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TWO LECTURES ON SMALL x AND HIGH GLUONDENSITY�Larry M
LerranNu
lear Theory Group, Brookhaven National LaboratoryUpton, NY 11973(Re
eived O
tober 19, 1999)In these le
tures, I shall dis
uss small x physi
s and the 
onsequen
esof the high gluon density whi
h arises as x de
reases. I argue that anunderstanding of this problem would lead to knowledge of the high energyasymptoti
s of hadroni
 pro
esses. The high gluon density should allow a�rst prin
iples 
omputation of these asymptoti
s from QCD. This physi
smight be experimentally probed in heavy ion 
olliders or in high energyele
tron-nu
lear 
ollisionsPACS numbers: 12.38.�t, 12.38.Lg1. Le
ture I: Lots of problems1.1. Introdu
tionI think we all believe that QCD des
ribes hadroni
 physi
s. It has beentested in a variety of environments. For high energy short distan
e phenom-ena, perturbative QCD 
omputations su

essfully 
onfront experiment. Inlatti
e Monte-Carlo 
omputations, one gets a su

essful semi-quantitativedes
ription of hadroni
 spe
tra, and perhaps in the not too distant futureone will obtain pre
ise quantitative agreement.At present, however, all analyti
 
omputations and all pre
ise QCD testsare limited to the small 
lass of problems whi
h 
orrespond to short distan
ephysi
s. Here there is some 
hara
teristi
 energy transfer s
ale E, and oneuses asymptoti
 freedom, �S(E)! 0 (1)as E !1.� Presented at the XXXIX Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,May 29�June 8, 1999. (3707)
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LerranOne question whi
h we might ask is whether there are any non-perturbative �simple phenomena� whi
h arise from QCD whi
h are worthyof further e�ort. The questions I would ask before I would be
ome interestedin understanding su
h phenomena are� Is the phenomenon simple and pervasive?� Is it reasonably plausible that one 
an understand the phenomena from�rst prin
iples, and 
ompute how it would appear in nature?I will in this le
ture try to explain a wide 
lass of phenomena in QCDwhi
h are pervasive, and appear to follow simple patterns. I will then tryto explain why I believe that these phenomena 
an be simply understoodwithin QCD. 1.2. Total 
ross se
tions at asymptoti
 energyComputing total 
ross se
tion as E ! 1 is one of the great unsolvedproblems of QCD. Unlike for pro
esses whi
h are 
omputed in perturbationtheory, it is not required that any energy transfer be
ome large as the total
ollision energy E ! 1. Computing a total 
ross se
tion for hadroni
s
attering therefore appears to be intrinsi
ally non-perturbative. In the 60'sand early 70's, Regge theory was extensively developed in an attempt tounderstand the total 
ross se
tion. The results of this analysis were to mymind in
on
lusive, and 
ertainly 
an not be 
laimed to be a �rst prin
iplesunderstanding from QCD.Typi
ally, it is assumed that the total hadroni
 
ross se
tion grows asln 2E as E !1. This is the so 
alled Froisart bound whi
h 
orresponds tothe maximal growth allowed by unitarity of the S matrix. Is this 
orre
t?Is the 
oe�
ient of ln 2E universal for all hadroni
 pre
esses? Why is theunitarity limit saturated? Can we understand the total 
ross se
tion from�rst prin
iples in QCD? Is it understandable in weakly 
oupled QCD, or isit an intrinsi
ally non-perturbative phenomenon?1.3. How are parti
le produ
ed in high energy 
ollisions?The total multipli
ity of produ
ed parti
les is an in
reasing fun
tion ofenergy for hadroni
 
ollisions. The total multipli
ity for pp and for pp 
ol-lisions has roughly the same energy dependen
e. Is whatever is 
ausing thein
rease in multipli
ity in these 
ollisions arising from the same me
hanism?The obvious question is 
an we 
ompute N(E), the total multipli
ity ofprodu
ed parti
les as a fun
tion of energy?At this point it is useful to develop some mathemati
al tools. I willintrodu
e some useful kinemati
 variables: light 
one 
oordinates. Let the



