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SKEWED PARTON DISTRIBUTIONS�A.V. RadyushkinyPhysi
s Department, Old Dominion UniversityNorfolk, VA 23529, USAandJe�erson Lab, Newport News,VA 23606, USA(Re
eived November 11, 1999)Appli
ations of perturbative QCD to deeply virtual Compton s
atter-ing and hard ex
lusive ele
troprodu
tion pro
esses require a generalizationof usual parton distributions for the 
ase when long-distan
e information isa

umulated in nonforward matrix elements of quark and gluon light-
oneoperators. We des
ribe two types of nonperturbative fun
tions parametriz-ing su
h matrix elements: double distributions F (x; y; t) and skewed dis-tribution fun
tions F�(X ; t), dis
uss their properties, and basi
 uses in theQCD des
ription of hard ex
lusive pro
esses.PACS numbers: 12.38.Bx, 13.60.Fz, 13.60.Le1. Introdu
tionThe standard feature of appli
ations of perturbative QCD to hard pro-
esses is the introdu
tion of phenomenologi
al fun
tions a

umulating in-formation about nonperturbative long-distan
e dynami
s. The well-knownexamples are the parton distribution fun
tions fp=H(x) [1℄ used in pertur-bative QCD approa
hes to hard in
lusive pro
esses and distribution ampli-tudes '�(x); 'N (x1; x2; x3), whi
h naturally emerge in the asymptoti
 QCDanalyses of hard ex
lusive pro
esses [2�7℄.The 
ases of deeply virtual Compton s
attering (DVCS) and hard ex
lu-sive ele
troprodu
tion pro
esses [8�13℄ involve nonforward matrix elementshp0j : : : jpi. The important feature (noti
ed long ago [14,15℄) is that kinemat-i
s of hard elasti
 ele
troprodu
tion pro
esses (DVCS 
an be also treated asone of them) requires the presen
e of the longitudinal 
omponent in the mo-mentum transfer r � p� p0 from the initial hadron to the �nal: r+ = �p+.� Presented at the XXXIX Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,May 29�June 8, 1999.y Also at Laboratory of Theoreti
al Physi
s, JINR, Dubna, Russia(3647)



3648 A.V. RadyushkinFor DVCS and �-ele
troprodu
tion in the region Q2 � jtj;m2H , the longitu-dinal momentum asymmetry (or �skewedness�) parameter � 
oin
ides withthe Bjorken variable xBj = Q2=2(pq) asso
iated with the virtual photonmomentum q [16℄. This means that the nonperturbative matrix elementhp0j : : : jpi is nonsymmetri
 (skewed), and the distributions whi
h appear inthe hard elasti
 ele
troprodu
tion amplitudes di�er from those studied in in-
lusive pro
esses. In the latter 
ase, one has a symmetri
 situation when thesame momentum p appears in both bra
kets of the hadroni
 matrix elementhpj : : : jpi.To parametrize nonforward matrix elements hp � r j O(0; z) j pi j z2=0 ofquark and gluon light-
one operators one 
an use two basi
 types of nonper-turbative fun
tions. The double distributions (DDs) ~F (x; y; t) [9, 11, 17, 18℄spe
ify the Sudakov light-
one �plus� fra
tions xp+ and yr+ of the initialhadron momentum p and the momentum transfer r 
arried by the initialparton. The other possibility is to treat the proportionality 
oe�
ient � asan independent parameter and introdu
e an alternative des
ription in termsof the nonforward parton distributions (NFPDs) ~F�(X; t) with X = x+ y�being the total fra
tion of the initial hadron momentum taken by the ini-tial parton. The shape of NFPDs expli
itly depends on the parameter �
hara
terizing the skewedness of the relevant nonforward matrix element.This parametrization of nonforward matrix elements by ~F�(X; t) is similarto that proposed by Ji [8℄ who introdu
ed o�-forward parton distributions(OFPDs)H(~x; �; t) in whi
h the parton momenta and the skewedness param-eter � � r+=2P+ are measured in units of the average hadron momentumP = (p + p0)=2. OFPDs and NFPDs [11, 12℄ 
an be treated as parti
u-lar forms of skewed parton distributions (SPDs). One 
an also introdu
ethe version of DDs (��-DDs� [18℄) in whi
h the a
tive parton momentum iswritten in terms of symmetri
 variables k = xP + (1 + �)r=2.The basi
s of the pQCD approa
hes in
orporating skewed parton distri-butions were formulated in Refs. [8�11℄. A detailed analysis of pQCD fa
-torization for hard meson ele
troprodu
tion pro
esses was given in Ref. [12℄.Our goal in the present le
tures is to give a des
ription of the approa
houtlined in our papers [9�11, 17, 18℄.2. Double distributions and their symmetriesIn the pQCD fa
torization treatment of hard ele
troprodu
tion pro-
esses, the nonperturbative information is a

umulated in the nonforwardmatrix elements hp�r j O(0; z) j pi of light 
one operators O(0; z). For z2 = 0the matrix elements depend on the relative 
oordinate z through two Lorentzinvariant variables (pz) and (rz). In the forward 
ase, when r = 0, one ob-tains the usual quark heli
ity-averaged densities by Fourier transforming the



Skewed Parton Distributions 3649relevant matrix element with respe
t to (pz)hp; s0 j � a(0)ẑE(0; z;A) a(z) j p; si j z2=0= �u(p; s0)ẑu(p; s) 1Z0 �e�ix(pz)fa(x)� eix(pz)f�a(x)� dx ; (1)where E(0; z;A) is the gauge link, �u(p0; s0); u(p; s) are the Dira
 spinors andwe use the notation 
�z� � ẑ.
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Fig. 1. a) Parton pi
ture in terms of y-DDs; b,
) FM -type 
ontributions.The parameter x in this representation has an evident interpretation: it
hara
terizes the fra
tion of the initial hadron momentum whi
h is 
arriedby the a
tive parton.In the nonforward 
ase, we 
an use the double Fourier representationwith respe
t to both (pz) and (rz):hp0; s0 j � a(0)ẑE(0; z;A) a(z) j p; si j z2=0= 1Z0 dy 1Z�1 e�ix(pz)�iy(rz) ��u(p0; s0)ẑu(p; s) ~Fa(x; y; t)+ �u(p0; s0) ẑr̂ � r̂ẑ4M u(p; s) ~Ka(x; y; t) � �(0 � x+ y � 1) dx+(zr)M �u(p0; s0)u(p; s) 1Z0 e�iy(rz) 	a(y; t) dy ; (2)where M is the nu
leon mass and s; s0 spe
ify the nu
leon polarization. Weuse the �hat� (rather than �slash�) 
onvention ẑ � z�
�. The parametriza-tion of nonforward matrix elements must in
lude both the non�ip term de-s
ribed here by the fun
tions ~Fa(x; y; t) and the spin-�ip term 
hara
terizedby the fun
tions ~Ka(x; y; t).



3650 A.V. RadyushkinThe parameters x; y tell us that the a
tive parton 
arries the fra
tions xof the initial momentum p and the fra
tion y of the momentum transfer r.Using the approa
h [19℄ based on the �-representation analysis it is possibleto prove [11℄ that double distributions ~F (x; y) have a natural property thatboth x and y satisfy the �parton� 
onstraints 0 � x � 1, 0 � y � 1 forany Feynman diagram 
ontributing to ~F (x; y). A less obvious restri
tion0 � x + y � 1 guarantees that the argument X = x + y� of the skeweddistribution F�(X) also 
hanges between the limits 0 � X � 1. The supportarea for the double distribution ~Fa(x; y; t) is shown on Fig. 2a.
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b)Fig. 2. a) Support region and symmetry line y = �x=2 for y-DDs ~F (x; y; t); b)support region for �-DDs ~f(x; �).In prin
iple, we 
annot ex
lude also the possibility that the fun
tions~F (x; y; t) have singular terms at x = 0 proportional to Æ(x) or its deriva-tive(s). Su
h terms have no proje
tion onto the usual parton densities. Wewill denote them by ~FM (x; y; t) � they may be interpreted as 
oming fromthe t-
hannel meson-ex
hange type 
ontributions (see Fig. 1b). In this 
ase,the partons just share the plus 
omponent of the momentum transfer r: in-formation about the magnitude of the initial hadron momentum is lost if theex
hanged parti
le 
an be des
ribed by a pole propagator � 1=(t �m2M ).Hen
e, the meson-ex
hange 
ontributions to a double distribution may looklike~F+M (x; y; t) � Æ(x) '+M (y)m2M � t or ~F�M (x; y; t) � Æ0(x) '�M (y)m2M � t ; et
. ; (3)where '�M (y) are the fun
tions related to the distribution amplitudes of therelevant mesons M�. The two examples above 
orrespond to x-even andx-odd parts of the double distribution ~F (x; y; t). Another type of terms inwhi
h the dependen
e on (pz) is lost 
an be produ
ed by diagrams 
ontain-ing a quarti
 pion vertex (Fig. 1
). As shown by Polyakov and Weiss [20℄,su
h terms 
orrespond to an independent (rz)�u(p0; s0)u(p; s)�((rz)) type



