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TWO LECTURES ON SMALL x AND HIGH GLUONDENSITY�Larry MLerranNulear Theory Group, Brookhaven National LaboratoryUpton, NY 11973(Reeived Otober 19, 1999)In these letures, I shall disuss small x physis and the onsequenesof the high gluon density whih arises as x dereases. I argue that anunderstanding of this problem would lead to knowledge of the high energyasymptotis of hadroni proesses. The high gluon density should allow a�rst priniples omputation of these asymptotis from QCD. This physismight be experimentally probed in heavy ion olliders or in high energyeletron-nulear ollisionsPACS numbers: 12.38.�t, 12.38.Lg1. Leture I: Lots of problems1.1. IntrodutionI think we all believe that QCD desribes hadroni physis. It has beentested in a variety of environments. For high energy short distane phenom-ena, perturbative QCD omputations suessfully onfront experiment. Inlattie Monte-Carlo omputations, one gets a suessful semi-quantitativedesription of hadroni spetra, and perhaps in the not too distant futureone will obtain preise quantitative agreement.At present, however, all analyti omputations and all preise QCD testsare limited to the small lass of problems whih orrespond to short distanephysis. Here there is some harateristi energy transfer sale E, and oneuses asymptoti freedom, �S(E)! 0 (1)as E !1.� Presented at the XXXIX Craow Shool of Theoretial Physis, Zakopane, Poland,May 29�June 8, 1999. (3707)



3708 L. MLerranOne question whih we might ask is whether there are any non-perturbative �simple phenomena� whih arise from QCD whih are worthyof further e�ort. The questions I would ask before I would beome interestedin understanding suh phenomena are� Is the phenomenon simple and pervasive?� Is it reasonably plausible that one an understand the phenomena from�rst priniples, and ompute how it would appear in nature?I will in this leture try to explain a wide lass of phenomena in QCDwhih are pervasive, and appear to follow simple patterns. I will then tryto explain why I believe that these phenomena an be simply understoodwithin QCD. 1.2. Total ross setions at asymptoti energyComputing total ross setion as E ! 1 is one of the great unsolvedproblems of QCD. Unlike for proesses whih are omputed in perturbationtheory, it is not required that any energy transfer beome large as the totalollision energy E ! 1. Computing a total ross setion for hadronisattering therefore appears to be intrinsially non-perturbative. In the 60'sand early 70's, Regge theory was extensively developed in an attempt tounderstand the total ross setion. The results of this analysis were to mymind inonlusive, and ertainly an not be laimed to be a �rst priniplesunderstanding from QCD.Typially, it is assumed that the total hadroni ross setion grows asln 2E as E !1. This is the so alled Froisart bound whih orresponds tothe maximal growth allowed by unitarity of the S matrix. Is this orret?Is the oe�ient of ln 2E universal for all hadroni preesses? Why is theunitarity limit saturated? Can we understand the total ross setion from�rst priniples in QCD? Is it understandable in weakly oupled QCD, or isit an intrinsially non-perturbative phenomenon?1.3. How are partile produed in high energy ollisions?The total multipliity of produed partiles is an inreasing funtion ofenergy for hadroni ollisions. The total multipliity for pp and for pp ol-lisions has roughly the same energy dependene. Is whatever is ausing theinrease in multipliity in these ollisions arising from the same mehanism?The obvious question is an we ompute N(E), the total multipliity ofprodued partiles as a funtion of energy?At this point it is useful to develop some mathematial tools. I willintrodue some useful kinemati variables: light one oordinates. Let the



