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AN INTRODUCTION TO LEADING ANDNEXT-TO-LEADING BFKL� ��Gavin P. SalamINFN � Sezione di MilanoVia Celoria 16, Milano 20133, Italy(Re
eived O
tober 27, 1999)Of late, the �eld of BFKL physi
s has been the subje
t of signi�
antdevelopments. The 
al
ulation of the NLL terms was re
ently 
ompleted,and they turned out to be very large. Te
hniques have been proposed to re-sum these 
orre
tions. These le
tures provide an introdu
tion to the BFKLequation and some of the re
ent developments, using DGLAP evolution asthe starting point.PACS numbers: 12.38.Cy 1. Introdu
tionSome twenty �ve years ago Balitsky, Fadin, Kuraev and Lipatov (BFKL)set out to determine the high-energy behaviour of the s
attering of hadro-ni
 obje
ts within perturbative QCD. They found terms going as (�s ln s)n,where s is the squared 
entre-of-mass energy. Sin
e ln s is large it 
an 
om-pensate the smallness of ��s and thus it was ne
essary to sum this wholeseries of Leading Logarithmi
 (LL) terms. The result was that the 
rossse
tion should grow as a power of the squared 
entre-of-mass energy s [1℄.For the values of �s ' 0:2 that are typi
ally relevant, this power 
omes outas being of the order of 0:5.Over the past few years mu
h experimental e�ort has been devoted to-wards observing this phenomenon, and the 
on
lusion has 
onsistently beenthat while the 
ross se
tions do rise, that rise is mu
h slower than s0:5 (seefor example [2�6℄).The solution to this problem was to have been in the next-to-leading
orre
tions to the BFKL equation, terms �s(�s ln s)n, whi
h have been 
al-
ulated over the past ten years [7℄. The various 
ontributions were put� Presented at the XXXIX Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,May 29�June 8, 1999.�� Work supported by E.U. QCDNET 
ontra
t FMRX-CT98-0194.(3679)



3680 G.P. Salamtogether last year [8, 9℄, and to the 
onsternation of the 
ommunity turnedout to be larger than the leading 
ontribution, giving 
ross se
tions thatwere not even positive-de�nite [10, 11℄.These le
tures will illustrate the origin of some of the main featuresof both the leading and next-to-leading BFKL equations, using as a basisthe 
onstraints provided by the DGLAP equation, and follow on with adis
ussion, based on [12, 13℄, of how to solve the problems that arise atnext-to-leading order.After a brief de�nition of the problem in the next subse
tion, Se
tion 2dis
usses the DGLAP equation as relevant for high-energy s
attering, andshows how it 
an naturally be extended to the give the BFKL equation [1℄.This is followed by an illustration of the la
k of agreement of the latter withexperimental data. Se
tion 3 derives the main features of the next-to-leading
orre
tions to BFKL and dis
usses some of the problems that ensue fromtheir in
lusion. Se
tion 4 looks at how one 
an go beyond next-to-leadingorder and Se
tion 5 
on
ludes.1.1. The problem
Q20

Q2 s
Fig. 1. High-energy 
ollision of two hadroni
 obje
ts.Let us �rst de�ne a little more 
arefully the problem to be addressed.We want to study 
ollisions of two perturbative hadroni
 obje
ts, �gure 1,where the squared 
entre-of-mass energy s is mu
h larger than the typi
altransverse s
ales Q2, Q20 of the two obje
ts, whi
h in turn are mu
h largerthan the QCD s
ale, �2, in order for the problem to be perturbative. This isof phenomenologi
al relevan
e for 
ertain features of small-x deep-inelasti
s
attering (DIS) at HERA, high-energy 
�
� s
attering at LEP and theNLC, and 
on�gurations at the Tevatron and LHC involving jets that arewidely separated in rapidity. It is also of theoreti
al interest sin
e the large
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tion to Leading and Next-to-Leading BFKL 3681parton densities that arise at high energies 
an lead to novel e�e
ts su
h asparton re
ombination and multiple perturbative s
atterings.2. Leading-logarithmi
 order2.1. Deep inelasti
 s
atteringRather than entering straight into the problem of general high-energys
attering, it is helpful to 
onsider �rst high-energy s
attering in whi
h oneof the two hadroni
 obje
ts is mu
h smaller than the other, i.e. deep inelasti
s
attering, �gure 2(a). We have the 
ollision of a proton (of mass M2p ,equivalent to Q20 of �gure 1) with a photon of virtuality Q2 � M2p , whi
hwe will view as our se
ond hadroni
 obje
t. The photon-proton squared
entre-of-mass energy is ŝ. High-energy s
attering in this system, ŝ� Q2, isgenerally referred to as small-x s
attering be
ause Bjorken-x is = Q2=ŝ� 1.
electron

proton

γ

Q2 

Mp
2

ŝ xQ2
(a) (b)Fig. 2. (a) Deep inelasti
 s
attering. (b) Cut ladder diagram for the evolution ofthe parton distributions.As is well known, to 
orre
tly treat su
h 
ollisions it is ne
essary toresum terms (�s lnQ2)n, be
ause the smallness of �s is 
ompensated bythe large size of lnQ2. This is DGLAP [14℄ or 
ollinear resummation, orrenormalisation group evolution.



