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EXOTIC SMOOTHNESS ON SPACETIMENEW DEVELOPMENTS�J. SªadkowskiInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, Polande-mail: sladk�us.edu.pl(Re
eived O
tober 20, 1999)I dis
uss re
ent development in investigation of physi
al 
onsequen
es ofexoti
 di�erential stru
tures on manifolds. I show, following T. Asselmayer,that 
orre
tions to the 
urvature after the 
hange of di�erential stru
tureprodu
e a sour
e like term in the Einstein equations. Then I give examplesof topologi
ally trivial spa
es on whi
h exoti
 di�erential stru
tures a
t asa sour
e of gravitational for
e even in the absen
e of matter.PACS numbers: 02.40.Ky, 04.20.Cv1. Introdu
tionThe 
hoi
e of mathemati
al model for spa
etime has important physi-
al signi�
an
e. Riemann has already suggested that the geometry of spa
emay be more than just a mathemati
al tool de�ning a stage for physi
alphenomena, and may in fa
t have profound physi
al meaning in its ownright [1℄. With the advent of general relativity physi
ists began to thinkof the spa
etime as a di�erential manifold. Sin
e then various assumptionsabout the spa
etime topology and geometry have been put forward [2℄. Butuntil re
ently, the 
hoi
e of di�erential stru
ture of the spa
etime mani-fold has been assumed to be trivial be
ause most topologi
al spa
es usedfor modelling spa
etime have natural di�erential stru
tures and these stru
-tures where thought to be unique. Therefore the 
ounterintuitive dis
ov-ery of exoti
 four dimensional Eu
lidean spa
es following from the work ofFreedman [3℄ and Donaldson [4℄ raised various dis
ussions about the possi-ble physi
al 
onsequen
es of this dis
overy. Exoti
 R4�'s are smooth (C1)� Presented at the XXIII International S
hool of Theoreti
al Physi
s�Re
ent Developments in Theory of Fundamental Intera
tions�, Ustro«, Poland,September 15�22, 1999. (3485)



3486 J. Sªadkowskifour-manifolds whi
h are homeomorphi
 to the Eu
lidean four-spa
e R4 butnot di�eomorphi
 to it. Exoti
 R4�'s are unique to dimension four, see [5�11℄for details. Sin
e then mathemati
ian have shown that exoti
 (nonunique)smooth stru
tures are abundant in dimension four. For example it is su�-
ient to remove one point from a given four-manifold to obtain a manifoldwith exoti
 di�erential stru
tures [11℄ and every manifold of the formM�R,M being 
ompa
t 3-manifold, has in�nitely many inequivalent di�erentialstru
tures. Su
h manifolds play important r�le in theoreti
al physi
s andastrophysi
s and it be
ame ne
essary to investigate the physi
al meaning ofexoti
 smoothness. Unfortunately, this is not an easy task: we only know few
ompli
ated 
oordinate des
riptions [12℄ and most mathemati
ians believethat there is no �nite atlas on an exoti
 R4 and other exoti
 four-manifolds.To the best of my knowledge, only few possible physi
al manifestations havebeen dis
ussed in the literature [2, 6, 7, 13, 14℄. In this paper I would liketo dis
uss some pe
uliarities that may happen while studying the theoryof gravity on some exoti
 R4's. First of all I will dis
uss the Asselmeyer'sformula des
ribing the 
orre
tions to the 
urvature after the 
hange of di�er-ential stru
ture produ
e a sour
e like term in the Einstein equations. ThenI will show that on some topologi
ally trivial spa
es there exist only �
om-pli
ated� solutions of the Einstein equations. By this I mean that there maybe no stationary 
osmologi
al model solutions and/or that empty spa
e 
angravitate. Su
h solutions are 
ounterintuitive but I am aware of no physi
alprin
iple that would require reje
tion of su
h spa
etimes.2. Corre
tions to Einstein equations indu
ed by a 
hangeof di�erential stru
tureExoti
 R4's are de�ned as four-manifolds that are homeomorphi
 to thefourdimensional Eu
lidean spa
e R4 but not di�eomorphi
 to it. There arein�nitely many of su
h manifolds (at least a two parameter family of them)[5℄. Note that exoti
 di�erential stru
tures do not 
hange the de�nition of thederivative. The essential di�eren
e is that the algebras of real di�erentiablefun
tions are di�erent on nondi�eomorphi
 manifolds. In the 
ase of exoti
R4's this means that there are some 
ontinuous fun
tions R4 7! R that aresmooth on one exoti
 R4 and only 
ontinuous on another and vi
e versa [9℄.Brans 
onje
tured that exoti
 smoothness 
an be a sour
e of nonstandardsolutions of Einstein equations [6�8℄. But it is not easy to guess whi
hphysi
al observable will be modi�ed by a 
hange of di�erential stru
ture.Asselmeyer gave a partial answer to this problem [13℄. He 
onsidered twomanifolds M and M 0 with di�erent di�erential stru
tures and found the
hange in 
ovariant derrivative indu
ed by exoti
ness. Then he was ableto 
al
ulate the 
orresponding 
hanges in the 
urvature tensor and Einstein
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etime: New Developments 3487equations. To this end he 
onsidered a 1-1 map � : M ! M 0 that is nota di�eomorphism. It must not be smooth at some point p0 2 M be
auseM and M 0 are not equivalent. If one 
onsiders the splitting of the mapd� : TM ! TM 0 in some neighborhood U(p0) of the point p0:d� jU(p0)= (b1; b2) (1)then the 
hange in the 
ovariant derivative is given by [13℄r0 = r+ �b�11 db1�� �b�12 db2� (2)The additional term disappears if the manifolds in questions have the samedi�erential stru
ture (are equivalent). The physi
al 
ontent of this formula
an be found if one re
all the formula expressing the 
urvature tensor interms of the 
ovariant derivative [15℄:R (X;Y )Z = rXrY Z �rYrXZ +r[X;Y ℄Z; (3)where X; Y; Z are ve
tor �elds. Then the Einstein va
uum �eld equationstake the form: Ri
 (X;Y )� 12g (X;Y ) = 0; (4)where Ri
 denotes the Ri

