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I discuss recent development in investigation of physical consequences of
exotic differential structures on manifolds. I show, following T. Asselmayer,
that corrections to the curvature after the change of differential structure
produce a source like term in the Einstein equations. Then I give examples
of topologically trivial spaces on which exotic differential structures act as
a source of gravitational force even in the absence of matter.
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1. Introduction

The choice of mathematical model for spacetime has important physi-
cal significance. Riemann has already suggested that the geometry of space
may be more than just a mathematical tool defining a stage for physical
phenomena, and may in fact have profound physical meaning in its own
right [1]. With the advent of general relativity physicists began to think
of the spacetime as a differential manifold. Since then various assumptions
about the spacetime topology and geometry have been put forward [2]. But
until recently, the choice of differential structure of the spacetime mani-
fold has been assumed to be trivial because most topological spaces used
for modelling spacetime have natural differential structures and these struc-
tures where thought to be unique. Therefore the counterintuitive discov-
ery of exotic four dimensional Euclidean spaces following from the work of
Freedman [3] and Donaldson [4] raised various discussions about the possi-
ble physical consequences of this discovery. Exotic Ré’s are smooth (C'*)
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four-manifolds which are homeomorphic to the Euclidean four-space R* but
not diffeomorphic to it. Exotic Ry’s are unique to dimension four, see [5-11]
for details. Since then mathematician have shown that exotic (nonunique)
smooth structures are abundant in dimension four. For example it is suffi-
cient to remove one point from a given four-manifold to obtain a manifold
with exotic differential structures [11] and every manifold of the form M x R,
M being compact 3-manifold, has infinitely many inequivalent differential
structures. Such manifolds play important role in theoretical physics and
astrophysics and it became necessary to investigate the physical meaning of
exotic smoothness. Unfortunately, this is not an easy task: we only know few
complicated coordinate descriptions [12] and most mathematicians believe
that there is no finite atlas on an exotic R* and other exotic four-manifolds.
To the best of my knowledge, only few possible physical manifestations have
been discussed in the literature [2,6,7,13,14]. In this paper I would like
to discuss some peculiarities that may happen while studying the theory
of gravity on some exotic R*’s. First of all I will discuss the Asselmeyer’s
formula describing the corrections to the curvature after the change of differ-
ential structure produce a source like term in the Einstein equations. Then
I will show that on some topologically trivial spaces there exist only “com-
plicated” solutions of the Einstein equations. By this I mean that there may
be no stationary cosmological model solutions and/or that empty space can
gravitate. Such solutions are counterintuitive but I am aware of no physical
principle that would require rejection of such spacetimes.

2. Corrections to Einstein equations induced by a change
of differential structure

Exotic R*’s are defined as four-manifolds that are homeomorphic to the
fourdimensional Euclidean space R* but not diffeomorphic to it. There are
infinitely many of such manifolds (at least a two parameter family of them)
[5]. Note that exotic differential structures do not change the definition of the
derivative. The essential difference is that the algebras of real differentiable
functions are different on nondiffeomorphic manifolds. In the case of exotic
R"’s this means that there are some continuous functions R* — R that are
smooth on one exotic R! and only continuous on another and vice versa [9].
Brans conjectured that exotic smoothness can be a source of nonstandard
solutions of Einstein equations [6-8]. But it is not easy to guess which
physical observable will be modified by a change of differential structure.
Asselmeyer gave a partial answer to this problem [13]. He considered two
manifolds M and M’ with different differential structures and found the
change in covariant derrivative induced by exoticness. Then he was able
to calculate the corresponding changes in the curvature tensor and Einstein
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equations. To this end he considered a 1-1 map a : M — M’ that is not
a diffeomorphism. It must not be smooth at some point pg € M because
M and M’ are not equivalent. If one considers the splitting of the map
da : TM — TM' in some neighborhood U (pg) of the point pg:

da |y (pey= (b1, b2) (1)

then the change in the covariant derivative is given by [13]
V' =V + (b 'dbi) @ (by ' dbs) (2)

The additional term disappears if the manifolds in questions have the same
differential structure (are equivalent). The physical content of this formula
can be found if one recall the formula expressing the curvature tensor in
terms of the covariant derivative [15]:

R(X,Y)Z=VxVyZ —-VyVxZ+ V[X’Y]Z, (3)

where X, Y, Z are vector fields. Then the Einstein vacuum field equations
take the form:

Ric(X,Y) - 39(X,Y) =0, (4)

where Ric denotes the Ricci tensor. So the exoticness correction to the
covariant derivative leads to [13]:

R’icik — %gikR = 271”[1)(5? <5 (bg)]k —+ %gik (glm(S (b]m)]l)> ’ (5)

where (bf >kl are the coordinate representations of the functions b; and w

some constant describing the winding number of the b function, see [13] for
details. This means that

Ric(X,Y) —39(X,Y)R#0 (6)

in M'. Asselmeyer suggests a string-like interpretation of this source term.
I would like to add the following. Suppose we have discovered some strange
[19—-24] astrophysical source of gravitation that do not fit to any acceptable
solution of the Einstein equations. This may simply mean that we are us-
ing wrong differential structure on the spacetime manifold and this strange
source is sort of an artefact of this mistake. If we change the differential
structure then everything would be OK e.g. we would get an empty space
solution.
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3. General relativity on exotic R*’s with few symmetries

