
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 12
SKEWED PARTON DISTRIBUTIONS�A.V. RadyushkinyPhysis Department, Old Dominion UniversityNorfolk, VA 23529, USAandJe�erson Lab, Newport News,VA 23606, USA(Reeived November 11, 1999)Appliations of perturbative QCD to deeply virtual Compton satter-ing and hard exlusive eletroprodution proesses require a generalizationof usual parton distributions for the ase when long-distane information isaumulated in nonforward matrix elements of quark and gluon light-oneoperators. We desribe two types of nonperturbative funtions parametriz-ing suh matrix elements: double distributions F (x; y; t) and skewed dis-tribution funtions F�(X ; t), disuss their properties, and basi uses in theQCD desription of hard exlusive proesses.PACS numbers: 12.38.Bx, 13.60.Fz, 13.60.Le1. IntrodutionThe standard feature of appliations of perturbative QCD to hard pro-esses is the introdution of phenomenologial funtions aumulating in-formation about nonperturbative long-distane dynamis. The well-knownexamples are the parton distribution funtions fp=H(x) [1℄ used in pertur-bative QCD approahes to hard inlusive proesses and distribution ampli-tudes '�(x); 'N (x1; x2; x3), whih naturally emerge in the asymptoti QCDanalyses of hard exlusive proesses [2�7℄.The ases of deeply virtual Compton sattering (DVCS) and hard exlu-sive eletroprodution proesses [8�13℄ involve nonforward matrix elementshp0j : : : jpi. The important feature (notied long ago [14,15℄) is that kinemat-is of hard elasti eletroprodution proesses (DVCS an be also treated asone of them) requires the presene of the longitudinal omponent in the mo-mentum transfer r � p� p0 from the initial hadron to the �nal: r+ = �p+.� Presented at the XXXIX Craow Shool of Theoretial Physis, Zakopane, Poland,May 29�June 8, 1999.y Also at Laboratory of Theoretial Physis, JINR, Dubna, Russia(3647)



3648 A.V. RadyushkinFor DVCS and �-eletroprodution in the region Q2 � jtj;m2H , the longitu-dinal momentum asymmetry (or �skewedness�) parameter � oinides withthe Bjorken variable xBj = Q2=2(pq) assoiated with the virtual photonmomentum q [16℄. This means that the nonperturbative matrix elementhp0j : : : jpi is nonsymmetri (skewed), and the distributions whih appear inthe hard elasti eletroprodution amplitudes di�er from those studied in in-lusive proesses. In the latter ase, one has a symmetri situation when thesame momentum p appears in both brakets of the hadroni matrix elementhpj : : : jpi.To parametrize nonforward matrix elements hp � r j O(0; z) j pi j z2=0 ofquark and gluon light-one operators one an use two basi types of nonper-turbative funtions. The double distributions (DDs) ~F (x; y; t) [9, 11, 17, 18℄speify the Sudakov light-one �plus� frations xp+ and yr+ of the initialhadron momentum p and the momentum transfer r arried by the initialparton. The other possibility is to treat the proportionality oe�ient � asan independent parameter and introdue an alternative desription in termsof the nonforward parton distributions (NFPDs) ~F�(X; t) with X = x+ y�being the total fration of the initial hadron momentum taken by the ini-tial parton. The shape of NFPDs expliitly depends on the parameter �haraterizing the skewedness of the relevant nonforward matrix element.This parametrization of nonforward matrix elements by ~F�(X; t) is similarto that proposed by Ji [8℄ who introdued o�-forward parton distributions(OFPDs)H(~x; �; t) in whih the parton momenta and the skewedness param-eter � � r+=2P+ are measured in units of the average hadron momentumP = (p + p0)=2. OFPDs and NFPDs [11, 12℄ an be treated as partiu-lar forms of skewed parton distributions (SPDs). One an also introduethe version of DDs (��-DDs� [18℄) in whih the ative parton momentum iswritten in terms of symmetri variables k = xP + (1 + �)r=2.The basis of the pQCD approahes inorporating skewed parton distri-butions were formulated in Refs. [8�11℄. A detailed analysis of pQCD fa-torization for hard meson eletroprodution proesses was given in Ref. [12℄.Our goal in the present letures is to give a desription of the approahoutlined in our papers [9�11, 17, 18℄.2. Double distributions and their symmetriesIn the pQCD fatorization treatment of hard eletroprodution pro-esses, the nonperturbative information is aumulated in the nonforwardmatrix elements hp�r j O(0; z) j pi of light one operators O(0; z). For z2 = 0the matrix elements depend on the relative oordinate z through two Lorentzinvariant variables (pz) and (rz). In the forward ase, when r = 0, one ob-tains the usual quark heliity-averaged densities by Fourier transforming the



Skewed Parton Distributions 3649relevant matrix element with respet to (pz)hp; s0 j � a(0)ẑE(0; z;A) a(z) j p; si j z2=0= �u(p; s0)ẑu(p; s) 1Z0 �e�ix(pz)fa(x)� eix(pz)f�a(x)� dx ; (1)where E(0; z;A) is the gauge link, �u(p0; s0); u(p; s) are the Dira spinors andwe use the notation �z� � ẑ.
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Fig. 1. a) Parton piture in terms of y-DDs; b,) FM -type ontributions.The parameter x in this representation has an evident interpretation: itharaterizes the fration of the initial hadron momentum whih is arriedby the ative parton.In the nonforward ase, we an use the double Fourier representationwith respet to both (pz) and (rz):hp0; s0 j � a(0)ẑE(0; z;A) a(z) j p; si j z2=0= 1Z0 dy 1Z�1 e�ix(pz)�iy(rz) ��u(p0; s0)ẑu(p; s) ~Fa(x; y; t)+ �u(p0; s0) ẑr̂ � r̂ẑ4M u(p; s) ~Ka(x; y; t) � �(0 � x+ y � 1) dx+(zr)M �u(p0; s0)u(p; s) 1Z0 e�iy(rz) 	a(y; t) dy ; (2)where M is the nuleon mass and s; s0 speify the nuleon polarization. Weuse the �hat� (rather than �slash�) onvention ẑ � z��. The parametriza-tion of nonforward matrix elements must inlude both the non�ip term de-sribed here by the funtions ~Fa(x; y; t) and the spin-�ip term haraterizedby the funtions ~Ka(x; y; t).



3650 A.V. RadyushkinThe parameters x; y tell us that the ative parton arries the frations xof the initial momentum p and the fration y of the momentum transfer r.Using the approah [19℄ based on the �-representation analysis it is possibleto prove [11℄ that double distributions ~F (x; y) have a natural property thatboth x and y satisfy the �parton� onstraints 0 � x � 1, 0 � y � 1 forany Feynman diagram ontributing to ~F (x; y). A less obvious restrition0 � x + y � 1 guarantees that the argument X = x + y� of the skeweddistribution F�(X) also hanges between the limits 0 � X � 1. The supportarea for the double distribution ~Fa(x; y; t) is shown on Fig. 2a.
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b)Fig. 2. a) Support region and symmetry line y = �x=2 for y-DDs ~F (x; y; t); b)support region for �-DDs ~f(x; �).In priniple, we annot exlude also the possibility that the funtions~F (x; y; t) have singular terms at x = 0 proportional to Æ(x) or its deriva-tive(s). Suh terms have no projetion onto the usual parton densities. Wewill denote them by ~FM (x; y; t) � they may be interpreted as oming fromthe t-hannel meson-exhange type ontributions (see Fig. 1b). In this ase,the partons just share the plus omponent of the momentum transfer r: in-formation about the magnitude of the initial hadron momentum is lost if theexhanged partile an be desribed by a pole propagator � 1=(t �m2M ).Hene, the meson-exhange ontributions to a double distribution may looklike~F+M (x; y; t) � Æ(x) '+M (y)m2M � t or ~F�M (x; y; t) � Æ0(x) '�M (y)m2M � t ; et. ; (3)where '�M (y) are the funtions related to the distribution amplitudes of therelevant mesons M�. The two examples above orrespond to x-even andx-odd parts of the double distribution ~F (x; y; t). Another type of terms inwhih the dependene on (pz) is lost an be produed by diagrams ontain-ing a quarti pion vertex (Fig. 1). As shown by Polyakov and Weiss [20℄,suh terms orrespond to an independent (rz)�u(p0; s0)u(p; s)�((rz)) type