Two Letures on Small x and High Gluon Density 3709light one longitudinal momenta bep� = 1p2(E � pz) : (2)Note that the invariant dot produtp � q = pt � qt � p+q� � p�q+ (3)and that p+p� = 12(E2 � p2z) = 12(p2T +m2) = 12m2T : (4)This equation de�nes the transverse massmT . (Please note that my metri isthe negative of that onventionally used in partile physis. An unfortunateonsequene of my eduation. Students, please feel free to onvert everythingto your favorite metri.)Consider a ollision in the enter of mass frame. The right moving par-tile has p+1 � p2 j pz j and p�1 � 12p2m2T= j pz j. For the olliding partilesmT = mprojetile, that is beause the transverse momentum is zero, the trans-verse mass equals the partile mass For partile 2, we have p+2 = p�1 andp�2 = p+1 .If we de�ne the Feynman x of a produed pion asx = p+� =p+1 (5)then 0 � x � 1. The rapidity of a pion is de�ned to bey = 12 ln (p+� =p�� ) = 12 ln (2p+2=m2T ) : (6)For pions, the transverse mass inludes the transverse momentum of thepion.The pion rapidity is always in the range �yCM � y � yCM where yCM =ln (p+=mprojetile) All the pions are produed in a distribution of rapiditieswithin this range.These de�nitions are useful, among other reasons, beause of their simpleproperties under longitudinal Lorentz boosts: p� ! ��1p� where � is aonstant. Under boosts, the rapidity just hanges by a onstant. (Students,please hek this relationship for momenta under boosts.)It is onvenient in the enter of mass frame to think of the positiverapidity pions as somehow related to the right moving partile and the neg-ative rapidity partiles as related to the left moving partiles. We de�ne



3710 L. MLerranx = p+=p+projetile and x0 = p�=p�projetile and use x for positive rapidity pionsand x0 for negative rapidity pions.Of ourse more than just pions are produed in high energy ollisions.The variables we just presented easily generalize to these partiles.Several theoretial issues arise in multipartile prodution. Can we om-pute dN=dy? or even dN=dy at y = 0? How does the average transversemomentum of produed partiles < pT > behave with energy? What is theratio of produed strange/nonstrange, and orresponding rations of harm,top, bottom et at y = 0 as the enter of mass energy approahes in�nity?Does multipartile prodution as E !1 at y = 0 beome� Simple?� Understandable?� Computable? 1.4. Deep inelasti satteringIn deep inelasti sattering, an eletron emits a virtual photon whihsatters from a quark in a hadron. The momentum and energy transfer ofthe eletron is measured, and the results of the break up are not. In theseletures, we annot develop the theory of deep inelasti sattering. Su�eit to say, that this measurement is su�ient at large momenta transfer Q2to measure the distributions of quarks in a hadron.To desribe the quark distributions, it is onvenient to work in a refereneframe where the hadron has a large longitudinal momentum p+hadron. Theorresponding light one momentum of the onstituent is p+onstituent. Wede�ne x = p+onstituent=p+hadron. (This x variable is equal to the Bjorken xvariable, whih an be de�ned in a frame independent way. In this frameindependent de�nition, x = Q2=2p � Q where p is the momentum of thehadroni target and Q is the momentum of the virtual photon. Students,please hek that this is true.) The ross setion whih one extrats in deepinelasti sattering an be related to the distributions of quarks inside ahadron, dN=dx.It is useful to think about the distributions as a funtion of rapidity. Wede�ne this for deep inelasti sattering asy = yhadron � ln (1=x) ; (7)and the invariant rapidity distribution asdN=dy = xdN=dx : (8)



Two Letures on Small x and High Gluon Density 3711A dN=dy distribution for onstituent gluons is similar to that for thedistribution of produed pions in hadroni ollisions. The main di�erene isthat in deep inelasti sattering, the rapidity goes from that of the projetileto zero, while in hadron hadron sattering, it goes from the rapidity of theprojetile to that of the target. In the enter of mass frame for hadronollisions, the plot is essentially twie as wide as that for deep inelastisattering, and looks roughly like the deep inelasti distribution folded overon itself.We shall later argue that there is in fat a relationship between thestruture funtions as measured in deep inelasti sattering and the rapiditydistributions for partile prodution. We will argue that the gluon distribu-tion funtion is in fat proportional to the pion rapidity distribution.The small x problem is that in experiments at Hera, the rapidity dis-tribution funtion for quarks grows as the rapidity di�erene between thequark and the hadron grows. This growth appears to be more rapid thansimply j yproj � y j or (yproj � y)2, and various theoretial models based onthe original onsiderations of Lipatov and olleagues suggest it may grow asan exponential in j yproj � y j [1℄. If the rapidity distribution grew at mostas y2, then there would be no small x problem. We shall try to explain thereasons for this later in this leture.At HERA, the gluon struture funtion has been measured at variousvalues of Q2 and x [2℄. The gluon distribution xg(x) rises at small x. This isthe small x problem. It is amusing that the rise in the gluon struture fun-tion at small x is similar qualitatively to the inrease in the pion multipliityin high energy hadroni interations.Why is the small x rise in the gluon distribution a problem? [3℄ Imaginewe view a nuleon head on. As we add more and more onstituents, thehadron beomes more and more rowded. If we were to try to measure theseonstituents with say an elementary photon probe, as we do in deep inelastisattering, we might expet that the hadron would beome so rowded thatwe ould not ignore the shadowing e�ets of onstituents as we make themeasurement. (Shadowing means that some of the partons are obsuredby virtue of having another parton in front of them. For hard spheres,for example, this would result in a derease of the sattering ross setionrelative to what is expeted from inoherent independent sattering.)In fat, in deep inelasti sattering, we are measuring the ross setion fora virtual photon � and a hadron, ��hadron. Making x smaller orrespondto inreasing the energy of the interation (at �xed Q2). An exponentialgrowth in the rapidity orresponds to power law growth in 1=x, whih inturn implies power law growth with energy. This growth, if it ontinues