Skewed Parton Distributions 3651
ontribution whi
h 
an be parametrized by a single integral over y involvingan e�e
tive distribution amplitude 	(y; t). The meson-ex
hange terms in~F (x; y; t) and ~K(x; y; t) as well as Polyakov�Weiss terms are invisible in theforward limit, hen
e the existing knowledge of the usual parton densities
annot be used to 
onstrain these terms. Later, des
ribing the models forskewed distributions, we dis
uss only the �forward visible parts� of SPDswhi
h are obtained by s
anning the x 6= 0 parts of the relevant DDs.Comparing Eq. (1) with the r = 0 limit of the DD de�nition (2) givesthe �redu
tion formulas� relating the double distribution ~Fa(x; y; t = 0) tothe quark and antiquark parton densities1�xZ0 ~Fa(x; y; t = 0)jx>0 dy = fa(x) ; 1Z�x ~Fa(x; y; t = 0)jx<0 dy = �f�a(�x) :(4)Hen
e, the positive-x and negative-x 
omponents of the double distribu-tion ~Fa(x; y; t) 
an be treated as nonforward generalizations of quark andantiquark densities, respe
tively. If we de�ne the �untilded� DDs byFa(x; y; t) = ~Fa(x; y; t)jx>0 ; F�a(x; y; t) = � ~Fa(�x; 1� y; t)jx<0 ; (5)then x is always positive and the redu
tion formulas have the same form1�xZ0 Fa;�a(x; y; t = 0)jx6=0 dy = fa;�a(x) (6)in both 
ases. The new antiquark distributions also �live� on the triangle0 � x; y � 1; 0 � x + y � 1. Taking z in the light
one �minus� dire
tion,we arrive at the parton interpretation of fun
tions Fa;�a(x; y; t) as probabil-ity amplitudes for an outgoing parton to 
arry the fra
tions xp+ and yr+of the external momenta r and p. The double distributions F (x; y; t) areuniversal fun
tions des
ribing the �ux of p+ and r+ independently of theratio r+=p+. Note, that extra
tion of two separate 
omponents Fa(x; y; t)and F�a(x; y; t) from the quark DD ~Fa(x; y; t) as its positive-x and negative-xparts is unambiguous.Taking the O(z) term of the Taylor expansion gives the sum rules1Z0 dx 1�xZ0 �F a(x; y; t) � F �a(x; y; t)� dy = F a1 (t) ; (7)1Z0 dx 1�xZ0 �Ka(x; y; t) �K�a(x; y; t)� dy = F a2 (t) ; (8)



3652 A.V. Radyushkinrelating the double distributions Fa(x; y; t), Ka(x; y; t) to the a-�avor 
om-ponents of the Dira
 and Pauli form fa
tors:Xa eaF a1 (t) = F1(t) ; Xa eaF a2 (t) = F2(t) ; (9)respe
tively.A 
ommon element of the redu
tion formulas given above is an integra-tion over y. Hen
e, it is 
onvenient to introdu
e intermediate fun
tionsFa(x; t) = 1�xZ0 F a(x; y; t) dy ; Ka(x; t) = 1�xZ0 Ka(x; y; t) dy : (10)They satisfy the redu
tion formulasFa(x; t = 0) = fa(x) ; Xa ea 1Z0 �Fa(x; t)�F�a(x; t)� dx = F1(t) (11)Xa ea 1Z0 �Ka(x; t)�K�a(x; t)� dx = F2(t) (12)whi
h show that these fun
tions are the simplest hybrids of the usual partondensities and form fa
tors. For this reason, one 
an 
all them nonforwardparton densities (NDs) [21℄.The spin-�ip terms disappear only if r = 0. In the weaker r2 � t = 0limit, they survive, e:g:; F a2 (0) = �a is the a-�avor 
ontribution to thenu
leon anomalous magneti
 moment. In other words, the t = 0 limit of the�magneti
� NDs exists: Ka(x; t = 0) � ka(x), and the integralXa ea 1Z0 [ka(x)� k�a(x)℄ dx = �p (13)gives the anomalous magneti
 moment of the proton. The knowledge of thex-moment of ka(x)'s is needed to determine the 
ontribution of the quarkorbital angular momentum to the proton spin [8℄. Sin
e the K-type DDs arealways a

ompanied by the r� = p� � p0� fa
tor, they are invisible in deepinelasti
 s
attering and other in
lusive pro
esses related to stri
tly forwardr = 0 matrix elements.There are also parton-heli
ity sensitive double distributions Ga(x; y; t)and P a(x; y; t). The �rst one redu
es to the usual spin-dependent densities
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Fig. 3. Parton pi
ture in terms of �-DDs�fa(x) in the r = 0 limit and gives the axial form fa
tor FA(t) after thex; y-integration. The se
ond one involves hadron heli
ity �ip and is relatedto the pseudos
alar form fa
tor FP (t).It is worth mentioning here that for a massive target (nu
leons in our
ase) there is a kinemati
 restri
tion [16℄�t > �2M2�� : (14)Hen
e, for �xed �, the formal limit t! 0 is not physi
ally rea
hable. How-ever, many results (evolution equations being the most important example)obtained in the formal t = 0, M = 0 limit are still appli
able.To make the des
ription more symmetri
 with respe
t to the initial and�nal hadron momenta, we 
an treat nonforward matrix elements as fun
tionsof (Pz) and (rz), where P = (p + p0)=2 is the average hadron momentum.The relevant double distributions ~fa(x; � ; t) [whi
h we will 
all �-DDs todistinguish them from y-DDs F (x; y; t)℄ are de�ned byDp0 ��� � a ��z2� ẑ a �z2���� pE= �u(p0)ẑu(p) 1Z�1 dx 1�jxjZ�1+jxj e�ix(Pz)�i�(rz)=2 ~fa(x; �; t) d� +O(r) terms :(15)The support area for ~fa(x; �; t) is shown in Fig. 2b. Again, the usual for-ward densities fa(x) and f�a(x) are given by integrating ~fa(x; � ; t = 0) oververti
al lines x = 
onst for x > 0 and x < 0, respe
tively. Hen
e, we 
ansplit ~fa(x; � ; t) into three 
omponents~fa(x; � ; t) = fa(x; � ; t) �(x > 0)� f�a(�x;�� ; t) �(x < 0) + fM(x; � ; t) ;(16)