3682 G.P. SalamThe 
ross se
tion is proportional to the quark distribution at s
ale Q2,whi
h is related to the quark distribution at another s
ale Q20 byxq(x;Q2) = xq(x;Q20) + �s ln Q2Q20 Z dz1 Pqq(z1) xz1 q� xz1 ; Q20�+ �s ln Q2Q20 Z dz1 Pqg(z1) xz1 g� xz1 ; Q20�+ : : : (1)In an appropriate gauge this 
an interpreted as the �rst in a set of ladderdiagrams in �gure 2(b), whose rungs are strongly ordered in lnQ2.To understand the type of ladder that dominates at small x, we need tolook at the splitting fun
tions. A quark ladder (with gluon rungs) involvesiteration of the Pqq splitting fun
tion:Pqq(z) = CF2� � 1 + z2(1� z)+ + 32(1� z)� ; (2)while a gluon ladder (with gluon rungs) involves the Pgg splitting fun
tion,Pgg(z) = CA� �1z + 1(1� z)+ � 2 + z(1� z)�+ Æ(1 � z)�0 : (3)At small z, Pqq is 
onstant while Pgg grows as 1=z. So at small x, gluonladders with repeated iterations of Pgg(z � 1) dominate, i.e. we have strongordering in z.With this is mind, let us examine the properties of the unintegrated gluondistribution: F(x;Q2) = xdg(x;Q2)dQ2 ; (4)and start with a simple (though not entirely physi
al) initial 
onditionQ2F (0)(x;Q2) = �(1� x) ��Q2Q20 � 1� ; (5)where the Q2 fa
tor is in
luded on dimensional grounds (g(x;Q2) is dimen-sionless). Using the purely gluoni
 DGLAP equation in di�erential form,Q2xdg(x;Q2)dQ2 = �s 1Zx dzPgg(z) xz g �xz ;Q2� ; (6)
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tion to Leading and Next-to-Leading BFKL 3683and rewriting it in terms of the unintegrated gluon distribution, we obtainthe �rst-order 
ontribution to F ,Q2F (1)(x;Q2) = �s 1Zx dz1Pgg(z1) Q2Z dk21 F (0)� xz1 ; k21�' ��s 1Zx dz1z1 Q2Z dk21 F (0)� xz1 ; k21� = ��s ln 1x ln Q2Q20 ; (7)where ��s = �sCA=� has been introdu
ed as a notational shorthand and afa
tor �(Q2 � Q20) is impli
itly understood to be 
ontained in the result.We retain only the 1=z part of the splitting fun
tion be
ause the other partslead to 
ontributions la
king the fa
tor ln 1=x and so mu
h smaller than (7).The se
ond-order 
ontribution isQ2F (2)(x;Q2) = ��s 1Zx dz2z2 Q2Z dk22 F (1)� xz2 ; k22� = ��2s(2!)2 ln2 1x ln2 Q2Q20 ; (8)By iteration one sees that the O (��ns ) 
ontribution isQ2F (n)(x;Q2) = 1(n!)2 ���s ln 1x ln Q2Q20�n�(Q2 �Q20) : (9)Sin
e every power of ��s is a

ompanied by two logarithms, this is referredto as a double-logarithmi
 (DL) series. It resums ladders in whi
h there isstrong ordering of both the transverse and longitudinal momenta along theladders: k2n=k2n�1 � 1 and zn � 1 respe
tively.2.2. Summing the DL series
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Fig. 3. Graphi
al depi
tion of the integral equation (11)



3684 G.P. SalamOur DL series happens to be related to the series for the modi�ed I0Bessel fun
tion [15℄. Using the asymptoti
 expansion for I0 gives us theresult that Q2F(x;Q2) � exp"2s��s ln 1x ln Q2Q20# : (10)However it is useful to develop a more general method of summation, onewhi
h will be appli
able also later on. A

ordingly, we formulate the problemas an integral equationF(x;Q2) = F (0)(x;Q2) + ��s 1Zx dzz Q2Z dk2Q2 F �xz ; k2� ; (11)whi
h is depi
ted graphi
ally in �gure 3. It 
an be diagonalised by takingMellin transforms with respe
t to both x and Q2,F(x;Q2) = Z d!2�ix�! Z d
2�i 1Q2 �Q2Q20�
 F
;! ; (12)with the 
ontours running parallel to the imaginary axis, givingF
;! = F (0)
;! + ��s 1Z0 dzz z! Q2Z dk2Q2 Q2k2 � k2Q2�
 F
;! = F (0)
;! + ��s!
F
;! :(13)The pole in 
 is 
onjugate to the DGLAP logarithm of Q2 and the pole in! 
onjugate to the logarithm of x. Eq. (13) is easily solved:F
;! = !F (0)
;!! � ��s
 : (14)With the initial 
ondition (5), we have F (0)
;! = 1=!
. The inverse Mellintransform with respe
t to ! is 
arried out by 
losing the ! 
ontour to theleft in Eq. (12), leaving us withQ2F(x;Q2) = Z d
2�i x� ��s
 �Q2Q20�
 � 1
 : (15)



An Introdu
tion to Leading and Next-to-Leading BFKL 3685The integrand has a saddle-point at�
 =vuut ��s ln 1xln Q2Q20 (16)and a saddle-point evaluation of the integral givesQ2F(x;Q2) ' 12 0� 1�2 ��s ln 1x ln Q2Q20 1A1=4 exp"2s��s ln 1x ln Q2Q20 # : (17)This result was �rst obtained twenty �ve years ago by De Rujula et al. [16℄.Its main feature is that the gluon distribution rises at small x, with ane�e
tive power !e� 'vuut ��s ln 1xln Q2Q20 ; (18)whi
h de
reases as one moves towards smaller x values, and in
reases to-wards higher Q2. The H1 data for !e� shown in �gure 4 illustrate pre
iselythis trend. Detailed 
omparisons of DGLAP-indu
ed rises of F2, in
luding
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Fig. 4. The e�e
tive power of the rise of F2 [2℄; x and Q2 values are 
orrelated sothat higher Q2 also means higher x.full splitting fun
tions and a running 
oupling, su
h as those performed byGlü
k, Reya and Vogt [17℄ and Ball and Forte [18℄, show remarkably goodagreement with nearly all the small-x F2 stru
ture fun
tion data, even downto Q2 ' 4 GeV2.