i tensor. So the exoti
ness 
orre
tion to the
ovariant derivative leads to [13℄:Ri
ik � 12gikR = 2�wÆji �Æ �bji�jk + 12gik �glmÆ �bjm�jl�� ; (5)where �bji�kl are the 
oordinate representations of the fun
tions bi and wsome 
onstant des
ribing the winding number of the b fun
tion, see [13℄ fordetails. This means thatRi
 (X;Y )� 12g (X;Y )R 6= 0 (6)in M 0. Asselmeyer suggests a string-like interpretation of this sour
e term.I would like to add the following. Suppose we have dis
overed some strange[19�24℄ astrophysi
al sour
e of gravitation that do not �t to any a

eptablesolution of the Einstein equations. This may simply mean that we are us-ing wrong di�erential stru
ture on the spa
etime manifold and this strangesour
e is sort of an artefa
t of this mistake. If we 
hange the di�erentialstru
ture then everything would be OK e.g. we would get an empty spa
esolution.



3488 J. Sªadkowski3. General relativity on exoti
 R4's with few symmetriesTo pro
eed I will re
all several de�nitions. A di�eomorphism � : M 7!M ,where M is a (pseudo-)Riemannian manifold with (pseudo-)metri
 tensor g,is 
alled an isometry if and only if it preserve g, ��g = g [15℄. Su
h mappingsform a group 
alled the isometry group. We say that a smooth manifold hasfew symmetries provided that for every 
hoi
e of di�erentiable metri
 ten-sor, the isometry group is �nite. Re
ently, Taylor managed to 
onstru
texamples of exoti
 R4's with few symmetries [16℄. Among these there areexamples with nontrivial isometry groups. Taylor's result, although 
on-
erning Riemannian stru
tures, has profound 
onsequen
es for the analysisof the possible r�le of di�erential stru
tures in physi
s where Lorentz mani-folds are used. To show this let me de�ne a (non-)proper a
tions of a groupon manifolds as follows. Let G be a lo
ally 
ompa
t topologi
al group a
tingon a metri
 spa
e X. We say that G a
ts properly on X if and only if forall 
ompa
t subsets Y � X, the set fg 2 G : gY \ Y 6= ;g is also 
ompa
t.Restating this we say that G a
ts nonproperly on X if and only if there existsequen
es xn ! x in X and gn ! 1 in G, su
h that gnxn 
onverges in X.Here gn !1 means that the sequen
e gn has no 
onvergent subsequen
e inthe 
ompa
t open topology on the set of all isometries [15℄. My dis
ussionwould be based on the theorems proved by Kowalsky [17℄. First of all letme quote [17℄:Theorem 1 Let G be Lie transformation group of a di�erentiable manifoldX. If G a
ts properly on X, then G preserves a Riemannian metri
 on X.The 
onverse is true if G is 
losed in Di�(X).If we 
ombine this theorem with the Taylor's 
onstru
tion of exoti
 R4� withfew symmetries we immediately get:Theorem 2 Let G be a Lie transformation group a
ting properly on an ex-oti
 R4 with few symmetries and preserving a time-orientable Lorentz met-ri
. Then G is �nite.Further, due to Kowalsky, we also have [17℄:Theorem 3 Let G be a 
onne
ted non
ompa
t simple Lie group with �nite
enter. Assume that G is not lo
ally isomorphi
 to SO(n, 1) or SO(n,2).If G a
ts nontrivially on a manifold X preserving a Lorentz metri
, then Ga
tually a
ts properly on X.andTheorem 4 If G a
ts nonproperly and nontrivially on X, then G must belo
ally isomorphi
 to SO(n,1) or SO(n,2) for some n.
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etime: New Developments 3489Now, suppose we are given an exoti
 R4� with few symmetries. We 
antry to solve the Einstein equations on this R4�. Suppose we have found su
ha solution. Whatever the boundary 
onditions be we would fa
e one of thetwo following situations [25℄.� The isometry group G of the solution a
ts properly on R4�. Thena