Skewed Parton Distributions 3651ontribution whih an be parametrized by a single integral over y involvingan e�etive distribution amplitude 	(y; t). The meson-exhange terms in~F (x; y; t) and ~K(x; y; t) as well as Polyakov�Weiss terms are invisible in theforward limit, hene the existing knowledge of the usual parton densitiesannot be used to onstrain these terms. Later, desribing the models forskewed distributions, we disuss only the �forward visible parts� of SPDswhih are obtained by sanning the x 6= 0 parts of the relevant DDs.Comparing Eq. (1) with the r = 0 limit of the DD de�nition (2) givesthe �redution formulas� relating the double distribution ~Fa(x; y; t = 0) tothe quark and antiquark parton densities1�xZ0 ~Fa(x; y; t = 0)jx>0 dy = fa(x) ; 1Z�x ~Fa(x; y; t = 0)jx<0 dy = �f�a(�x) :(4)Hene, the positive-x and negative-x omponents of the double distribu-tion ~Fa(x; y; t) an be treated as nonforward generalizations of quark andantiquark densities, respetively. If we de�ne the �untilded� DDs byFa(x; y; t) = ~Fa(x; y; t)jx>0 ; F�a(x; y; t) = � ~Fa(�x; 1� y; t)jx<0 ; (5)then x is always positive and the redution formulas have the same form1�xZ0 Fa;�a(x; y; t = 0)jx6=0 dy = fa;�a(x) (6)in both ases. The new antiquark distributions also �live� on the triangle0 � x; y � 1; 0 � x + y � 1. Taking z in the lightone �minus� diretion,we arrive at the parton interpretation of funtions Fa;�a(x; y; t) as probabil-ity amplitudes for an outgoing parton to arry the frations xp+ and yr+of the external momenta r and p. The double distributions F (x; y; t) areuniversal funtions desribing the �ux of p+ and r+ independently of theratio r+=p+. Note, that extration of two separate omponents Fa(x; y; t)and F�a(x; y; t) from the quark DD ~Fa(x; y; t) as its positive-x and negative-xparts is unambiguous.Taking the O(z) term of the Taylor expansion gives the sum rules1Z0 dx 1�xZ0 �F a(x; y; t) � F �a(x; y; t)� dy = F a1 (t) ; (7)1Z0 dx 1�xZ0 �Ka(x; y; t) �K�a(x; y; t)� dy = F a2 (t) ; (8)



3652 A.V. Radyushkinrelating the double distributions Fa(x; y; t), Ka(x; y; t) to the a-�avor om-ponents of the Dira and Pauli form fators:Xa eaF a1 (t) = F1(t) ; Xa eaF a2 (t) = F2(t) ; (9)respetively.A ommon element of the redution formulas given above is an integra-tion over y. Hene, it is onvenient to introdue intermediate funtionsFa(x; t) = 1�xZ0 F a(x; y; t) dy ; Ka(x; t) = 1�xZ0 Ka(x; y; t) dy : (10)They satisfy the redution formulasFa(x; t = 0) = fa(x) ; Xa ea 1Z0 �Fa(x; t)�F�a(x; t)� dx = F1(t) (11)Xa ea 1Z0 �Ka(x; t)�K�a(x; t)� dx = F2(t) (12)whih show that these funtions are the simplest hybrids of the usual partondensities and form fators. For this reason, one an all them nonforwardparton densities (NDs) [21℄.The spin-�ip terms disappear only if r = 0. In the weaker r2 � t = 0limit, they survive, e:g:; F a2 (0) = �a is the a-�avor ontribution to thenuleon anomalous magneti moment. In other words, the t = 0 limit of the�magneti� NDs exists: Ka(x; t = 0) � ka(x), and the integralXa ea 1Z0 [ka(x)� k�a(x)℄ dx = �p (13)gives the anomalous magneti moment of the proton. The knowledge of thex-moment of ka(x)'s is needed to determine the ontribution of the quarkorbital angular momentum to the proton spin [8℄. Sine the K-type DDs arealways aompanied by the r� = p� � p0� fator, they are invisible in deepinelasti sattering and other inlusive proesses related to stritly forwardr = 0 matrix elements.There are also parton-heliity sensitive double distributions Ga(x; y; t)and P a(x; y; t). The �rst one redues to the usual spin-dependent densities



Skewed Parton Distributions 3653
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Fig. 3. Parton piture in terms of �-DDs�fa(x) in the r = 0 limit and gives the axial form fator FA(t) after thex; y-integration. The seond one involves hadron heliity �ip and is relatedto the pseudosalar form fator FP (t).It is worth mentioning here that for a massive target (nuleons in ourase) there is a kinemati restrition [16℄�t > �2M2�� : (14)Hene, for �xed �, the formal limit t! 0 is not physially reahable. How-ever, many results (evolution equations being the most important example)obtained in the formal t = 0, M = 0 limit are still appliable.To make the desription more symmetri with respet to the initial and�nal hadron momenta, we an treat nonforward matrix elements as funtionsof (Pz) and (rz), where P = (p + p0)=2 is the average hadron momentum.The relevant double distributions ~fa(x; � ; t) [whih we will all �-DDs todistinguish them from y-DDs F (x; y; t)℄ are de�ned byDp0 ��� � a ��z2� ẑ a �z2���� pE= �u(p0)ẑu(p) 1Z�1 dx 1�jxjZ�1+jxj e�ix(Pz)�i�(rz)=2 ~fa(x; �; t) d� +O(r) terms :(15)The support area for ~fa(x; �; t) is shown in Fig. 2b. Again, the usual for-ward densities fa(x) and f�a(x) are given by integrating ~fa(x; � ; t = 0) oververtial lines x = onst for x > 0 and x < 0, respetively. Hene, we ansplit ~fa(x; � ; t) into three omponents~fa(x; � ; t) = fa(x; � ; t) �(x > 0)� f�a(�x;�� ; t) �(x < 0) + fM(x; � ; t) ;(16)



