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SPACETIME STRUCTURE AND UNIFICATIONOF FUNDAMENTAL INTERACTIONS�J. SªadkowskiInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Polande-mail: sladk�us.edu.pl(Reeived Otober 20, 1999)I disuss the problem to what extent fundamental interations deter-mine the struture of spaetime. I show that when we are using onlytopologial methods the spaetime should be modelled on an R-ompatspae. Demanding the existene of a di�erential struture substantiallynarrows the hoie of possible models but the di�erential struture maynot be unique. I also show by using the nonommutative geometry on-strution of the standard model that fundamental interations determinethe spaetime in the lass of R-ompat spaes. Fermions are essential forthe proess of determining the spaetime struture.PACS numbers: 04.20.Gz, 11.15.�q, 11.15.K1. IntrodutionThe outomes of physial measurements are expressed in rational num-bers. Nevertheless we believe that all possible values of physial variablesonstitute the set of real numbers R. It is an idealized view sine all mea-surements are performed with ertain auray and it is even hard to imaginehow an they give irrational numbers. Most of physial theories, inludingquantum gravity, make use of the notion of spaetime, at least approxi-mately. Therefore physiists spend a lot of time on revealing the origin andthe struture of spaetime. The algebra of real ontinuous funtions C(M)on the spaetime manifold M seems to be the key to the whole a�air ofdetermining M . This algebra play entral r�le in lassial and quantumphysis, although this fat is not always pereived. Here I would like toanalyse how faithful our theoretial models of the spaetime an be. I will� Presented at the XXIII International Shool of Theoretial Physis�Reent Developments in Theory of Fundamental Interations�, Ustro«, Poland,September 15�22, 1999. (3477)



3478 J. Sªadkowskitry to be model independent and avoid unneessary assumptions. Neverthe-less, I will suppose that it is possible to determine the algebra C(M) on thespaetime (assumed to be a topologial spae) with su�ient for our aim a-uray. This does not mean that we have to be able to �nd eah element ofC(M) by diret measurement: some, say, indutive onstrution should besu�ient. I will all elements of C(M) observables. I will also make use ofthe algebra of ontinuous K-valued funtions C(M;K), K being a topolog-ial ring. Finally, I will show how C(M;K) an be used to onstrut a �eldtheory of fundamental interations in the A. Connes' nonommutative ge-ometry formalism and to what extent the spaetime manifold is determinedby eletroweak interations.2. The topology of spaetimeA lot of properties of a topologial spae M is enoded in the assoiatedalgebras C(M;K) of ontinuous K-valued funtions, K being a topologi-al ring, �eld, algebra et. Even di�erential strutures on a manifold Man be equivalently de�ned by appropriate subalgebras Ck(M;K) of realdi�erentiable funtions on M . Suppose that our experimental tehniqueis powerful enough to reonstrut C(M;R) � C(M) on our model of thespaetime M . What sort of information onerning M an be extratedfrom these data? If M is a set and C a family of real funtions M ! Rthen C determines a (minimal) topology �C on M suh that all funtion in Care ontinuous [1, 2℄. In general, there will be real ontinuous funtions onM that do not belong to C and more families of real funtions on M wouldde�ne the same topology onM . So, without loss of generality, we an alwayssuppose that M is a topologial spae. To be able to distinguish x from y inour model of spaetime we have to �nd suh an observable f 2 C(M) thatfor x; y 2M f(x) 6= f(y). Therefore it seems reasonable to assume thatf (x) = f (y) 8f 2 C (M) ) x = y : (1)From the mathematial point of view, we have to identify all points thatare not distinguished by C(M), that is to demand (1). It is then easy toshow that suh spaes are Hausdor� spaes. This means that we an lookfor the topologial representation of the spaetime in the lass of Hausdor�spaes. To proeed let me de�ne [2, 4℄:De�nition 1. Let E be a topologial spae. A topologial Hausdor�spae X is alled E-ompat (E-regular) if it is homeomorphi to a losed(arbitrary) subspae of some Tyhono� power of E, EY .The following fats justify our assumption (1). For a topologial spaeX, not neessarily a Hausdor� one, we an onstrut an E-regular spae