3686 G.P. Salam2.3. BFKLThe above arguments are relevant in a limit where both 1=x and Q2=Q20are large, i.e. when we have strong ordering in both longitudinal and trans-verse momenta. But when the ends of the 
hain have similar transversemomenta, Q2 ' Q20, there is no longer any reason for transverse momentaalong the 
hain to be ordered. Double logs no longer dominate the 
rossse
tion and we have to sum all leading (single) logarithms (LL) of x,���s ln 1x�n : (19)This is done by the BFKL equation [1℄, whi
h 
an be derived in a number ofways. Sin
e these notes are intended only as an introdu
tion to the BFKLequation, rather than engaging in its derivation we will try to dedu
e itsmain 
hara
teristi
s from simple physi
al arguments.1In the previous Se
tion we had the following integral equation for thegluon density (11):F(x;Q2) = F (0)(x;Q2) + Z dzz Z dk2K(Q2; k2)F �xz ; k2� ; (20)where the DGLAP kernel K was justK(Q2; k2) = ��sQ2�(Q2 � k2) ; valid for Q2 � k2 : (21)Sin
e the BFKL kernel should be valid for any ratio of transverse s
alesit must have the same limit for Q2 � k2, and additionally 
orre
tly treatsituations in whi
h Q2 is of the same order as, or mu
h smaller than k2. We
an dedu
e its form in the limit k2 � Q2 by the following argument. Thes
attering of a big obje
t o� a small one, or of a small obje
t o� a big one,must have the same 
ross se
tion, and both situations must be 
orre
tlydes
ribed by the BFKL resummation. Therefore the BFKL kernel mustbe symmetri
 under the inter
hange of Q2 and k2. So when k2 � Q2 (theanti-DGLAP, or anti-
ollinear limit) we haveK(Q2; k2) = ��sk2 ; valid for k2 � Q2 : (22)If we approximate the full kernel just by its 
ollinear and anti-
ollinear limits,then we haveK
oll(Q2; k2) = ��s ���(Q2 � k2)Q2 + �(k2 �Q2)k2 � : (23)1 For the interested reader one of the simplest full derivations is perhaps to be foundwithin the dipole formulation [19℄. A wide ranging introdu
tion and dis
ussion ofmany aspe
ts of BFKL physi
s 
an be found in [20℄.



An Introdu
tion to Leading and Next-to-Leading BFKL 3687Following the treatment of the previous Se
tion, we will need its Mellintransform, �
oll(
) = 1
 + 11� 
 ; (24)where, by 
onvention, the leading fa
tor of ��s has been left out; �(
) isusually referred to as the 
hara
teristi
 fun
tion of the system. The 1=
term was present also in the pure DGLAP 
ase, and 
omes from the 
ollinearlimit. The 1=(1�
) term 
omes from the anti-
ollinear limit. The symmetry
 $ 1 � 
 is a dire
t 
onsequen
e of the symmetry under the ex
hange ofthe two transverse s
ales. This 
an be seen expli
itly from the de�nition ofthe Mellin transform, Eq. (12), where1Q2 �Q2Q20�
 = 1Q20 �Q20Q2�1�
 : (25)What we have negle
ted in our 
ollinear + anti-
ollinear approximationis the 
orre
t treatment of the kernel for k of the same order as Q. This isgiven by the full BFKL kernel [1℄ (with integration measure d2k=� be
ausethe azimuthal integration now matters):K(Q2; k2) = ��s �0� 1j ~Q� ~kj2 � Æ(Q2 � k2) kZ d2q�q21A : (26)Its Mellin transform (again leaving out the overall fa
tor of ��s) is�(
) = 2 (1) �  (
) �  (1� 
); (27)where  (x) = d ln�(x)=dx. Noting that � (
) = 1=
 + O (1) for smallx, we see that the full �(
) has the same polar stru
ture around 
 = 0and 
 = 1 as our approximation (24) re�e
ting the fa
t that the 
ollinearand anti-
ollinear limits are the same. The two 
hara
teristi
 fun
tions areshown in Fig. 5, whi
h illustrates their very similar shapes: they di�er bylittle more than a 
onstant.The pro
edure for obtaining the BFKL 
ross se
tion is analogous to thatused in the DGLAP 
ase, with 1=
 repla
ed by �(
). We start with theMellin-transformed integral equationF
;! = F (0)
;! + ��s! �(
)F
;! ; (28)
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Fig. 6. The real part of the LL BFKL 
hara
teristi
 fun
tion in the 
omplex planeand the integration 
ontour for the inverse Mellin transform.and solve for F
;!: F
;! = !F (0)
;!! � ��s�(
) : (29)The inverse Mellin transform with respe
t to ! is on
e again trivial and givesF(x;Q2) = Z d
2�i exp ���s�(
) ln 1x + 
 ln Q2Q20� � �!F (0)
;�! �! = ��s�(
) :(30)The real part of the 
hara
teristi
 fun
tion �(
), together with the integra-tion 
ontour are shown in the 
omplex plane in �gure 6. For large ln 1=x,