3712 L. MLerranforever, violates unitarity. The Froissart bound will allow at most ln 2(1=x).(The Froissart bound is a limit on how rapidly a total ross setion an rise.It follows from the unitarity of the sattering matrix.)We shall later argue that in fat the distribution funtions at �xed Q2do in fat saturate and ease growing so rapidly at high energy. The totalnumber of gluons however demands a resolution sale, and we will see thatthe natural intrinsi sale is growing at smaller values of x, so that e�etively,the total number of gluons within this intrinsi sale is always inreasing.The quantity �2 = 1�R2 dNdy (9)de�nes this intrinsi sale. Here �R2 is the ross setion for hadroni sat-tering from the hadron. For a nuleus, this is well de�ned. For a hadron, thisis less ertain, but ertainly if the wavelengths of probes are small omparedto R, this should be well de�ned. If�2 >> �2QCD (10)as the Hera data suggests, then we are dealing with weakly oupled QCDsine �S(�) << 1.Even though QCD may be weakly oupled at small x, that does not meanthe physis is perturbative. There are many examples of nonperturbativephysis at weak oupling. An example is instantons in eletroweak theory,whih lead to the violation of baryon number. Another example is theatomi physis of highly harged nulei. The eletron propagates in thebakground of a strong nulear Coulomb �eld, but on the other hand, thetheory is weakly oupled and there is a systemati weak oupling expansionwhih allows for systemati omputation of the properties of high Z (Z isthe harge of the nuleus) atoms.If the theory is loal in rapidity, then the only parameter whih andetermine the physis at that rapidity is �2. (Loality in rapidity meansthat there are not long range orrelations in the hadroni wavefuntion as afuntion of rapidity. In pion prodution, it is known that exept for overallglobal onserved quantities suh as energy and total harge, suh orrelationsare of short range.) Note that if only �2 determines the physis, then inan approximately sale invariant theory suh as QCD, a typial transversemomentum of a onstituent will also be of order �2. If �2 >> 1=R2, whereR is the radius of the hadron, then the �nite size of the hadron beomesirrelevant. Therefore at small enough x, all hadrons beome the same. Thephysis should only be ontrolled by �2.There should therefore be some equivalene between nulei and say pro-tons. When their �2 values are the same, their physis should be the same.



Two Letures on Small x and High Gluon Density 3713We an take an empirial parameterization of the gluon struture funtionsas 1�R2 dNdy � A1=3xÆ ; (11)where Æ � :2 � :3. This suggests that there should be the following orre-spondenes:� RHIC with nulei � Hera with protons� LHC with nulei � Hera with nuleiSine the physis of high gluon density is weak oupling we have thehope that we might be able to do a �rst priniple alulation of� the gluon distribution funtion� the quark and heavy quark distribution funtions� the intrinsi pT distributions quarks and gluonsWe an also suggest a simple esape from unitarity arguments whihsuggest that the gluon distribution funtion must not grow at arbitrarilysmall x. The point is that at smaller x, we have larger � and orrespondinglylarger pT . A typial parton added to the hadron has a size of order 1=pT .Therefore although we are inreasing the number of gluons, we do it byadding in more gluons of smaller and smaller size. A probes of size resolution�x � 1=pT at �xed Q will not see partons smaller than this resolution size.They therefore do not ontribute to the �xed Q2 ross setion, and there isno ontradition with unitarity.1.5. Heavy ion ollisionsImagine we have two Lorentz ontrated nulei approahing one anotherat the speed of light. Sine they are well loalized, they an be thought of assitting at x� = 0, that is along the light one, for t < 0 At x� = 0, the nuleiollide. To analyze this problem for t � 0, it is onvenient to introdue atime variable whih is Lorentz ovariant under longitudinal boosts� =pt2 � z2 (12)and a spae-time rapidity variable� = 12 ln � t� zt+ z� : (13)



