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SPACETIME STRUCTURE AND UNIFICATIONOF FUNDAMENTAL INTERACTIONS�J. SªadkowskiInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, Polande-mail: sladk�us.edu.pl(Re
eived O
tober 20, 1999)I dis
uss the problem to what extent fundamental intera
tions deter-mine the stru
ture of spa
etime. I show that when we are using onlytopologi
al methods the spa
etime should be modelled on an R-
ompa
tspa
e. Demanding the existen
e of a di�erential stru
ture substantiallynarrows the 
hoi
e of possible models but the di�erential stru
ture maynot be unique. I also show by using the non
ommutative geometry 
on-stru
tion of the standard model that fundamental intera
tions determinethe spa
etime in the 
lass of R-
ompa
t spa
es. Fermions are essential forthe pro
ess of determining the spa
etime stru
ture.PACS numbers: 04.20.Gz, 11.15.�q, 11.15.K
1. Introdu
tionThe out
omes of physi
al measurements are expressed in rational num-bers. Nevertheless we believe that all possible values of physi
al variables
onstitute the set of real numbers R. It is an idealized view sin
e all mea-surements are performed with 
ertain a

ura
y and it is even hard to imaginehow 
an they give irrational numbers. Most of physi
al theories, in
ludingquantum gravity, make use of the notion of spa
etime, at least approxi-mately. Therefore physi
ists spend a lot of time on revealing the origin andthe stru
ture of spa
etime. The algebra of real 
ontinuous fun
tions C(M)on the spa
etime manifold M seems to be the key to the whole a�air ofdetermining M . This algebra play 
entral r�le in 
lassi
al and quantumphysi
s, although this fa
t is not always per
eived. Here I would like toanalyse how faithful our theoreti
al models of the spa
etime 
an be. I will� Presented at the XXIII International S
hool of Theoreti
al Physi
s�Re
ent Developments in Theory of Fundamental Intera
tions�, Ustro«, Poland,September 15�22, 1999. (3477)



3478 J. Sªadkowskitry to be model independent and avoid unne
essary assumptions. Neverthe-less, I will suppose that it is possible to determine the algebra C(M) on thespa
etime (assumed to be a topologi
al spa
e) with su�
ient for our aim a
-
ura
y. This does not mean that we have to be able to �nd ea
h element ofC(M) by dire
t measurement: some, say, indu
tive 
onstru
tion should besu�
ient. I will 
all elements of C(M) observables. I will also make use ofthe algebra of 
ontinuous K-valued fun
tions C(M;K), K being a topolog-i
al ring. Finally, I will show how C(M;K) 
an be used to 
onstru
t a �eldtheory of fundamental intera
tions in the A. Connes' non
ommutative ge-ometry formalism and to what extent the spa
etime manifold is determinedby ele
troweak intera
tions.2. The topology of spa
etimeA lot of properties of a topologi
al spa
e M is en
oded in the asso
iatedalgebras C(M;K) of 
ontinuous K-valued fun
tions, K being a topologi-
al ring, �eld, algebra et
. Even di�erential stru
tures on a manifold M
an be equivalently de�ned by appropriate subalgebras Ck(M;K) of realdi�erentiable fun
tions on M . Suppose that our experimental te
hniqueis powerful enough to re
onstru
t C(M;R) � C(M) on our model of thespa
etime M . What sort of information 
on
erning M 
an be extra
tedfrom these data? If M is a set and C a family of real fun
tions M ! Rthen C determines a (minimal) topology �C on M su
h that all fun
tion in Care 
ontinuous [1, 2℄. In general, there will be real 
ontinuous fun
tions onM that do not belong to C and more families of real fun
tions on M wouldde�ne the same topology onM . So, without loss of generality, we 
an alwayssuppose that M is a topologi
al spa
e. To be able to distinguish x from y inour model of spa
etime we have to �nd su
h an observable f 2 C(M) thatfor x; y 2M f(x) 6= f(y). Therefore it seems reasonable to assume thatf (x) = f (y) 8f 2 C (M) ) x = y : (1)From the mathemati
al point of view, we have to identify all points thatare not distinguished by C(M), that is to demand (1). It is then easy toshow that su
h spa
es are Hausdor� spa
es. This means that we 
an lookfor the topologi
al representation of the spa
etime in the 
lass of Hausdor�spa
es. To pro
eed let me de�ne [2, 4℄:De�nition 1. Let E be a topologi
al spa
e. A topologi
al Hausdor�spa
e X is 
alled E-
ompa
t (E-regular) if it is homeomorphi
 to a 
losed(arbitrary) subspa
e of some Ty
hono� power of E, EY .The following fa
ts justify our assumption (1). For a topologi
al spa
eX, not ne
essarily a Hausdor� one, we 
an 
onstru
t an E-regular spa
e
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tions 3479�EX and its E-
ompa
t extension �EX so that we have [3, 4℄C (X;E) �= C (�EX;E) �= C (�EX;E) �= C (�E�EX;E) ; (2)where �= denotes isomorphism. The spa
es �EX and �E�EX have the ni
eproperty (1). Now, it is obvious that, in general, our theoreti
al model ofthe spa
etime may not be unique. This important result also says that we
an always model our spa
etime as a subset of some Ty