An Introdu
tion to Leading and Next-to-Leading BFKL 3689the integrand in (30) is dominated by behaviour of � and has a saddle-point
lose to 
 = 1=2, whi
h 
auses the gluon distribution to grow asF(x;Q2) ' x���s�( 12)q2� ��s �00�12� ln 1x � 1QQ0 ; (31)where �00 is the se
ond derivative of � with respe
t to 
. Thus the gluondistribution (and in general, high-energy 
ross se
tions) should grow as apower of x determined by the minimum value of �(
), whi
h is �(1=2) =4 ln 2. For the phenomenologi
ally reasonable value of ��s ' �s = 0:2 thisgives a power of about 0:5.It su�
es to look ba
k at �gure 4 to see that this is in
ompatible withthe rise seen in the bulk of the stru
ture fun
tion data. Some 
are is neededin interpreting this disagreement: in 
onsidering the stru
ture fun
tion data,we are trying to apply perturbative QCD to a problem whi
h is inherentlynon-perturbative (the s
ale Q20 does not satisfy our requirement Q20 � �2).However BFKL also predi
ts s
aling violations of the F2 stru
ture fun
tion[21℄, and this predi
tion 
an be shown not to depend on the propertiesof the non-perturbative region [13, 22℄. Essentially, regardless of the inputdistribution, the s
aling violations qui
kly lead to a stru
ture fun
tion whi
hrises with a power 4 ln 2��s and so is in
ompatible with the data [23℄.There exist other, theoreti
ally 
leaner, tests of BFKL. Generally theyinvolve sele
ting a pro
ess with two hard hadroni
 probes, su
h as jets ora virtual photon, separated by a large rapidity (or equivalently having alarge 
entre-of-mass energy). The requirement that both probes be hardensures that one 
an reasonably apply perturbation theory2 (unfortunatelyit generally also makes the experimental measurement mu
h harder). A ni
eexample of su
h a test is the 
ollision of two virtual photons as measuredre
ently by the L3 [4℄ and OPAL [5℄ 
ollaborations. The L3 data are shownin �gure 7. The data are signi�
antly higher than the one-gluon estimate(i.e. the predi
tion without BFKL resummation). On the other hand theLL BFKL predi
tions 
learly overshoot the data. The L3 
ollaboration per-form a �t to the data in order to determine the power of the high-energy2 Though not stri
tly the subje
t of this presentation, an exposition of BFKL physi
swould be in
omplete without at least some mention of di�usion. Be
ause transversemomenta are not ordered, small-x evolution leads to a random walk in ln kt. Themean width of this random walk � di�usion � in
reases as pln s, and at very larges eventually enters into the non-perturbative region. Thus, no matter how large thetransverse s
ales of the s
attering obje
ts, there is always an energy beyond whi
hperturbation theory loses its predi
tive power.
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2 3 4 5 6Fig. 7. The 
ross se
tion for 
�
� 
ollisions as measured by the L3 
ollabora-tion [4, 24℄. The mean Q2 values for the three energies are 3:5, 14 and 14:5GeV2respe
tively.growth, and quote a preliminary result of 0:29�0:025 for s
ales in the rangeof 3:5 to 14:5GeV2 [24℄.3The same 
on
lusion of in
ompatibility with LL BFKL 
omes out fromlooking at the intera
tions between a jet and a virtual photon in DIS [6℄,a measurement referred to as the forward-jet 
ross se
tion, be
ause of theposition of the jet in the dete
tor.3 This result should probably be interpreted with some 
aution be
ause the formulaused to 
arry out the �t assumes the LL normalisation with four light-quark �avours(whereas both the NLL 
orre
tions and the 
harm mass probably have a signi�
ante�e
t on the normalisation). A �t leaving the normalisation as a free parameterleads to a similar power but with a mu
h larger error. One should bear in mind thatbe
ause of the `limited' energies at LEP, the Q2 values (between 3:5 and 14:5 GeV2)are probably on the border of the region that 
an be 
onsidered perturbative.
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tion to Leading and Next-to-Leading BFKL 36913. Next-to-leading 
orre
tionsAll along, while the various experimental tests of LL BFKL were being
arried out and re�ned, the 
al
ulation of the next-to-leading logarithmi

orre
tions to BFKL was in progress. The next-to-leading terms are thosesuppressed by a power of �s relative to the LL series:�s(�s ln s)n : (32)In terms of the notation developed so far, this 
orresponds to working outthe NLL 
orre
tions to the 
hara
teristi
 fun
tion �, i.e. �nding �1, where��s�(
) = ��s�0(
) + ��2s�1(
) +O ���3s� : (33)The determination of �1 took 
lose to ten years [7℄, and was 
ompleted quitere
ently [8, 9℄.Rather than trying to reprodu
e parts of that derivation, we will adoptthe same approa
h that was used in the previous Se
tion, namely to de-du
e the stru
ture of the NLL 
orre
tions through a study of the 
ollinearlimit and symmetry requirements. This will translate to determining thedivergen
es around 
 = 0 and 
 = 1.We will examine three main 
ontributions: those from the running 
ou-pling, the non-singular (at small z) part of the splitting fun
tions and the
hoi
e of energy s
ale. 3.1. Running 
ouplingThe QCD 
oupling runs as��s(k2) = ��s(Q2)1 + b ��s(Q2) ln k2Q2 ; (34)where b = 11=12 � nf=6CA. What sort of higher order 
ontribution willthis lead to? The DGLAP equations tell us that in the right-hand graph ofFig. 3, when Q2 � k2 the 
orre
t s
ale for the 
oupling is Q2. By symmetry,when k2 � Q2, the 
orre
t s
ale is k2 � i.e. in the 
ollinear limit the 
orre
ts
ale is the larger of the two s
ales involved. So our 
ollinear approximationfor the kernel, Eq. (23), be
omesK
oll(Q2; k2) = ��s(Q2)�(Q2 � k2)Q2 + ��s(k2)�(k2 �Q2)k2 : (35)The Mellin transform of the �rst term just gives ��s(Q2)=
, as before. Forthe se
ond term, we re-express ��s(k2) in terms of ��s(Q2) in order to extra
t