3714 L. MLerranFor free streaming partiles z = vt = pzE t ; (14)we see that the spae-time rapidity equals the momentum spae rapidity� = y : (15)If we have distributions of partiles whih are slowly varying in rapidity,it should be a good approximation to take the distributions to be rapidityinvariant. This should be valid at very high energies in the entral region.By the orrespondene between spae-time and momentum spae rapidity,it is plausible therefore to assume that distributions are independent of �.Therefore distributions are the same on lines of onstant � . At z = 0, � = t,so that � is a longitudinally Lorentz invariant time variable.We expet that at very late times, we have a free streaming gas ofhadrons. These are the hadrons whih eventually arrive at our detetor.At some earlier time, these partile deouple from a dense gas of stronglyinterating hadrons. As we proeed earlier in time, at some time there is atransition between a gas of hadrons and a plasma of quarks and gluons. Thismay be through a �rst order phase transition where the system might existin a mixed phase for some length of time, or perhaps there is a ontinuoushange in the properties of the systemAt some earlier time, the quarks and gluons of the quark-gluon plasmaare formed. This is at some time of the order of a Fermi, perhaps as small as:1 Fermi. As they form, the partiles satter from one another, and this anbe desribed using the methods of transport theory. At some later time theyhave thermalized, and the system an be approximately desribed using themethods of perfet �uid hydrodynamis.In the time between that for whih the quarks and gluons have beenformed and � = 0, the partiles are being formed. This is where the initialonditions are made.In various levels of sophistiation, one an ompute the properties ofmatter made in heavy ion ollisions at times later than the formation time.The problems are understood in priniple for � � �formation if perhaps not infat. Very little is known about the initial onditions.In prinipal, understanding the initial onditions should be the simplestpart of the problem. At the initial time, the degrees of freedom are mostenergeti and therefore one has the best hane to understand them usingweak oupling methods in QCD.There are two separate lasses of problems one has to understand forthe initial onditions. First the two nulei whih are olliding are in single



Two Letures on Small x and High Gluon Density 3715quantum mehanial states. Therefore for some early time, the degrees offreedom must be quantum mehanial. This means that�z�pz � 1 : (16)Therefore lassial transport theory annot desribe the partile down to � =0 sine lassial transport theory assumes we know a distribution funtionf(~p; ~x; t), whih is a simultaneous funtion of momenta and oordinates.This an also be understood as a onsequene of entropy. An initial quantumstate has zero entropy. One one desribes things by lassial distributionfuntions, entropy has been produed. Where did it ome from?Another problem whih must be understood is lassial harge oher-ene. At very early time, we have a tremendously large number of partilespaked into a longitudinal size sale of less than a fermi. This is due tothe Lorentz ontration of the nulei. We know that the partiles annotinterat inoherently. For example, if we measure the �eld due to two op-posite harge at a distane sale r large ompared to their separation, weknow the �eld fall as 1=r2, not 1=r. On the other hand, in asade theory,interations are taken into aount by ross setions whih involve matrixelements squared. There is no room for lassial harge oherene.There are a whole variety of problems one an address in heavy ionollisions suh� What is the equation of state of strongly interating matter?� Is there a �rst order QCD phase transition?These issues and others would take us beyond the sope of these letures.The issues whih I would like to address are related to the determinationof the initial onditions, a problem whih an hopefully be addressed usingweak oupling methods in QCD.1.6. UniversalityThere are two separate formulations of universality whih are importantin understanding small x physis.The �rst is a weak universality. This is the statement that physis shouldonly depend upon the variable�2 = 1�R2 dNdy : (17)As disussed above, this universality has immediate experimental onse-quenes whih an be diretly tested.