hono� power of Rprovided C(M) is known! But it also says that we 
an model it on a subset ofa Ty
hono� power of a di�erent topologi
al spa
e e.g. the rational numbersQ (
f. the dis
ussion at the beginning). So its our 
hoi
e! The topologi
alnumber �elds R and Q have the additional ni
e property of determininguniquely (up to a homeomorphism) R- and Q-
ompa
t sets provided theappropriate algebras of 
ontinuous fun
tions are known:C (X;E) �= C (Y;E) () X is homeomorphi
 to Y; E = R or Q : (3)Other topologi
al rings 
an also have this property. But this does not meanthat the spa
etime modelled on C(M;E) is homeomorphi
 to the one mod-elled on C(M;E0). Hewitt have shown that R-
ompa
t spa
es are deter-mined up to a homeomorphism by C(X;E), where E = R, C or H (thetopologi
al �elds of 
omplex numbers and quaternions, respe
tively) [5℄.This means that if we are interested in modelling spa
etime on anR-
ompa
tspa
e then we 
an use C(M;R); C(M;C) or C(M;H) to determine it. Su
h
on
lusion is false for rational numbers.Another problem we have to fa
e is to de
ide if we are dealing with thealgebra C(X;E) or only with the algebra of all 
ontinuous bounded E-valuedfun
tions on X, C�(X;E) [2, 4℄ if this 
on
ept make sense. For a 
ompa
tspa
e X we have C(X;E) = C�(X;E), but in general, they are distin
t.Spa
es on whi
h all 
ontinuous real fun
tions are bounded are 
alled pseu-do
ompa
t. An R-
ompa
t pseudo
ompa
t spa
e is 
ompa
t. We might gethints that some observables may in fa
t be unbounded but we are unlikelyto be able to �measure in�nities�. An unbounded observable is ne
essary toshow that the spa
etime is a non
ompa
t topologi
al spa
e. If we supposethat we 
an only re
over C�(M;R) � C�(M), then we 
an as well sup-pose that M is 
ompa
t (for an R-
ompa
t M). In general, there will bemore spa
es with C�(M) as the algebra of real bounded 
ontinuous fun
tionson them (they may not be 
ompa
t or even R-
ompa
t). Compa
tness (orpara
ompa
tness) of the spa
e is a wel
ome property. For example pseudod-i�erential operators have dis
rete spe
trum on 
ompa
t spa
es. Physi
istsoften 
ompa
tify 
on�guration spa
es by adding extra points or imposingappropriate boundary 
onditions. Demanding that all physi
al �elds van-ish at in�nity is usually equivalent to the one point 
ompa
ti�
ation of the



3480 J. Sªadkowskispa
etime and requiring that all �elds vanish at the added �in�nity point�. Ingeneral, a topologi
al spa
e X has more then one 
ompa
ti�
ation. In somesense the one point 
ompa
ti�
ation is minimal and the Stone-�Ce
h 
om-pa
ti�
ation is maximal [2℄. We will probably have to make nontopologi
alassumptions to 
hoose one among the possible 
ompa
ti�
ations althoughthey 
an be distinguished by regular subrings of C(M) if they 
ontain 
on-stant fun
tions [3, 4℄.It may be too optimisti
 to assume that we are able to determine C(M;R)with the required pre
ision. Suppose that our experimental te
hnique allowsonly for sort of yes or no answer to questions 
on
erning spa
etime stru
-ture [6℄. In this 
ase we have to 
onsider determination of a topologi
alspa
e X by the ring C(X;D) of 
ontinuous fun
tions into D = f0; 1g withvarious topologi
al and/or algebrai
 stru
tures. In general, C(X;D) doesnot determine the spa
e X although C(X;Z2) ful�ls (3) with E = Z2. One
an also 
onsider other dis
rete �elds e.g. Z3 [3, 4℄. In su
h 
ase we 
anonly try to determine the spa
e in the 
lass of E-
ompa
t spa
es for somedis
rete E. Topologi
al sub�elds of R 
an also be used for that purposebe
ause they ful�l (3) [2�4℄.One may also wonder if the knowledge of some symmetries might beof any help. In general, a topologi
al spa
e X is not determined by itssymmetries (homeomorphisms X ! X) [7,8℄ but sometimes 
an provide uswith useful information, e.g. if we know that some group G a
ts transitivelyon X then the 
ardinality of X is not greater than the 
ardinality of G [9℄.For example, if we are pretty sure that the Lorentz group a
ts transitivelyon the spa
etime we have got an upper bound on the 
ardinality of thespa
etime.Of 
ourse, spa
etime �points� may have stru
ture that is beyond ourexperimental s
ope. This 
orresponds to determining only some subalgebraof C(M). We have to �nd a phenomenon that is indes
ribable in terms ofC(M) to reje
t the assumptions of R-
ompa
tness of the spa
etime.We do not know if the physi
al world 
an be des
ribed by using onlytopologi
al methods. The most spe
ta
ular example is the existen
e of theWhitehead spa
es. These are three-dimensional topologi
al manifolds thatare not homeomorphi
 to R3 but their produ
ts with R are homeomorphi
to R4. In other words when an R1 is fa
tored out in R4 the result will notne
essary beR3. One have to demand di�erentiability for this to be the 
ase.More sophisti
ated formalism would involve further assumptions about thespa
etime stru
ture but it may not be easy to �nd out if these assumptionsare ne
essary or just 
onvenient tools. I will dis
uss some aspe
ts of thisissue in the following se
tions.
