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AN INTRODUCTION TO LEADING ANDNEXT-TO-LEADING BFKL� ��Gavin P. SalamINFN � Sezione di MilanoVia Celoria 16, Milano 20133, Italy(Reeived Otober 27, 1999)Of late, the �eld of BFKL physis has been the subjet of signi�antdevelopments. The alulation of the NLL terms was reently ompleted,and they turned out to be very large. Tehniques have been proposed to re-sum these orretions. These letures provide an introdution to the BFKLequation and some of the reent developments, using DGLAP evolution asthe starting point.PACS numbers: 12.38.Cy 1. IntrodutionSome twenty �ve years ago Balitsky, Fadin, Kuraev and Lipatov (BFKL)set out to determine the high-energy behaviour of the sattering of hadro-ni objets within perturbative QCD. They found terms going as (�s ln s)n,where s is the squared entre-of-mass energy. Sine ln s is large it an om-pensate the smallness of ��s and thus it was neessary to sum this wholeseries of Leading Logarithmi (LL) terms. The result was that the rosssetion should grow as a power of the squared entre-of-mass energy s [1℄.For the values of �s ' 0:2 that are typially relevant, this power omes outas being of the order of 0:5.Over the past few years muh experimental e�ort has been devoted to-wards observing this phenomenon, and the onlusion has onsistently beenthat while the ross setions do rise, that rise is muh slower than s0:5 (seefor example [2�6℄).The solution to this problem was to have been in the next-to-leadingorretions to the BFKL equation, terms �s(�s ln s)n, whih have been al-ulated over the past ten years [7℄. The various ontributions were put� Presented at the XXXIX Craow Shool of Theoretial Physis, Zakopane, Poland,May 29�June 8, 1999.�� Work supported by E.U. QCDNET ontrat FMRX-CT98-0194.(3679)



3680 G.P. Salamtogether last year [8, 9℄, and to the onsternation of the ommunity turnedout to be larger than the leading ontribution, giving ross setions thatwere not even positive-de�nite [10, 11℄.These letures will illustrate the origin of some of the main featuresof both the leading and next-to-leading BFKL equations, using as a basisthe onstraints provided by the DGLAP equation, and follow on with adisussion, based on [12, 13℄, of how to solve the problems that arise atnext-to-leading order.After a brief de�nition of the problem in the next subsetion, Setion 2disusses the DGLAP equation as relevant for high-energy sattering, andshows how it an naturally be extended to the give the BFKL equation [1℄.This is followed by an illustration of the lak of agreement of the latter withexperimental data. Setion 3 derives the main features of the next-to-leadingorretions to BFKL and disusses some of the problems that ensue fromtheir inlusion. Setion 4 looks at how one an go beyond next-to-leadingorder and Setion 5 onludes.1.1. The problem
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Fig. 1. High-energy ollision of two hadroni objets.Let us �rst de�ne a little more arefully the problem to be addressed.We want to study ollisions of two perturbative hadroni objets, �gure 1,where the squared entre-of-mass energy s is muh larger than the typialtransverse sales Q2, Q20 of the two objets, whih in turn are muh largerthan the QCD sale, �2, in order for the problem to be perturbative. This isof phenomenologial relevane for ertain features of small-x deep-inelastisattering (DIS) at HERA, high-energy �� sattering at LEP and theNLC, and on�gurations at the Tevatron and LHC involving jets that arewidely separated in rapidity. It is also of theoretial interest sine the large



An Introdution to Leading and Next-to-Leading BFKL 3681parton densities that arise at high energies an lead to novel e�ets suh asparton reombination and multiple perturbative satterings.2. Leading-logarithmi order2.1. Deep inelasti satteringRather than entering straight into the problem of general high-energysattering, it is helpful to onsider �rst high-energy sattering in whih oneof the two hadroni objets is muh smaller than the other, i.e. deep inelastisattering, �gure 2(a). We have the ollision of a proton (of mass M2p ,equivalent to Q20 of �gure 1) with a photon of virtuality Q2 � M2p , whihwe will view as our seond hadroni objet. The photon-proton squaredentre-of-mass energy is ŝ. High-energy sattering in this system, ŝ� Q2, isgenerally referred to as small-x sattering beause Bjorken-x is = Q2=ŝ� 1.
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(a) (b)Fig. 2. (a) Deep inelasti sattering. (b) Cut ladder diagram for the evolution ofthe parton distributions.As is well known, to orretly treat suh ollisions it is neessary toresum terms (�s lnQ2)n, beause the smallness of �s is ompensated bythe large size of lnQ2. This is DGLAP [14℄ or ollinear resummation, orrenormalisation group evolution.