3654 A.V. Radyushkinwhere fM (x; � ; t) is a singular term with support at x = 0 only. Dueto hermiti
ity and time-reversal invarian
e properties of nonforward matrixelements, the �-DDs are even fun
tions of �:~fa(x; �; t) = ~fa(x;��; t) :For our original y-DDs Fa;�a(x; y; t), this 
orresponds to symmetry with re-spe
t to the inter
hange y $ 1 � x � y (�Muni
h� symmetry, establishedin Ref. [22℄). In parti
ular, the fun
tions '�M (y) for singular 
ontributionsF�M (x; y; t) are symmetri
 '�M (y) = '�M (1 � y) both for x-even and x-oddparts. The a-quark 
ontribution into the �avor-singlet operatorOSa ��z2 ; z2� = i2 h � a ��z2� ẑE ��z2 ; z2 ;A� a �z2�� fz ! �zgi
an be parametrized either by y-DDs ~F Sa (x; y; t) or by �-DDs ~fSa (x; � ; t)h p0; s0 j OSa ��z2 ; z2� j p; si j z2=0= �u(p0; s0)ẑu(p; s) 1Z0 dx 1�xZ0 12 �e�ix(pz)�i(y�1=2)(rz)�eix(pz)+i(y�1=2)(rz)� F Sa (x; y; t) dy +O(r) terms= �u(p0; s0)ẑu(p; s) 1Z�1 dx 1�jxjZ�1+jxj e�ix(Pz)�i�(rz)=2 ~fSa (x; � ; t) d� +O(r) :(17)In the se
ond and third lines here we have used the fa
t that positive-x andnegative-x parts in this 
ase are des
ribed by the same untilded fun
tionF Sa (x; y; t)jx6=0 = Fa(x; y; t) + F�a(x; y; t):The �-DDs ~fSa (x; � ; t) are even fun
tions of � and, a

ording to Eq. (17),odd fun
tions of x:~fSa (x; �; t) = ffa(jxj; j�j; t) + f�a(jxj; j�j; t)g sign(x) + fSM(x; �; t) : (18)Finally, the valen
e quark fun
tions ~fVa (x; � ; t) related to the operatorsOVa ��z2 ; z2� = 12 h � a ��z2� ẑE ��z2 ; z2 ;A� a �z2�+ fz ! �zgiare even fun
tions of both � and x:~fVa (x; �; t) = fa(jxj; j�j; t) � f�a(jxj; j�j; t) + fVM(x; �; t) : (19)



Skewed Parton Distributions 36553. Models for double and skewed distributionsThe redu
tion formulas and interpretation of the x-variable as the fra
-tion of p (or P ) momentum suggest that the pro�le of F (x; y) (or f(x; �))in x-dire
tion is basi
ally determined by the shape of f(x). On the otherhand, the pro�le in y (or �) dire
tion 
hara
terizes the spread of the partonmomentum indu
ed by the momentum transfer r. In parti
ular, sin
e the�-DDs ~f(x; �) are even fun
tions of �, it make sense to write~f(x; �) = h(x; �) ~f (x) ; (20)where h(x; �) is an even fun
tion of � normalized by1�jxjZ�1+jxj h(x; �) d� = 1: (21)We may expe
t that the �-pro�le of h(x; �) is similar to that of a symmet-ri
 distribution amplitude (DA) '(�). Sin
e j�j � 1 � jxj, to get a more
omplete analogy with DA's, it makes sense to res
ale � as � = (1 � jxj)�introdu
ing the variable � with x-independent limits: �1 � � � 1. Thesimplest model is to assume that the pro�le in the �-dire
tion is a universalfun
tion g(�) for all x. Possible simple 
hoi
es for g(�) may be Æ(�) (nospread in �-dire
tion), 34(1 � �2) (
hara
teristi
 shape for asymptoti
 limitof nonsinglet quark distribution amplitudes), 1516 (1��2)2 (asymptoti
 shapeof gluon distribution amplitudes), et
. In the variables x; �, this givesh(1)(x; �) = Æ(�) ; h(1)(x; �) = 34 (1 � jxj)2 � �2(1� jxj)3 ;h(2)(x; �) = 1516 [(1 � jxj)2 � �2℄2(1� jxj)5 : (22)These models 
an be treated as spe
i�
 
ases of the general pro�le fun
tionh(b)(x; �) = � (2b+ 2)22b+1� 2(b+ 1) [(1� jxj)2 � �2℄b(1� jxj)2b+1 ; (23)whose width is governed by the parameter b.The 
oe�
ient of proportionality � = r+=p+ (or � = r+=2P+) betweenthe plus 
omponents of the momentum transfer and initial (or average) mo-mentum spe
i�es the skewedness of the matrix elements. The 
hara
teristi
feature implied by representations for double distributions [see, e.g., Eq. (2)℄is the absen
e of the �-dependen
e in the DDs F (x; y) and �-dependen
e in
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Fig. 4. Integration lines for integrals relating SPDs and DDs.f(x; �). An alternative way to parametrize nonforward matrix elements oflight-
one operators is to use � (or �) and the total momentum fra
tionsX � x+ y� (or ~x � x+ ��) as independent variables. Integrating ea
h par-ti
ular double distribution over y gives the nonforward parton distributionsF i�(X) = 1Z0 dx 1�xZ0 Æ(x + �y �X)Fi(x; y) dy= �(X � �) �X=��Z0 Fi(X � y�; y) dy + �(X � �) X=�Z0 Fi(X � y�; y) dy ; (24)where �� � 1 � �. The two 
omponents of NFPDs 
orrespond to positive(X > �) and negative (X < �) values of the fra
tion X 0 � X � � asso
i-ated with the �returning� parton. As explained in Refs. [9, 11℄, the se
ond
omponent 
an be interpreted as the probability amplitude for the initialhadron with momentum p to split into the �nal hadron with momentum(1 � �)p and the two-parton state with total momentum r = �p shared bythe partons in fra
tions Y r and (1� Y )r, where Y = X=�.The relation between �untilded� NFPDs and DDs 
an be illustrated onthe �DD-life triangle� de�ned by 0 � x; y; x + y � 1 (see Fig. 4a). Spe
i�-
ally, to get F�(X), one should integrate F (x; y) over y along a straight linex = X � �y. Fixing some value of �, one deals with a set of parallel linesinterse
ting the x-axis at x = X. The upper limit of the y-integration isdetermined by interse
tion of this line either with the line x + y = 1 (thishappens if X > �) or with the y-axis (if X < �). The line 
orresponding toX = � separates the triangle into two parts generating the two 
omponentsof the nonforward parton distribution.



Skewed Parton Distributions 3657In a similar way, we 
an write the relation between OFPDs H(~x; �; t)and the �-DDs ~f(x; �; t)H(~x; �; t) = 1Z�1 dx 1�jxjZ�1+jxj Æ(x+ ��� ~x) ~f(x; �; t) d� : (25)The delta-fun
tion in Eq. (25) spe
i�es the line of integration in the fx; �gplane. For de�niteness, we will assume below that � is positive.Information 
ontained in SPDs originates from two physi
ally di�erentsour
es: meson-ex
hange type 
ontributions FM� (X) 
oming from the sin-gular x = 0 parts of DDs and the fun
tions Fa� (X), F�a� (X) obtained bys
anning the x 6= 0 parts of DDs F a(x; y), F �a(x; y). The support of ex-
hange 
ontributions is restri
ted to 0 � X � �. Up to res
aling, thefun
tion FM� (X) has the same shape for all �. For any nonvanishing X,these ex
hange terms be
ome invisible in the forward limit � ! 0. On theother hand, the support of fun
tions Fa� (X), F�a� (X) in general 
overs thewhole 0 � X � 1 region. Furthermore, the forward limit of su
h SPDs asFa;�a� (X) is rather well known from in
lusive measurements. Hen
e, infor-mation 
ontained in the usual (forward) densities fa(x), f �a(x) 
an be usedto restri
t the models for Fa� (X), F�a� (X).Let us 
onsider SPDs 
onstru
ted using simple models of DDs spe
i-�ed above. In parti
ular, the model f (1)(x; �) = Æ(�)f(x) (equivalent toF (1)(x; y) = Æ(y � �x=2)f(x)), gives the simplest model H(1)(~x; �; t = 0) =f(x) in whi
h OFPDs at t = 0 have no �-dependen
e. For NFPDs this givesF (1)� (X) = �(X � �=2)1� �=2 f �X � �=21� �=2 � ; (26)i.e., NFPDs for non-zero � are obtained from the forward distribution f(X) �F�=0(X) by shift and res
aling.In the 
ase of the b = 1 and b = 2 models, simple analyti
 results 
anbe obtained only for some expli
it forms of f(x). For the �valen
e quark�-oriented ansatz ~f (1)(x; �), the following 
hoi
e of a normalized distributionf (1)(x) = � (5� a)6� (1� a) x�a(1� x)3 (27)is both 
lose to phenomenologi
al quark distributions and produ
es a simpleexpression for the double distribution sin
e the denominator (1�x)3 fa
tor inEq. (22) is 
an
elled. As a result, the integral in Eq. (25) is easily performed