3692 G.P. Salama fa
tor of ��s(Q2) in front of the whole result. Expanding to se
ond order,and taking the Mellin transform, givesZQ2 dk2k2 ���s(Q2)� b��2s ln k2Q2� Q2k2 � k2Q2�
 = ��s(Q2)1� 
 � b��2s(1� 
)2 ; (36)whi
h is just the anti-
ollinear part of our LL result plus a running-
ouplingNLL 
ontribution �b1 = � b(1� 
)2 : (37)The la
k of symmetry 
 $ 1�
 is due to our 
hoi
e to extra
t an asymmetri
fa
tor of ��s(Q2) in front of the answer.What is the un
ertainty on our 
ollinear approximation for �b1? Thes
heme of ��s is not de�ned, 
orresponding to an un
ertainty proportional to�0. Nor do we a priori know the 
orre
t s
ale for bran
hings when k2 andQ2 are of the same order. So the overall un
ertainty is a fun
tion with atmost single poles at 
 = 0 and 
 = 1.3.2. Splitting fun
tionIn Se
tion 2 we used only the part of the gluon splitting fun
tion that issingular at small z. At NLL, we need to in
lude the full splitting fun
tion(3). Its Mellin transform (with respe
t to x) isP!gg = 1! +A1(!) ; (38)where (for nf = 0) A1(!) = �1112 +O (!) : (39)To get the NLL 
orre
tion we 
onsider a sequen
e of two 
ollinear bran
h-ings, Fig. 8, where one of the bran
hings is a small-x bran
hing, givinga fa
tor ��s=!
 and the other is a non-small-x bran
hing, giving a fa
tor��sA1=
. Remembering that 
onvolutions in x and k2 spa
e translate toprodu
ts in the !; 
 Mellin transform spa
e, our integral equation (28) re-
eives a 
ontribution ��s! ��sA1
2 F
;! : (40)
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��s=!
��sA1=
Fig. 8. A sequen
e of a small-x and a non-small-x bran
hing.There is a 
orresponding term for a pair of anti-
ollinear bran
hings, so thatthe splitting-fun
tion 
ontribution to �1 is�A11 (
) = A1
2 + A1(1� 
)2 ; (41)where A1 = A1(0) = �11=12. A
tually this is only the nf -independent part.For non-zero nf there are 
ontributions 
oming from the nf -dependen
e ofPgg and from diagrams involving the 
onvolution of Pgq and Pqg.As in the running 
oupling 
ase we have an un
ertainty on this result,whi
h 
an arise for example from the 
ombination of a 
ollinear and an anti-
ollinear bran
hing, and thus is on
e again at the level of a fun
tion with atmost single poles at 
 = 0 and 
 = 1.3.3. Energy s
ale termsA more subtle sour
e of NLL 
orre
tions 
omes from the so-
alled ener-gy-s
ale terms. At leading order one resums terms���s ln ss0�n ; (42)where s0 
an be 
hosen arbitrarily. Changing s0 is equivalent to introdu
inga whole set of higher order terms. For a symmetri
 treatment (with respe
tto Q and Q0), a natural 
hoi
e is s0 = Q0Q. Let us then 
onsider whathappens when Q � Q0. As we obtained in Se
tion 2.1, the leading termsare 1(n!)2 ���s ln sQQ0 ln Q2Q20�n : (43)



3694 G.P. SalamBut for DIS-like situations, Q � Q0, we usually express our results as afun
tion of x = Q2=s and Q2=Q20. Let us do that for the n = 2 term:14 ���s ln sQQ0 ln Q2Q20�2 = 14 ���s ln 1x ln Q2Q20�2 + 14 ��2s ln 1x ln3 Q2Q20 +NNLL :(44)Of parti
ular interest is the se
ond term on the RHS be
ause it has more
ollinear logs than powers of ��s (it 
ontains a double 
ollinear logarithm fora single power of ��s). But we know from renormalisation group 
onstraintsthat the 
ross se
tion written as a fun
tion of x and Q2=Q20 
ontains atmost as many 
ollinear logs as powers of ��s. Therefore for the result to be
onsistent with the renormalisation group, the next-to-leading 
orre
tionsmust be su
h as to 
an
el the se
ond term on the RHS of (44), i.e. theymust 
ontain a term �14 ��2s ln s ln3 Q2Q20 : (45)In Mellin transform spa
e this will 
orrespond to a 
ontribution to �1 whi
his proportional to 1=
3. To obtain its 
oe�
ient it is not su�
ient just totake the Mellin transform of (45), be
ause not all of the 
orre
tion exponen-tiates (i.e. should be in
orporated into �) � for example some of it is to beasso
iated with the initial 
ondition.Instead, now that we know what kind of answer to expe
t, let us dire
tly
onsider the problem in Mellin-transform spa
e. We start with a resultwritten for energy s
ale QQ0 (
f. Eqs. (12) and (29)),F(s;Q2) = Z d!2�i Z d
2�i � sQQ0�! 1Q2 �Q2Q20�
 !F (0)
;!! � ��s�(
) ; (46)and then note that sin
e� sQQ0�! �Q2Q20�
 = � sQ2�! �Q2Q20�
+!2 ; (47)rewriting (46) with energy s
ale s0 = Q2 is just equivalent to shifting
 ! 
 � !2 in � and F (0):F(s;Q2) = Z d!2�i Z d
2�i � sQ2�! 1Q2 �Q2Q20�
 !F (0)
�!2 ;!! � ��s�(
 � !2 ) : (48)
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 � !2 ) in powers of ��s, re
ursively using the relation! = ��s� we get ��
 � !2 � = �(
)� ��s��02 +O ���2s� : (49)In the 
ollinear limit (
 ! 0), sin
e �(
) goes as 1=
, the O (��s) pie
e hasthe behaviour � ��s��02 ' ��s2
3 : (50)This is the analogue of the ln3Q2 term seen earlier (44) and it must besubtra
ted from � at s
ale s0 = QQ0 in order for the 
ollinear limit withenergy s
ale Q2 to be free of unwanted double 
ollinear logs. There is ananalogous 1=2(1 � 
)3 pie
e to be subtra
ted for the anti-
ollinear limit tobe 
orre
t (i.e. free of double anti-
ollinear logs for energy s
ale s0 = Q20).Overall therefore we have the following NLL energy-s
ale 
orre
tions (fors0 = QQ0): �s01 = � 12
3 � 12(1 � 
)3 : (51)As was the 
ase for the running 
oupling and splitting fun
tion terms, ouranalysis leaves us with an un
ertainty whi
h amounts to a fun
tion with atmost single poles at 
 = 0 and 
 = 1.3.4. Putting things togetherPutting together Eqs. (37), (41) and (51) gives us the following answerfor the 
ollinearly-enhan
ed part of the NLL 
orre
tions (nf = 0):�
oll1 (
) = A1
2 + A1 � b(1� 
)2 � 12
3 � 12(1 � 
)3 ; (52)with A1 = �11=12. Our 
ollinear approximation guarantees the 
orre
tnessof the 
oe�
ients of the 
ubi
 and quadrati
 divergen
es at 
 = 0 and 
 = 1.The true NLL 
orre
tions as assembled in [8, 9℄ are, in the ms s
hemeand for nf = 0 (the nf dependen
e turns out to be small)�1(
) = � �2 
os(�
)4 sin2(�
)(1� 2
) �3 + 2 + 3
(1� 
)(3� 2
)(1 + 2
)�� b2 ��20(
)�  0(
) +  0(1� 
)�+  00(
)4 +  00(1� 
)4+�6736 � �212��0(
) + 32�(3) + �34 sin(�
) � �(
) ; (53)
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) = 1Xn=0(�1)n � (n+ 1 + 
)�  (1)(n+ 
)2 +  (n+ 2� 
)�  (1)(n+ 1� 
)2 � : (54)It is possible to make a dire
t identi�
ation between parts of (53) and (52)in terms of the 
oe�
ients of the double and triple poles. The �rst lineof (53) is identi�able with the A1 pie
e of (52) and so originates from thesplitting fun
tion. The running-
oupling dependen
e enters through the �rstterm on the se
ond line of (53), while the energy-s
ale dependent pie
e isformed by the last two terms of that line. The remaining terms are freeof double and triple poles. Of these terms, so far only the �rst one on thethird line of (53) has been understood: it is asso
iated with the fa
t thatthe natural s
heme for pro
esses involving soft gluons is the CMW or gluon-bremsstrahlung s
heme [25℄. When writing an answer in the ms s
heme thisleads to a 
orre
tion term whi
h is (67=36��2=12)��s times the leading orderresult.Figure 9 shows the full �1 together with our 
ollinear approximation.There is a remarkable similarity between them: in the range 0 < 
 < 1 theynever di�er by more than 7%. Possible reasons for the surprisingly goodagreement will be dis
ussed later, in Se
tion 4.
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Fig. 9. A 
omparison of our 
ollinear approximation and the full result for �1;nf = 0. 3.5. Consequen
es of the NLL 
orre
tionsFigure 9 shows that the NLL 
orre
tions to � are very large. For 
 = 1=2we have (again for nf = 0)�(1=2) = �0(1=2)(1 � 6:47��s) : (55)
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Fig. 10. The real part of the LL + NLL 
hara
teristi
 fun
tion for ��s = 0:2,together with the integration 
ontour, in the 
omplex plane.Thus for ��s = 0:2, the predi
ted power is negative, at about �0:16, whi
his no more in agreement with the data than the leading power.What is even more worrisome is that the stru
ture of the 
hara
teristi
fun
tion 
hanges radi
ally. In �gure 6, there is a single saddle-point at 
 =1=2, i.e. on the real axis. With the NLL 
ontributions in
luded, �gure 10,there are now two saddle-points, at 
omplex values of 
 whi
h we will 
all�
; �
� [10℄. Sin
e the 
ross se
tion goes as�(s;Q2; Q20) � � sQQ0���s�(�
) 1Q2 �Q2Q20��
 + �
 $ �
�; (56)the fa
t that �
 is 
omplex means that the 
ross se
tion os
illates as a fun
tionof lnQ2=Q20 (it remains real be
ause of the 
ontribution from the 
omplex-
onjugate saddle point). This behaviour o