Two Le
tures on Small x and High Gluon Density 3709light 
one longitudinal momenta bep� = 1p2(E � pz) : (2)Note that the invariant dot produ
tp � q = pt � qt � p+q� � p�q+ (3)and that p+p� = 12(E2 � p2z) = 12(p2T +m2) = 12m2T : (4)This equation de�nes the transverse massmT . (Please note that my metri
 isthe negative of that 
onventionally used in parti
le physi
s. An unfortunate
onsequen
e of my edu
ation. Students, please feel free to 
onvert everythingto your favorite metri
.)Consider a 
ollision in the 
enter of mass frame. The right moving par-ti
le has p+1 � p2 j pz j and p�1 � 12p2m2T= j pz j. For the 
olliding parti
lesmT = mproje
tile, that is be
ause the transverse momentum is zero, the trans-verse mass equals the parti
le mass For parti
le 2, we have p+2 = p�1 andp�2 = p+1 .If we de�ne the Feynman x of a produ
ed pion asx = p+� =p+1 (5)then 0 � x � 1. The rapidity of a pion is de�ned to bey = 12 ln (p+� =p�� ) = 12 ln (2p+2=m2T ) : (6)For pions, the transverse mass in
ludes the transverse momentum of thepion.The pion rapidity is always in the range �yCM � y � yCM where yCM =ln (p+=mproje
tile) All the pions are produ
ed in a distribution of rapiditieswithin this range.These de�nitions are useful, among other reasons, be
ause of their simpleproperties under longitudinal Lorentz boosts: p� ! ��1p� where � is a
onstant. Under boosts, the rapidity just 
hanges by a 
onstant. (Students,please 
he
k this relationship for momenta under boosts.)It is 
onvenient in the 
enter of mass frame to think of the positiverapidity pions as somehow related to the right moving parti
le and the neg-ative rapidity parti
les as related to the left moving parti
les. We de�ne
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Lerranx = p+=p+proje
tile and x0 = p�=p�proje
tile and use x for positive rapidity pionsand x0 for negative rapidity pions.Of 
ourse more than just pions are produ
ed in high energy 
ollisions.The variables we just presented easily generalize to these parti
les.Several theoreti
al issues arise in multiparti
le produ
tion. Can we 
om-pute dN=dy? or even dN=dy at y = 0? How does the average transversemomentum of produ
ed parti
les < pT > behave with energy? What is theratio of produ
ed strange/nonstrange, and 
orresponding rations of 
harm,top, bottom et
 at y = 0 as the 
enter of mass energy approa
hes in�nity?Does multiparti
le produ
tion as E !1 at y = 0 be
ome� Simple?� Understandable?� Computable? 1.4. Deep inelasti
 s
atteringIn deep inelasti
 s
attering, an ele
tron emits a virtual photon whi
hs
atters from a quark in a hadron. The momentum and energy transfer ofthe ele
tron is measured, and the results of the break up are not. In thesele
tures, we 
annot develop the theory of deep inelasti
 s
attering. Su�
eit to say, that this measurement is su�
ient at large momenta transfer Q2to measure the distributions of quarks in a hadron.To des
ribe the quark distributions, it is 
onvenient to work in a referen
eframe where the hadron has a large longitudinal momentum p+hadron. The
orresponding light 
one momentum of the 
onstituent is p+
onstituent. Wede�ne x = p+
onstituent=p+hadron. (This x variable is equal to the Bjorken xvariable, whi
h 
an be de�ned in a frame independent way. In this frameindependent de�nition, x = Q2=2p � Q where p is the momentum of thehadroni
 target and Q is the momentum of the virtual photon. Students,please 
he
k that this is true.) The 
ross se
tion whi
h one extra
ts in deepinelasti
 s
attering 
an be related to the distributions of quarks inside ahadron, dN=dx.It is useful to think about the distributions as a fun
tion of rapidity. Wede�ne this for deep inelasti
 s
attering asy = yhadron � ln (1=x) ; (7)and the invariant rapidity distribution asdN=dy = xdN=dx : (8)



Two Le
tures on Small x and High Gluon Density 3711A dN=dy distribution for 
onstituent gluons is similar to that for thedistribution of produ
ed pions in hadroni
 
ollisions. The main di�eren
e isthat in deep inelasti
 s
attering, the rapidity goes from that of the proje
tileto zero, while in hadron hadron s
attering, it goes from the rapidity of theproje
tile to that of the target. In the 
enter of mass frame for hadron
ollisions, the plot is essentially twi
e as wide as that for deep inelasti
s
attering, and looks roughly like the deep inelasti
 distribution folded overon itself.We shall later argue that there is in fa
t a relationship between thestru
ture fun
tions as measured in deep inelasti
 s
attering and the rapiditydistributions for parti
le produ
tion. We will argue that the gluon distribu-tion fun
tion is in fa
t proportional to the pion rapidity distribution.The small x problem is that in experiments at Hera, the rapidity dis-tribution fun
tion for quarks grows as the rapidity di�eren
e between thequark and the hadron grows. This growth appears to be more rapid thansimply j yproj � y j or (yproj � y)2, and various theoreti
al models based onthe original 
onsiderations of Lipatov and 
olleagues suggest it may grow asan exponential in j yproj � y j [1℄. If the rapidity distribution grew at mostas y2, then there would be no small x problem. We shall try to explain thereasons for this later in this le
ture.At HERA, the gluon stru
ture fun
tion has been measured at variousvalues of Q2 and x [2℄. The gluon distribution xg(x) rises at small x. This isthe small x problem. It is amusing that the rise in the gluon stru
ture fun
-tion at small x is similar qualitatively to the in
rease in the pion multipli
ityin high energy hadroni
 intera
tions.Why is the small x rise in the gluon distribution a problem? [3℄ Imaginewe view a nu
leon head on. As we add more and more 
onstituents, thehadron be
omes more and more 
rowded. If we were to try to measure these
onstituents with say an elementary photon probe, as we do in deep inelasti
s
attering, we might expe
t that the hadron would be
ome so 
rowded thatwe 
ould not ignore the shadowing e�e
ts of 
onstituents as we make themeasurement. (Shadowing means that some of the partons are obs
uredby virtue of having another parton in front of them. For hard spheres,for example, this would result in a de
rease of the s
attering 
ross se
tionrelative to what is expe
ted from in
oherent independent s
attering.)In fa
t, in deep inelasti
 s
attering, we are measuring the 
ross se
tion fora virtual photon 
� and a hadron, �
�hadron. Making x smaller 
orrespondto in
reasing the energy of the intera
tion (at �xed Q2). An exponentialgrowth in the rapidity 
orresponds to power law growth in 1=x, whi
h inturn implies power law growth with energy. This growth, if it 
ontinues
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Lerranforever, violates unitarity. The Froissart bound will allow at most ln 2(1=x).(The Froissart bound is a limit on how rapidly a total 
ross se
tion 
an rise.It follows from the unitarity of the s
attering matrix.)We shall later argue that in fa
t the distribution fun
tions at �xed Q2do in fa
t saturate and 
ease growing so rapidly at high energy. The totalnumber of gluons however demands a resolution s
ale, and we will see thatthe natural intrinsi
 s
ale is growing at smaller values of x, so that e�e
tively,the total number of gluons within this intrinsi
 s
ale is always in
reasing.The quantity �2 = 1�R2 dNdy (9)de�nes this intrinsi
 s
ale. Here �R2 is the 
ross se
tion for hadroni
 s
at-tering from the hadron. For a nu
leus, this is well de�ned. For a hadron, thisis less 
ertain, but 
ertainly if the wavelengths of probes are small 
omparedto R, this should be well de�ned. If�2 >> �2QCD (10)as the Hera data suggests, then we are dealing with weakly 
oupled QCDsin
e �S(�) << 1.Even though QCD may be weakly 
oupled at small x, that does not meanthe physi
s is perturbative. There are many examples of nonperturbativephysi
s at weak 
oupling. An example is instantons in ele
troweak theory,whi
h lead to the violation of baryon number. Another example is theatomi
 physi
s of highly 
harged nu
lei. The ele
tron propagates in theba
kground of a strong nu
lear Coulomb �eld, but on the other hand, thetheory is weakly 
oupled and there is a systemati
 weak 
oupling expansionwhi
h allows for systemati
 