3654 A.V. Radyushkinwhere fM (x; � ; t) is a singular term with support at x = 0 only. Dueto hermitiity and time-reversal invariane properties of nonforward matrixelements, the �-DDs are even funtions of �:~fa(x; �; t) = ~fa(x;��; t) :For our original y-DDs Fa;�a(x; y; t), this orresponds to symmetry with re-spet to the interhange y $ 1 � x � y (�Munih� symmetry, establishedin Ref. [22℄). In partiular, the funtions '�M (y) for singular ontributionsF�M (x; y; t) are symmetri '�M (y) = '�M (1 � y) both for x-even and x-oddparts. The a-quark ontribution into the �avor-singlet operatorOSa ��z2 ; z2� = i2 h � a ��z2� ẑE ��z2 ; z2 ;A� a �z2�� fz ! �zgian be parametrized either by y-DDs ~F Sa (x; y; t) or by �-DDs ~fSa (x; � ; t)h p0; s0 j OSa ��z2 ; z2� j p; si j z2=0= �u(p0; s0)ẑu(p; s) 1Z0 dx 1�xZ0 12 �e�ix(pz)�i(y�1=2)(rz)�eix(pz)+i(y�1=2)(rz)� F Sa (x; y; t) dy +O(r) terms= �u(p0; s0)ẑu(p; s) 1Z�1 dx 1�jxjZ�1+jxj e�ix(Pz)�i�(rz)=2 ~fSa (x; � ; t) d� +O(r) :(17)In the seond and third lines here we have used the fat that positive-x andnegative-x parts in this ase are desribed by the same untilded funtionF Sa (x; y; t)jx6=0 = Fa(x; y; t) + F�a(x; y; t):The �-DDs ~fSa (x; � ; t) are even funtions of � and, aording to Eq. (17),odd funtions of x:~fSa (x; �; t) = ffa(jxj; j�j; t) + f�a(jxj; j�j; t)g sign(x) + fSM(x; �; t) : (18)Finally, the valene quark funtions ~fVa (x; � ; t) related to the operatorsOVa ��z2 ; z2� = 12 h � a ��z2� ẑE ��z2 ; z2 ;A� a �z2�+ fz ! �zgiare even funtions of both � and x:~fVa (x; �; t) = fa(jxj; j�j; t) � f�a(jxj; j�j; t) + fVM(x; �; t) : (19)



Skewed Parton Distributions 36553. Models for double and skewed distributionsThe redution formulas and interpretation of the x-variable as the fra-tion of p (or P ) momentum suggest that the pro�le of F (x; y) (or f(x; �))in x-diretion is basially determined by the shape of f(x). On the otherhand, the pro�le in y (or �) diretion haraterizes the spread of the partonmomentum indued by the momentum transfer r. In partiular, sine the�-DDs ~f(x; �) are even funtions of �, it make sense to write~f(x; �) = h(x; �) ~f (x) ; (20)where h(x; �) is an even funtion of � normalized by1�jxjZ�1+jxj h(x; �) d� = 1: (21)We may expet that the �-pro�le of h(x; �) is similar to that of a symmet-ri distribution amplitude (DA) '(�). Sine j�j � 1 � jxj, to get a moreomplete analogy with DA's, it makes sense to resale � as � = (1 � jxj)�introduing the variable � with x-independent limits: �1 � � � 1. Thesimplest model is to assume that the pro�le in the �-diretion is a universalfuntion g(�) for all x. Possible simple hoies for g(�) may be Æ(�) (nospread in �-diretion), 34(1 � �2) (harateristi shape for asymptoti limitof nonsinglet quark distribution amplitudes), 1516 (1��2)2 (asymptoti shapeof gluon distribution amplitudes), et. In the variables x; �, this givesh(1)(x; �) = Æ(�) ; h(1)(x; �) = 34 (1 � jxj)2 � �2(1� jxj)3 ;h(2)(x; �) = 1516 [(1 � jxj)2 � �2℄2(1� jxj)5 : (22)These models an be treated as spei� ases of the general pro�le funtionh(b)(x; �) = � (2b+ 2)22b+1� 2(b+ 1) [(1� jxj)2 � �2℄b(1� jxj)2b+1 ; (23)whose width is governed by the parameter b.The oe�ient of proportionality � = r+=p+ (or � = r+=2P+) betweenthe plus omponents of the momentum transfer and initial (or average) mo-mentum spei�es the skewedness of the matrix elements. The harateristifeature implied by representations for double distributions [see, e.g., Eq. (2)℄is the absene of the �-dependene in the DDs F (x; y) and �-dependene in
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Fig. 4. Integration lines for integrals relating SPDs and DDs.f(x; �). An alternative way to parametrize nonforward matrix elements oflight-one operators is to use � (or �) and the total momentum frationsX � x+ y� (or ~x � x+ ��) as independent variables. Integrating eah par-tiular double distribution over y gives the nonforward parton distributionsF i�(X) = 1Z0 dx 1�xZ0 Æ(x + �y �X)Fi(x; y) dy= �(X � �) �X=��Z0 Fi(X � y�; y) dy + �(X � �) X=�Z0 Fi(X � y�; y) dy ; (24)where �� � 1 � �. The two omponents of NFPDs orrespond to positive(X > �) and negative (X < �) values of the fration X 0 � X � � assoi-ated with the �returning� parton. As explained in Refs. [9, 11℄, the seondomponent an be interpreted as the probability amplitude for the initialhadron with momentum p to split into the �nal hadron with momentum(1 � �)p and the two-parton state with total momentum r = �p shared bythe partons in frations Y r and (1� Y )r, where Y = X=�.The relation between �untilded� NFPDs and DDs an be illustrated onthe �DD-life triangle� de�ned by 0 � x; y; x + y � 1 (see Fig. 4a). Spei�-ally, to get F�(X), one should integrate F (x; y) over y along a straight linex = X � �y. Fixing some value of �, one deals with a set of parallel linesinterseting the x-axis at x = X. The upper limit of the y-integration isdetermined by intersetion of this line either with the line x + y = 1 (thishappens if X > �) or with the y-axis (if X < �). The line orresponding toX = � separates the triangle into two parts generating the two omponentsof the nonforward parton distribution.



Skewed Parton Distributions 3657In a similar way, we an write the relation between OFPDs H(~x; �; t)and the �-DDs ~f(x; �; t)H(~x; �; t) = 1Z�1 dx 1�jxjZ�1+jxj Æ(x+ ��� ~x) ~f(x; �; t) d� : (25)The delta-funtion in Eq. (25) spei�es the line of integration in the fx; �gplane. For de�niteness, we will assume below that � is positive.Information ontained in SPDs originates from two physially di�erentsoures: meson-exhange type ontributions FM� (X) oming from the sin-gular x = 0 parts of DDs and the funtions Fa� (X), F�a� (X) obtained bysanning the x 6= 0 parts of DDs F a(x; y), F �a(x; y). The support of ex-hange ontributions is restrited to 0 � X � �. Up to resaling, thefuntion FM� (X) has the same shape for all �. For any nonvanishing X,these exhange terms beome invisible in the forward limit � ! 0. On theother hand, the support of funtions Fa� (X), F�a� (X) in general overs thewhole 0 � X � 1 region. Furthermore, the forward limit of suh SPDs asFa;�a� (X) is rather well known from inlusive measurements. Hene, infor-mation ontained in the usual (forward) densities fa(x), f �a(x) an be usedto restrit the models for Fa� (X), F�a� (X).Let us onsider SPDs onstruted using simple models of DDs spei-�ed above. In partiular, the model f (1)(x; �) = Æ(�)f(x) (equivalent toF (1)(x; y) = Æ(y � �x=2)f(x)), gives the simplest model H(1)(~x; �; t = 0) =f(x) in whih OFPDs at t = 0 have no �-dependene. For NFPDs this givesF (1)� (X) = �(X � �=2)1� �=2 f �X � �=21� �=2 � ; (26)i.e., NFPDs for non-zero � are obtained from the forward distribution f(X) �F�=0(X) by shift and resaling.In the ase of the b = 1 and b = 2 models, simple analyti results anbe obtained only for some expliit forms of f(x). For the �valene quark�-oriented ansatz ~f (1)(x; �), the following hoie of a normalized distributionf (1)(x) = � (5� a)6� (1� a) x�a(1� x)3 (27)is both lose to phenomenologial quark distributions and produes a simpleexpression for the double distribution sine the denominator (1�x)3 fator inEq. (22) is anelled. As a result, the integral in Eq. (25) is easily performed