urs as long as � has a negativese
ond derivative at 
 = 1=2, whi
h is the 
ase for ��s & 0:05. In other wordsthere exists no phenomenologi
ally a

essible domain in whi
h the in
lusionof the NLL 
orre
tions gives a sensible result.4. Beyond NLLThe solution is bound to lie with higher orders. Shortly after prelimi-nary results on �1 had appeared, it was suggested that stable predi
tionsmight be obtained by in
lusion of the NNLL and NNNLL terms [26℄. Butremembering that the LL 
al
ulation took about a year, and the NLL 
al-
ulation ten years, a reasonable estimate for the time to 
al
ulate the NNLLterms might lie somewhere between an arithmeti
 (19 years) and a geometri




3698 G.P. Salam(100 years) extrapolation. Even were these 
ontributions to be 
al
ulated,there is a
tually no guarantee that the resulting series would 
onverge forthe values of ��s of interest!So the only option left is to try and guess the higher-order terms andthen to resum them (we are now talking about the resummation of a re-summation). The question is whether there is some reliable way of guessingthem. Various approa
hes have been investigated [12, 13, 27�29℄. I here willadvo
ate a method 
losely related to that used in the previous Se
tion toestimate the NLL 
orre
tions � namely a method based on the study ofthe 
ollinear limit [12, 13℄.We have already seen in the previous Se
tion that a study of the 
ollinearlimit is a powerful tool. For the NLL 
hara
teristi
 fun
tion it gave us the
ubi
 and quadrati
 divergen
es at 
 = 0 and 
 = 1, and in the range0 < 
 < 1 reprodu
ed the full answer to remarkably good a

ura
y. How
ome?There is a temptation to argue that sin
e 
 = 1=2 is a moderately smallnumber, one 
an legitimately 
arry out an expansion in powers of 
 and 1�
(in
luding the �rst two terms in the expansion for �0, i.e. the two poles anda 
onstant, also seems to do quite well, reprodu
ing the full answer to withinabout 8%). A slightly better motivated argument might be the following.For 
 = 1=2, the transverse momentum integrals in the Mellin transform
onverge quite rapidly and so one might not expe
t a 
ollinear approxima-tion to work too well. However at higher orders, pie
es of the transversemomentum integrals are a

ompanied by logarithms of transverse momen-tum. These have the e�e
t of shifting the dominant part of the integralout towards more 
ollinear regions, where the 
ollinear approximation itselfbe
omes better.So there are reasons to believe that 
ollinearly-enhan
ed 
ontributionsmight give a signi�
ant part of the higher-order 
orre
tions even beyondNLL.4 A more general justi�
ation for 
arrying out the 
ollinear resumma-tion is that one wants to be able to use one's answer in the 
ollinear limit.Sin
e the 
ollinear limit involves taking 
 