3682 G.P. SalamThe ross setion is proportional to the quark distribution at sale Q2,whih is related to the quark distribution at another sale Q20 byxq(x;Q2) = xq(x;Q20) + �s ln Q2Q20 Z dz1 Pqq(z1) xz1 q� xz1 ; Q20�+ �s ln Q2Q20 Z dz1 Pqg(z1) xz1 g� xz1 ; Q20�+ : : : (1)In an appropriate gauge this an interpreted as the �rst in a set of ladderdiagrams in �gure 2(b), whose rungs are strongly ordered in lnQ2.To understand the type of ladder that dominates at small x, we need tolook at the splitting funtions. A quark ladder (with gluon rungs) involvesiteration of the Pqq splitting funtion:Pqq(z) = CF2� � 1 + z2(1� z)+ + 32(1� z)� ; (2)while a gluon ladder (with gluon rungs) involves the Pgg splitting funtion,Pgg(z) = CA� �1z + 1(1� z)+ � 2 + z(1� z)�+ Æ(1 � z)�0 : (3)At small z, Pqq is onstant while Pgg grows as 1=z. So at small x, gluonladders with repeated iterations of Pgg(z � 1) dominate, i.e. we have strongordering in z.With this is mind, let us examine the properties of the unintegrated gluondistribution: F(x;Q2) = xdg(x;Q2)dQ2 ; (4)and start with a simple (though not entirely physial) initial onditionQ2F (0)(x;Q2) = �(1� x) ��Q2Q20 � 1� ; (5)where the Q2 fator is inluded on dimensional grounds (g(x;Q2) is dimen-sionless). Using the purely gluoni DGLAP equation in di�erential form,Q2xdg(x;Q2)dQ2 = �s 1Zx dzPgg(z) xz g �xz ;Q2� ; (6)



An Introdution to Leading and Next-to-Leading BFKL 3683and rewriting it in terms of the unintegrated gluon distribution, we obtainthe �rst-order ontribution to F ,Q2F (1)(x;Q2) = �s 1Zx dz1Pgg(z1) Q2Z dk21 F (0)� xz1 ; k21�' ��s 1Zx dz1z1 Q2Z dk21 F (0)� xz1 ; k21� = ��s ln 1x ln Q2Q20 ; (7)where ��s = �sCA=� has been introdued as a notational shorthand and afator �(Q2 � Q20) is impliitly understood to be ontained in the result.We retain only the 1=z part of the splitting funtion beause the other partslead to ontributions laking the fator ln 1=x and so muh smaller than (7).The seond-order ontribution isQ2F (2)(x;Q2) = ��s 1Zx dz2z2 Q2Z dk22 F (1)� xz2 ; k22� = ��2s(2!)2 ln2 1x ln2 Q2Q20 ; (8)By iteration one sees that the O (��ns ) ontribution isQ2F (n)(x;Q2) = 1(n!)2 ���s ln 1x ln Q2Q20�n�(Q2 �Q20) : (9)Sine every power of ��s is aompanied by two logarithms, this is referredto as a double-logarithmi (DL) series. It resums ladders in whih there isstrong ordering of both the transverse and longitudinal momenta along theladders: k2n=k2n�1 � 1 and zn � 1 respetively.2.2. Summing the DL series
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Fig. 3. Graphial depition of the integral equation (11)



3684 G.P. SalamOur DL series happens to be related to the series for the modi�ed I0Bessel funtion [15℄. Using the asymptoti expansion for I0 gives us theresult that Q2F(x;Q2) � exp"2s��s ln 1x ln Q2Q20# : (10)However it is useful to develop a more general method of summation, onewhih will be appliable also later on. Aordingly, we formulate the problemas an integral equationF(x;Q2) = F (0)(x;Q2) + ��s 1Zx dzz Q2Z dk2Q2 F �xz ; k2� ; (11)whih is depited graphially in �gure 3. It an be diagonalised by takingMellin transforms with respet to both x and Q2,F(x;Q2) = Z d!2�ix�! Z d2�i 1Q2 �Q2Q20� F;! ; (12)with the ontours running parallel to the imaginary axis, givingF;! = F (0);! + ��s 1Z0 dzz z! Q2Z dk2Q2 Q2k2 � k2Q2� F;! = F (0);! + ��s!F;! :(13)The pole in  is onjugate to the DGLAP logarithm of Q2 and the pole in! onjugate to the logarithm of x. Eq. (13) is easily solved:F;! = !F (0);!! � ��s : (14)With the initial ondition (5), we have F (0);! = 1=!. The inverse Mellintransform with respet to ! is arried out by losing the ! ontour to theleft in Eq. (12), leaving us withQ2F(x;Q2) = Z d2�i x� ��s �Q2Q20� � 1 : (15)



An Introdution to Leading and Next-to-Leading BFKL 3685The integrand has a saddle-point at� =vuut ��s ln 1xln Q2Q20 (16)and a saddle-point evaluation of the integral givesQ2F(x;Q2) ' 12 0� 1�2 ��s ln 1x ln Q2Q20 1A1=4 exp"2s��s ln 1x ln Q2Q20 # : (17)This result was �rst obtained twenty �ve years ago by De Rujula et al. [16℄.Its main feature is that the gluon distribution rises at small x, with ane�etive power !e� 'vuut ��s ln 1xln Q2Q20 ; (18)whih dereases as one moves towards smaller x values, and inreases to-wards higher Q2. The H1 data for !e� shown in �gure 4 illustrate preiselythis trend. Detailed omparisons of DGLAP-indued rises of F2, inluding
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Fig. 4. The e�etive power of the rise of F2 [2℄; x and Q2 values are orrelated sothat higher Q2 also means higher x.full splitting funtions and a running oupling, suh as those performed byGlük, Reya and Vogt [17℄ and Ball and Forte [18℄, show remarkably goodagreement with nearly all the small-x F2 struture funtion data, even downto Q2 ' 4 GeV2.