Spaetime Struture and Uni�ation of Fundamental Interations 3479�EX and its E-ompat extension �EX so that we have [3, 4℄C (X;E) �= C (�EX;E) �= C (�EX;E) �= C (�E�EX;E) ; (2)where �= denotes isomorphism. The spaes �EX and �E�EX have the nieproperty (1). Now, it is obvious that, in general, our theoretial model ofthe spaetime may not be unique. This important result also says that wean always model our spaetime as a subset of some Tyhono� power of Rprovided C(M) is known! But it also says that we an model it on a subset ofa Tyhono� power of a di�erent topologial spae e.g. the rational numbersQ (f. the disussion at the beginning). So its our hoie! The topologialnumber �elds R and Q have the additional nie property of determininguniquely (up to a homeomorphism) R- and Q-ompat sets provided theappropriate algebras of ontinuous funtions are known:C (X;E) �= C (Y;E) () X is homeomorphi to Y; E = R or Q : (3)Other topologial rings an also have this property. But this does not meanthat the spaetime modelled on C(M;E) is homeomorphi to the one mod-elled on C(M;E0). Hewitt have shown that R-ompat spaes are deter-mined up to a homeomorphism by C(X;E), where E = R, C or H (thetopologial �elds of omplex numbers and quaternions, respetively) [5℄.This means that if we are interested in modelling spaetime on anR-ompatspae then we an use C(M;R); C(M;C) or C(M;H) to determine it. Suhonlusion is false for rational numbers.Another problem we have to fae is to deide if we are dealing with thealgebra C(X;E) or only with the algebra of all ontinuous bounded E-valuedfuntions on X, C�(X;E) [2, 4℄ if this onept make sense. For a ompatspae X we have C(X;E) = C�(X;E), but in general, they are distint.Spaes on whih all ontinuous real funtions are bounded are alled pseu-doompat. An R-ompat pseudoompat spae is ompat. We might gethints that some observables may in fat be unbounded but we are unlikelyto be able to �measure in�nities�. An unbounded observable is neessary toshow that the spaetime is a nonompat topologial spae. If we supposethat we an only reover C�(M;R) � C�(M), then we an as well sup-pose that M is ompat (for an R-ompat M). In general, there will bemore spaes with C�(M) as the algebra of real bounded ontinuous funtionson them (they may not be ompat or even R-ompat). Compatness (orparaompatness) of the spae is a welome property. For example pseudod-i�erential operators have disrete spetrum on ompat spaes. Physiistsoften ompatify on�guration spaes by adding extra points or imposingappropriate boundary onditions. Demanding that all physial �elds van-ish at in�nity is usually equivalent to the one point ompati�ation of the



3480 J. Sªadkowskispaetime and requiring that all �elds vanish at the added �in�nity point�. Ingeneral, a topologial spae X has more then one ompati�ation. In somesense the one point ompati�ation is minimal and the Stone-�Ceh om-pati�ation is maximal [2℄. We will probably have to make nontopologialassumptions to hoose one among the possible ompati�ations althoughthey an be distinguished by regular subrings of C(M) if they ontain on-stant funtions [3, 4℄.It may be too optimisti to assume that we are able to determine C(M;R)with the required preision. Suppose that our experimental tehnique allowsonly for sort of yes or no answer to questions onerning spaetime stru-ture [6℄. In this ase we have to onsider determination of a topologialspae X by the ring C(X;D) of ontinuous funtions into D = f0; 1g withvarious topologial and/or algebrai strutures. In general, C(X;D) doesnot determine the spae X although C(X;Z2) ful�ls (3) with E = Z2. Onean also onsider other disrete �elds e.g. Z3 [3, 4℄. In suh ase we anonly try to determine the spae in the lass of E-ompat spaes for somedisrete E. Topologial sub�elds of R an also be used for that purposebeause they ful�l (3) [2�4℄.One may also wonder if the knowledge of some symmetries might beof any help. In general, a topologial spae X is not determined by itssymmetries (homeomorphisms X ! X) [7,8℄ but sometimes an provide uswith useful information, e.g. if we know that some group G ats transitivelyon X then the ardinality of X is not greater than the ardinality of G [9℄.For example, if we are pretty sure that the Lorentz group ats transitivelyon the spaetime we have got an upper bound on the ardinality of thespaetime.Of ourse, spaetime �points� may have struture that is beyond ourexperimental sope. This orresponds to determining only some subalgebraof C(M). We have to �nd a phenomenon that is indesribable in terms ofC(M) to rejet the assumptions of R-ompatness of the spaetime.We do not know if the physial world an be desribed by using onlytopologial methods. The most spetaular example is the existene of theWhitehead spaes. These are three-dimensional topologial manifolds thatare not homeomorphi to R3 but their produts with R are homeomorphito R4. In other words when an R1 is fatored out in R4 the result will notneessary beR3. One have to demand di�erentiability for this to be the ase.More sophistiated formalism would involve further assumptions about thespaetime struture but it may not be easy to �nd out if these assumptionsare neessary or just onvenient tools. I will disuss some aspets of thisissue in the following setions.