3658 A.V. Radyushkinand we getH1V (~x; �)jj~xj�� = 1�3 �1� a4���(2� a)�(1� ~x)(x2�a1 + x2�a2 )+(�2 � ~x)(x2�a1 � x2�a2 )� �(~x) + (~x! �~x)� (28)for j~xj � � andH1V (~x; �)jj~xj�� = 1�3 �1� a4��x2�a1 [(2� a)�(1 � ~x) + (�2 � x)℄+(~x! �~x)� (29)in the middle �� � ~x � � region. We use here the notationx1 = (~x + �)=(1 + �) and x2 = (~x � �)=(1 � �) [23℄. To extend these ex-pressions onto negative values of �, one should substitute � by j�j. One anhek, however, that no odd powers of j�j would appear in the ~xN momentsof H1V (~x; �). Furthermore, these expressions are expliitly non-analyti forx = ��. This is true even if a is integer. Disontinuity at x = ��, however,appears only in the seond derivative of H1V (~x; �), i.e., the model urvesfor H1V (~x; �) look very smooth (see Fig. 5). The expliit expressions forNFPDs in this model were given in Ref. [17℄. The relevant urves are alsoshown in Fig. 5.
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Fig. 5. Valene quark distributions: untilded NFPDs F q� (x) (left) and OFPDsH1V (~x; �) (right) with a = 0:5 for several values of �, namely, 0.1, 0.2, 0.4, 0.6,0.8 and orresponding values of � = �=(2� �). Lower urves orrespond to largervalues of �.For a = 0, the x > � part of OFPD has the same x-dependene as itsforward limit, di�ering from it by an overall �-dependent fator only:H1V (~x; �)ja=0 = 4 (1� j~xj)3(1� �2)2 �(j~xj � �) + 2 � + 2� 3 ~x2�(1 + �)2 �(j~xj � �) : (30)



Skewed Parton Distributions 3659The (1 � j~xj)3 behaviour an be trivially ontinued into the j~xj < � region.However, the atual behaviour of H1V (~x; �)ja=0 in this region is given bya di�erent funtion. In other words, H1V (~x; �)ja=0 an be represented as asum of a funtion analyti at border points and a ontribution whose supportis restrited by j~xj � �. It should be emphasized that despite its DA-likeappearane, this ontribution should not be treated as an exhange-typeterm. It is generated by regular x 6= 0 part of DD, and, unlike '(~x=�)=�funtions hanges its shape with � and beomes very small for small �.For the singlet quark distribution, the �-DDs ~fS(x; �) should be oddfuntions of x. Still, we an use the model like (27) for the x > 0 part,but take ~fS(x; �)jx6=0 = Af (1)(jxj; �) sign(x). Note, that the integral (25)produing HS(~x; �) in the j~xj � � region would diverge for � ! ~x=� ifa � 1, whih is the usual ase for standard parametrizations of singlet quarkdistributions for su�iently large Q2. However, due to the antisymmetryof ~fS(x; �) wrt x ! �x and its symmetry wrt � ! ��, the singularity at� = ~x=� an be integrated using the prinipal value presription whih inthis ase produes the x! �x antisymmetri version of Eqs.(28) and (29).For a = 0, its middle part redues toH1S(~x; �)jj~xj��;a=0 = 2x 3�2 � 2x2� � x2�3(1 + �)2 : (31)The shape of singlet SPDs in this model is shown in Fig. 6
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Fig. 6. Singlet quark distribution H1S(~x; �) for several � values 0.1, 0.25, 0.4.Lower urves orrespond to larger values of �. Forward distribution is modelled by(1� x)3=x.



3660 A.V. Radyushkin4. SPDs and deeply virtual Compton satteringIn the lowest order, the DVCS amplitude T ��(p; q; q0) is given by twohandbag diagrams. In partiular, the invariant amplitude ontaining the Ffuntions is given byTF (p; q; q0) =Xa e2a 1Z0 � 1X � � + i" + 1X � i"�Fa+�a� (X; t) dX : (32)An important feature of the DVCS amplitude is that for large Q2 and �xedt it depends only on the ratio Q2=2(pq) � xBj = �: DVCS is an exlusiveproess exhibiting the Bjorken saling. Note that the imaginary part ofthe DVCS amplitude is proportional to Fa+�a� (�; t). In this funtion, theparameter � appears twie: �rst as the skewedness of the proess and thenas the fration X = � at whih the imaginary part is generated.One may ask whih Q2 are large enough to ensure the dominane of thelowest-twist handbag ontribution. In DIS, approximate Bjorken salingstarts at Q2 � 2GeV2. Another example is given by the exlusive proess(q1)�(q2) ! �0 studied at e+e� olliders. If one of the photons is highlyvirtual q21 = �Q2 while another is (almost) real q22 � 0, the proess is kine-matially similar to DVCS. In the leading order, the F��0(Q2) transitionform fator is given by a handbag diagram again. The reent measurementsby CLEO [24℄ show that the pQCD predition F��0(Q2) � 1=Q2 againworks starting from Q2 � 2GeV2. The ��0 vertex (for a virtual pion) anbe also measured on a �xed-target mahine like CEBAF in whih ase itis just a part of the DVCS amplitude orresponding to the 4th skewed dis-tribution P�(X; t) (whih is related to the pseudosalar form fator GP (t)of the nuleon). Hene, CLEO data give an evidene that DVCS may behandbag-dominated for Q2 as low as 2GeV2.The main problem for studying DVCS is the ontamination by the Bethe�Heitler proess in whih the �nal photon is emitted from the initial or �naleletron. The Bethe�Heitler amplitude is enhaned at small t. On the otherhand, the virtual photon �ux for �xed Q2 and xBj inreases when the ele-tron beam energy inreases. Hene, the energy upgrade would make theDVCS studies at Je�erson Lab more feasible. Experimental aspets of vir-tual Compton sattering studies at Je�erson Lab are disussed in Refs. [25℄.The skewed parton distributions an be also measured in hard mesoneletroprodution proesses [11, 12, 22, 25℄. The leading-twist pQCD ontri-bution in this ase involves a one-gluon exhange, whih means that the hardsubproess is suppressed by �s=� � 0:1 fator. The ompeting soft meha-nism orresponds to a triple overlap of hadroni wave funtions and has arelative suppression M2=Q2 by a power of Q2, with M2 � 1 GeV2 being a