3686 G.P. Salam2.3. BFKLThe above arguments are relevant in a limit where both 1=x and Q2=Q20are large, i.e. when we have strong ordering in both longitudinal and trans-verse momenta. But when the ends of the hain have similar transversemomenta, Q2 ' Q20, there is no longer any reason for transverse momentaalong the hain to be ordered. Double logs no longer dominate the rosssetion and we have to sum all leading (single) logarithms (LL) of x,���s ln 1x�n : (19)This is done by the BFKL equation [1℄, whih an be derived in a number ofways. Sine these notes are intended only as an introdution to the BFKLequation, rather than engaging in its derivation we will try to dedue itsmain harateristis from simple physial arguments.1In the previous Setion we had the following integral equation for thegluon density (11):F(x;Q2) = F (0)(x;Q2) + Z dzz Z dk2K(Q2; k2)F �xz ; k2� ; (20)where the DGLAP kernel K was justK(Q2; k2) = ��sQ2�(Q2 � k2) ; valid for Q2 � k2 : (21)Sine the BFKL kernel should be valid for any ratio of transverse salesit must have the same limit for Q2 � k2, and additionally orretly treatsituations in whih Q2 is of the same order as, or muh smaller than k2. Wean dedue its form in the limit k2 � Q2 by the following argument. Thesattering of a big objet o� a small one, or of a small objet o� a big one,must have the same ross setion, and both situations must be orretlydesribed by the BFKL resummation. Therefore the BFKL kernel mustbe symmetri under the interhange of Q2 and k2. So when k2 � Q2 (theanti-DGLAP, or anti-ollinear limit) we haveK(Q2; k2) = ��sk2 ; valid for k2 � Q2 : (22)If we approximate the full kernel just by its ollinear and anti-ollinear limits,then we haveKoll(Q2; k2) = ��s ���(Q2 � k2)Q2 + �(k2 �Q2)k2 � : (23)1 For the interested reader one of the simplest full derivations is perhaps to be foundwithin the dipole formulation [19℄. A wide ranging introdution and disussion ofmany aspets of BFKL physis an be found in [20℄.



An Introdution to Leading and Next-to-Leading BFKL 3687Following the treatment of the previous Setion, we will need its Mellintransform, �oll() = 1 + 11�  ; (24)where, by onvention, the leading fator of ��s has been left out; �() isusually referred to as the harateristi funtion of the system. The 1=term was present also in the pure DGLAP ase, and omes from the ollinearlimit. The 1=(1�) term omes from the anti-ollinear limit. The symmetry $ 1 �  is a diret onsequene of the symmetry under the exhange ofthe two transverse sales. This an be seen expliitly from the de�nition ofthe Mellin transform, Eq. (12), where1Q2 �Q2Q20� = 1Q20 �Q20Q2�1� : (25)What we have negleted in our ollinear + anti-ollinear approximationis the orret treatment of the kernel for k of the same order as Q. This isgiven by the full BFKL kernel [1℄ (with integration measure d2k=� beausethe azimuthal integration now matters):K(Q2; k2) = ��s �0� 1j ~Q� ~kj2 � Æ(Q2 � k2) kZ d2q�q21A : (26)Its Mellin transform (again leaving out the overall fator of ��s) is�() = 2 (1) �  () �  (1� ); (27)where  (x) = d ln�(x)=dx. Noting that � () = 1= + O (1) for smallx, we see that the full �() has the same polar struture around  = 0and  = 1 as our approximation (24) re�eting the fat that the ollinearand anti-ollinear limits are the same. The two harateristi funtions areshown in Fig. 5, whih illustrates their very similar shapes: they di�er bylittle more than a onstant.The proedure for obtaining the BFKL ross setion is analogous to thatused in the DGLAP ase, with 1= replaed by �(). We start with theMellin-transformed integral equationF;! = F (0);! + ��s! �()F;! ; (28)
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Fig. 6. The real part of the LL BFKL harateristi funtion in the omplex planeand the integration ontour for the inverse Mellin transform.and solve for F;!: F;! = !F (0);!! � ��s�() : (29)The inverse Mellin transform with respet to ! is one again trivial and givesF(x;Q2) = Z d2�i exp ���s�() ln 1x +  ln Q2Q20� � �!F (0);�! �! = ��s�() :(30)The real part of the harateristi funtion �(), together with the integra-tion ontour are shown in the omplex plane in �gure 6. For large ln 1=x,