omputation of the properties of high Z (Z isthe 
harge of the nu
leus) atoms.If the theory is lo
al in rapidity, then the only parameter whi
h 
andetermine the physi
s at that rapidity is �2. (Lo
ality in rapidity meansthat there are not long range 
orrelations in the hadroni
 wavefun
tion as afun
tion of rapidity. In pion produ
tion, it is known that ex
ept for overallglobal 
onserved quantities su
h as energy and total 
harge, su
h 
orrelationsare of short range.) Note that if only �2 determines the physi
s, then inan approximately s
ale invariant theory su
h as QCD, a typi
al transversemomentum of a 
onstituent will also be of order �2. If �2 >> 1=R2, whereR is the radius of the hadron, then the �nite size of the hadron be
omesirrelevant. Therefore at small enough x, all hadrons be
ome the same. Thephysi
s should only be 
ontrolled by �2.There should therefore be some equivalen
e between nu
lei and say pro-tons. When their �2 values are the same, their physi
s should be the same.



Two Le
tures on Small x and High Gluon Density 3713We 
an take an empiri
al parameterization of the gluon stru
ture fun
tionsas 1�R2 dNdy � A1=3xÆ ; (11)where Æ � :2 � :3. This suggests that there should be the following 
orre-sponden
es:� RHIC with nu
lei � Hera with protons� LHC with nu
lei � Hera with nu
leiSin
e the physi
s of high gluon density is weak 
oupling we have thehope that we might be able to do a �rst prin
iple 
al
ulation of� the gluon distribution fun
tion� the quark and heavy quark distribution fun
tions� the intrinsi
 pT distributions quarks and gluonsWe 
an also suggest a simple es
ape from unitarity arguments whi
hsuggest that the gluon distribution fun
tion must not grow at arbitrarilysmall x. The point is that at smaller x, we have larger � and 
orrespondinglylarger pT . A typi
al parton added to the hadron has a size of order 1=pT .Therefore although we are in
reasing the number of gluons, we do it byadding in more gluons of smaller and smaller size. A probes of size resolution�x � 1=pT at �xed Q will not see partons smaller than this resolution size.They therefore do not 
ontribute to the �xed Q2 
ross se
tion, and there isno 
ontradi
tion with unitarity.1.5. Heavy ion 
ollisionsImagine we have two Lorentz 
ontra
ted nu
lei approa
hing one anotherat the speed of light. Sin
e they are well lo
alized, they 
an be thought of assitting at x� = 0, that is along the light 
one, for t < 0 At x� = 0, the nu
lei
ollide. To analyze this problem for t � 0, it is 
onvenient to introdu
e atime variable whi
h is Lorentz 
ovariant under longitudinal boosts� =pt2 � z2 (12)and a spa
e-time rapidity variable� = 12 ln � t� zt+ z� : (13)
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LerranFor free streaming parti
les z = vt = pzE t ; (14)we see that the spa
e-time rapidity equals the momentum spa
e rapidity� = y : (15)If we have distributions of parti
les whi
h are slowly varying in rapidity,it should be a good approximation to take the distributions to be rapidityinvariant. This should be valid at very high energies in the 
entral region.By the 
orresponden
e between spa
e-time and momentum spa
e rapidity,it is plausible therefore to assume that distributions are independent of �.Therefore distributions are the same on lines of 
onstant � . At z = 0, � = t,so that � is a longitudinally Lorentz invariant time variable.We expe
t that at very late times, we have a free streaming gas ofhadrons. These are the hadrons whi
h eventually arrive at our dete
tor.At some earlier time, these parti
le de
ouple from a dense gas of stronglyintera
ting hadrons. As we pro
eed earlier in time, at some time there is atransition between a gas of hadrons and a plasma of quarks and gluons. Thismay be through a �rst order phase transition where the system might existin a mixed phase for some length of time, or perhaps there is a 
ontinuous
hange in the properties of the systemAt some earlier time, the quarks and gluons of the quark-gluon plasmaare formed. This is at some time of the order of a Fermi, perhaps as small as:1 Fermi. As they form, the parti
les s
atter from one another, and this 
anbe des
ribed using the methods of transport theory. At some later time theyhave thermalized, and the system 
an be approximately des
ribed using themethods of perfe
t �uid hydrodynami
s.In the time between that for whi
h the quarks and gluons have beenformed and � = 0, the parti
les are being formed. This is where the initial
onditions are made.In various levels of sophisti
ation, one 
an 
ompute the properties ofmatter made in heavy ion 
ollisions at times later than the formation time.The problems are understood in prin
iple for � � �formation if perhaps not infa
t. Very little is known about the initial 
onditions.In prin
ipal, understanding the initial 
onditions should be the simplestpart of the problem. At the initial time, the degrees of freedom are mostenergeti
 and therefore one has the best 
han
e to understand them usingweak 
oupling methods in QCD.There are two separate 
lasses of problems one has to understand forthe initial 
onditions. First the two nu
lei whi
h are 
olliding are in single
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hani
al states. Therefore for some early time, the degrees offreedom must be quantum me
hani
al. This means that�z�pz � 1 : (16)Therefore 
lassi
al transport theory 
annot des
ribe the parti
le down to � =0 sin
e 
lassi
al transport theory assumes we know a distribution fun
tionf(~p; ~x; t), whi
h is a simultaneous fun
tion of momenta and 
oordinates.This 
an also be understood as a 
onsequen
e of entropy. An initial quantumstate has zero entropy. On
e one des
ribes things by 
lassi
al distributionfun
tions, entropy has been produ
ed. Where did it 
ome from?Another problem whi
h must be understood is 
lassi
al 
harge 
oher-en
e. At very early time, we have a tremendously large number of parti
lespa
ked into a longitudinal size s
ale of less than a fermi. This is due tothe Lorentz 
ontra
tion of the nu
lei. We know that the parti
les 
annotintera
t in
oherently. For example, if we measure the �eld due to two op-posite 
harge at a distan
e s
ale r large 
ompared to their separation, weknow the �eld fall as 1=r2, not 1=r. On the other hand, in 
as
ade theory,intera
tions are taken into a