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tions 34813. Di�erential stru
ture?Di�erential 
al
ulus have proven to be a powerful tool in the hands ofphysi
ists. But is it indispensable? Not every topologi
al spa
e or eventopologi
al manifold 
an support di�erential stru
tures and demanding theexisten
e of a di�erential stru
ture on the spa
etime 
an severely restri
tour 
hoi
e of spa
es for modelling the spa
etime. A di�erential stru
ture ona topologi
al manifold M , if it exists, 
an be de�ned by spe
ifying a sub-algebra of k-times di�erentiable fun
tions Ck(M;R) of the algebra C(M).The algebra C1(M) of smooth real fun
tions on M determines M up to adi�eomophism [10℄ (the points of M are in one-to-one 
orresponden
e withmaximal ideals in C1(M)). The algebra of 
ontinuous fun
tions on M islarger than Ck(M;R) and may 
orrespond to more topologi
al spa
es thanM but if two manifolds have at some points p and q isomorphi
 rings ofgerms of 
ontinuous fun
tions then the points p and q have homeomorphi
neighbourhoods (lo
al dimensions are the same) [11℄. If the laws of physi
sare �smooth� then the spa
etime should be modelled on a smooth manifold.If this is the 
ase then C1(M;R) is su�
ient to determine M and des
ribeall physi
al phenomena. Geometri
al quantization is one of the most populare�orts in this dire
tion. But in the smooth 
ase we fa
e a new nonuniquenessproblem be
ause some manifolds 
an support many nonequivalent di�eren-tial stru
tures [12, 19℄. Su
h �additional� di�erential stru
tures are usuallyreferred to as fake or exoti
 ones. They are spe
ially abundant in the four-dimensional 
ase (it is su�
ient to remove one point from a given manifoldto get a manifold with exoti
 stru
tures [16℄). More astonishing is the fa
tthat the topologi
ally trivial fourdimensional Eu
lidean spa
e R4 
an begiven un
ountably many exoti
 stru
tures (in fa
t a two-parameter familyof them) [16℄. We have to interpret these mathemati
al results in physi
allanguage [17, 19℄. This is not an easy task. Although one 
an put forwardmany arguments that exoti
 smoothness might have physi
al sense [18℄, thela
k of any tra
table (pseudo-) Riemannian stru
ture hinders physi
al pre-di
tions. Nevertheless some problems 
an be dis
ussed.4. Non
ommutative di�erential geometry and physi
al modelsAs I have noted in the previous se
tion, di�erential geometry 
an beformulated in terms of the 
ommutative algebra of real smooth fun
tions onthe manifold in question. Connes managed to generalize this result for mu
hlarger 
lass of algebras, not ne
essarily 
ommutative [20, 21℄. One shouldnot be surprised that his non
ommutative geometry have found profoundphysi
al appli
ations. The basi
 ingredients are a C�-algebra A representedin some Hilbert spa
e H and a distinguished operator D (�Dira
 operator�)a
ting in H . The di�erential da of an a 2 A is de�ned by [D; a℄ and the



3482 J. Sªadkowskiintegral is repla
ed by the Diximier tra
e, Tr!, with an appropriate inversen-th power of jDj instead of the volume element dnx. The Diximier tra
e ofan operator O is roughly speaking the logarithmi
 divergen
e of the ordinarytra
e: Tr! O = limn!1 �1 + : : :+ �nlog n ; (4)where �i is the i-th proper value of O. See [20, 24, 25℄ for details. One
an generalize the notions of 
ovariant derivative (r), 
onne
tion (A) and
urvature (F ) forms so that �standard� properties are 
onserved:r = d+A ; F = r2 = dA+A2 ; (5)where A 2 
1D is the algebra of one forms de�ned with respe
t to d [20,21℄.Fiber bundles be
ame proje
tive modules on A in this language. The n-dimensional Yang�Mills fermioni
 a
tion is given by the formulaL (A; ;D) = Tr! �F 2 j D j�n�+ h j D +A j  i ; (6)where hji denotes the s
alar produ
t in the Hilbert spa
e. For A = C1(M)and D being the 
lassi
al Dira
 operator we re
over the ordinary Rieman-nian geometry of the spin manifold M . Physi
ists have learned from thenon
ommutative geometry that one 