An Introdution to Leading and Next-to-Leading BFKL 3689the integrand in (30) is dominated by behaviour of � and has a saddle-pointlose to  = 1=2, whih auses the gluon distribution to grow asF(x;Q2) ' x���s�( 12)q2� ��s �00�12� ln 1x � 1QQ0 ; (31)where �00 is the seond derivative of � with respet to . Thus the gluondistribution (and in general, high-energy ross setions) should grow as apower of x determined by the minimum value of �(), whih is �(1=2) =4 ln 2. For the phenomenologially reasonable value of ��s ' �s = 0:2 thisgives a power of about 0:5.It su�es to look bak at �gure 4 to see that this is inompatible withthe rise seen in the bulk of the struture funtion data. Some are is neededin interpreting this disagreement: in onsidering the struture funtion data,we are trying to apply perturbative QCD to a problem whih is inherentlynon-perturbative (the sale Q20 does not satisfy our requirement Q20 � �2).However BFKL also predits saling violations of the F2 struture funtion[21℄, and this predition an be shown not to depend on the propertiesof the non-perturbative region [13, 22℄. Essentially, regardless of the inputdistribution, the saling violations quikly lead to a struture funtion whihrises with a power 4 ln 2��s and so is inompatible with the data [23℄.There exist other, theoretially leaner, tests of BFKL. Generally theyinvolve seleting a proess with two hard hadroni probes, suh as jets ora virtual photon, separated by a large rapidity (or equivalently having alarge entre-of-mass energy). The requirement that both probes be hardensures that one an reasonably apply perturbation theory2 (unfortunatelyit generally also makes the experimental measurement muh harder). A nieexample of suh a test is the ollision of two virtual photons as measuredreently by the L3 [4℄ and OPAL [5℄ ollaborations. The L3 data are shownin �gure 7. The data are signi�antly higher than the one-gluon estimate(i.e. the predition without BFKL resummation). On the other hand theLL BFKL preditions learly overshoot the data. The L3 ollaboration per-form a �t to the data in order to determine the power of the high-energy2 Though not stritly the subjet of this presentation, an exposition of BFKL physiswould be inomplete without at least some mention of di�usion. Beause transversemomenta are not ordered, small-x evolution leads to a random walk in ln kt. Themean width of this random walk � di�usion � inreases as pln s, and at very larges eventually enters into the non-perturbative region. Thus, no matter how large thetransverse sales of the sattering objets, there is always an energy beyond whihperturbation theory loses its preditive power.
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2 3 4 5 6Fig. 7. The ross setion for �� ollisions as measured by the L3 ollabora-tion [4, 24℄. The mean Q2 values for the three energies are 3:5, 14 and 14:5GeV2respetively.growth, and quote a preliminary result of 0:29�0:025 for sales in the rangeof 3:5 to 14:5GeV2 [24℄.3The same onlusion of inompatibility with LL BFKL omes out fromlooking at the interations between a jet and a virtual photon in DIS [6℄,a measurement referred to as the forward-jet ross setion, beause of theposition of the jet in the detetor.3 This result should probably be interpreted with some aution beause the formulaused to arry out the �t assumes the LL normalisation with four light-quark �avours(whereas both the NLL orretions and the harm mass probably have a signi�ante�et on the normalisation). A �t leaving the normalisation as a free parameterleads to a similar power but with a muh larger error. One should bear in mind thatbeause of the `limited' energies at LEP, the Q2 values (between 3:5 and 14:5 GeV2)are probably on the border of the region that an be onsidered perturbative.



An Introdution to Leading and Next-to-Leading BFKL 36913. Next-to-leading orretionsAll along, while the various experimental tests of LL BFKL were beingarried out and re�ned, the alulation of the next-to-leading logarithmiorretions to BFKL was in progress. The next-to-leading terms are thosesuppressed by a power of �s relative to the LL series:�s(�s ln s)n : (32)In terms of the notation developed so far, this orresponds to working outthe NLL orretions to the harateristi funtion �, i.e. �nding �1, where��s�() = ��s�0() + ��2s�1() +O ���3s� : (33)The determination of �1 took lose to ten years [7℄, and was ompleted quitereently [8, 9℄.Rather than trying to reprodue parts of that derivation, we will adoptthe same approah that was used in the previous Setion, namely to de-due the struture of the NLL orretions through a study of the ollinearlimit and symmetry requirements. This will translate to determining thedivergenes around  = 0 and  = 1.We will examine three main ontributions: those from the running ou-pling, the non-singular (at small z) part of the splitting funtions and thehoie of energy sale. 3.1. Running ouplingThe QCD oupling runs as��s(k2) = ��s(Q2)1 + b ��s(Q2) ln k2Q2 ; (34)where b = 11=12 � nf=6CA. What sort of higher order ontribution willthis lead to? The DGLAP equations tell us that in the right-hand graph ofFig. 3, when Q2 � k2 the orret sale for the oupling is Q2. By symmetry,when k2 � Q2, the orret sale is k2 � i.e. in the ollinear limit the orretsale is the larger of the two sales involved. So our ollinear approximationfor the kernel, Eq. (23), beomesKoll(Q2; k2) = ��s(Q2)�(Q2 � k2)Q2 + ��s(k2)�(k2 �Q2)k2 : (35)The Mellin transform of the �rst term just gives ��s(Q2)=, as before. Forthe seond term, we re-express ��s(k2) in terms of ��s(Q2) in order to extrat