3658 A.V. Radyushkinand we getH1V (~x; �)jj~xj�� = 1�3 �1� a4���(2� a)�(1� ~x)(x2�a1 + x2�a2 )+(�2 � ~x)(x2�a1 � x2�a2 )� �(~x) + (~x! �~x)� (28)for j~xj � � andH1V (~x; �)jj~xj�� = 1�3 �1� a4��x2�a1 [(2� a)�(1 � ~x) + (�2 � x)℄+(~x! �~x)� (29)in the middle �� � ~x � � region. We use here the notationx1 = (~x + �)=(1 + �) and x2 = (~x � �)=(1 � �) [23℄. To extend these ex-pressions onto negative values of �, one should substitute � by j�j. One 
an
he
k, however, that no odd powers of j�j would appear in the ~xN momentsof H1V (~x; �). Furthermore, these expressions are expli
itly non-analyti
 forx = ��. This is true even if a is integer. Dis
ontinuity at x = ��, however,appears only in the se
ond derivative of H1V (~x; �), i.e., the model 
urvesfor H1V (~x; �) look very smooth (see Fig. 5). The expli
it expressions forNFPDs in this model were given in Ref. [17℄. The relevant 
urves are alsoshown in Fig. 5.
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Fig. 5. Valen
e quark distributions: untilded NFPDs F q� (x) (left) and OFPDsH1V (~x; �) (right) with a = 0:5 for several values of �, namely, 0.1, 0.2, 0.4, 0.6,0.8 and 
orresponding values of � = �=(2� �). Lower 
urves 
orrespond to largervalues of �.For a = 0, the x > � part of OFPD has the same x-dependen
e as itsforward limit, di�ering from it by an overall �-dependent fa
tor only:H1V (~x; �)ja=0 = 4 (1� j~xj)3(1� �2)2 �(j~xj � �) + 2 � + 2� 3 ~x2�(1 + �)2 �(j~xj � �) : (30)



Skewed Parton Distributions 3659The (1 � j~xj)3 behaviour 
an be trivially 
ontinued into the j~xj < � region.However, the a
tual behaviour of H1V (~x; �)ja=0 in this region is given bya di�erent fun
tion. In other words, H1V (~x; �)ja=0 
an be represented as asum of a fun
tion analyti
 at border points and a 
ontribution whose supportis restri
ted by j~xj � �. It should be emphasized that despite its DA-likeappearan
e, this 
ontribution should not be treated as an ex
hange-typeterm. It is generated by regular x 6= 0 part of DD, and, unlike '(~x=�)=�fun
tions 
hanges its shape with � and be
omes very small for small �.For the singlet quark distribution, the �-DDs ~fS(x; �) should be oddfun
tions of x. Still, we 
an use the model like (27) for the x > 0 part,but take ~fS(x; �)jx6=0 = Af (1)(jxj; �) sign(x). Note, that the integral (25)produ
ing HS(~x; �) in the j~xj � � region would diverge for � ! ~x=� ifa � 1, whi
h is the usual 
ase for standard parametrizations of singlet quarkdistributions for su�
iently large Q2. However, due to the antisymmetryof ~fS(x; �) wrt x ! �x and its symmetry wrt � ! ��, the singularity at� = ~x=� 
an be integrated using the prin
ipal value pres
ription whi
h inthis 
ase produ
es the x! �x antisymmetri
 version of Eqs.(28) and (29).For a = 0, its middle part redu
es toH1S(~x; �)jj~xj��;a=0 = 2x 3�2 � 2x2� � x2�3(1 + �)2 : (31)The shape of singlet SPDs in this model is shown in Fig. 6
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Fig. 6. Singlet quark distribution H1S(~x; �) for several � values 0.1, 0.25, 0.4.Lower 
urves 
orrespond to larger values of �. Forward distribution is modelled by(1� x)3=x.



3660 A.V. Radyushkin4. SPDs and deeply virtual Compton s
atteringIn the lowest order, the DVCS amplitude T ��(p; q; q0) is given by twohandbag diagrams. In parti
ular, the invariant amplitude 
ontaining the Ffun
tions is given byTF (p; q; q0) =Xa e2a 1Z0 � 1X � � + i" + 1X � i"�Fa+�a� (X; t) dX : (32)An important feature of the DVCS amplitude is that for large Q2 and �xedt it depends only on the ratio Q2=2(pq) � xBj = �: DVCS is an ex
lusivepro
ess exhibiting the Bjorken s
aling. Note that the imaginary part ofthe DVCS amplitude is proportional to Fa+�a� (�; t). In this fun
tion, theparameter � appears twi
e: �rst as the skewedness of the pro
ess and thenas the fra
tion X = � at whi
h the imaginary part is generated.One may ask whi
h Q2 are large enough to ensure the dominan
e of thelowest-twist handbag 
ontribution. In DIS, approximate Bjorken s
alingstarts at Q2 � 2GeV2. Another example is given by the ex
lusive pro
ess
(q1)
�(q2) ! �0 studied at e+e� 
olliders. If one of the photons is highlyvirtual q21 = �Q2 while another is (almost) real q22 � 0, the pro
ess is kine-mati
ally similar to DVCS. In the leading order, the F

��0(Q2) transitionform fa
tor is given by a handbag diagram again. The re
ent measurementsby CLEO [24℄ show that the pQCD predi
tion F

��0(Q2) � 1=Q2 againworks starting from Q2 � 2GeV2. The 

��0 vertex (for a virtual pion) 
anbe also measured on a �xed-target ma
hine like CEBAF in whi
h 
ase itis just a part of the DVCS amplitude 
orresponding to the 4th skewed dis-tribution P�(X; t) (whi
h is related to the pseudos
alar form fa
tor GP (t)of the nu
leon). Hen
e, CLEO data give an eviden
e that DVCS may behandbag-dominated for Q2 as low as 2GeV2.The main problem for studying DVCS is the 
ontamination by the Bethe�Heitler pro
ess in whi
h the �nal photon is emitted from the initial or �nalele
tron. The Bethe�Heitler amplitude is enhan
ed at small t. On the otherhand, the virtual photon �ux for �xed Q2 and xBj in
reases when the ele
-tron beam energy in
reases. Hen
e, the energy upgrade would make theDVCS studies at Je�erson Lab more feasible. Experimental aspe
ts of vir-tual Compton s
attering studies at Je�erson Lab are dis
ussed in Refs. [25℄.The skewed parton distributions 
an be also measured in hard mesonele
troprodu
tion pro
esses [11, 12, 22, 25℄. The leading-twist pQCD 
ontri-bution in this 
ase involves a one-gluon ex
hange, whi
h means that the hardsubpro
ess is suppressed by �s=� � 0:1 fa
tor. The 
ompeting soft me
ha-nism 
orresponds to a triple overlap of hadroni
 wave fun
tions and has arelative suppression M2=Q2 by a power of Q2, with M2 � 1 GeV2 being a
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hara
teristi
 hadroni
 s
ale. Hen
e, to 
learly see the one-gluon-ex
hangesignal one needs Q2 above 10GeV2. Numeri
al pQCD-based estimates and
omparison of DVCS and hard meson ele
troprodution 
ross se
tions 
an befound in Ref. [25℄. 5. SPD enhan
ement fa
torThe imaginary part of hard ex
lusive meson ele
troprodu
tion amplitudeis determined by the skewed distributions at the border point. For thisreason, the magnitude of F�(�) [or H(�; �)℄ and its relation to the forwarddensities f(x) has a pra
ti
al interest. This example also gives a possibilityto study the sensititivity of the results to the 
hoi
e of the pro�le fun
tion.Assuming the in�nitely narrow weight �(�) = Æ(�), we have F�(X) = f(X��=2) + : : : and H(x; �) = f(x). Hen
e, both F�(�) and H(�; �) are given byf(xBj=2) sin
e � = xBj and � = xBj=2 + : : :. Sin
e the argument of f(x) istwi
e smaller than in deep inelasti
 s
attering, this results in an enhan
ementfa
tor. In parti
ular, if f(x) � x�a for small x, the ratio R(�) � F�(�)=f(�)is 2a. The use of a wider pro�le fun
tion �(�) produ
es further enhan
ement.For example, taking the normalized pro�le fun
tion�b(�) � � �b+ 32�� �12�� (b+ 1)(1� �2)b = � (2b+ 2)22b+1� 2(b+ 1)(1� �2)b (33)and f(x) � x�a we getR(b)(�) � F (b)� (�)f(�) = � (2b+ 2)� (b� a+ 1)� (2b� a+ 2)� (b+ 1) (34)whi
h is larger than 2a for any �nite b and 0 < a < 2. The 2a enhan
ementappears as the b!1 limit of Eq. (33). For small integer b, Eq. (33) redu
esto simple formulas obtained in Refs. [17, 18℄. For b = 1, we haveF (b=1)� (�)f(�) = 1�1� a2� �1� a3� ; (35)whi
h gives the fa
tor of 3 for the enhan
ement if a = 1. For b = 2, the ratio(33) be
omes F (b=2)� (�)f(�) = 1�1� a3� �1� a4� �1� a5� ; (36)produ
ing a smaller enhan
ement fa
tor 5=2 for a = 1. Cal
ulating the en-han
ement fa
tors, one should remember that the gluon SPD F�(X) redu
es