Skewed Parton Distributions 3661harateristi hadroni sale. Hene, to learly see the one-gluon-exhangesignal one needs Q2 above 10GeV2. Numerial pQCD-based estimates andomparison of DVCS and hard meson eletroprodution ross setions an befound in Ref. [25℄. 5. SPD enhanement fatorThe imaginary part of hard exlusive meson eletroprodution amplitudeis determined by the skewed distributions at the border point. For thisreason, the magnitude of F�(�) [or H(�; �)℄ and its relation to the forwarddensities f(x) has a pratial interest. This example also gives a possibilityto study the sensititivity of the results to the hoie of the pro�le funtion.Assuming the in�nitely narrow weight �(�) = Æ(�), we have F�(X) = f(X��=2) + : : : and H(x; �) = f(x). Hene, both F�(�) and H(�; �) are given byf(xBj=2) sine � = xBj and � = xBj=2 + : : :. Sine the argument of f(x) istwie smaller than in deep inelasti sattering, this results in an enhanementfator. In partiular, if f(x) � x�a for small x, the ratio R(�) � F�(�)=f(�)is 2a. The use of a wider pro�le funtion �(�) produes further enhanement.For example, taking the normalized pro�le funtion�b(�) � � �b+ 32�� �12�� (b+ 1)(1� �2)b = � (2b+ 2)22b+1� 2(b+ 1)(1� �2)b (33)and f(x) � x�a we getR(b)(�) � F (b)� (�)f(�) = � (2b+ 2)� (b� a+ 1)� (2b� a+ 2)� (b+ 1) (34)whih is larger than 2a for any �nite b and 0 < a < 2. The 2a enhanementappears as the b!1 limit of Eq. (33). For small integer b, Eq. (33) reduesto simple formulas obtained in Refs. [17, 18℄. For b = 1, we haveF (b=1)� (�)f(�) = 1�1� a2� �1� a3� ; (35)whih gives the fator of 3 for the enhanement if a = 1. For b = 2, the ratio(33) beomes F (b=2)� (�)f(�) = 1�1� a3� �1� a4� �1� a5� ; (36)produing a smaller enhanement fator 5=2 for a = 1. Calulating the en-hanement fators, one should remember that the gluon SPD F�(X) redues



3662 A.V. Radyushkinto Xfg(X) in the � = 0 limit. Hene, to get the enhanement fator orre-sponding to the fg(x) � x�� small-x behavior of the forward gluon density,one should take a = � � 1 in Eq. (33), i.e., despite the fat that the 1=xbehavior of the singlet quark distribution gives the fator of 3 for the R(1)(�)ratio, the same shape of the gluon distribution results in no enhanement.Due to evolution, the e�etive parameter a haraterizing the small-xbehavior of the forward distribution is an inreasing funtion of Q2. As aresult, for �xed b, the R(b)(�) ratio inreases with Q2. In general, the pro�leof ~f(~x; �) in the �-diretion is also a�eted by the pQCD evolution. Inpartiular, in Ref. [17℄ it was shown that if one takes an ansatz orrespondingto an extremely asymmetri pro�le funtion �(�) � Æ(1+�), the shift of thepro�le funtion to a more symmetri shape is learly visible in the evolutionof the relevant SPD. Reently, it was demonstrated [26,27℄ that evolution tosu�iently large Q2 enfores a diret relation b = a between the parametera haraterizing the small-x behavior of DDs and the parameter b governingthe shape of their � pro�le. This givesR(b=a)(�) = � (2a+ 2)� (a+ 2)� (a+ 1) (37)for the R(�) ratio. For a = 1, e.g., the SPD enhanement fator in this aseequals 3. 6. Compton sattering6.1. General Compton amplitudeThe Compton sattering in its various versions provides a unique tool forstudying hadroni struture. The Compton amplitude probes the hadronsthrough a oupling of two eletromagneti urrents and in this aspet it anbe onsidered as a generalization of hadroni form fators. In QCD, thephotons interat with the quarks of a hadron through a vertex whih, inthe lowest approximation, has a pointlike struture. However, in the softregime, strong interations produe large orretions unalulable withinthe perturbative QCD framework. To take advantage of the basi pointlikestruture of the photon�quark oupling and the asymptoti freedom featureof QCD, one should hoose a spei� kinematis in whih the behavior ofthe relevant amplitude is dominated by short (or, being more preise, light-like) distanes. The general feature of all suh types of kinematis is thepresene of a large momentum transfer. For Compton amplitudes, thereare several situations when large momentum transfer indues dominane ofon�gurations involving lightlike distanes:



Skewed Parton Distributions 3663i) both photons are far o�-shell and have equal spaelike virtuality: vir-tual forward Compton amplitude, its imaginary part determines stru-ture funtions of deep inelasti sattering (DIS);ii) initial photon is highly virtual, the �nal one is real and the momentumtransfer to the hadron is small: deeply virtual Compton sattering(DVCS) amplitude;iii) both photons are real but the momentum transfer is large: wide-angleCompton sattering (WACS) amplitude.Our main statement made in Ref. [21℄ is that, at aessible momentumtransfers jtj < 10 GeV2, the WACS amplitude is dominated by handbag dia-grams, just like in DIS and DVCS. In the most general ase, the nonpertur-bative part of the handbag ontribution is desribed by double distributions(DDs) F (x; y; t); G(x; y; t), et., whih an be related to the usual partondensities f(x), �f(x) and nuleon form fators like F1(t); GA(t). Amongthe arguments of DDs, x is the fration of the initial hadron momentumarried by the ative parton and y is the fration of the momentum trans-fer r. The desription of WACS amplitude simpli�es when one an negletthe y-dependene of the hard part and integrate out the y-dependene of thedouble distributions. In that ase, the long-distane dynamis is desribedby nonforward parton densities (NDs) F(x; t);G(x; t); et. The latter anbe interpreted as the usual parton densities f(x) supplemented by a formfator type t-dependene. We proposed in [21℄ a simple model for the rele-vant NDs whih both satis�es the relation between F(x; t) and usual partondensities f(x) and produes a good desription of the F1(t) form fator up tot � �10 GeV2. We have used this model to alulate the WACS amplitudeand obtained the results whih are rather lose to existing data.6.2. Deep inelasti satteringThe forward virtual Compton amplitude whose imaginary part givesstruture funtions of deep inelasti sattering (see, e.g., [1℄) is the las-si example of a light one dominated Compton amplitude. In this ase,the ��nal� photon has momentum q0 = q oiniding with that of the ini-tial one. The momenta p; p0 of the initial and �nal hadrons also oinide.The total m energy of the photon�hadron system s = (p + q)2 shouldbe above resonane region, and the Bjorken ratio xBj = Q2=2(pq) is �-nite. The light one dominane is seured by high virtuality of the photons:�q2 � Q2 > 1 GeV2. In the large-Q2 limit, the leading ontribution in thelowest �s order is given by handbag diagrams in whih the perturbativelyalulable hard quark propagator is onvoluted with parton distribution