3692 G.P. Salama fator of ��s(Q2) in front of the whole result. Expanding to seond order,and taking the Mellin transform, givesZQ2 dk2k2 ���s(Q2)� b��2s ln k2Q2� Q2k2 � k2Q2� = ��s(Q2)1�  � b��2s(1� )2 ; (36)whih is just the anti-ollinear part of our LL result plus a running-ouplingNLL ontribution �b1 = � b(1� )2 : (37)The lak of symmetry  $ 1� is due to our hoie to extrat an asymmetrifator of ��s(Q2) in front of the answer.What is the unertainty on our ollinear approximation for �b1? Thesheme of ��s is not de�ned, orresponding to an unertainty proportional to�0. Nor do we a priori know the orret sale for branhings when k2 andQ2 are of the same order. So the overall unertainty is a funtion with atmost single poles at  = 0 and  = 1.3.2. Splitting funtionIn Setion 2 we used only the part of the gluon splitting funtion that issingular at small z. At NLL, we need to inlude the full splitting funtion(3). Its Mellin transform (with respet to x) isP!gg = 1! +A1(!) ; (38)where (for nf = 0) A1(!) = �1112 +O (!) : (39)To get the NLL orretion we onsider a sequene of two ollinear branh-ings, Fig. 8, where one of the branhings is a small-x branhing, givinga fator ��s=! and the other is a non-small-x branhing, giving a fator��sA1=. Remembering that onvolutions in x and k2 spae translate toproduts in the !;  Mellin transform spae, our integral equation (28) re-eives a ontribution ��s! ��sA12 F;! : (40)



An Introdution to Leading and Next-to-Leading BFKL 3693
��s=!��sA1=Fig. 8. A sequene of a small-x and a non-small-x branhing.There is a orresponding term for a pair of anti-ollinear branhings, so thatthe splitting-funtion ontribution to �1 is�A11 () = A12 + A1(1� )2 ; (41)where A1 = A1(0) = �11=12. Atually this is only the nf -independent part.For non-zero nf there are ontributions oming from the nf -dependene ofPgg and from diagrams involving the onvolution of Pgq and Pqg.As in the running oupling ase we have an unertainty on this result,whih an arise for example from the ombination of a ollinear and an anti-ollinear branhing, and thus is one again at the level of a funtion with atmost single poles at  = 0 and  = 1.3.3. Energy sale termsA more subtle soure of NLL orretions omes from the so-alled ener-gy-sale terms. At leading order one resums terms���s ln ss0�n ; (42)where s0 an be hosen arbitrarily. Changing s0 is equivalent to introduinga whole set of higher order terms. For a symmetri treatment (with respetto Q and Q0), a natural hoie is s0 = Q0Q. Let us then onsider whathappens when Q � Q0. As we obtained in Setion 2.1, the leading termsare 1(n!)2 ���s ln sQQ0 ln Q2Q20�n : (43)



3694 G.P. SalamBut for DIS-like situations, Q � Q0, we usually express our results as afuntion of x = Q2=s and Q2=Q20. Let us do that for the n = 2 term:14 ���s ln sQQ0 ln Q2Q20�2 = 14 ���s ln 1x ln Q2Q20�2 + 14 ��2s ln 1x ln3 Q2Q20 +NNLL :(44)Of partiular interest is the seond term on the RHS beause it has moreollinear logs than powers of ��s (it ontains a double ollinear logarithm fora single power of ��s). But we know from renormalisation group onstraintsthat the ross setion written as a funtion of x and Q2=Q20 ontains atmost as many ollinear logs as powers of ��s. Therefore for the result to beonsistent with the renormalisation group, the next-to-leading orretionsmust be suh as to anel the seond term on the RHS of (44), i.e. theymust ontain a term �14 ��2s ln s ln3 Q2Q20 : (45)In Mellin transform spae this will orrespond to a ontribution to �1 whihis proportional to 1=3. To obtain its oe�ient it is not su�ient just totake the Mellin transform of (45), beause not all of the orretion exponen-tiates (i.e. should be inorporated into �) � for example some of it is to beassoiated with the initial ondition.Instead, now that we know what kind of answer to expet, let us diretlyonsider the problem in Mellin-transform spae. We start with a resultwritten for energy sale QQ0 (f. Eqs. (12) and (29)),F(s;Q2) = Z d!2�i Z d2�i � sQQ0�! 1Q2 �Q2Q20� !F (0);!! � ��s�() ; (46)and then note that sine� sQQ0�! �Q2Q20� = � sQ2�! �Q2Q20�+!2 ; (47)rewriting (46) with energy sale s0 = Q2 is just equivalent to shifting !  � !2 in � and F (0):F(s;Q2) = Z d!2�i Z d2�i � sQ2�! 1Q2 �Q2Q20� !F (0)�!2 ;!! � ��s�( � !2 ) : (48)