3662 A.V. Radyushkinto Xfg(X) in the � = 0 limit. Hen
e, to get the enhan
ement fa
tor 
orre-sponding to the fg(x) � x�� small-x behavior of the forward gluon density,one should take a = � � 1 in Eq. (33), i.e., despite the fa
t that the 1=xbehavior of the singlet quark distribution gives the fa
tor of 3 for the R(1)(�)ratio, the same shape of the gluon distribution results in no enhan
ement.Due to evolution, the e�e
tive parameter a 
hara
terizing the small-xbehavior of the forward distribution is an in
reasing fun
tion of Q2. As aresult, for �xed b, the R(b)(�) ratio in
reases with Q2. In general, the pro�leof ~f(~x; �) in the �-dire
tion is also a�e
ted by the pQCD evolution. Inparti
ular, in Ref. [17℄ it was shown that if one takes an ansatz 
orrespondingto an extremely asymmetri
 pro�le fun
tion �(�) � Æ(1+�), the shift of thepro�le fun
tion to a more symmetri
 shape is 
learly visible in the evolutionof the relevant SPD. Re
ently, it was demonstrated [26,27℄ that evolution tosu�
iently large Q2 enfor
es a dire
t relation b = a between the parametera 
hara
terizing the small-x behavior of DDs and the parameter b governingthe shape of their � pro�le. This givesR(b=a)(�) = � (2a+ 2)� (a+ 2)� (a+ 1) (37)for the R(�) ratio. For a = 1, e.g., the SPD enhan
ement fa
tor in this 
aseequals 3. 6. Compton s
attering6.1. General Compton amplitudeThe Compton s
attering in its various versions provides a unique tool forstudying hadroni
 stru
ture. The Compton amplitude probes the hadronsthrough a 
oupling of two ele
tromagneti
 
urrents and in this aspe
t it 
anbe 
onsidered as a generalization of hadroni
 form fa
tors. In QCD, thephotons intera
t with the quarks of a hadron through a vertex whi
h, inthe lowest approximation, has a pointlike stru
ture. However, in the softregime, strong intera
tions produ
e large 
orre
tions un
al
ulable withinthe perturbative QCD framework. To take advantage of the basi
 pointlikestru
ture of the photon�quark 
oupling and the asymptoti
 freedom featureof QCD, one should 
hoose a spe
i�
 kinemati
s in whi
h the behavior ofthe relevant amplitude is dominated by short (or, being more pre
ise, light-like) distan
es. The general feature of all su
h types of kinemati
s is thepresen
e of a large momentum transfer. For Compton amplitudes, thereare several situations when large momentum transfer indu
es dominan
e of
on�gurations involving lightlike distan
es:



Skewed Parton Distributions 3663i) both photons are far o�-shell and have equal spa
elike virtuality: vir-tual forward Compton amplitude, its imaginary part determines stru
-ture fun
tions of deep inelasti
 s
attering (DIS);ii) initial photon is highly virtual, the �nal one is real and the momentumtransfer to the hadron is small: deeply virtual Compton s
attering(DVCS) amplitude;iii) both photons are real but the momentum transfer is large: wide-angleCompton s
attering (WACS) amplitude.Our main statement made in Ref. [21℄ is that, at a

essible momentumtransfers jtj < 10 GeV2, the WACS amplitude is dominated by handbag dia-grams, just like in DIS and DVCS. In the most general 
ase, the nonpertur-bative part of the handbag 
ontribution is des
ribed by double distributions(DDs) F (x; y; t); G(x; y; t), et
., whi
h 
an be related to the usual partondensities f(x), �f(x) and nu
leon form fa
tors like F1(t); GA(t). Amongthe arguments of DDs, x is the fra
tion of the initial hadron momentum
arried by the a
tive parton and y is the fra
tion of the momentum trans-fer r. The des
ription of WACS amplitude simpli�es when one 
an negle
tthe y-dependen
e of the hard part and integrate out the y-dependen
e of thedouble distributions. In that 
ase, the long-distan
e dynami
s is des
ribedby nonforward parton densities (NDs) F(x; t);G(x; t); et
. The latter 
anbe interpreted as the usual parton densities f(x) supplemented by a formfa
tor type t-dependen
e. We proposed in [21℄ a simple model for the rele-vant NDs whi
h both satis�es the relation between F(x; t) and usual partondensities f(x) and produ
es a good des
ription of the F1(t) form fa
tor up tot � �10 GeV2. We have used this model to 
al
ulate the WACS amplitudeand obtained the results whi
h are rather 
lose to existing data.6.2. Deep inelasti
 s
atteringThe forward virtual Compton amplitude whose imaginary part givesstru
ture fun
tions of deep inelasti
 s
attering (see, e.g., [1℄) is the 
las-si
 example of a light 
one dominated Compton amplitude. In this 
ase,the ��nal� photon has momentum q0 = q 
oin
iding with that of the ini-tial one. The momenta p; p0 of the initial and �nal hadrons also 
oin
ide.The total 
m energy of the photon�hadron system s = (p + q)2 shouldbe above resonan
e region, and the Bjorken ratio xBj = Q2=2(pq) is �-nite. The light 
one dominan
e is se
ured by high virtuality of the photons:�q2 � Q2 > 1 GeV2. In the large-Q2 limit, the leading 
ontribution in thelowest �s order is given by handbag diagrams in whi
h the perturbatively
al
ulable hard quark propagator is 
onvoluted with parton distribution



3664 A.V. Radyushkinfun
tions fa(x) (a = u; d; s; : : :) whi
h des
ribe/parametrize nonperturba-tive information about hadroni
 stru
ture.6.3. Deeply virtual Compton s
atteringThe 
ondition that both photons are highly virtual may be relaxed bytaking a real photon in the �nal state. Keeping the momentum transfert � (p� p0)2 to the hadron as small as possible, one arrives at kinemati
s ofthe deeply virtual Compton s
attering (DVCS) the importan
e of whi
h wasre
ently emphasized by Ji [8℄ (see also [9℄). Having large virtuality Q2 of theinitial photon is su�
ient to guarantee that in the Bjorken limit the leadingpower 
ontributions in 1=Q2 are generated by the strongest light 
one singu-larities [8,11,28,29℄, with the handbag diagrams being the starting point ofthe �s expansion. The most important 
ontribution to the DVCS amplitudeis given by a 
onvolution of a hard quark propagator and a nonperturbativefun
tion des
ribing long-distan
e dynami
s, whi
h in the most general 
aseis given by double distributions (DDs) F (x; y; t); G(x; y; t); : : : [9, 11℄.In the DVCS kinemati
s, jtj is assumed to be small 
ompared to Q2, andfor this reason the t- and m2p-dependen
e of the short-distan
e amplitude inRefs. [8, 9, 11, 23℄ was negle
ted1. This is equivalent to approximating thea
tive parton momentum k by its plus 
omponent alone: k ! xp+ + yr+.7. Modeling NDsOur �nal goal in the present paper is to get an estimate of the hand-bag 
ontributions for the large-t real Compton s
attering. Sin
e the initialphoton in that 
ase is also real: Q2 = 0 (and hen
e xBj = 0), it is nat-ural to expe
t that the nonperturbative fun
tions whi
h appear in WACS
orrespond to the � = 0 limit of the skewed parton distributions2 Fa� (x; t).It is easy to see from Eq. (10) that in this limit the SPDs redu
e to thenonforward parton densities Fa(x; t) introdu
ed above:Fa�=0(x; t) = Fa(x; t) : (38)Note that NDs depend on �only two� variables x and t, with this dependen
e
onstrained by redu
tion formulas (11),(12). Furthermore, it is possible togive an interpretation of nonforward densities in terms of the light-
one wavefun
tions.1 One should not think that su
h a dependen
e is ne
essarily a higher twist e�e
t: thelowest twist 
ontribution has a 
al
ulable dependen
e on t and m2p analogous to theNa
htmann�Georgi�Politzer O(m2p=Q2) target mass 
orre
tions in DIS [30, 31℄.2 Provided that one 
an negle
t the t-dependen
e of the hard part.
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b)Fig. 7. a) General Compton amplitude; b) s-
hannel handbag diagram; 
) u-
hannelhandbag diagram.Consider for simpli
ity a two-body bound state whose lowest Fo
k 
om-ponent is des
ribed by a light 
one wave fun
tion 	(x; k?). Choosing aframe where the momentum transfer r is purely transverse r = r?, we 
anwrite the two-body 
ontribution into the form fa
tor as [32℄F (tb)(t) = 1Z0 dx Z 	�(x; k? + �xr?)	(x; k?) d2k?16�3 ; (39)where �x � 1 � x. Comparing this expression with the redu
tion formula(11), we 
on
lude thatF (tb)(x; t) = Z 	�(x; k? + �xr?)	(x; k?) d2k?16�3 (40)is the two-body 
ontribution into the nonforward parton density F(x; t).
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pFig. 8. a) Stru
ture of the e�e
tive two-body 
ontribution to form fa
tor in the light
one formalism. b) Form fa
tor as an x-integral of nonforward parton densities.