lose to zero, where higher ordersinvolve su

essively more divergent terms, the only hope of a sensible answerthere is a 
ollinear resummation.The determination of the 
ollinearly enhan
ed 
orre
tions 
an be dividedinto two parts. The �rst deals with terms in the same 
lass as the 1=
2 termsin �1, single 
ollinear logarithms originating from the splitting fun
tion and4 This statement should really be restri
ted to those 
orre
tions that 
an be asso
i-ated with a single ladder (referred to as t-
hannel iteration). A
tually at NNLL,
orre
tions arise asso
iated with the presen
e of two ladders (the start of s-
hanneliteration), i.e. saturation, or unitarity 
orre
tions. Our aim here is to understand thehigh-energy behaviour of a single ladder.
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oupling; the se
ond addresses the terms in the same 
lass as the1=
3 term in the NLL result, namely double 
ollinear logarithms. We will
onsider only an outline of the method. The interested reader is referred tothe original referen
es [12, 13℄ for the full details.4.1. Single 
ollinear logs � running 
oupling and splitting fun
tion termsIt is fairly straightforward to 
al
ulate the 
ollinear NnLL 
ontributionsto the BFKL kernel from splitting fun
tion and running 
oupling e�e
ts.One just takes diagrams su
h as �gure 8 with an arbitrary number of non-small-x emissions, inserting and expanding the appropriate running 
ouplingfor ea
h bran
hing (the answer is given in [13℄). One is then left with thetri
ky problem of resumming the resulting set of terms.An equivalent approa
h essentially treats the small-x and non-small-xbran
hings on a more similar footing [13℄. In Eq. (28) we have a fa
tor ��s=!
oming from the 1=z part of the Pgg splitting fun
tion, and a fa
tor of �(
)from the transverse stru
ture of the bran
hing. In the 
ollinear limit, we 
anrepla
e 1=! with the full splitting fun
tion, P!gg. So the 
ollinear behaviourof the ��s�=! fa
tor be
omes (for DIS energy s
ale, s0 = Q2)��sP!gg
 = ��s(Q2)! 1 + !A1(!)
 ) � ' 1 + !A1(!)
 ; (57)where we have used Eq. (38) for P!gg. The 
orre
t s
ale in the bran
hingis Q2 (the largest s
ale in the problem) so there are no running 
oupling
orre
tions.The situation in the anti-
ollinear limit is very similar ex
ept for an issuerelated to the running 
oupling: the appropriate s
ale for the bran
hing isnot Q2, but k2 (referred to Fig. 3). If we want to extra
t a fa
tor of ��s(Q2)the di�eren
e of s
ales must be taken into a

ount. It turns out [13℄ that this
an be done at all orders by repla
ing A1 with A1� b, so that the resummedanti-
ollinear stru
ture is (with the anti-DIS energy s
ale 
hoi
e, s0 = Q20)��s(Q2)! 1 + !(A1(!)� b)1� 
 ) � ' 1 + !(A1(!)� b)1� 
 : (58)The reader 
an verify that substituting ! = ��s�0 into the expressions for �in (57) and (58) reprodu
es the 
orre
t NLL 
ollinear-enhan
ed terms.4.2. Double 
ollinear logs � energy-s
ale termsWe have just given resummed answers for the 
ollinear and anti-
ollinearbehaviours of the kernel with DIS and anti-DIS energy s
ale 
hoi
es respe
-tively. We really want the answer for a 
ommon energy s
ale, say s0 = QQ0.



3700 G.P. SalamWe saw in Se
tion 3.3, that 
hanges in s0 introdu
e higher-order double-
ollinear logs (the 1=
3 and 1=(1� 
)3 terms). The higher-order 
orre
tionshad to be su
h that for energy s
ale s0 = Q2 there were no su
h termsaround 
 = 0, and similarly around 
 = 1 for energy s
ale s0 = Q20. Fors0 = QQ0, appropriate double-
ollinear log 
ounterterms had to be in
ludedin order to satisfy the 
onditions for the other energy s
ales. One 
an workout, order by order, the 
ounterterms for higher kernels, but it soon getstedious. In any 
ase one �nds that the resulting series of terms is divergentfor reasonable values of �s.The solution [12℄ exploits the fa
t that a 
hange of energy s
ale 
orre-sponds to a shift of 
 by an amount proportional to ! (
f. Se
tion 3.3). Forenergy s
ale s0 = QQ0, one writes a leading-order kernel with the followingstru
ture�!0 = 2 (1) �  �
 + !2 ��  �1� 
 + !2 � ; s0 = QQ0 ; (59)originally dis
ussed in [30℄. Changing energy s
ale to s0 = Q2 
orrespondsto the shift 
 ! 
 � !2 (
f. Se
tion 3.3), and we have�!0 = 2 (1) �  (
)�  (1� 
 + !) ; s0 = Q2 : (60)Remembering that � (
) ' 1=
 for small 
, and iteratively solving for! = ��s� as we did in Se
tion 3.3, we �nd an answer whi
h is free of sin-gularities stronger than 1=
, and so free of spurious double 
ollinear logs.The pro
edure 
an be repeated for energy s
ale s0 = Q20, expanding around
 = 1 and one �nds an answer free of spurious double anti-
ollinear logs.Expanding (59) to order ��s gives exa
tly the same triple poles as in (51).4.3. The full resummed answerLet us �rst see how to 
orre
tly in
lude the energy-s
ale resummationin the full kernel. We start with the modi�ed LL 
hara
teristi
 fun
tion,�!0 , Eq. (59) whi
h, as we have just seen, is free of unwanted double (anti)
ollinear logs for the (anti) DIS energy s
ale 
hoi
e; �!0 
ontains NLL 
or-re
tions, �02 �� 0(
)�  0(1� 
)� ; (61)whi
h must be subtra
ted from �1 to avoid double 
ounting:~�1 = �1 � �02 �� 0(
)�  0(1� 
)� : (62)The quantity ~�1 still has quadrati
 and single divergen
es at 
 = 0; 1. Inanalogy with the single divergen
es in �0, these need to be `shifted' in order
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ollinear logs at higher orders when 
hanging en-ergy s
ale. This is a