An Introdution to Leading and Next-to-Leading BFKL 3695If we now expand �( � !2 ) in powers of ��s, reursively using the relation! = ��s� we get �� � !2 � = �()� ��s��02 +O ���2s� : (49)In the ollinear limit ( ! 0), sine �() goes as 1=, the O (��s) piee hasthe behaviour � ��s��02 ' ��s23 : (50)This is the analogue of the ln3Q2 term seen earlier (44) and it must besubtrated from � at sale s0 = QQ0 in order for the ollinear limit withenergy sale Q2 to be free of unwanted double ollinear logs. There is ananalogous 1=2(1 � )3 piee to be subtrated for the anti-ollinear limit tobe orret (i.e. free of double anti-ollinear logs for energy sale s0 = Q20).Overall therefore we have the following NLL energy-sale orretions (fors0 = QQ0): �s01 = � 123 � 12(1 � )3 : (51)As was the ase for the running oupling and splitting funtion terms, ouranalysis leaves us with an unertainty whih amounts to a funtion with atmost single poles at  = 0 and  = 1.3.4. Putting things togetherPutting together Eqs. (37), (41) and (51) gives us the following answerfor the ollinearly-enhaned part of the NLL orretions (nf = 0):�oll1 () = A12 + A1 � b(1� )2 � 123 � 12(1 � )3 ; (52)with A1 = �11=12. Our ollinear approximation guarantees the orretnessof the oe�ients of the ubi and quadrati divergenes at  = 0 and  = 1.The true NLL orretions as assembled in [8, 9℄ are, in the ms shemeand for nf = 0 (the nf dependene turns out to be small)�1() = � �2 os(�)4 sin2(�)(1� 2) �3 + 2 + 3(1� )(3� 2)(1 + 2)�� b2 ��20()�  0() +  0(1� )�+  00()4 +  00(1� )4+�6736 � �212��0() + 32�(3) + �34 sin(�) � �() ; (53)



3696 G.P. Salamwhere�() = 1Xn=0(�1)n � (n+ 1 + )�  (1)(n+ )2 +  (n+ 2� )�  (1)(n+ 1� )2 � : (54)It is possible to make a diret identi�ation between parts of (53) and (52)in terms of the oe�ients of the double and triple poles. The �rst lineof (53) is identi�able with the A1 piee of (52) and so originates from thesplitting funtion. The running-oupling dependene enters through the �rstterm on the seond line of (53), while the energy-sale dependent piee isformed by the last two terms of that line. The remaining terms are freeof double and triple poles. Of these terms, so far only the �rst one on thethird line of (53) has been understood: it is assoiated with the fat thatthe natural sheme for proesses involving soft gluons is the CMW or gluon-bremsstrahlung sheme [25℄. When writing an answer in the ms sheme thisleads to a orretion term whih is (67=36��2=12)��s times the leading orderresult.Figure 9 shows the full �1 together with our ollinear approximation.There is a remarkable similarity between them: in the range 0 <  < 1 theynever di�er by more than 7%. Possible reasons for the surprisingly goodagreement will be disussed later, in Setion 4.
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Fig. 10. The real part of the LL + NLL harateristi funtion for ��s = 0:2,together with the integration ontour, in the omplex plane.Thus for ��s = 0:2, the predited power is negative, at about �0:16, whihis no more in agreement with the data than the leading power.What is even more worrisome is that the struture of the harateristifuntion hanges radially. In �gure 6, there is a single saddle-point at  =1=2, i.e. on the real axis. With the NLL ontributions inluded, �gure 10,there are now two saddle-points, at omplex values of  whih we will all�; �� [10℄. Sine the ross setion goes as�(s;Q2; Q20) � � sQQ0���s�(�) 1Q2 �Q2Q20�� + � $ ��; (56)the fat that � is omplex means that the ross setion osillates as a funtionof lnQ2=Q20 (it remains real beause of the ontribution from the omplex-onjugate saddle point). This behaviour ours as long as � has a negativeseond derivative at  = 1=2, whih is the ase for ��s & 0:05. In other wordsthere exists no phenomenologially aessible domain in whih the inlusionof the NLL orretions gives a sensible result.4. Beyond NLLThe solution is bound to lie with higher orders. Shortly after prelimi-nary results on �1 had appeared, it was suggested that stable preditionsmight be obtained by inlusion of the NNLL and NNNLL terms [26℄. Butremembering that the LL alulation took about a year, and the NLL al-ulation ten years, a reasonable estimate for the time to alulate the NNLLterms might lie somewhere between an arithmeti (19 years) and a geometri



3698 G.P. Salam(100 years) extrapolation. Even were these ontributions to be alulated,there is atually no guarantee that the resulting series would onverge forthe values of ��s of interest!So the only option left is to try and guess the higher-order terms andthen to resum them (we are now talking about the resummation of a re-summation). The question is whether there is some reliable way of guessingthem. Various approahes have been investigated [12, 13, 27�29℄. I here willadvoate a method losely related to that used in the previous Setion toestimate the NLL orretions � namely a method based on the study ofthe ollinear limit [12, 13℄.We have already seen in the previous Setion that a study of the ollinearlimit is a powerful tool. For the NLL harateristi funtion it gave us theubi and quadrati divergenes at  = 0 and  = 1, and in the range0 <  < 1 reprodued the full answer to remarkably good auray. Howome?There is a temptation to argue that sine  = 1=2 is a moderately smallnumber, one an legitimately arry out an expansion in powers of  and 1�(inluding the �rst two terms in the expansion for �0, i.e. the two poles anda onstant, also seems to do quite well, reproduing the full answer to withinabout 8%). A slightly better motivated argument might be the following.For  = 1=2, the transverse momentum integrals in the Mellin transformonverge quite rapidly and so one might not expet a ollinear approxima-tion to work too well. However at higher orders, piees of the transversemomentum integrals are aompanied by logarithms of transverse momen-tum. These have the e�et of shifting the dominant part of the integralout towards more ollinear regions, where the ollinear approximation itselfbeomes better.So there are reasons to believe that ollinearly-enhaned ontributionsmight give a signi�ant part of the higher-order orretions even beyondNLL.4 A more general justi�ation for arrying out the ollinear resumma-tion is that one wants to be able to use one's answer in the ollinear limit.Sine the ollinear limit involves taking  lose to zero, where higher ordersinvolve suessively more divergent terms, the only hope of a sensible answerthere is a ollinear resummation.The determination of the ollinearly enhaned orretions an be dividedinto two parts. The �rst deals with terms in the same lass as the 1=2 termsin �1, single ollinear logarithms originating from the splitting funtion and4 This statement should really be restrited to those orretions that an be assoi-ated with a single ladder (referred to as t-hannel iteration). Atually at NNLL,orretions arise assoiated with the presene of two ladders (the start of s-hanneliteration), i.e. saturation, or unitarity orretions. Our aim here is to understand thehigh-energy behaviour of a single ladder.