3666 A.V. RadyushkinAssuming a Gaussian dependen
e on the transverse momentum k? (
f. [32℄)	(x; k?) = �(x)e�k2?=2x�x�2 ; (41)we get F (tb)(x; t) = f (tb)(x)e�xt=4x�2 ; (42)where f (tb)(x) = x�x�216�2 �2(x) = F (tb)(x; t = 0) (43)is the two-body part of the relevant parton density. Within the light-
oneapproa
h, to get the total result for either usual f(x) or nonforward par-ton densities F(x; t), one should add the 
ontributions due to higher Fo
k
omponents. By no means these 
ontributions are small, e.g., the valen
e�du 
ontribution into the normalization of the �+ form fa
tor at t = 0 is lessthan 25% [32℄. In the absen
e of a formalism providing expli
it expressionsfor an in�nite tower of light-
one wave fun
tions we 
hoose to treat Eq. (42)as a guide for �xing interplay between the t and x dependen
es of NDs andpropose to model them byFa(x; t) = fa(x)e�xt=4x�2 = fa(x)�x�x�2 Z e�(k2?+(k?+�xr?)2)=2x�x�2d2k? : (44)The fun
tions fa(x) here are the usual parton densities assumed to be takenfrom existing parametrizations like GRV, MRS, CTEQ, et
. In the t = 0limit (re
all that t is negative) this model, by 
onstru
tion, satis�es the�rst of redu
tion formulas (11). Within the Gaussian ansatz (44), the basi
s
ale � spe
i�es the average transverse momentum 
arried by the quarks. Inparti
ular, for valen
e quarkshk2?ia = �2Na 1Z0 x�xfvala (x) dx ; (45)where Nu = 2; Nd = 1 are the numbers of the valen
e a-quarks in the proton.To �x the magnitude of �, we use the se
ond redu
tion formula in (11)relating Fa(x; t)'s to the F1(t) form fa
tor. To this end, we take the followingsimple expressions for the valen
e distributionsfvalu (x) = 1:89x�0:4(1� x)3:5(1 + 6x) ; (46)fvald (x) = 0:54x�0:6(1� x)4:2(1 + 8x) : (47)
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losely reprodu
e the relevant 
urves given by the GRV parametriza-tion [33℄ at a low normalization point Q2 � 1 GeV2. The best agreementbetween our modelF soft1 (t) = 1Z0 heu fvalu (x) + ed fvald (x)i e�xt=4x�2dx (48)and experimental data [34℄ in the moderately large t region1 GeV2 < jtj < 10 GeV2 is rea
hed for �2 = 0:7 GeV2 (see Fig. 9). Thisvalue gives a reasonable magnitudehk2?iu = (290MeV)2 ; hk2?id = (250MeV)2 (49)for the average transverse momentum of the valen
e u and d quarks in theproton.

Fig. 9. Ratio F p1 (t)=D(t) of the F p1 (t) form fa
tor to the dipole �t D(t) = 1=(1�t=0:71GeV2)2. Curve is based on Eq. (47) with �2 = 0:7GeV2. Experimental dataare taken from Ref. [34℄.Similarly, building a model for the parton heli
ity sensitive NDs Ga(x; t)one 
an take their t = 0 shape from existing parametrizations for spin-dependent parton distributions �fa(x) and then �x the relevant � parameterby �tting the GA(t) form fa
tor. The 
ase of hadron spin-�ip distributionsKa(x; t) and Pa(x; t) is more 
ompli
ated sin
e the distributions ka(x), pa(x)are unknown.



3668 A.V. RadyushkinAt t = 0, our model by 
onstru
tion gives a 
orre
t normalizationF p1 (t = 0) = 1 for the form fa
tor. However, if one would try to �nd thederivative (d=dt)F p1 (t) at t = 0 by expanding the exponential exp[�xt=x�2℄into the Taylor series under the integral (48), one would get a divergentexpression. An analogous problem is well known in appli
ations of QCDsum rules to form fa
tors at small t [35�38℄. The divergen
e is related tothe long-distan
e propagation of massless quarks in the t-
hannel. Formally,this is revealed by singularities starting at t = 0. However, F p1 (t) shouldnot have singularities for timelike t up to 4m2�, with the �-meson peak att = m2� � 0:6GeV2 being the most prominent feature of the t-
hannel spe
-trum. Te
hni
ally, the singularities of the original expression are singled outinto the bilo
al 
orrelators [39℄ whi
h are substituted by their realisti
 ver-sion with 
orre
t spe
tral properties (usually the simplest model with � and�0 terms is used). An important point is that su
h a modi�
ation is neededonly when one 
al
ulates form fa
tors in the small-t region: for �t > 1GeV2,the 
orre
tion terms should vanish faster than any power of 1=t [37℄. In our
ase, the maximum deviation of the 
urve for F p1 (t) given by Eq. (48) fromthe experimental data in the small-t region �t < 1GeV2 is 15%. Hen
e, ifone is willing to tolerate su
h an ina

ura
y, one 
an use our model startingwith t = 0.Our 
urve is within 5% from the data points [34℄ for 1GeV2 < �t < 6GeV2 and does not deviate from them by more than 10% up to 9 GeV2.Modeling the t-dependen
e by a more 
ompli
ated formula (e.g., assuminga slower de
rease at large t, and/or 
hoosing di�erent �'s for u and d quarksand/or splitting NDs into several 
omponents with di�erent �'s, et
., seeRef. [40℄ for an example of su
h an attempt) or 
hanging the shape of partondensities fa(x) one 
an improve the quality of the �t and extend agreementwith the data to higher t. Su
h a �ne-tuning is not our goal here. Wejust want to emphasize that a reasonable des
ription of the F1(t) data ina wide region 1 GeV2 < jtj < 10 GeV2 was obtained by �xing just a singleparameter � re�e
ting the proton size. Moreover, we 
ould �x � from therequirement that hk2?i � (300MeV)2 and present our 
urve for F1(t) as asu