3664 A.V. Radyushkinfuntions fa(x) (a = u; d; s; : : :) whih desribe/parametrize nonperturba-tive information about hadroni struture.6.3. Deeply virtual Compton satteringThe ondition that both photons are highly virtual may be relaxed bytaking a real photon in the �nal state. Keeping the momentum transfert � (p� p0)2 to the hadron as small as possible, one arrives at kinematis ofthe deeply virtual Compton sattering (DVCS) the importane of whih wasreently emphasized by Ji [8℄ (see also [9℄). Having large virtuality Q2 of theinitial photon is su�ient to guarantee that in the Bjorken limit the leadingpower ontributions in 1=Q2 are generated by the strongest light one singu-larities [8,11,28,29℄, with the handbag diagrams being the starting point ofthe �s expansion. The most important ontribution to the DVCS amplitudeis given by a onvolution of a hard quark propagator and a nonperturbativefuntion desribing long-distane dynamis, whih in the most general aseis given by double distributions (DDs) F (x; y; t); G(x; y; t); : : : [9, 11℄.In the DVCS kinematis, jtj is assumed to be small ompared to Q2, andfor this reason the t- and m2p-dependene of the short-distane amplitude inRefs. [8, 9, 11, 23℄ was negleted1. This is equivalent to approximating theative parton momentum k by its plus omponent alone: k ! xp+ + yr+.7. Modeling NDsOur �nal goal in the present paper is to get an estimate of the hand-bag ontributions for the large-t real Compton sattering. Sine the initialphoton in that ase is also real: Q2 = 0 (and hene xBj = 0), it is nat-ural to expet that the nonperturbative funtions whih appear in WACSorrespond to the � = 0 limit of the skewed parton distributions2 Fa� (x; t).It is easy to see from Eq. (10) that in this limit the SPDs redue to thenonforward parton densities Fa(x; t) introdued above:Fa�=0(x; t) = Fa(x; t) : (38)Note that NDs depend on �only two� variables x and t, with this dependeneonstrained by redution formulas (11),(12). Furthermore, it is possible togive an interpretation of nonforward densities in terms of the light-one wavefuntions.1 One should not think that suh a dependene is neessarily a higher twist e�et: thelowest twist ontribution has a alulable dependene on t and m2p analogous to theNahtmann�Georgi�Politzer O(m2p=Q2) target mass orretions in DIS [30, 31℄.2 Provided that one an neglet the t-dependene of the hard part.
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3666 A.V. RadyushkinAssuming a Gaussian dependene on the transverse momentum k? (f. [32℄)	(x; k?) = �(x)e�k2?=2x�x�2 ; (41)we get F (tb)(x; t) = f (tb)(x)e�xt=4x�2 ; (42)where f (tb)(x) = x�x�216�2 �2(x) = F (tb)(x; t = 0) (43)is the two-body part of the relevant parton density. Within the light-oneapproah, to get the total result for either usual f(x) or nonforward par-ton densities F(x; t), one should add the ontributions due to higher Fokomponents. By no means these ontributions are small, e.g., the valene�du ontribution into the normalization of the �+ form fator at t = 0 is lessthan 25% [32℄. In the absene of a formalism providing expliit expressionsfor an in�nite tower of light-one wave funtions we hoose to treat Eq. (42)as a guide for �xing interplay between the t and x dependenes of NDs andpropose to model them byFa(x; t) = fa(x)e�xt=4x�2 = fa(x)�x�x�2 Z e�(k2?+(k?+�xr?)2)=2x�x�2d2k? : (44)The funtions fa(x) here are the usual parton densities assumed to be takenfrom existing parametrizations like GRV, MRS, CTEQ, et. In the t = 0limit (reall that t is negative) this model, by onstrution, satis�es the�rst of redution formulas (11). Within the Gaussian ansatz (44), the basisale � spei�es the average transverse momentum arried by the quarks. Inpartiular, for valene quarkshk2?ia = �2Na 1Z0 x�xfvala (x) dx ; (45)where Nu = 2; Nd = 1 are the numbers of the valene a-quarks in the proton.To �x the magnitude of �, we use the seond redution formula in (11)relating Fa(x; t)'s to the F1(t) form fator. To this end, we take the followingsimple expressions for the valene distributionsfvalu (x) = 1:89x�0:4(1� x)3:5(1 + 6x) ; (46)fvald (x) = 0:54x�0:6(1� x)4:2(1 + 8x) : (47)



Skewed Parton Distributions 3667They losely reprodue the relevant urves given by the GRV parametriza-tion [33℄ at a low normalization point Q2 � 1 GeV2. The best agreementbetween our modelF soft1 (t) = 1Z0 heu fvalu (x) + ed fvald (x)i e�xt=4x�2dx (48)and experimental data [34℄ in the moderately large t region1 GeV2 < jtj < 10 GeV2 is reahed for �2 = 0:7 GeV2 (see Fig. 9). Thisvalue gives a reasonable magnitudehk2?iu = (290MeV)2 ; hk2?id = (250MeV)2 (49)for the average transverse momentum of the valene u and d quarks in theproton.

Fig. 9. Ratio F p1 (t)=D(t) of the F p1 (t) form fator to the dipole �t D(t) = 1=(1�t=0:71GeV2)2. Curve is based on Eq. (47) with �2 = 0:7GeV2. Experimental dataare taken from Ref. [34℄.Similarly, building a model for the parton heliity sensitive NDs Ga(x; t)one an take their t = 0 shape from existing parametrizations for spin-dependent parton distributions �fa(x) and then �x the relevant � parameterby �tting the GA(t) form fator. The ase of hadron spin-�ip distributionsKa(x; t) and Pa(x; t) is more ompliated sine the distributions ka(x), pa(x)are unknown.



3668 A.V. RadyushkinAt t = 0, our model by onstrution gives a orret normalizationF p1 (t = 0) = 1 for the form fator. However, if one would try to �nd thederivative (d=dt)F p1 (t) at t = 0 by expanding the exponential exp[�xt=x�2℄into the Taylor series under the integral (48), one would get a divergentexpression. An analogous problem is well known in appliations of QCDsum rules to form fators at small t [35�38℄. The divergene is related tothe long-distane propagation of massless quarks in the t-hannel. Formally,this is revealed by singularities starting at t = 0. However, F p1 (t) shouldnot have singularities for timelike t up to 4m2�, with the �-meson peak att = m2� � 0:6GeV2 being the most prominent feature of the t-hannel spe-trum. Tehnially, the singularities of the original expression are singled outinto the biloal orrelators [39℄ whih are substituted by their realisti ver-sion with orret spetral properties (usually the simplest model with � and�0 terms is used). An important point is that suh a modi�ation is neededonly when one alulates form fators in the small-t region: for �t > 1GeV2,the orretion terms should vanish faster than any power of 1=t [37℄. In ourase, the maximum deviation of the urve for F p1 (t) given by Eq. (48) fromthe experimental data in the small-t region �t < 1GeV2 is 15%. Hene, ifone is willing to tolerate suh an inauray, one an use our model startingwith t = 0.Our urve is within 5% from the data points [34℄ for 1GeV2 < �t < 6GeV2 and does not deviate from them by more than 10% up to 9 GeV2.Modeling the t-dependene by a more ompliated formula (e.g., assuminga slower derease at large t, and/or hoosing di�erent �'s for u and d quarksand/or splitting NDs into several omponents with di�erent �'s, et., seeRef. [40℄ for an example of suh an attempt) or hanging the shape of partondensities fa(x) one an improve the quality of the �t and extend agreementwith the data to higher t. Suh a �ne-tuning is not our goal here. Wejust want to emphasize that a reasonable desription of the F1(t) data ina wide region 1 GeV2 < jtj < 10 GeV2 was obtained by �xing just a singleparameter � re�eting the proton size. Moreover, we ould �x � from therequirement that hk2?i � (300MeV)2 and present our urve for F1(t) as asuessful predition of the model. We interpret this suess as an evidenethat the model orretly athes the gross features of the underlying physis.Sine our model implies a Gaussian dependene on the transverse mo-mentum, it inludes only what is usually referred to as an overlap of soft wavefuntions. It ompletely neglets e�ets due to hard pQCD gluon exhangesgenerating the power-law O((�s=�)2=t2) tail of the nonforward densities atlarge t. It is worth pointing out here that though we take nonforward den-sities Fa(x; t) with an exponential dependene on t, the F1(t) form fatorin our model has a power-law asymptotis F soft1 (t) � (�4�2=t)n+1 ditatedby the (1 � x)n behavior of the parton densities for x lose to 1. This on-