To proceed I will recall several definitions. A diffeomorphism ¢ : M — M,
where M is a (pseudo-)Riemannian manifold with (pseudo-)metric tensor g,
is called an isometry if and only if it preserve g, ¢*g = ¢ [15]. Such mappings
form a group called the isometry group. We say that a smooth manifold has
few symmetries provided that for every choice of differentiable metric ten-
sor, the isometry group is finite. Recently, Taylor managed to construct
examples of exotic R%’s with few symmetries [16]. Among these there are
examples with nontrivial isometry groups. Taylor’s result, although con-
cerning Riemannian structures, has profound consequences for the analysis
of the possible role of differential structures in physics where Lorentz mani-
folds are used. To show this let me define a (non-)proper actions of a group
on manifolds as follows. Let G be a locally compact topological group acting
on a metric space X. We say that G acts properly on X if and only if for
all compact subsets Y C X, the set {g € G: gY NY # 0} is also compact.
Restating this we say that G acts nonproperly on X if and only if there exist
sequences z,, — z in X and g, — oo in G, such that g,z, converges in X.
Here g, — oo means that the sequence g, has no convergent subsequence in
the compact open topology on the set of all isometries [15]. My discussion
would be based on the theorems proved by Kowalsky [17]. First of all let
me quote [17]:

Theorem 1 Let G be Lie transformation group of a differentiable manifold
X. If G acts properly on X, then G preserves a Riemannian metric on X.
The converse is true if G is closed in Diff(X).

If we combine this theorem with the Taylor’s construction of exotic R} with
few symmetries we immediately get:

Theorem 2 Let G be a Lie transformation group acting properly on an ex-

otic R* with few symmetries and preserving a time-orientable Lorentz met-
ric. Then G is finite.

Further, due to Kowalsky, we also have [17]:

Theorem 3 Let G be a connected noncompact simple Lie group with finite
center. Assume that G is not locally isomorphic to SO(n, 1) or SO(n,2).
If G acts nontrivially on a manifold X preserving a Lorentz metric, then G
actually acts properly on X.

and

Theorem 4 If G acts nonproperly and nontrivially on X, then G must be
locally isomorphic to SO(n,1) or SO(n,2) for some n.
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Now, suppose we are given an exotic Rg with few symmetries. We can
try to solve the Einstein equations on this Rg. Suppose we have found such
a solution. Whatever the boundary conditions be we would face one of the
two following situations [25].

e The isometry group G of the solution acts properly on Rg. Then
according to Theorem 3 G is finite. There is no nontrivial Killing
vector field and the solution cannot be stationary [19]. The gravitation
is quite “complicated” and even empty spaces do evolve.

e The isometry group G of the solution acts nonproperly on Rg. Then G
is locally isomorphic to SO(n,1) or SO(n,2 ) (Theorem 4). But the non-
proper action of G on Rg means that there are points infinitely close
together in Ry (z, — ) such that arbitrary large different isome-
tries (g, — o0) in G maps them into infinitely close points in Rg
(gnzn — y € Rg). There must exists quite strong gravity centers to
force such convergence (even in empty spacetimes).

We see that in both cases Einstein gravity is quite nontrivial even in the
absence of matter. Let us recall that if a spacetime has a Killing vector field
¢?, then every covering manifold admits appropriate Killing vector field ¢ ‘a
such that it is projected onto (® by the differential of the covering map.
This means that discussed above properties are “projected” on any space
that has exotic R* with few symmetries as a covering manifold e.g. quotient
manifolds obtained by a smooth action of some finite group. Note that in
that way a weaker form of the Brans conjecture |7] can be proven: there are
examples of four-manifolds (spacetimes) on which differential structures act
as sources of gravitational forces just as ordinary matter does.

4. Conclusions

The existence of topologically trivial spacetimes that admit only “non-
trivial” solutions to the Einstein equations is very surprising. Such phe-
nomenon might be also possible for other four-manifolds admitting exotic
differential structures enumerated in the Introduction. The first reaction is
to reject them as being unphysical mathematical curiosities. But this conclu-
sion might be erroneous [6-8,13]. If Nature has not used exotic smoothness
we physicists should find out why only one of the existing differential struc-
tures has been chosen. Does it mean that the differential calculus, although
very powerful, is not necessary (or sufficient) for the description of the laws
of physics? It might not be easy to find any answer to these questions.
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Let me conclude by saying that if exotic smoothness has anything to
do with the physical world it may be a source/ explanation of various as-
trophysical and cosmological phenomena. Dark matter and vacuum energy
substitutes and attracting centers are the most obvious among them [20-22].
“Exoticness” of the spacetime might be responsible for the recently discov-
ered anomalies in the large redshift supernovae properties. The process of
“elimination” of exotic differential structures might also result in the emer-
gence time [23,24] or spacetime signature.
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