essful predi
tion of the model. We interpret this su

ess as an eviden
ethat the model 
orre
tly 
at
hes the gross features of the underlying physi
s.Sin
e our model implies a Gaussian dependen
e on the transverse mo-mentum, it in
ludes only what is usually referred to as an overlap of soft wavefun
tions. It 
ompletely negle
ts e�e
ts due to hard pQCD gluon ex
hangesgenerating the power-law O((�s=�)2=t2) tail of the nonforward densities atlarge t. It is worth pointing out here that though we take nonforward den-sities Fa(x; t) with an exponential dependen
e on t, the F1(t) form fa
torin our model has a power-law asymptoti
s F soft1 (t) � (�4�2=t)n+1 di
tatedby the (1 � x)n behavior of the parton densities for x 
lose to 1. This 
on-
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tion arises be
ause the integral (48) over x is dominated at large t bythe region �x � 4�2=jtj. In other words, the large-t behavior of F1(t) inour model is governed by the Feynman me
hanism [1℄. One should realize,however, that the relevant s
ale 4�2 = 2:8 GeV2 is rather large. For thisreason, when jtj < 10 GeV2, it is premature to rely on asymptoti
 estimatesfor the soft 
ontribution. Indeed, with n = 3:5, the asymptoti
 estimate isF soft1 (t) � t�4:5, in an apparent 
ontradi
tion with the ability of our 
urveto follow the dipole behavior. The resolution of this paradox is very sim-ple: the maxima of nonforward densities Fa(x; t) for jtj < 10 GeV2 are atrather low x-values x < 0:5. Hen
e, the x-integrals produ
ing F soft1 (t) arenot dominated by the x � 1 region yet and the asymptoti
 estimates arenot appli
able: the fun
tional dependen
e of F soft1 (t) in our model is mu
hmore 
ompli
ated than a simple power of 1=t.The fa
t that our model 
losely reprodu
es the experimentally observeddipole-like behavior of the proton form fa
tor is a 
lear demonstration thatsu
h a behavior may have nothing to do with the quark 
ounting rulesF p1 (t) � 1=t2 [41, 42℄ valid for the asymptoti
 behavior of the hard gluonex
hange 
ontributions. Our explanation of the observed magnitude andthe t-dependen
e of F1(t) by a purely soft 
ontribution is in strong 
ontrastwith that of the hard pQCD approa
h to this problem.8. Wide-angle Compton s
atteringWith both photons real, it is not su�
ient to have large photon energy toensure short-distan
e dominan
e: large-s, small-t region is strongly a�e
tedby Regge 
ontributions. Hen
e, having large jtj > 1GeV2 is a ne
essary
ondition for revealing short-distan
e dynami
s.The simplest 
ontributions for the WACS amplitude are given by thes- and u-
hannel handbag diagrams Fig. 7b,
. The nonperturbative part inthis 
ase is given by the proton DDs whi
h determine the t-dependen
e ofthe total 
ontribution. Just like in the form fa
tor 
ase, the 
ontributiondominating in the formal asymptoti
 limit s; jtj; juj ! 1, is given by dia-grams 
orresponding to the pure SD regime, see Fig. 10a. The hard subraphthen involves two hard gluon ex
hanges whi
h results in a suppression fa
tor(�s=�)2 � 1=100 absent in the handbag term. The total 
ontribution of alltwo-gluon ex
hnange 
ontributions was 
al
ulated by Farrar and Zhang [43℄and then re
al
ulated by Kronfeld and Niºi¢ [44℄. A su�
iently large 
ontri-bution is only obtained if one uses humpy DAs and 1=k2 propagators withno �nite-size e�e
ts in
luded. Even with su
h propagators, the WACS am-plitude 
al
ulated with the asymptoti
 DA is negligibly small [45℄ 
omparedto existing data. As argued in Ref. [21℄, the enhan
ements generated bythe humpy DAs should not be taken at fa
e value both for form fa
tors and
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attering amplitudes. For these reasons, we ignorehard 
ontributions to the WACS amplitude as negligibly small.
a) c)b)Fig. 10. Con�gurations involving double and single gluon ex
hange.Another type of 
on�gurations 
ontaining hard gluon ex
hange is shownin Fig. 10b. There are also the diagrams with photons 
oupled to di�erentquarks (�
at's ears�, Fig. 10
). Su
h 
ontributions have both higher order andhigher twist. This brings in the �s=� fa
tor and an extra 1=s suppression.The latter is partially 
ompensated by a slower fall-o� of the four-quark DDswith t sin
e only one valen
e quark should 
hange its momentum.For simpli
ity, we negle
t all the suppressed terms and deal only with thehandbag 
ontributions Fig. 7b,
 in whi
h the highly virtual quark propagator
onne
ting the photon verti
es is 
onvoluted with proton DDs parametrizingthe overlap of soft wave fun
tions. Sin
e the basi
 s
ale 4�2 
hara
terizingthe t-dependen
e of DDs in our model is 2.8 GeV2, while existing data are allat momentum transfers t below 5 GeV2, we deal with the region where theasymptoti
 estimate (Feynman me
hanism) for the overlap 
ontribution isnot working yet. In the 
oordinate representation, the sum of two handbag
ontributions to the Compton amplitude 
an be written asM��(p; p0; q; q0) =Xa e2a Z e�i(Qz)hp0j� � a �z2� 
�S
(z)
� a ��z2�+ � a ��z2� 
�S
(�z)
� a �z2�� jpi d4z (50)where Q = (q+ q0)=2 and S
(z) = iẑ=2�2(z2)2 is the hard quark propagator(throughout, we use the �hat� notation ẑ � z�
�). The summation overthe twist-0 longitudinal gluons adds the usual gauge link between the � , �elds whi
h we do not write down expli
itly (gauge link disappears, e.g., inthe Fo
k�S
hwinger gauge z�A�(z) = 0). Be
ause of the symmetry of theproblem, it is 
onvenient to use P = (p + p0)=2 (
f. [8℄) and r = p � p0 asthe basi
 momenta. Applying the Fiertz transformation and introdu
ing the



Skewed Parton Distributions 3671double distributions byhp0j � a ��z2� ẑ a �z2� jpi = �u(p0)ẑu(p) 1Z0 dx �xZ��x he�i(kz)fa(x; �; t)�ei(kz)f �a(x; �; t)i d~y + 14mp �u(p0)(ẑr̂ � r̂ẑ)u(p)� 1Z0 dx �xZ��x he�i(kz)ka(x; �; t) � ei(kz)k�a(x; �; t)i d�+O(z2) terms (51)(we use here the shorthand notation k � xP + �r=2) and similarly for theparton heli
ity sensitive operatorshp0j � a ��z2� ẑ
5 a �z2� jpi = �u(p0)ẑ
5u(p) 1Z0 dx �xZ��x he�i(kz)ga(x; �; t)+ei(kz)g�a(x; �; t)i d�+ (rz)mp �u(p0)
5u(p)� 1Z0 dx �xZ��x he�i(kz)pa(x; ~y; t) + ei(kz)p�a(x; �; t)i d�+O(z2) terms ; (52)we arrive at a leading-twist QCD parton pi
ture with �-DDs serving as fun
-tions des
ribing long-distan
e dynami
s. The �-DDs fa(x; �; t), et
., arerelated to the original y-DDs F a(x; y; t) by the shift y = (1�x+�)=2. Inte-grating f(x; �; t) over � one obtains the same nonforward densities F(x; t).The hard quark propagators for the s and u 
hannel handbag diagrams inthis pi
ture look likexP̂ + � r̂2 + Q̂(xP + � r2 +Q)2 = xP̂ + � r̂2 + Q̂x~s� (�x2 � �2) t4 + x2m2p (53)and xP̂ + � r̂2 � Q̂(xP + � r2 �Q)2 = xP̂ + � r̂2 � Q̂x~u� (�x2 � �2) t4 + x2m2p ; (54)respe
tively. We denote ~s = 2(pq) = s�m2 and ~u = �2(pq0) = u�m2. Sin
e�-DDs are even fun
tions of � [22℄, the �r̂ terms in the numerators 
an bedropped. It is legitimate to keep O(m2p) and O(t) terms in the denominators:the dependen
e of hard propagators on target parameters m2p and t 
an be
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al
ulated exa
tly be
ause of the e�e
t analogous to the �-s
aling in DIS [31℄(see also [46℄). Note that the t-
orre
tion to hard propagators disappearsin the large-t limit dominated by the x � 1 integration. The t-
orre
tionsare the largest for y = 0. At this value and for x = 1=2 and t = u (
mangle of 90Æ), the t-term in the denominator of the most important se
ondpropagator is only 1/8 of the u term. This ratio in
reases to 1/3 for x = 1=3.However, at nonzero �-values, the t-
orre
tions are smaller. Hen
e, the t-
orre
tions in the denominators of hard propagators 
an produ
e 10%�20%e�e
ts and should be in
luded in a 
omplete analysis. Here, we 
onsider anapproximation in whi
h these terms are negle
ted and hard propagators aregiven by ~y-independent expressions (xP̂ + Q̂)=x~s and (xP̂ + Q̂)=x~u. As aresult, the �-integration a
ts only on the DDs f(x; �; t) and 
onverts theminto nonforward densities F(x; t). The latter would appear then throughtwo types of integrals1Z0 Fa(x; t) dx � F a1 (t) and 1Z0 Fa(x; t) dxx � Ra1(t); (55)and similarly for K;G;P . The fun
tions F a1 (t) are the �avor 
omponents ofthe usual F1(t) form fa
tor while Ra1(t) are the �avor 
omponents of a newform fa
tor spe
i�
 to the wide-angle Compton s
attering. In the formalasymptoti
 limit jtj ! 1, the x integrals for F a1 (t) and Ra1(t) are bothdominated in our model by the x � 1 region: the large-t behavior of thesefun
tions is governed by the Feynman me
hanism and their ratio tends to1 as jtj in
reases (see Fig. 11a). However, due to large value of the e�e
tives
ale 4�2 = 2:8 GeV2, the a