omplished by subtra
ting unshifted divergen
es andrepla
ing them with shifted divergen
es:~�!1 = ~�1 �A1(0) 0(
) +A1(!) 0 �
 + !2 �� (A1(0) � b) 0(1� 
)+ (A1(!)� b) 0 �1� 
 + !2 �+ �26 (�!0 � �0) : (63)Here we have 
hosen to use  0(
) and � (
) (in �0) as our quadrati
 andsingle `divergen
es to be shifted'. We 
ould equally well have used 1=
2and 1=
 respe
tively. The di�eren
e in the �nal result would amount to
ollinearly suppressed NNLL terms. The reason for in
luding A1(!) in theshifted poles is dis
ussed shortly.To resum the splitting-fun
tion and running 
oupling e�e
ts, we have toensure that � has the following stru
ture around 
 = 0 and 
 = 1,�(
; !) ' 1 + !A1
 + !2 ; 
 � 1 ; (64a)�(
; !) ' 1 + !(A1 � b)1� 
 + !2 ; 1� 
 � 1 ; (64b)where the poles have been shifted 
ompared to Eqs. (57) and (58) to takeinto a

ount that they have been written for energy s
ale s0 = QQ0. This
an be obtained by writing�(
; !) = �!0 + ! ~�!1�!0 : (65)Sin
e ! = ��s�!0 + O ���2s� the expansion of � to order ��s is 
orre
t. Addi-tionally the ratio ~�!1 =�!0 
ontains (shifted) single poles at 
 = 0 and 
 = 1with 
oe�
ients A1 and A1 � b respe
tively, as required by Eqs. (64). Thefull ! dependen
e of A1 is in
luded through the A1(!) fa
tors Eq. (63).A point to note is that (65) is no longer an expansion in ��s, but ratherin !. For this reason this resummation te
hnique is known as the !-expan-sion [13℄. 4.4. ResultsFigure 11 shows various BFKL exponents as a fun
tion of ��s, in
ludingthe LL and NLL results for referen
e. The quantity labelled !s is theminimum value of ! = ��s�(
; !), and as su
h 
orresponds to the exponentexpe
ted for the gluon Green fun
tion at high energies. It is the power that
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NLLFig. 11. Various BFKL exponentsone expe
ts to observe in 
�
� 
ollisions or forward-jet and Mueller-Naveletjet observables at ep and pp 
olliders respe
tively [22℄.Also plotted is a se
ond quantity labelled !
. This 
orresponds to theposition of the singularity of the gluon anomalous dimension, i.e. the powergrowth of small-x splitting fun
tions. Though we have not really dis
ussedthe resummed gluon anomalous dimension, it is worth noting that !
 issigni�
antly di�erent from !s be
ause it 
ontains additional 
orre
tionsO(��5=3s ), whi
h arise be
ause the e�e
tive s
ale for BFKL evolution in theanomalous dimension turns out, dynami
ally, to be 
onsiderably higher thanQ2. Corre
tions of this form were �rst noti
ed in [31℄. In general, su
h 
or-re
tions are present for quantities involving an e�e
tive 
uto� on the lowesta

essible transverse momentum. Another example of su
h a quantity is theelasti
-s
attering 
ross se
tion. It should be emphasised therefore that thedi�eren
e between !s and !
 is not an un
ertainty on the BFKL exponent,but rather re�e
ts di�eren
es between various pro
esses.The a
tual un
ertainty on the results 
an be determined by examiningthe e�e
t of s
heme 
hanges and di�erent approa
hes to the details of theresummation (as dis
ussed for example in the previous Se
tion, with regardsto the shifting of divergen
es), as well as a study of solvable models [22℄ orother possible higher-order e�e
ts [29℄. For ��s ' 0:2 it is about 15%.5. Con
lusions and OutlookIn these le
tures, we have seen how to dedu
e many of the properties ofthe BFKL pomeron. The re
urrent theme has been the study of the 
ollinear(and anti-
ollinear) limit, whi
h gives information about the stru
ture of di-
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es of the BFKL 
hara
teristi
 fun
tion at all orders. At NLL orderthe information thus obtained is su�
ient to reprodu
e the true NLL 
or-re
tions to a high degree of a

ura
y, i.e. the non-
ollinearly enhan
ed NLL
orre
tions are small. Ensuring that the BFKL kernel 
orre
tly reprodu
esthe 
ollinear limit at all orders leads to stable predi
tions for the high-energypower growth. The resulting resummed power is mu
h more 
ompatible withthe data than either the LL or NLL values.For a
tual phenomenology, two more ingredients are required. First weshould understand the exponentiation of the 
hara
teristi
 fun
tion, be
ausethe running of the 
oupling 
ompli
ates the simple approa
h that we had atleading order � it turns out however that these 
ompli
ations are not toosevere [11, 22, 32℄.Se
ondly we need to know the virtual photon impa
t fa
tors, i.e. the 
ou-pling of a virtual photon (DIS or 
�
�) to the gluon 
hain. These have stillto be worked out at NLL. When results are eventually available it is likelythat a 
ollinear resummation will again be needed in order to obtain stablepredi
tions, in analogy with the situation for the 
hara
teristi
 fun
tion.The overall message is that despite initial fears, the large size of the NLL
orre
tions BFKL is not an impediment to the use of BFKL resummationfor predi
ting high-energy phenomena. But it is ne
essary to understand theorigin of the large 
orre
tions, and in
lude at all orders the physi
s whi
h
auses them.Some of the results presented here were obtained in 
ollaboration withMar
ello Ciafaloni and Dimitri Colferai. In writing these le
tures I havebene�ted also from 
onversations with Martin Beneke, Carlo Ewerz andManeesh Wadhwa. I am grateful to Giulia Zanderighi for a 
areful readingof the manus
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