ount by 
ross se
tions whi
h involve matrixelements squared. There is no room for 
lassi
al 
harge 
oheren
e.There are a whole variety of problems one 
an address in heavy ion
ollisions su
h� What is the equation of state of strongly intera
ting matter?� Is there a �rst order QCD phase transition?These issues and others would take us beyond the s
ope of these le
tures.The issues whi
h I would like to address are related to the determinationof the initial 
onditions, a problem whi
h 
an hopefully be addressed usingweak 
oupling methods in QCD.1.6. UniversalityThere are two separate formulations of universality whi
h are importantin understanding small x physi
s.The �rst is a weak universality. This is the statement that physi
s shouldonly depend upon the variable�2 = 1�R2 dNdy : (17)As dis
ussed above, this universality has immediate experimental 
onse-quen
es whi
h 
an be dire
tly tested.
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LerranThe se
ond is a strong universality whi
h is meant in a statisti
al me-
hani
al sense. At �rst sight it appear a formal idea with little relation toexperiment. If it is however true, its 
onsequen
es are very powerful andfar rea
hing. What we shall mean by strong universality is that the e�e
-tive a
tion whi
h des
ribes small x distribution fun
tion is 
riti
al and at a�xed point of some renormalization group. This means that the behaviorof 
orrelation fun
tions is given by universal 
riti
al exponents, and theseuniversal 
riti
al exponents depend only on general properties of the theorysu
h as the symmetries and dimensionality.Sin
e the 
orrelation fun
tions determine the physi
s, this statement saysthat the physi
s is not determined by the details of the intera
tions, only byvery general properties of the underlying theory!We 
an see how a renormalization group arises. The e�e
tive a
tionwhi
h we shall develop in later le
tures is valid only for gluons with rapidityless than �0 [5�8℄, where � is the 
oordinate spa
e rapidity. Those at largerrapidity have been integrated out of the theory and appear only as re
oillesssour
es of 
olor 
harge for �0 � � � yproj.The way a renormalization group is generated is by integrating out thegluon degrees of freedom in the range �1 � � � �o, to generate a newe�e
tive a
tion for rapidity � � �1. We 
an show that this results in newsour
e strength of 
olor 
harge, now in the range �1 � � � yfrag, and in amodi�
ation of some of the 
oe�
ients of the e�e
tive a
tion.At high Q2, the renormalization group analysis simpli�es, and one 
anshow that in various limits redu
es to the BFKL or DGLAP analysis. Therenormalization group equations at smaller q2 be
ome more 
ompli
ated,and have yet to be written in expli
it form and evaluated. This is in prin
iplepossible to do [9℄.An essential ingredient in this analysis is the appearan
e of an a
tionand of a 
lassi
al gluon �eld. We should expe
t the appearan
e of a 
lassi
algluon �eld when the phase spa
e density of gluons be
omes high. Gluonsare after all bosons, and when the phase spa
e density is large they shouldbe des
ribed 
lassi
ally. This provides the essential di�eren
e between olderrenormalization group analysis whi
h was formulated in terms of a distri-bution fun
tion. High density and its 
ompli
ations due to 
oheren
e re-quire the introdu
tion of a �eld. The new renormalization group analysisis phrased in terms of the e�e
tive a
tion for the 
lassi
al gluon �eld andjumps from an ordinary equation to a fun
tional equation.The 
lassi
al gluon �elds whi
h we shall �nd are the non-abelian gener-alization of the Lienard�Wie
hart potentials of ele
trodynami
s. If we usethe 
oordinate spa
e variable x� and realize that the sour
e for the gluonsarise from mu
h smaller x� than that at whi
h we make the measurements,sin
e they arise from gluons of mu
h higher longitudinal momenta whi
h are
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ontra
ted, then the sour
es 
an be imagined as arising froma Æ(x�). The Lienard�Wie
hart potentials also are proportional to Æ(x�),and so exist only in the sheet. The �elds are also transversely polarizedBia ? Eia ? ẑ : (18)1.7. Why an e�e
tive a
tion?The e�e
tive a
tion formalism whi
h will be advo
ated in the next le
-tures is very powerful. It is used to 
ompute a gluon e�e
tive �eld. This�eld 
an be related to the wavefun
tion of the hadron.This �eld allows one to generalize it from the original des
ription of asingle hadron, to 
ollisions of hadrons and also to di�ra
tive pro
esses. Weshall see that the e�e
tive a
tion formulation is in
redibly powerful.The 
areful student might at this point be very worried: How has theproblem been in any way simpli�ed? We have just introdu
ed a sour
e,and to spe
ify the �eld one has to spe
ify the sour
e. Moreover, su
h aspe
i�
ation is gauge dependent. What happens is amusing: We integrateover the all 
olor orientations of the sour
e. Gauge invarian
e is restored bythe integration. The theory be
omes spe
i�ed by the lo
al density of 
olor
harge squared. This is a gauge invariant quantity. It 
an be related tothe gluon distribution fun
tions, and is determined by the renormalizationgroup equations.2. Le
ture II: Small x physi
s and 
lassi
al �eldsIn this le
ture, I will develop the theory of small x physi
s using 
lassi
algluon �elds. The reason why 
lassi
al gluon �elds are important is be
auseat small x the phase spa
e density of gluons,dNd3xd3p >> 1 (19)When the o