Spaetime Struture and Uni�ation of Fundamental Interations 34813. Di�erential struture?Di�erential alulus have proven to be a powerful tool in the hands ofphysiists. But is it indispensable? Not every topologial spae or eventopologial manifold an support di�erential strutures and demanding theexistene of a di�erential struture on the spaetime an severely restritour hoie of spaes for modelling the spaetime. A di�erential struture ona topologial manifold M , if it exists, an be de�ned by speifying a sub-algebra of k-times di�erentiable funtions Ck(M;R) of the algebra C(M).The algebra C1(M) of smooth real funtions on M determines M up to adi�eomophism [10℄ (the points of M are in one-to-one orrespondene withmaximal ideals in C1(M)). The algebra of ontinuous funtions on M islarger than Ck(M;R) and may orrespond to more topologial spaes thanM but if two manifolds have at some points p and q isomorphi rings ofgerms of ontinuous funtions then the points p and q have homeomorphineighbourhoods (loal dimensions are the same) [11℄. If the laws of physisare �smooth� then the spaetime should be modelled on a smooth manifold.If this is the ase then C1(M;R) is su�ient to determine M and desribeall physial phenomena. Geometrial quantization is one of the most populare�orts in this diretion. But in the smooth ase we fae a new nonuniquenessproblem beause some manifolds an support many nonequivalent di�eren-tial strutures [12, 19℄. Suh �additional� di�erential strutures are usuallyreferred to as fake or exoti ones. They are speially abundant in the four-dimensional ase (it is su�ient to remove one point from a given manifoldto get a manifold with exoti strutures [16℄). More astonishing is the fatthat the topologially trivial fourdimensional Eulidean spae R4 an begiven unountably many exoti strutures (in fat a two-parameter familyof them) [16℄. We have to interpret these mathematial results in physiallanguage [17, 19℄. This is not an easy task. Although one an put forwardmany arguments that exoti smoothness might have physial sense [18℄, thelak of any tratable (pseudo-) Riemannian struture hinders physial pre-ditions. Nevertheless some problems an be disussed.4. Nonommutative di�erential geometry and physial modelsAs I have noted in the previous setion, di�erential geometry an beformulated in terms of the ommutative algebra of real smooth funtions onthe manifold in question. Connes managed to generalize this result for muhlarger lass of algebras, not neessarily ommutative [20, 21℄. One shouldnot be surprised that his nonommutative geometry have found profoundphysial appliations. The basi ingredients are a C�-algebra A representedin some Hilbert spae H and a distinguished operator D (�Dira operator�)ating in H . The di�erential da of an a 2 A is de�ned by [D; a℄ and the



3482 J. Sªadkowskiintegral is replaed by the Diximier trae, Tr!, with an appropriate inversen-th power of jDj instead of the volume element dnx. The Diximier trae ofan operator O is roughly speaking the logarithmi divergene of the ordinarytrae: Tr! O = limn!1 �1 + : : :+ �nlog n ; (4)where �i is the i-th proper value of O. See [20, 24, 25℄ for details. Onean generalize the notions of ovariant derivative (r), onnetion (A) andurvature (F ) forms so that �standard� properties are onserved:r = d+A ; F = r2 = dA+A2 ; (5)where A 2 