An Introdution to Leading and Next-to-Leading BFKL 3699running oupling; the seond addresses the terms in the same lass as the1=3 term in the NLL result, namely double ollinear logarithms. We willonsider only an outline of the method. The interested reader is referred tothe original referenes [12, 13℄ for the full details.4.1. Single ollinear logs � running oupling and splitting funtion termsIt is fairly straightforward to alulate the ollinear NnLL ontributionsto the BFKL kernel from splitting funtion and running oupling e�ets.One just takes diagrams suh as �gure 8 with an arbitrary number of non-small-x emissions, inserting and expanding the appropriate running ouplingfor eah branhing (the answer is given in [13℄). One is then left with thetriky problem of resumming the resulting set of terms.An equivalent approah essentially treats the small-x and non-small-xbranhings on a more similar footing [13℄. In Eq. (28) we have a fator ��s=!oming from the 1=z part of the Pgg splitting funtion, and a fator of �()from the transverse struture of the branhing. In the ollinear limit, we anreplae 1=! with the full splitting funtion, P!gg. So the ollinear behaviourof the ��s�=! fator beomes (for DIS energy sale, s0 = Q2)��sP!gg = ��s(Q2)! 1 + !A1(!) ) � ' 1 + !A1(!) ; (57)where we have used Eq. (38) for P!gg. The orret sale in the branhingis Q2 (the largest sale in the problem) so there are no running ouplingorretions.The situation in the anti-ollinear limit is very similar exept for an issuerelated to the running oupling: the appropriate sale for the branhing isnot Q2, but k2 (referred to Fig. 3). If we want to extrat a fator of ��s(Q2)the di�erene of sales must be taken into aount. It turns out [13℄ that thisan be done at all orders by replaing A1 with A1� b, so that the resummedanti-ollinear struture is (with the anti-DIS energy sale hoie, s0 = Q20)��s(Q2)! 1 + !(A1(!)� b)1�  ) � ' 1 + !(A1(!)� b)1�  : (58)The reader an verify that substituting ! = ��s�0 into the expressions for �in (57) and (58) reprodues the orret NLL ollinear-enhaned terms.4.2. Double ollinear logs � energy-sale termsWe have just given resummed answers for the ollinear and anti-ollinearbehaviours of the kernel with DIS and anti-DIS energy sale hoies respe-tively. We really want the answer for a ommon energy sale, say s0 = QQ0.



3700 G.P. SalamWe saw in Setion 3.3, that hanges in s0 introdue higher-order double-ollinear logs (the 1=3 and 1=(1� )3 terms). The higher-order orretionshad to be suh that for energy sale s0 = Q2 there were no suh termsaround  = 0, and similarly around  = 1 for energy sale s0 = Q20. Fors0 = QQ0, appropriate double-ollinear log ounterterms had to be inludedin order to satisfy the onditions for the other energy sales. One an workout, order by order, the ounterterms for higher kernels, but it soon getstedious. In any ase one �nds that the resulting series of terms is divergentfor reasonable values of �s.The solution [12℄ exploits the fat that a hange of energy sale orre-sponds to a shift of  by an amount proportional to ! (f. Setion 3.3). Forenergy sale s0 = QQ0, one writes a leading-order kernel with the followingstruture�!0 = 2 (1) �  � + !2 ��  �1�  + !2 � ; s0 = QQ0 ; (59)originally disussed in [30℄. Changing energy sale to s0 = Q2 orrespondsto the shift  !  � !2 (f. Setion 3.3), and we have�!0 = 2 (1) �  ()�  (1�  + !) ; s0 = Q2 : (60)Remembering that � () ' 1= for small , and iteratively solving for! = ��s� as we did in Setion 3.3, we �nd an answer whih is free of sin-gularities stronger than 1=, and so free of spurious double ollinear logs.The proedure an be repeated for energy sale s0 = Q20, expanding around = 1 and one �nds an answer free of spurious double anti-ollinear logs.Expanding (59) to order ��s gives exatly the same triple poles as in (51).4.3. The full resummed answerLet us �rst see how to orretly inlude the energy-sale resummationin the full kernel. We start with the modi�ed LL harateristi funtion,�!0 , Eq. (59) whih, as we have just seen, is free of unwanted double (anti)ollinear logs for the (anti) DIS energy sale hoie; �!0 ontains NLL or-retions, �02 �� 0()�  0(1� )� ; (61)whih must be subtrated from �1 to avoid double ounting:~�1 = �1 � �02 �� 0()�  0(1� )� : (62)The quantity ~�1 still has quadrati and single divergenes at  = 0; 1. Inanalogy with the single divergenes in �0, these need to be `shifted' in order