Skewed Parton Distributions 3669netion arises beause the integral (48) over x is dominated at large t bythe region �x � 4�2=jtj. In other words, the large-t behavior of F1(t) inour model is governed by the Feynman mehanism [1℄. One should realize,however, that the relevant sale 4�2 = 2:8 GeV2 is rather large. For thisreason, when jtj < 10 GeV2, it is premature to rely on asymptoti estimatesfor the soft ontribution. Indeed, with n = 3:5, the asymptoti estimate isF soft1 (t) � t�4:5, in an apparent ontradition with the ability of our urveto follow the dipole behavior. The resolution of this paradox is very sim-ple: the maxima of nonforward densities Fa(x; t) for jtj < 10 GeV2 are atrather low x-values x < 0:5. Hene, the x-integrals produing F soft1 (t) arenot dominated by the x � 1 region yet and the asymptoti estimates arenot appliable: the funtional dependene of F soft1 (t) in our model is muhmore ompliated than a simple power of 1=t.The fat that our model losely reprodues the experimentally observeddipole-like behavior of the proton form fator is a lear demonstration thatsuh a behavior may have nothing to do with the quark ounting rulesF p1 (t) � 1=t2 [41, 42℄ valid for the asymptoti behavior of the hard gluonexhange ontributions. Our explanation of the observed magnitude andthe t-dependene of F1(t) by a purely soft ontribution is in strong ontrastwith that of the hard pQCD approah to this problem.8. Wide-angle Compton satteringWith both photons real, it is not su�ient to have large photon energy toensure short-distane dominane: large-s, small-t region is strongly a�etedby Regge ontributions. Hene, having large jtj > 1GeV2 is a neessaryondition for revealing short-distane dynamis.The simplest ontributions for the WACS amplitude are given by thes- and u-hannel handbag diagrams Fig. 7b,. The nonperturbative part inthis ase is given by the proton DDs whih determine the t-dependene ofthe total ontribution. Just like in the form fator ase, the ontributiondominating in the formal asymptoti limit s; jtj; juj ! 1, is given by dia-grams orresponding to the pure SD regime, see Fig. 10a. The hard subraphthen involves two hard gluon exhanges whih results in a suppression fator(�s=�)2 � 1=100 absent in the handbag term. The total ontribution of alltwo-gluon exhnange ontributions was alulated by Farrar and Zhang [43℄and then realulated by Kronfeld and Niºi¢ [44℄. A su�iently large ontri-bution is only obtained if one uses humpy DAs and 1=k2 propagators withno �nite-size e�ets inluded. Even with suh propagators, the WACS am-plitude alulated with the asymptoti DA is negligibly small [45℄ omparedto existing data. As argued in Ref. [21℄, the enhanements generated bythe humpy DAs should not be taken at fae value both for form fators and



3670 A.V. Radyushkinwide-angle Compton sattering amplitudes. For these reasons, we ignorehard ontributions to the WACS amplitude as negligibly small.
a) c)b)Fig. 10. Con�gurations involving double and single gluon exhange.Another type of on�gurations ontaining hard gluon exhange is shownin Fig. 10b. There are also the diagrams with photons oupled to di�erentquarks (�at's ears�, Fig. 10). Suh ontributions have both higher order andhigher twist. This brings in the �s=� fator and an extra 1=s suppression.The latter is partially ompensated by a slower fall-o� of the four-quark DDswith t sine only one valene quark should hange its momentum.For simpliity, we neglet all the suppressed terms and deal only with thehandbag ontributions Fig. 7b, in whih the highly virtual quark propagatoronneting the photon verties is onvoluted with proton DDs parametrizingthe overlap of soft wave funtions. Sine the basi sale 4�2 haraterizingthe t-dependene of DDs in our model is 2.8 GeV2, while existing data are allat momentum transfers t below 5 GeV2, we deal with the region where theasymptoti estimate (Feynman mehanism) for the overlap ontribution isnot working yet. In the oordinate representation, the sum of two handbagontributions to the Compton amplitude an be written asM��(p; p0; q; q0) =Xa e2a Z e�i(Qz)hp0j� � a �z2� �S(z)� a ��z2�+ � a ��z2� �S(�z)� a �z2�� jpi d4z (50)where Q = (q+ q0)=2 and S(z) = iẑ=2�2(z2)2 is the hard quark propagator(throughout, we use the �hat� notation ẑ � z��). The summation overthe twist-0 longitudinal gluons adds the usual gauge link between the � , �elds whih we do not write down expliitly (gauge link disappears, e.g., inthe Fok�Shwinger gauge z�A�(z) = 0). Beause of the symmetry of theproblem, it is onvenient to use P = (p + p0)=2 (f. [8℄) and r = p � p0 asthe basi momenta. Applying the Fiertz transformation and introduing the



Skewed Parton Distributions 3671double distributions byhp0j � a ��z2� ẑ a �z2� jpi = �u(p0)ẑu(p) 1Z0 dx �xZ��x he�i(kz)fa(x; �; t)�ei(kz)f �a(x; �; t)i d~y + 14mp �u(p0)(ẑr̂ � r̂ẑ)u(p)� 1Z0 dx �xZ��x he�i(kz)ka(x; �; t) � ei(kz)k�a(x; �; t)i d�+O(z2) terms (51)(we use here the shorthand notation k � xP + �r=2) and similarly for theparton heliity sensitive operatorshp0j � a ��z2� ẑ5 a �z2� jpi = �u(p0)ẑ5u(p) 1Z0 dx �xZ��x he�i(kz)ga(x; �; t)+ei(kz)g�a(x; �; t)i d�+ (rz)mp �u(p0)5u(p)� 1Z0 dx �xZ��x he�i(kz)pa(x; ~y; t) + ei(kz)p�a(x; �; t)i d�+O(z2) terms ; (52)we arrive at a leading-twist QCD parton piture with �-DDs serving as fun-tions desribing long-distane dynamis. The �-DDs fa(x; �; t), et., arerelated to the original y-DDs F a(x; y; t) by the shift y = (1�x+�)=2. Inte-grating f(x; �; t) over � one obtains the same nonforward densities F(x; t).The hard quark propagators for the s and u hannel handbag diagrams inthis piture look likexP̂ + � r̂2 + Q̂(xP + � r2 +Q)2 = xP̂ + � r̂2 + Q̂x~s� (�x2 � �2) t4 + x2m2p (53)and xP̂ + � r̂2 � Q̂(xP + � r2 �Q)2 = xP̂ + � r̂2 � Q̂x~u� (�x2 � �2) t4 + x2m2p ; (54)respetively. We denote ~s = 2(pq) = s�m2 and ~u = �2(pq0) = u�m2. Sine�-DDs are even funtions of � [22℄, the �r̂ terms in the numerators an bedropped. It is legitimate to keep O(m2p) and O(t) terms in the denominators:the dependene of hard propagators on target parameters m2p and t an be