upation number per state be
omes large, the quantum dynam-i
s be
omes 
lassi
al.Before developing the 
lassi
al theory, it is useful to review some featuresof QCD, in parti
ular, the light 
one formulation.2.1. Light 
one gauge QCDIn QCD we have a ve
tor �eld A�a . This 
an be de
omposed into longi-tudinal and transverse parts asA�a = 1p2(A0a �Az) (20)
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Lerranand the transverse as lying in the tow dimensional plane orthogonal to thebeam z axis. Light 
one gauge isA+a = 0 : (21)In this gauge, the equation of motionD�F �� = 0 (22)is for the + 
omponent DiF i+ �D+F�+ = 0 (23)whi
h allows one to 
ompute A� in terms of Ai asA� = 1�+2Di�+Ai : (24)This equation says that we 
an express the longitudinal �eld entirely in termsof the transverse degrees of freedom whi
h are spe
i�ed by the transverse�elds entirely and expli
itly. These degrees of freedom 
orrespond to thetwo polarization states of the gluons.We therefore haveAia(x) = Zp+>0 d3p(2�)32p+ �eipxaia(p) + e�ipxaiya (p)� ; (25)where [aia(p); aJyb (q)℄ = 2p+ÆabÆij(2�)3Æ(3)(p� q) ; (26)where the 
ommutator is at equal light 
one time x+.2.2. Distribution fun
tionsWe would like to explore some hadroni
 properties using light 
one �eldoperators. For example, suppose we have a hadron and ask what is the gluon
ontent of that hadron. Then we would 
omputedNgluond3p = Dh j ay(p)a(p) j hE : (27)The quark distribution for quarks of �avor i (for the sum of quarks andantiquarks) would be given in terms of 
reation and annihilation operatorsfor quarks as dNid3p = Dh j fbyi (p)bi(p) + dyi (p)di(p)g j hE ; (28)



Two Le
tures on Small x and High Gluon Density 3719where b 
orresponds to quarks and d to antiquarks. The 
reation and annihi-lation operators for quarks and gluons 
an be related to the quark 
oordinatespa
e �eld operators by te
hniques similar to those above. The interestedstudent should read the notes of Venugopalan for details [10℄.How would we begin 
omputing su
h distribution fun
tions? We willstart with the example of a large nu
leus, as this makes some issues 
on
ep-tually simpler. We will then generalize to hadrons, where we shall see thatthe ideas presented here have a generalization.For a large nu
leus, we assume that the gluon distribution whi
h weshall try to 
ompute has longitudinal momentum soft 
ompared to that ofthe valen
e quarks. Valen
e quarks have longitudinal momentum of theorder of that of the nu
leus, so this requirement is only that x << 1 In fa
t,we will require that x << A�1=3. This is the requirement that in the framewhere the longitudinal momentum of the gluons is zero, the nu
leus has aLorentz 
ontra
ted size mu
h less than the wavelength asso
iated with thegluons transverse momentum � � 1=pT . This is the requirement that thegluon resolve the nu
leus as a whole and is insensitive to the details of thenu
lear stru
ture (spatial distribution of valen
e quarks within the nu
leus).We are interested in the region where the overlap between the quark andgluon rapidity distribution is small.If the gluon phase spa
e density is very large, the quantum gluons of thenu
leus may be treated as 
lassi
al �elds. This may be true if�2 = 1�R2 dNgluedy (29)satis�es �2 >> �2QCD. Certainly if the typi
al pT of the gluons was of order�QCD this would be true sin
e the gluons would then be 
losely pa
kedtogether. We shall see that this is true in fa
t for gluons with pT << �whi
h for high gluons density 
an be
ome very large.If the valen
e quarks have a longitudinal momentum mu
h larger thanthe typi
al gluon momentum then their typi
al intera
tions with these glu-ons should be 
hara
terized by the soft momentum s
ale (otherwise the softgluons would not remain soft). In an emission of a gluon, the emitted gluonhas momentum very small 
ompared to the valen
e quark longitudinal mo-mentum. Its velo
ity therefore is barely 
hanged by this emission. Thequarks are therefore re
oilless sour
es of 
olor 
harge for the gluon 
lassi
al�eld.The valen
e quarks are sour
es for the gluons and sit on a sheet of thi
k-ness in�nitesimal 
ompared to the typi
al wavelength asso
iated with thegluon �eld. We shall further assume for simpli
ity that the transverse dis-tribution of 
harge is uniform. (In fa
t, a better approximation is that thedistribution of 
harge is slowly varying on the gluon wavelength s
ale of