An Introdution to Leading and Next-to-Leading BFKL 3701to avoid spurious double-ollinear logs at higher orders when hanging en-ergy sale. This is aomplished by subtrating unshifted divergenes andreplaing them with shifted divergenes:~�!1 = ~�1 �A1(0) 0() +A1(!) 0 � + !2 �� (A1(0) � b) 0(1� )+ (A1(!)� b) 0 �1�  + !2 �+ �26 (�!0 � �0) : (63)Here we have hosen to use  0() and � () (in �0) as our quadrati andsingle `divergenes to be shifted'. We ould equally well have used 1=2and 1= respetively. The di�erene in the �nal result would amount toollinearly suppressed NNLL terms. The reason for inluding A1(!) in theshifted poles is disussed shortly.To resum the splitting-funtion and running oupling e�ets, we have toensure that � has the following struture around  = 0 and  = 1,�(; !) ' 1 + !A1 + !2 ;  � 1 ; (64a)�(; !) ' 1 + !(A1 � b)1�  + !2 ; 1�  � 1 ; (64b)where the poles have been shifted ompared to Eqs. (57) and (58) to takeinto aount that they have been written for energy sale s0 = QQ0. Thisan be obtained by writing�(; !) = �!0 + ! ~�!1�!0 : (65)Sine ! = ��s�!0 + O ���2s� the expansion of � to order ��s is orret. Addi-tionally the ratio ~�!1 =�!0 ontains (shifted) single poles at  = 0 and  = 1with oe�ients A1 and A1 � b respetively, as required by Eqs. (64). Thefull ! dependene of A1 is inluded through the A1(!) fators Eq. (63).A point to note is that (65) is no longer an expansion in ��s, but ratherin !. For this reason this resummation tehnique is known as the !-expan-sion [13℄. 4.4. ResultsFigure 11 shows various BFKL exponents as a funtion of ��s, inludingthe LL and NLL results for referene. The quantity labelled !s is theminimum value of ! = ��s�(; !), and as suh orresponds to the exponentexpeted for the gluon Green funtion at high energies. It is the power that
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An Introdution to Leading and Next-to-Leading BFKL 3703vergenes of the BFKL harateristi funtion at all orders. At NLL orderthe information thus obtained is su�ient to reprodue the true NLL or-retions to a high degree of auray, i.e. the non-ollinearly enhaned NLLorretions are small. Ensuring that the BFKL kernel orretly reproduesthe ollinear limit at all orders leads to stable preditions for the high-energypower growth. The resulting resummed power is muh more ompatible withthe data than either the LL or NLL values.For atual phenomenology, two more ingredients are required. First weshould understand the exponentiation of the harateristi funtion, beausethe running of the oupling ompliates the simple approah that we had atleading order � it turns out however that these ompliations are not toosevere [11, 22, 32℄.Seondly we need to know the virtual photon impat fators, i.e. the ou-pling of a virtual photon (DIS or ��) to the gluon hain. These have stillto be worked out at NLL. When results are eventually available it is likelythat a ollinear resummation will again be needed in order to obtain stablepreditions, in analogy with the situation for the harateristi funtion.The overall message is that despite initial fears, the large size of the NLLorretions BFKL is not an impediment to the use of BFKL resummationfor prediting high-energy phenomena. But it is neessary to understand theorigin of the large orretions, and inlude at all orders the physis whihauses them.Some of the results presented here were obtained in ollaboration withMarello Ciafaloni and Dimitri Colferai. In writing these letures I havebene�ted also from onversations with Martin Beneke, Carlo Ewerz andManeesh Wadhwa. I am grateful to Giulia Zanderighi for a areful readingof the manusript. Finally I would like to thank the organisers of the Shoolfor the weloming and stimulating environment that they provided.REFERENCES[1℄ L.N. Lipatov, Sov. J. Nul. Phys. 23, 338 (1976); E.A. Kuraev, L.N. Lipatov,V.S. Fadin, Sov. Phys. JETP 44, 443 (1976); E.A. Kuraev, L.N. Lipatov,V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya. Balitskii, L.N. Lipatov, Sov.J. Nul. Phys. 28, 822 (1978).[2℄ H1 Collaboration (Adlo� et al.), Nul. Phys. B470, 3 (1996) [hep-ex/9603004℄.[3℄ ZEUS Collaboration (Breitweg et al.), Phys. Lett. B407, 402 (1997) [hep-ex/9706009℄.[4℄ L3 Collaboration (M. Aiarri et al.), Phys. Lett. B453, 333 (1999).
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