ording to Theorem 3 G is �nite. There is no nontrivial Killingve
tor �eld and the solution 
annot be stationary [19℄. The gravitationis quite �
ompli
ated� and even empty spa
es do evolve.� The isometry group G of the solution a
ts nonproperly on R4�. Then Gis lo
ally isomorphi
 to SO(n,1) or SO(n,2 ) (Theorem 4). But the non-proper a
tion of G on R4� means that there are points in�nitely 
losetogether in R4� (xn ! x) su
h that arbitrary large di�erent isome-tries (gn ! 1) in G maps them into in�nitely 
lose points in R4�(gnxn ! y 2 R4�). There must exists quite strong gravity 
enters tofor
e su
h 
onvergen
e (even in empty spa
etimes).We see that in both 
ases Einstein gravity is quite nontrivial even in theabsen
e of matter. Let us re
all that if a spa
etime has a Killing ve
tor �eld�a, then every 
overing manifold admits appropriate Killing ve
tor �eld � 0asu
h that it is proje
ted onto �a by the di�erential of the 
overing map.This means that dis
ussed above properties are �proje
ted� on any spa
ethat has exoti
 R4 with few symmetries as a 
overing manifold e.g. quotientmanifolds obtained by a smooth a
tion of some �nite group. Note that inthat way a weaker form of the Brans 
onje
ture [7℄ 
an be proven: there areexamples of four-manifolds (spa
etimes) on whi
h di�erential stru
tures a
tas sour
es of gravitational for
es just as ordinary matter does.4. Con
lusionsThe existen
e of topologi
ally trivial spa
etimes that admit only �non-trivial� solutions to the Einstein equations is very surprising. Su
h phe-nomenon might be also possible for other four-manifolds admitting exoti
di�erential stru
tures enumerated in the Introdu
tion. The �rst rea
tion isto reje
t them as being unphysi
al mathemati
al 
uriosities. But this 
on
lu-sion might be erroneous [6�8,13℄. If Nature has not used exoti
 smoothnesswe physi
ists should �nd out why only one of the existing di�erential stru
-tures has been 
hosen. Does it mean that the di�erential 
al
ulus, althoughvery powerful, is not ne
essary (or su�
ient) for the des
ription of the lawsof physi
s? It might not be easy to �nd any answer to these questions.



3490 J. SªadkowskiLet me 
on
lude by saying that if exoti
 smoothness has anything todo with the physi
al world it may be a sour
e/ explanation of various as-trophysi
al and 
osmologi
al phenomena. Dark matter and va
uum energysubstitutes and attra
ting 
enters are the most obvious among them [20�22℄.�Exoti
ness� of the spa
etime might be responsible for the re
ently dis
ov-ered anomalies in the large redshift supernovae properties. The pro
ess of�elimination� of exoti
 di�erential stru
tures might also result in the emer-gen
e time [23, 24℄ or spa
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