1D is the algebra of one forms de�ned with respet to d [20,21℄.Fiber bundles beame projetive modules on A in this language. The n-dimensional Yang�Mills fermioni ation is given by the formulaL (A; ;D) = Tr! �F 2 j D j�n�+ h j D +A j  i ; (6)where hji denotes the salar produt in the Hilbert spae. For A = C1(M)and D being the lassial Dira operator we reover the ordinary Rieman-nian geometry of the spin manifold M . Physiists have learned from thenonommutative geometry that one an desribe fundamental interationsby speifying the Hilbert spae of fermioni states and a representation ofan C� algebra in this Hilbert spae. If one takesA = C1(M;C)� C1(M;H)�M3�3(C1(M;C)) ; (7)the known fermioni states to span the Hilbert spae and the generalizedDira operator inluding the Kobayashi�Maskawa mass matrix as D onegets the standard model Lagrangian [20, 23℄ (I have negleted some impor-tant tehnial details that are not neessary for the present disussion). Thestruture of the �spaetime algebra� (7) and the analysis given in the pre-vious setions allow us to onlude that the spaetime struture is uniquelydetermined in the lass of R-ompat spaes by fundamental interations offermions (gravitation is hidden in the metri tensor that �enters� the Diraoperator). The knowledge of C1(M) is su�ient for the onstrution ofthe manifold M but the Higgs mehanism to be at work requires that Mis multiplied by some disrete spae [20, 24, 25℄. All this means that wemay not know the struture of the spaetime with satisfatory preision butnevertheless fundamental interations determine it in a quite unique way:there is only one spaetime in the lass of R-ompat spaes. It should benoted here that if others rings would appear in (7) then this onlusion maynot be true (for example, grand uni�ed models an be less determinative



Spaetime Struture and Uni�ation of Fundamental Interations 3483than the �low energy approximation� [23℄). Of ourse, it is still possiblethat the C� algebra A that desribes orretly fundamental interations donot orrespond to any topologial spae. This would mean that spaetimean only approximately be desribed as a topologial spae, say, de�ned bysome subalgebra of A or that fundamental interations does not determine ituniquely. It should be stressed here that matter �elds (fermions) and theirinterations are essential in the proess determining the spaetime stru-ture (the Dira operator and the Hilbert spae in question). The pure gaugesetor is insu�ient beause two E-ompat spaes X and Y are homeomor-phi if and only if the ategories of all modules over C(X;E) and C(Y;E)are equivalent. The nonommutative geometry formalism even suggest thatfermions and their interations �de�ne� the spaetime via the Dira operatorat least on the theoretial level.5. ConlusionsI have analysed the problem of determining the spaetime struture. Weshould be able to determine the spaetime in the lass of R-ompat spaesat least in the abstrat sense. We have to �nd a phenomenon that annotbe desribed in terms of the algebra C(M) to rejet the assumption of R-ompatness. If we are using only topologial methods we will not be ableto onstrut the topologial model M of the spaetime uniquely. An un-bounded observable is neessary to prove nonompatness of spaetime. Inthe general ase, we will be able to onstrut only the Stone-�Ceh ompat-i�ation of the spae in question. The existene of a di�erential strutureon M allows for the identi�ation of M with the set of maximal ideals ofC1(M), although we antiipate that the determination of the di�erentialstruture may be problemati. Connes' onstrution of the standard modelLagrangian imply that fundamental interations of matter �elds determinethe model of spaetime in the lass R-ompat spae in a unique way. Moregeneral models of fundamental interations, for example GUTs, are lak-ing in suh a determinative power. Matter �elds are essential for de�ningand determining the spaetime properties. If we are not able to determineC(M;R) or C(M;Q) then our knowledge of the spaetime struture is sub-stantially limited. If this is the ase we have a bigger lass of spaes �atour disposal� and we have more freedom in making assumptions about thetopology of the spaetime.
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