an des
ribe fundamental intera
tionsby spe
ifying the Hilbert spa
e of fermioni
 states and a representation ofan C� algebra in this Hilbert spa
e. If one takesA = C1(M;C)� C1(M;H)�M3�3(C1(M;C)) ; (7)the known fermioni
 states to span the Hilbert spa
e and the generalizedDira
 operator in
luding the Kobayashi�Maskawa mass matrix as D onegets the standard model Lagrangian [20, 23℄ (I have negle
ted some impor-tant te
hni
al details that are not ne
essary for the present dis
ussion). Thestru
ture of the �spa
etime algebra� (7) and the analysis given in the pre-vious se
tions allow us to 
on
lude that the spa
etime stru
ture is uniquelydetermined in the 
lass of R-
ompa
t spa
es by fundamental intera
tions offermions (gravitation is hidden in the metri
 tensor that �enters� the Dira
operator). The knowledge of C1(M) is su�
ient for the 
onstru
tion ofthe manifold M but the Higgs me
hanism to be at work requires that Mis multiplied by some dis
rete spa
e [20, 24, 25℄. All this means that wemay not know the stru
ture of the spa
etime with satisfa
tory pre
ision butnevertheless fundamental intera
tions determine it in a quite unique way:there is only one spa
etime in the 
lass of R-
ompa
t spa
es. It should benoted here that if others rings would appear in (7) then this 
on
lusion maynot be true (for example, grand uni�ed models 
an be less determinative
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ation of Fundamental Intera
tions 3483than the �low energy approximation� [23℄). Of 
ourse, it is still possiblethat the C� algebra A that des
ribes 
orre
tly fundamental intera
tions donot 
orrespond to any topologi
al spa
e. This would mean that spa
etime
an only approximately be des
ribed as a topologi
al spa
e, say, de�ned bysome subalgebra of A or that fundamental intera
tions does not determine ituniquely. It should be stressed here that matter �elds (fermions) and theirintera
tions are essential in the pro
ess determining the spa
etime stru
-ture (the Dira
 operator and the Hilbert spa
e in question). The pure gaugese
tor is insu�
ient be
ause two E-
ompa
t spa
es X and Y are homeomor-phi
 if and only if the 
ategories of all modules over C(X;E) and C(Y;E)are equivalent. The non
ommutative geometry formalism even suggest thatfermions and their intera
tions �de�ne� the spa
etime via the Dira
 operatorat least on the theoreti
al level.5. Con
lusionsI have analysed the problem of determining the spa
etime stru
ture. Weshould be able to determine the spa
etime in the 
lass of R-
ompa
t spa
esat least in the abstra
t sense. We have to �nd a phenomenon that 
annotbe des
ribed in terms of the algebra C(M) to reje
t the assumption of R-
ompa
tness. If we are using only topologi
al methods we will not be ableto 
onstru
t the topologi
al model M of the spa
etime uniquely. An un-bounded observable is ne
essary to prove non
ompa
tness of spa
etime. Inthe general 
ase, we will be able to 
onstru
t only the Stone-�Ce
h 
ompa
t-i�
ation of the spa
e in question. The existen
e of a di�erential stru
tureon M allows for the identi�
ation of M with the set of maximal ideals ofC1(M), although we anti
ipate that the determination of the di�erentialstru
ture may be problemati
. Connes' 
onstru
tion of the standard modelLagrangian imply that fundamental intera
tions of matter �elds determinethe model of spa
etime in the 
lass R-
ompa
t spa
e in a unique way. Moregeneral models of fundamental intera
tions, for example GUTs, are la
k-ing in su
h a determinative power. Matter �elds are essential for de�ningand determining the spa
etime properties. If we are not able to determineC(M;R) or C(M;Q) then our knowledge of the spa
etime stru
ture is sub-stantially limited. If this is the 
ase we have a bigger 
lass of spa
es �atour disposal� and we have more freedom in making assumptions about thetopology of the spa
etime.
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