3672 A.V. Radyushkinalulated exatly beause of the e�et analogous to the �-saling in DIS [31℄(see also [46℄). Note that the t-orretion to hard propagators disappearsin the large-t limit dominated by the x � 1 integration. The t-orretionsare the largest for y = 0. At this value and for x = 1=2 and t = u (mangle of 90Æ), the t-term in the denominator of the most important seondpropagator is only 1/8 of the u term. This ratio inreases to 1/3 for x = 1=3.However, at nonzero �-values, the t-orretions are smaller. Hene, the t-orretions in the denominators of hard propagators an produe 10%�20%e�ets and should be inluded in a omplete analysis. Here, we onsider anapproximation in whih these terms are negleted and hard propagators aregiven by ~y-independent expressions (xP̂ + Q̂)=x~s and (xP̂ + Q̂)=x~u. As aresult, the �-integration ats only on the DDs f(x; �; t) and onverts theminto nonforward densities F(x; t). The latter would appear then throughtwo types of integrals1Z0 Fa(x; t) dx � F a1 (t) and 1Z0 Fa(x; t) dxx � Ra1(t); (55)and similarly for K;G;P . The funtions F a1 (t) are the �avor omponents ofthe usual F1(t) form fator while Ra1(t) are the �avor omponents of a newform fator spei� to the wide-angle Compton sattering. In the formalasymptoti limit jtj ! 1, the x integrals for F a1 (t) and Ra1(t) are bothdominated in our model by the x � 1 region: the large-t behavior of thesefuntions is governed by the Feynman mehanism and their ratio tends to1 as jtj inreases (see Fig. 11a). However, due to large value of the e�etivesale 4�2 = 2:8 GeV2, the aessible momentum transfers t < 5 GeV2 arevery far from being asymptoti.In Fig. 11b we plot Fu(x; t) and Fu(x; t)=x at t = �2:5 GeV2. It is learthat the relevant integrals are dominated by rather small x values x < 0:4whih results in a strong enhanement of Ru1 (t) ompared to F u1 (t) for jtj < 5GeV2. Note also that the hp0j : : : xP̂ : : : jpi matrix elements an produe onlyt as a large variable while hp0j : : : Q̂ : : : jpi gives s. As a result, the enhanedform fators Ra1(t) are aompanied by extra s=t enhanement fators om-pared to the F a1 (t) terms. In the ross setion, these enhanements aresquared, i.e., the ontributions due to the non-enhaned form fators F a1 (t)are always aompanied by t2=s2 fators whih are smaller than 1/4 for mangles below 90Æ. Beause of double suppression, we neglet F a1 (t) terms inthe present simpli�ed approah.The ontribution due to the K funtions appears through the �avor om-ponents F a2 (t) of the F2(t) form fator and their enhaned analogues Ra2(t).The major part of ontributions due to the K-type NDs appears in the om-bination R21(t)� (t=4m2p)R22(t). Experimentally, F2(t)=F1(t) � 1GeV2=jtj.
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xFig. 11. a) Ratio Ru1 (t)=F u1 (t); b) Funtions Fu(x; t) (solid line) and Fu(x; t)=x(dashed line) at t = �2:5 GeV2.Sine R2=F2 � R1=F1 � 1=hxi, R2(t) is similarly suppressed ompared toR1(t), and we neglet ontributions due to the Ra2(t) form fators. We alsoneglet here the terms with another spin-�ip distribution P related to thepseudosalar form fator GP (t) whih is dominated by the t-hannel pionexhange. Our alulations show that the ontribution due to the partonheliity sensitive densities Ga is suppressed by the fator t2=2s2 ompared tothat due to the Fa densities. This fator only reahes 1/8 for the m angle of90Æ, and hene the Ga ontributions are not very signi�ant numerially. Forsimpliity, we approximate Ga(x; t) by Fa(x; t). After these approximations,the WACS ross setion is given by the produtd�dt � 2��2~s2 � (pq)(pq0) + (pq0)(pq) � R21(t) ; (56)of the Klein�Nishina ross setion (in whih we dropped O(m2) and O(m4)terms) and the square of the R1(t) form fatorR1(t) =Xa e2a �Ra1(t) +R�a1(t)� : (57)In our model, R1(t) is given byR1(t) = 1Z0 �e2u fvalu (x)+e2d fvald (x)+2(e2u+e2d+e2s) f sea(x)�e�xt=4x�2 dxx : (58)We inluded here the sea distributions assuming that they are all equalf sea(x) = f seau;d;s(x) = f�u; �d;�s(x) and using a simpli�ed parametrizationf sea(x) = 0:5x�0:75(1� x)7 (59)whih aurately reprodues the GRV formula for Q2 � 1 GeV2. Due tosuppression of the small-x region by the exponential exp[�xt=4x�2℄, the sea
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Fig. 12. WACS ross setion versus t: omparison of results based on Eq. (56) withexperimental data.quark ontribution is rather small (� 10%) even for �t � 1 GeV2 and isinvisible for �t > 3 GeV2.Comparison with existing data [47℄ is shown in Fig. 12. Our urves fol-low the data pattern but are systematially lower by a fator of 2, withdisagreement beoming more pronouned as the sattering angle inreases.Sine we negleted several terms eah apable of produing up to a 20%orretion in the amplitude, we onsider the agreement between our urvesand the data as enouraging. The most important orretions whih shouldbe inluded in a more detailed investigation are the t-orretions in the de-nominators of hard propagators and ontributions due to the �non-leading�K;G;P nonforward densities. The latter, as noted above, are usually a-ompanied by t=s and t=u fators, i.e., their ontribution beomes moresigni�ant at larger angles. The t-orretion in the most important hardpropagator term 1=[x~u� (�x2��2)t=4+ x2M2℄ also enhanes the amplitudeat large angles.
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Fig. 13. Angular dependene of the ombination s6(d�=dt).The angular dependene of our results for the ombination s6(d�=dt)is shown on Fig. 13. All the urves for initial photon ehergies 2,3,4,5 and6 GeV interset eah other at �m � 60Æ. This is in good agreement withexperimental data of Ref. [47℄ where the di�erential ross setion at �xed mangles was �tted by powers of s: d�=dt � s�n(�) with nexp(60Æ) = 5:9� 0:3.Our urves orrespond to nsoft(60Æ) � 6:1 and nsoft(90Æ) � 6:7 whih alsoagrees with the experimental result nexp(90Æ) = 7:1� 0:4.This an be ompared with the saling behavior of the asymptoti hardontribution: modulo logarithms ontained in the �s fators, they have auniversal angle-independent power nhard(�) = 6. For �m = 105Æ, the exper-imental result based on just two data points is nexp(105Æ) = 6:2� 1:4, whileour model gives nsoft(105Æ) � 7:0. Clearly, better data are needed to drawany onlusions here.



3676 A.V. Radyushkin

Fig. 14. s-dependene of the ombination s6d�=dt for � = 60Æ (dotted line), � = 90Æ(dashed line) and � = 105Æ (solid line).9. ConlusionsThe hard exlusive eletroprodution proesses provide new informationabout hadroni struture aumulated in skewed parton distributions. TheSPDs are universal hybrid funtions having the properties of parton densi-ties, hadroni form fators and distribution amplitudes. They give a uni-�ed desription of various hard exlusive and inlusive reations. The basisupplier of information about skewed parton distributions is deeply virtualCompton sattering whih o�ers a remarkable example of Bjorken salingphenomena in exlusive proesses. Furthermore, wide-angle real Comptonsattering is an ideal tool to test angle-dependent saling laws harateristifor soft overlap mehanism.I am grateful to A. Biaªas and M. Praszaªowiz for hospitality inZakopane and support. I thank K. Gole-Biernat for disussions. Thiswork was supported by the U.S. Department of Energy under Contrat No.DE-AC05-84ER40150.
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