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EXOTIC SMOOTHNESS ON SPACETIMENEW DEVELOPMENTS�J. SªadkowskiInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Polande-mail: sladk�us.edu.pl(Reeived Otober 20, 1999)I disuss reent development in investigation of physial onsequenes ofexoti di�erential strutures on manifolds. I show, following T. Asselmayer,that orretions to the urvature after the hange of di�erential strutureprodue a soure like term in the Einstein equations. Then I give examplesof topologially trivial spaes on whih exoti di�erential strutures at asa soure of gravitational fore even in the absene of matter.PACS numbers: 02.40.Ky, 04.20.Cv1. IntrodutionThe hoie of mathematial model for spaetime has important physi-al signi�ane. Riemann has already suggested that the geometry of spaemay be more than just a mathematial tool de�ning a stage for physialphenomena, and may in fat have profound physial meaning in its ownright [1℄. With the advent of general relativity physiists began to thinkof the spaetime as a di�erential manifold. Sine then various assumptionsabout the spaetime topology and geometry have been put forward [2℄. Butuntil reently, the hoie of di�erential struture of the spaetime mani-fold has been assumed to be trivial beause most topologial spaes usedfor modelling spaetime have natural di�erential strutures and these stru-tures where thought to be unique. Therefore the ounterintuitive disov-ery of exoti four dimensional Eulidean spaes following from the work ofFreedman [3℄ and Donaldson [4℄ raised various disussions about the possi-ble physial onsequenes of this disovery. Exoti R4�'s are smooth (C1)� Presented at the XXIII International Shool of Theoretial Physis�Reent Developments in Theory of Fundamental Interations�, Ustro«, Poland,September 15�22, 1999. (3485)



3486 J. Sªadkowskifour-manifolds whih are homeomorphi to the Eulidean four-spae R4 butnot di�eomorphi to it. Exoti R4�'s are unique to dimension four, see [5�11℄for details. Sine then mathematiian have shown that exoti (nonunique)smooth strutures are abundant in dimension four. For example it is su�-ient to remove one point from a given four-manifold to obtain a manifoldwith exoti di�erential strutures [11℄ and every manifold of the formM�R,M being ompat 3-manifold, has in�nitely many inequivalent di�erentialstrutures. Suh manifolds play important r�le in theoretial physis andastrophysis and it beame neessary to investigate the physial meaning ofexoti smoothness. Unfortunately, this is not an easy task: we only know fewompliated oordinate desriptions [12℄ and most mathematiians believethat there is no �nite atlas on an exoti R4 and other exoti four-manifolds.To the best of my knowledge, only few possible physial manifestations havebeen disussed in the literature [2, 6, 7, 13, 14℄. In this paper I would liketo disuss some peuliarities that may happen while studying the theoryof gravity on some exoti R4's. First of all I will disuss the Asselmeyer'sformula desribing the orretions to the urvature after the hange of di�er-ential struture produe a soure like term in the Einstein equations. ThenI will show that on some topologially trivial spaes there exist only �om-pliated� solutions of the Einstein equations. By this I mean that there maybe no stationary osmologial model solutions and/or that empty spae angravitate. Suh solutions are ounterintuitive but I am aware of no physialpriniple that would require rejetion of suh spaetimes.2. Corretions to Einstein equations indued by a hangeof di�erential strutureExoti R4's are de�ned as four-manifolds that are homeomorphi to thefourdimensional Eulidean spae R4 but not di�eomorphi to it. There arein�nitely many of suh manifolds (at least a two parameter family of them)[5℄. Note that exoti di�erential strutures do not hange the de�nition of thederivative. The essential di�erene is that the algebras of real di�erentiablefuntions are di�erent on nondi�eomorphi manifolds. In the ase of exotiR4's this means that there are some ontinuous funtions R4 7! R that aresmooth on one exoti R4 and only ontinuous on another and vie versa [9℄.Brans onjetured that exoti smoothness an be a soure of nonstandardsolutions of Einstein equations [6�8℄. But it is not easy to guess whihphysial observable will be modi�ed by a hange of di�erential struture.Asselmeyer gave a partial answer to this problem [13℄. He onsidered twomanifolds M and M 0 with di�erent di�erential strutures and found thehange in ovariant derrivative indued by exotiness. Then he was ableto alulate the orresponding hanges in the urvature tensor and Einstein



Exoti Smoothness on Spaetime: New Developments 3487equations. To this end he onsidered a 1-1 map � : M ! M 0 that is nota di�eomorphism. It must not be smooth at some point p0 2 M beauseM and M 0 are not equivalent. If one onsiders the splitting of the mapd� : TM ! TM 0 in some neighborhood U(p0) of the point p0:d� jU(p0)= (b1; b2) (1)then the hange in the ovariant derivative is given by [13℄r0 = r+ �b�11 db1�� �b�12 db2� (2)The additional term disappears if the manifolds in questions have the samedi�erential struture (are equivalent). The physial ontent of this formulaan be found if one reall the formula expressing the urvature tensor interms of the ovariant derivative [15℄:R (X;Y )Z = rXrY Z �rYrXZ +r[X;Y ℄Z; (3)where X; Y; Z are vetor �elds. Then the Einstein vauum �eld equationstake the form: Ri (X;Y )� 12g (X;Y ) = 0; (4)where Ri denotes the Rii tensor. So the exotiness orretion to theovariant derivative leads to [13℄:Riik � 12gikR = 2�wÆji �Æ �bji�jk + 12gik �glmÆ �bjm�jl�� ; (5)where �bji�kl are the oordinate representations of the funtions bi and wsome onstant desribing the winding number of the b funtion, see [13℄ fordetails. This means thatRi (X;Y )� 12g (X;Y )R 6= 0 (6)in M 0. Asselmeyer suggests a string-like interpretation of this soure term.I would like to add the following. Suppose we have disovered some strange[19�24℄ astrophysial soure of gravitation that do not �t to any aeptablesolution of the Einstein equations. This may simply mean that we are us-ing wrong di�erential struture on the spaetime manifold and this strangesoure is sort of an artefat of this mistake. If we hange the di�erentialstruture then everything would be OK e.g. we would get an empty spaesolution.