3716 L. MLerranThe seond is a strong universality whih is meant in a statistial me-hanial sense. At �rst sight it appear a formal idea with little relation toexperiment. If it is however true, its onsequenes are very powerful andfar reahing. What we shall mean by strong universality is that the e�e-tive ation whih desribes small x distribution funtion is ritial and at a�xed point of some renormalization group. This means that the behaviorof orrelation funtions is given by universal ritial exponents, and theseuniversal ritial exponents depend only on general properties of the theorysuh as the symmetries and dimensionality.Sine the orrelation funtions determine the physis, this statement saysthat the physis is not determined by the details of the interations, only byvery general properties of the underlying theory!We an see how a renormalization group arises. The e�etive ationwhih we shall develop in later letures is valid only for gluons with rapidityless than �0 [5�8℄, where � is the oordinate spae rapidity. Those at largerrapidity have been integrated out of the theory and appear only as reoillesssoures of olor harge for �0 � � � yproj.The way a renormalization group is generated is by integrating out thegluon degrees of freedom in the range �1 � � � �o, to generate a newe�etive ation for rapidity � � �1. We an show that this results in newsoure strength of olor harge, now in the range �1 � � � yfrag, and in amodi�ation of some of the oe�ients of the e�etive ation.At high Q2, the renormalization group analysis simpli�es, and one anshow that in various limits redues to the BFKL or DGLAP analysis. Therenormalization group equations at smaller q2 beome more ompliated,and have yet to be written in expliit form and evaluated. This is in priniplepossible to do [9℄.An essential ingredient in this analysis is the appearane of an ationand of a lassial gluon �eld. We should expet the appearane of a lassialgluon �eld when the phase spae density of gluons beomes high. Gluonsare after all bosons, and when the phase spae density is large they shouldbe desribed lassially. This provides the essential di�erene between olderrenormalization group analysis whih was formulated in terms of a distri-bution funtion. High density and its ompliations due to oherene re-quire the introdution of a �eld. The new renormalization group analysisis phrased in terms of the e�etive ation for the lassial gluon �eld andjumps from an ordinary equation to a funtional equation.The lassial gluon �elds whih we shall �nd are the non-abelian gener-alization of the Lienard�Wiehart potentials of eletrodynamis. If we usethe oordinate spae variable x� and realize that the soure for the gluonsarise from muh smaller x� than that at whih we make the measurements,sine they arise from gluons of muh higher longitudinal momenta whih are



Two Letures on Small x and High Gluon Density 3717more Lorentz ontrated, then the soures an be imagined as arising froma Æ(x�). The Lienard�Wiehart potentials also are proportional to Æ(x�),and so exist only in the sheet. The �elds are also transversely polarizedBia ? Eia ? ẑ : (18)1.7. Why an e�etive ation?The e�etive ation formalism whih will be advoated in the next le-tures is very powerful. It is used to ompute a gluon e�etive �eld. This�eld an be related to the wavefuntion of the hadron.This �eld allows one to generalize it from the original desription of asingle hadron, to ollisions of hadrons and also to di�rative proesses. Weshall see that the e�etive ation formulation is inredibly powerful.The areful student might at this point be very worried: How has theproblem been in any way simpli�ed? We have just introdued a soure,and to speify the �eld one has to speify the soure. Moreover, suh aspei�ation is gauge dependent. What happens is amusing: We integrateover the all olor orientations of the soure. Gauge invariane is restored bythe integration. The theory beomes spei�ed by the loal density of olorharge squared. This is a gauge invariant quantity. It an be related tothe gluon distribution funtions, and is determined by the renormalizationgroup equations.2. Leture II: Small x physis and lassial �eldsIn this leture, I will develop the theory of small x physis using lassialgluon �elds. The reason why lassial gluon �elds are important is beauseat small x the phase spae density of gluons,dNd3xd3p >> 1 (19)When the oupation number per state beomes large, the quantum dynam-is beomes lassial.Before developing the lassial theory, it is useful to review some featuresof QCD, in partiular, the light one formulation.2.1. Light one gauge QCDIn QCD we have a vetor �eld A�a . This an be deomposed into longi-tudinal and transverse parts asA�a = 1p2(A0a �Az) (20)