3720 L. M
Lerraninterest. This 
ase 
an be 
omputed dire
tly from knowledge of the uni-form transverse distribution 
ase, The transverse size s
ale of variation isthe nu
lear radius, whi
h is mu
h larger than a fermi, so that this 
riteriais satis�ed so long as � >> �QCD, and the typi
al transverse momentum isof order �.)In a head on pi
ture of the nu
leus, it is essentially a �at sheet. We areinterested in resolving the 
harge distribution on a transverse s
ale size oforder �x. In order that we 
an use weak 
oupling methods, we require thatthe transverse size be �x << 1Fm:We 
an also resolve the stru
ture in the longitudinal dire
tion. Here weuse spatial rapidity whi
h has the e�e
t of spreading out the thin longitudinalextent of the nu
leus, �z into a �nite range of rapidity. If we draw a tubethrough the nu
leus in the longitudinal dire
tion, then even for a very thintube �x small, if we are at high enough energy 
orresponding to a largerapidity, the tube will interse
t many quarks and gluons. The physi
alextent in longitudinal spatial 
oordinate is of 
ourse small. If we requirethat �x << 1Fm and require that a tube interse
ts a quark or gluon fromsome hadron, then typi
ally, that hadron will be far separated from anyother hadron whi
h has one of its quarks or gluons within the tube. Thequarks and gluons within the tube are therefore un
orrelated in 
olor. Ifwe further require that the tube be large enough so that many quarks andgluons are in ea
h tube, a situation always possible if we have large enoughenergy or a large enough nu
leus, then the 
olor total 
olor 
harge asso
iatedwith these quarks and gluons will be in a high dimensional representation,and 
an be treated 
lassi
ally. To see this, re
all that in a high dimensionalrepresentation, Q2 >> Q � [Q;Q℄ so that 
ommutators may be ignored.For partons at the x values where we wish to 
ompute the gluon distri-bution fun
tion, the higher rapidity sour
es sit on a sheet of in�nitesimalthi
kness. The problem we must solve is to 
ompute the typi
al 
orrelationfun
tions whi
h give distribution fun
tions for sto
hasti
 sour
es sitting on asheet of in�nite transverse extent traveling at the speed of light. Mathemat-i
ally, this problem is similar to spin glass problems in 
ondensed matterphysi
s. Su
h problems typi
ally have entirely nontrivial renormalizationgroups, and we will see that this is the 
ase for our problem.To understand a little better how the sour
es are distributed, it is usefulto go inside the sheet. This is a