essible momentum transfers t < 5 GeV2 arevery far from being asymptoti
.In Fig. 11b we plot Fu(x; t) and Fu(x; t)=x at t = �2:5 GeV2. It is 
learthat the relevant integrals are dominated by rather small x values x < 0:4whi
h results in a strong enhan
ement of Ru1 (t) 
ompared to F u1 (t) for jtj < 5GeV2. Note also that the hp0j : : : xP̂ : : : jpi matrix elements 
an produ
e onlyt as a large variable while hp0j : : : Q̂ : : : jpi gives s. As a result, the enhan
edform fa
tors Ra1(t) are a

ompanied by extra s=t enhan
ement fa
tors 
om-pared to the F a1 (t) terms. In the 
ross se
tion, these enhan
ements aresquared, i.e., the 
ontributions due to the non-enhan
ed form fa
tors F a1 (t)are always a

ompanied by t2=s2 fa
tors whi
h are smaller than 1/4 for 
mangles below 90Æ. Be
ause of double suppression, we negle
t F a1 (t) terms inthe present simpli�ed approa
h.The 
ontribution due to the K fun
tions appears through the �avor 
om-ponents F a2 (t) of the F2(t) form fa
tor and their enhan
ed analogues Ra2(t).The major part of 
ontributions due to the K-type NDs appears in the 
om-bination R21(t)� (t=4m2p)R22(t). Experimentally, F2(t)=F1(t) � 1GeV2=jtj.



Skewed Parton Distributions 3673
2 4 6 8 10

t GeV^2

1.75

2.25

2.5

2.75

3

3.25

t GeV2

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

xFig. 11. a) Ratio Ru1 (t)=F u1 (t); b) Fun
tions Fu(x; t) (solid line) and Fu(x; t)=x(dashed line) at t = �2:5 GeV2.Sin
e R2=F2 � R1=F1 � 1=hxi, R2(t) is similarly suppressed 
ompared toR1(t), and we negle
t 
ontributions due to the Ra2(t) form fa
tors. We alsonegle
t here the terms with another spin-�ip distribution P related to thepseudos
alar form fa
tor GP (t) whi
h is dominated by the t-
hannel pionex
hange. Our 
al
ulations show that the 
ontribution due to the partonheli
ity sensitive densities Ga is suppressed by the fa
tor t2=2s2 
ompared tothat due to the Fa densities. This fa
tor only rea
hes 1/8 for the 
m angle of90Æ, and hen
e the Ga 
ontributions are not very signi�
ant numeri
ally. Forsimpli
ity, we approximate Ga(x; t) by Fa(x; t). After these approximations,the WACS 
ross se
tion is given by the produ
td�dt � 2��2~s2 � (pq)(pq0) + (pq0)(pq) � R21(t) ; (56)of the Klein�Nishina 
ross se
tion (in whi
h we dropped O(m2) and O(m4)terms) and the square of the R1(t) form fa
torR1(t) =Xa e2a �Ra1(t) +R�a1(t)� : (57)In our model, R1(t) is given byR1(t) = 1Z0 �e2u fvalu (x)+e2d fvald (x)+2(e2u+e2d+e2s) f sea(x)�e�xt=4x�2 dxx : (58)We in
luded here the sea distributions assuming that they are all equalf sea(x) = f seau;d;s(x) = f�u; �d;�s(x) and using a simpli�ed parametrizationf sea(x) = 0:5x�0:75(1� x)7 (59)whi
h a

urately reprodu
es the GRV formula for Q2 � 1 GeV2. Due tosuppression of the small-x region by the exponential exp[�xt=4x�2℄, the sea
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Fig. 12. WACS 
ross se
tion versus t: 
omparison of results based on Eq. (56) withexperimental data.quark 
ontribution is rather small (� 10%) even for �t � 1 GeV2 and isinvisible for �t > 3 GeV2.Comparison with existing data [47℄ is shown in Fig. 12. Our 
urves fol-low the data pattern but are systemati
ally lower by a fa
tor of 2, withdisagreement be
oming more pronoun
ed as the s
attering angle in
reases.Sin
e we negle
ted several terms ea
h 
apable of produ
ing up to a 20%
orre
tion in the amplitude, we 
onsider the agreement between our 
urvesand the data as en
ouraging. The most important 
orre
tions whi
h shouldbe in
luded in a more detailed investigation are the t-
orre
tions in the de-nominators of hard propagators and 
ontributions due to the �non-leading�K;G;P nonforward densities. The latter, as noted above, are usually a
-
ompanied by t=s and t=u fa
tors, i.e., their 
ontribution be
omes moresigni�
ant at larger angles. The t-
orre
tion in the most important hardpropagator term 1=[x~u� (�x2��2)t=4+ x2M2℄ also enhan
es the amplitudeat large angles.
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Fig. 13. Angular dependen
e of the 
ombination s6(d�=dt).The angular dependen
e of our results for the 
ombination s6(d�=dt)is shown on Fig. 13. All the 
urves for initial photon ehergies 2,3,4,5 and6 GeV interse
t ea
h other at �
m � 60Æ. This is in good agreement withexperimental data of Ref. [47℄ where the di�erential 
ross se
tion at �xed 
mangles was �tted by powers of s: d�=dt � s�n(�) with nexp(60Æ) = 5:9� 0:3.Our 
urves 
orrespond to nsoft(60Æ) � 6:1 and nsoft(90Æ) � 6:7 whi
h alsoagrees with the experimental result nexp(90Æ) = 7:1� 0:4.This 
an be 
ompared with the s
aling behavior of the asymptoti
 hard
ontribution: modulo logarithms 
ontained in the �s fa
tors, they have auniversal angle-independent power nhard(�) = 6. For �
m = 105Æ, the exper-imental result based on just two data points is nexp(105Æ) = 6:2� 1:4, whileour model gives nsoft(105Æ) � 7:0. Clearly, better data are needed to drawany 
on
lusions here.
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Fig. 14. s-dependen
e of the 
ombination s6d�=dt for � = 60Æ (dotted line), � = 90Æ(dashed line) and � = 105Æ (solid line).9. Con
lusionsThe hard ex
lusive ele
troprodu
tion pro
esses provide new informationabout hadroni
 stru
ture a

umulated in skewed parton distributions. TheSPDs are universal hybrid fun
tions having the properties of parton densi-ties, hadroni
 form fa
tors and distribution amplitudes. They give a uni-�ed des
ription of various hard ex
lusive and in
lusive rea
tions. The basi
supplier of information about skewed parton distributions is deeply virtualCompton s
attering whi
h o�ers a remarkable example of Bjorken s
alingphenomena in ex
lusive pro
esses. Furthermore, wide-angle real Comptons
attering is an ideal tool to test angle-dependent s
aling laws 
hara
teristi
for soft overlap me
hanism.I am grateful to A. Biaªas and M. Praszaªowi
z for hospitality inZakopane and support. I thank K. Gole
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