3488 J. Sªadkowski3. General relativity on exoti R4's with few symmetriesTo proeed I will reall several de�nitions. A di�eomorphism � : M 7!M ,where M is a (pseudo-)Riemannian manifold with (pseudo-)metri tensor g,is alled an isometry if and only if it preserve g, ��g = g [15℄. Suh mappingsform a group alled the isometry group. We say that a smooth manifold hasfew symmetries provided that for every hoie of di�erentiable metri ten-sor, the isometry group is �nite. Reently, Taylor managed to onstrutexamples of exoti R4's with few symmetries [16℄. Among these there areexamples with nontrivial isometry groups. Taylor's result, although on-erning Riemannian strutures, has profound onsequenes for the analysisof the possible r�le of di�erential strutures in physis where Lorentz mani-folds are used. To show this let me de�ne a (non-)proper ations of a groupon manifolds as follows. Let G be a loally ompat topologial group atingon a metri spae X. We say that G ats properly on X if and only if forall ompat subsets Y � X, the set fg 2 G : gY \ Y 6= ;g is also ompat.Restating this we say that G ats nonproperly on X if and only if there existsequenes xn ! x in X and gn ! 1 in G, suh that gnxn onverges in X.Here gn !1 means that the sequene gn has no onvergent subsequene inthe ompat open topology on the set of all isometries [15℄. My disussionwould be based on the theorems proved by Kowalsky [17℄. First of all letme quote [17℄:Theorem 1 Let G be Lie transformation group of a di�erentiable manifoldX. If G ats properly on X, then G preserves a Riemannian metri on X.The onverse is true if G is losed in Di�(X).If we ombine this theorem with the Taylor's onstrution of exoti R4� withfew symmetries we immediately get:Theorem 2 Let G be a Lie transformation group ating properly on an ex-oti R4 with few symmetries and preserving a time-orientable Lorentz met-ri. Then G is �nite.Further, due to Kowalsky, we also have [17℄:Theorem 3 Let G be a onneted nonompat simple Lie group with �niteenter. Assume that G is not loally isomorphi to SO(n, 1) or SO(n,2).If G ats nontrivially on a manifold X preserving a Lorentz metri, then Gatually ats properly on X.andTheorem 4 If G ats nonproperly and nontrivially on X, then G must beloally isomorphi to SO(n,1) or SO(n,2) for some n.



Exoti Smoothness on Spaetime: New Developments 3489Now, suppose we are given an exoti R4� with few symmetries. We antry to solve the Einstein equations on this R4�. Suppose we have found suha solution. Whatever the boundary onditions be we would fae one of thetwo following situations [25℄.� The isometry group G of the solution ats properly on R4�. Thenaording to Theorem 3 G is �nite. There is no nontrivial Killingvetor �eld and the solution annot be stationary [19℄. The gravitationis quite �ompliated� and even empty spaes do evolve.� The isometry group G of the solution ats nonproperly on R4�. Then Gis loally isomorphi to SO(n,1) or SO(n,2 ) (Theorem 4). But the non-proper ation of G on R4� means that there are points in�nitely losetogether in R4� (xn ! x) suh that arbitrary large di�erent isome-tries (gn ! 1) in G maps them into in�nitely lose points in R4�(gnxn ! y 2 R4�). There must exists quite strong gravity enters tofore suh onvergene (even in empty spaetimes).We see that in both ases Einstein gravity is quite nontrivial even in theabsene of matter. Let us reall that if a spaetime has a Killing vetor �eld�a, then every overing manifold admits appropriate Killing vetor �eld � 0asuh that it is projeted onto �a by the di�erential of the overing map.This means that disussed above properties are �projeted� on any spaethat has exoti R4 with few symmetries as a overing manifold e.g. quotientmanifolds obtained by a smooth ation of some �nite group. Note that inthat way a weaker form of the Brans onjeture [7℄ an be proven: there areexamples of four-manifolds (spaetimes) on whih di�erential strutures atas soures of gravitational fores just as ordinary matter does.4. ConlusionsThe existene of topologially trivial spaetimes that admit only �non-trivial� solutions to the Einstein equations is very surprising. Suh phe-nomenon might be also possible for other four-manifolds admitting exotidi�erential strutures enumerated in the Introdution. The �rst reation isto rejet them as being unphysial mathematial uriosities. But this onlu-sion might be erroneous [6�8,13℄. If Nature has not used exoti smoothnesswe physiists should �nd out why only one of the existing di�erential stru-tures has been hosen. Does it mean that the di�erential alulus, althoughvery powerful, is not neessary (or su�ient) for the desription of the lawsof physis? It might not be easy to �nd any answer to these questions.
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