omplished by introdu
ing a spa
e-timerapidity variable. Let us assume that the rapidity of the proje
tile is yprojand its longitudinal momentum is P+, we de�ne� = yproj � ln (P+projx�) : (30)We de�ne the momentum spa
e rapidity asy = yproj � ln (P+proj=p+) : (31)
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tures on Small x and High Gluon Density 3721Here x� is the 
oordinate of a sour
e and p+ its momentum. The previousde�nition of momentum spa
e rapidity for produ
ed parti
les wasy = 12 ln (p+=p�) = ln (p+=mt) ; (32)where mt = pp2t +m2. This last expression is valid for parti
les on massshell, whereas the other de�nition of momentum spa
e rapidity works for
onstituents of the hadron wavefun
tion, whi
h are of 
ourse not on massshell. These de�nitions are equal within about a unit of rapidity for typi
alvalues of transverse momenta. In the wavefun
tion, the un
ertainty prin
iplerelation gives x�p+ � 1, so that we see the spa
e time rapidity is up toabout a unit of rapidity the same as both momentum spa
e values. We willtherefore use these rapidities inter
hangeably in what follows.We 
an now implement our stati
 sour
es of 
harge by assuming thetheory is de�ned by an ensemble of su
h 
harges:Z = Z [d�℄ exp8<:�12 yprojZy dy0d2xt 1�2(y0)�2(y0; xt)9=; : (33)This ensemble gives< �a(y; xT )�b(y0; x0t) >= �2(y)ÆabÆ(y � y0)Æ(2)(xt � x0t) : (34)The parameter �2 therefore has the interpretation of a 
harge squared perunit rapidity �2(y) = 1N2
 � 1 1�R2 dQ2(y)dy : (35)The total 
harge squared is�(y) = yprojZy dy0�2(y0) : (36)Sin
e the sour
es are individual quarks and gluons, this 
an also be relateddire
tly to the total number of gluons and quarks 
ontributing to the sour
eas [11℄ �(y) = 1�R2 � Ng2N
 + N
NqN2
 � 1� 1Zx dxG(x) : (37)
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tors above arise from 
omputing the 
olor 
harge squared of a singequark or a single gluon.We may now 
onstru
t the non-abelian Lienard�Wie
hart potentials gen-erated by this distribution of sour
es. We must solve the equationD�F �� = g2Æ�+�(y; xt) : (38)To solve this equation, we look for a solution of the formA� = 0 ; (39)and Ai = 1i U(y; xt)riU y(y; xT ) : (40)We 
ould equally well solve this equation in a gauge where A+ is nonzeroand all other 
omponents vanish. The student should 
he
k that the gaugetransformation indu
ed by U givesA+ = 1i U y�+U : (41)In this non-light
one gauge, the �eld equations simplify and we getr2tA+ = g2�(y; xt) : (42)Solving for U gives U = exp8<:i yprojZy dy0 1r2t �(y0; xt)9=; : (43)We have therefore 
onstru
ted an expli
it expression for the light 
one �eldAi in terms of the sour
e � for arbitrary �! The system is integrable.The stru
ture of the �elds strengths E and B whi
h follow from this �eldstrength is now easy to understand. The only nonzero longitudinal derivativeis �+. The �eld strength Fij where both ij are transverse vanishes sin
e the�led looks like a pure gauge transformation in the two dimensional spa
e.It is in fa
t a pure gauge everywhere but in the sheet where the 
harge sits.Therefore the only nonvanishing �eld strength is F i+. This gives E ? B ? ~z,that is the �elds are transversely polarized. This is the pre
ise analog of theLienard�Wie
hart potentials of ele
trodynami
s.
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tion and renormalization groupThe e�e
tive a
tion for the theory we have des
ribed must be gaugeinvariant and properly des
ribe the dynami
s in the presen
e of externalsour
es, up to an overall gauge transformation whi
h is 
onstant in x�.(The la
k of pre
ise gauge invarian
e arises from the the desire to de�ne theintrinsi
 transverse momentum of gluon distribution fun
tions. Althoughwhen used in 
omputations of gauge dependent quantities, the gauge de-penden
e disappears, it is useful to not have the full gauge invarian
e inintermediate steps of 
omputation.) The student should verify, that 
onsis-ten
y with the Yang�Mills equations in the presen
e of an external sour
erequires that D�J� = 0 : (44)For a sour
e of the type we have here,J�a = Æ�aÆ(x�)�a(xt) : (45)This is an approximation we make when we des
ribe the sour
e on s
alesmu
h larger than the spatial extent of the sour
e. To properly regularizethe delta fun
tion, we need to spread the sour
e out in x� as was done inthe previous se
tion. We �nd that the a
tion isS = �14 Z d4xF a��F ��a + iN
 Z d2xtdx�Æ(x�)�a(xt) tr T a� exp8<:i 1Z�1 dx+T �A�(x)9=; : (46)In this equation, the matrix T is in the adjoint representation of the gaugegroup. This is required for reality of the a
tion. The student should minimizethis a
tion to get the Yang�Mills equations, identify the 
urrent, and showthat the 
urrent is 
ovariantly 
onserved.This a
tion is gauge invariant under gauge transformations whi
h arerequired to be periodi
 in the time x+. This is a 
onsequen
e of the gaugeinvarian
e of the measure of integration over the sour
es �. This will betaken as a boundary 
ondition upon the theory. In general if we had notintegrated over sour
es, one 
ould not de�ne a gauge invariant sour
e, asgauge rotations would 
hange the de�nition of the sour
e. Here be
ause thesour
e is integrated over in a gauge invariant way, the problem does notarise.In the most general gauge invariant theory whi
h we 
an write down isgenerated from Z = Z [d�℄e�F [�℄ Z [dA℄eiS[A;�℄ : (47)
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ribed in the previousle
ture. It allows for a slightly more 
ompli
ated stru
ture of sto
hasti
variation of the sour
es. The Gaussian ansatz 
an be shown to be validwhen the evaluating stru
ture fun
tions at large transverse momenta.FGaussian[�℄ = 12� Z d2xt�2(xt) : (48)This theory is a slight modi�
ation of what we des
ribed in the �rstle
ture. We have here assumed that our theory is an e�e
tive theory validonly in a limited range of rapidity mu
h less than the rapidity of the sour
e.In this restri
ted range, the stru
ture of the sour
e in rapidity 
annot beimportant, and therefore we 
ouple only to the total 
harge seen at therapidity of interest. The lo
al 
harge density as a fun
tion of rapidity isrepla
ed by the total 
harge at rapidities greater than that at whi
h wemeasure the �eld. The s
ale of �u
tuation of the sour
e is instead of thelo
al 
harge squared per unit are per unit rapidity �2(y) be
omes repla
esby the s
ale of �u
tuation of the total 
harge. The student should provethat � = yprojZy dy0�2(y0) : (49)To fully determine F in the above equation demands a full solutionof the renormalization group equations of the theory. This has yet to bedone. We shall 
on�ne our attention in most of the analysis below to theGaussian ansatz. It is remarkable that within this simple ansatz for F , mostof the general feature whi
h a full treatment should generate, su
h as properunitary behavior of deep inelasti
 s
attering, arises in a natural way.Let us turn our attention for the moment to the gluon distribution fun
-tion (2�)32p+ dNd3p = hay(p)a(p)i : (50)Using the results of the previous le
ture, you should prove thatdNd3p = 2p+(2�)3 Xi;a Diiaa(p;�p) : (51)Here a is a 
olor index and i is a transverse index asso
iated with the gluon�eld. D is the gluon propagator in the external �eldD��ab (p; q) = hA�a(p)A�b (q)i : (52)
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tures on Small x and High Gluon Density 3725(In �eld theory language, D is the propagator in the external �eld in
ludingboth 
onne
ted and dis
onne
ted pie
es.)In lowest order, the A in the expression for D is simply the externalLienard�Wie
hart potential. Re
all thatAi = �iUriU y ; (53)where the U 's are the expli
it fun
tions of the sour
e � 
omputed in theprevious le
ture.The expe
tation value above may be 
omputed using the Gaussian weightfun
tion. We need the propagator 1=r4t to perform this 
al
ulation. Thestudent should try to do this 
omputation (it is equivalent to normal orderingexponentials), and if it is too hard, refer to the paper of Jalilian-Marian etal., where it is worked out in some detail [7℄. The result isdNd2pT � Z d2ze�ipT zT 4(N2
 � 1)N
z2T �(1� zt�QCD)n1� (z2t �2QCD)2��2s�z2to :(54)At pt >> � where � = �sp�, the1�R2 dNdyd2pt � �2=�sp2t : (55)This is be
ause this part of the distribution 
an be thought of as arisingfrom bremstrahlung from the sour
es of the gluon �eld at high rapidities.As pt � �, the gluon distribution fun
tion goes to a slowly varying fun
tionof pT , whi
h in the Gaussian ansatz is1�R2 dNdyd2pt � 1�s ln (�=pt) : (56)In general, we expe
t saturation in this region, for arguments whi
h will bepresented in the next few pages. This means we get a slowly varying fun
tionof pT , whi
h by dimensional arguments, is therefore a slowly varying fun
tionof �The only pla
e that any non-trivial rapidity dependen
e enters the prob-lem is through �. This dependen
e 
an be found from the renormalizationgroup analysis of the e�e
tive a
tion. Therefore in the bremstrahlung re-gion, the dependen
e on �2 is linear, and in the saturation region it is veryweak.Let us assume that when we go beyond the Gaussian ansatz, the generalfeatures of saturation presented above remain. We will show that this resultsin a reasonable physi
al pi
ture for small x physi
s, and solve the unitaritypuzzle outlined in the �rst le
ture. First 
onsider the gluon distribution