3718 L. MLerranand the transverse as lying in the tow dimensional plane orthogonal to thebeam z axis. Light one gauge isA+a = 0 : (21)In this gauge, the equation of motionD�F �� = 0 (22)is for the + omponent DiF i+ �D+F�+ = 0 (23)whih allows one to ompute A� in terms of Ai asA� = 1�+2Di�+Ai : (24)This equation says that we an express the longitudinal �eld entirely in termsof the transverse degrees of freedom whih are spei�ed by the transverse�elds entirely and expliitly. These degrees of freedom orrespond to thetwo polarization states of the gluons.We therefore haveAia(x) = Zp+>0 d3p(2�)32p+ �eipxaia(p) + e�ipxaiya (p)� ; (25)where [aia(p); aJyb (q)℄ = 2p+ÆabÆij(2�)3Æ(3)(p� q) ; (26)where the ommutator is at equal light one time x+.2.2. Distribution funtionsWe would like to explore some hadroni properties using light one �eldoperators. For example, suppose we have a hadron and ask what is the gluonontent of that hadron. Then we would omputedNgluond3p = Dh j ay(p)a(p) j hE : (27)The quark distribution for quarks of �avor i (for the sum of quarks andantiquarks) would be given in terms of reation and annihilation operatorsfor quarks as dNid3p = Dh j fbyi (p)bi(p) + dyi (p)di(p)g j hE ; (28)



Two Letures on Small x and High Gluon Density 3719where b orresponds to quarks and d to antiquarks. The reation and annihi-lation operators for quarks and gluons an be related to the quark oordinatespae �eld operators by tehniques similar to those above. The interestedstudent should read the notes of Venugopalan for details [10℄.How would we begin omputing suh distribution funtions? We willstart with the example of a large nuleus, as this makes some issues onep-tually simpler. We will then generalize to hadrons, where we shall see thatthe ideas presented here have a generalization.For a large nuleus, we assume that the gluon distribution whih weshall try to ompute has longitudinal momentum soft ompared to that ofthe valene quarks. Valene quarks have longitudinal momentum of theorder of that of the nuleus, so this requirement is only that x << 1 In fat,we will require that x << A�1=3. This is the requirement that in the framewhere the longitudinal momentum of the gluons is zero, the nuleus has aLorentz ontrated size muh less than the wavelength assoiated with thegluons transverse momentum � � 1=pT . This is the requirement that thegluon resolve the nuleus as a whole and is insensitive to the details of thenulear struture (spatial distribution of valene quarks within the nuleus).We are interested in the region where the overlap between the quark andgluon rapidity distribution is small.If the gluon phase spae density is very large, the quantum gluons of thenuleus may be treated as lassial �elds. This may be true if�2 = 1�R2 dNgluedy (29)satis�es �2 >> �2QCD. Certainly if the typial pT of the gluons was of order�QCD this would be true sine the gluons would then be losely pakedtogether. We shall see that this is true in fat for gluons with pT << �whih for high gluons density an beome very large.If the valene quarks have a longitudinal momentum muh larger thanthe typial gluon momentum then their typial interations with these glu-ons should be haraterized by the soft momentum sale (otherwise the softgluons would not remain soft). In an emission of a gluon, the emitted gluonhas momentum very small ompared to the valene quark longitudinal mo-mentum. Its veloity therefore is barely hanged by this emission. Thequarks are therefore reoilless soures of olor harge for the gluon lassial�eld.The valene quarks are soures for the gluons and sit on a sheet of thik-ness in�nitesimal ompared to the typial wavelength assoiated with thegluon �eld. We shall further assume for simpliity that the transverse dis-tribution of harge is uniform. (In fat, a better approximation is that thedistribution of harge is slowly varying on the gluon wavelength sale of



