2P <7, L o ) . (14)
(47T)(D24) (D —4) 2 2" s —4a

Knowing the inhomogeneous part of the equations of the system (7,8)
we can solve it numerically or analitically in some limits; for example for
s, t> a.
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