3726 L. M
Lerranfun
tion. The total number of gluons whi
h 
an be measured at some s
alesize larger than a resolution size s
ale 1=Q2 isxG(x;Q2) = Q2Z0 d2pT(2�)2 dNdyd2pT : (57)For Q2 >> �2, the integral is dominated by the bremstrahlung tail,and G � R2�2. (The gluon distribution is proportional to the 
harge perunit area times the area.) In our random walk s
enario, the e�e
tive 
hargesquared must be proportional to the length of the random walk, R, so thatG � R3 whi
h for a nu
leus is proportional to A1=3 . This is what weexpe
t at large Q2, ex
ept the reasoning is a little di�erent than usual. Thestandard argument would have been that at large Q2, the degrees of freedomin a nu
leus for example should a
t in
oherently, and we should have thegluon distribution fun
tions proportional to A. Here we have random �eldsgenerating pre
isely the same A dependen
e!When Q2 � �2, the integral is dominated by the saturation region.Here G � R2Q2, and the gluons 
an be thought of as arising from thesurfa
e of the hadron. Again this is 
onsistent with what is expe
ted fromphenomenology. The gluons are so soft that they 
annot see the entirehadron, only its surfa
e.The e�e
t of saturation for unitarization of deep inelasti
 s
attering 
analso be easily understood. Suppose we are at some �xed Q2 >> �2(y).As y de
reases 
orresponding to going to smaller x� the gluon distributionfun
tion in
reases as �2(y). When x be
omes so small that we get into thesaturation region, the linear � dependen
e is weakened (in the Gaussianansatz it is logarithmi
 in �), and the stru
ture fun
tion stops growing. Weexpe
t that the number of gluons of size smaller than our resolution s
alehave 
eased to grow, and the 
ross se
tion should be
ome slowly varying.This is in spite of the fa
t that � 
ontinues to grow!The physi
s is again simple to understand: At small x we are indeedadding more and more gluons to the hadron wavefun
tion. These gluons aresmaller as their inverse size s
ales as gluon density,1=r2 � 1�R2 dNdy : (58)They do not 
ontribute to a �xed Q2 
ross se
tion when they be
ome smallerthan the resolution size s
ale. What saves unitarity is pt broadening.
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 s
atteringIn the previous dis
ussion, we were 
on
erned with the gluon distributionfun
tion. In deep inelasti
 s
attering, we measure the quark distributionfun
tions. How are these related?In deep inelasti
 s
attering we measureWmu� = 12� Im Z d4xeiqxhPhad j T (J�(x)J�(0) j Phadi= 1Mhad ���g�� � q�q�q2 �F1+ �p� � q� p � qq2 ��p� � q� p � qq2 � 1p � qF2� : (59)We must be able to 
ompute the imaginary part of the 
urrent-
urrent
orrelation fun
tion. This is simply va
uum polarization in the presen
e ofthe Lienard�Wie
hart potentials. In fa
t, it is straightforward to 
omputethe propagators in these ba
kground �elds [13℄. The reason why it is simpleis be
ause the ba
kground �eld is basi
ally gauge transformations in tworegions of spa
es separated by a surfa
e of dis
ontinuity.This propagator may be then used to 
ompute the va
uum polarization.The 
omputation 
an be done so far as to relate expli
itly the stru
turefun
tions to 
orrelation fun
tions of exponentials involving � and expressionsvery similar to those for the gluon distribution fun
tion result. These resultsare 
urrently being applied to the study of deep inelasti
 s
attering to seewhether the e�e
ts of saturation might be seen experimentally.2.5. Renormalization group and how it worksIn the above 
omputation of the gluon propagator, one used the 
lassi
ale�e
tive a
tion to 
ompute the Lienard�Wie
hart potentials. These 
lassi
al�elds were then used to 
ompute the propogator. What about the quantum
orre
tions?When the quantum 
orre
tions are 
omputed, one gets a 
orre
tion tothe 
lassi
al �eld of order �s ln (x
uto�=x), where x is the value for gluondistribution fun
tion, and x
uto� is the maximum x appropriate for the ef-fe
tive a
tion. Although the 
oupling is small, the logarithm 
an be
ome bigif we go to x values far below the 
uto�. The overall theory should remainvalid however, the problem is that the 
lassi
al approximation is no longergood.The way to �x this up is to use the renormalization group. Supposewe want a new e�e
tive theory below xnew, and we require that xnew <<x
uto� but that �s ln (x
uto�=xnew) << 1. This means that the quantum
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orre
tions are small in the range xnew << x << x
uto� , and 
an be handledperturbatively. We pro
eed by integrating out the degrees of freedom in thisintermediate range of x, to generate a new e�e
tive theory in the regionx << xnew.In this pro
ess, the one 
an show that the only thing that 
hanges in thee�e
tive a
tion formalism is the weight fun
tion F [�℄ for �u
tuations in the
olor sour
e . E�e
tively, we are 
hanging what we 
all sour
e for the gluon�eld, and trading it for what we 
all the gluon �eld. This renormalizationgroup pro
edure is that of Wilson�Kadano�. One 
an derive the form of therenormalization group equations and they 
an be written expli
itly in thelow gluon density region. One 
an prove that here the fun
tion F is Gaus-sian, and that in appropriate kinemati
 limits, one reprodu
es the BFKLequation, the DGLAP equation and their non-linear generalizations to �rstorder in the non-linearities. Work is 
urrently in progress to get the expli
itform of these equations in the high density region, and to solve them.If we are in the low density region, we evolve in x by the BFKL equationand in Q2 by the DGLAP equation. Hopefully a full solution to the problemwill lead to an e�e
tive a
tion whi
h is at a �xed point of the renormalizationgroup. In this 
ase, at very small x, the form for F will simplify, and all
orrelation fun
tions will have universal 
riti
al exponents. If this is true,the dynami
s of high energy s
attering for all hadrons be
omes the same,and presumably has a simple stru
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