3720 L. MLerraninterest. This ase an be omputed diretly from knowledge of the uni-form transverse distribution ase, The transverse size sale of variation isthe nulear radius, whih is muh larger than a fermi, so that this riteriais satis�ed so long as � >> �QCD, and the typial transverse momentum isof order �.)In a head on piture of the nuleus, it is essentially a �at sheet. We areinterested in resolving the harge distribution on a transverse sale size oforder �x. In order that we an use weak oupling methods, we require thatthe transverse size be �x << 1Fm:We an also resolve the struture in the longitudinal diretion. Here weuse spatial rapidity whih has the e�et of spreading out the thin longitudinalextent of the nuleus, �z into a �nite range of rapidity. If we draw a tubethrough the nuleus in the longitudinal diretion, then even for a very thintube �x small, if we are at high enough energy orresponding to a largerapidity, the tube will interset many quarks and gluons. The physialextent in longitudinal spatial oordinate is of ourse small. If we requirethat �x << 1Fm and require that a tube intersets a quark or gluon fromsome hadron, then typially, that hadron will be far separated from anyother hadron whih has one of its quarks or gluons within the tube. Thequarks and gluons within the tube are therefore unorrelated in olor. Ifwe further require that the tube be large enough so that many quarks andgluons are in eah tube, a situation always possible if we have large enoughenergy or a large enough nuleus, then the olor total olor harge assoiatedwith these quarks and gluons will be in a high dimensional representation,and an be treated lassially. To see this, reall that in a high dimensionalrepresentation, Q2 >> Q � [Q;Q℄ so that ommutators may be ignored.For partons at the x values where we wish to ompute the gluon distri-bution funtion, the higher rapidity soures sit on a sheet of in�nitesimalthikness. The problem we must solve is to ompute the typial orrelationfuntions whih give distribution funtions for stohasti soures sitting on asheet of in�nite transverse extent traveling at the speed of light. Mathemat-ially, this problem is similar to spin glass problems in ondensed matterphysis. Suh problems typially have entirely nontrivial renormalizationgroups, and we will see that this is the ase for our problem.To understand a little better how the soures are distributed, it is usefulto go inside the sheet. This is aomplished by introduing a spae-timerapidity variable. Let us assume that the rapidity of the projetile is yprojand its longitudinal momentum is P+, we de�ne� = yproj � ln (P+projx�) : (30)We de�ne the momentum spae rapidity asy = yproj � ln (P+proj=p+) : (31)



Two Letures on Small x and High Gluon Density 3721Here x� is the oordinate of a soure and p+ its momentum. The previousde�nition of momentum spae rapidity for produed partiles wasy = 12 ln (p+=p�) = ln (p+=mt) ; (32)where mt = pp2t +m2. This last expression is valid for partiles on massshell, whereas the other de�nition of momentum spae rapidity works foronstituents of the hadron wavefuntion, whih are of ourse not on massshell. These de�nitions are equal within about a unit of rapidity for typialvalues of transverse momenta. In the wavefuntion, the unertainty priniplerelation gives x�p+ � 1, so that we see the spae time rapidity is up toabout a unit of rapidity the same as both momentum spae values. We willtherefore use these rapidities interhangeably in what follows.We an now implement our stati soures of harge by assuming thetheory is de�ned by an ensemble of suh harges:Z = Z [d�℄ exp8<:�12 yprojZy dy0d2xt 1�2(y0)�2(y0; xt)9=; : (33)This ensemble gives< �a(y; xT )�b(y0; x0t) >= �2(y)ÆabÆ(y � y0)Æ(2)(xt � x0t) : (34)The parameter �2 therefore has the interpretation of a harge squared perunit rapidity �2(y) = 1N2 � 1 1�R2 dQ2(y)dy : (35)The total harge squared is�(y) = yprojZy dy0�2(y0) : (36)Sine the soures are individual quarks and gluons, this an also be relateddiretly to the total number of gluons and quarks ontributing to the soureas [11℄ �(y) = 1�R2 � Ng2N + NNqN2 � 1� 1Zx dxG(x) : (37)



3722 L. MLerranThe fators above arise from omputing the olor harge squared of a singequark or a single gluon.We may now onstrut the non-abelian Lienard�Wiehart potentials gen-erated by this distribution of soures. We must solve the equationD�F �� = g2Æ�+�(y; xt) : (38)To solve this equation, we look for a solution of the formA� = 0 ; (39)and Ai = 1i U(y; xt)riU y(y; xT ) : (40)We ould equally well solve this equation in a gauge where A+ is nonzeroand all other omponents vanish. The student should hek that the gaugetransformation indued by U givesA+ = 1i U y�+U : (41)In this non-lightone gauge, the �eld equations simplify and we getr2tA+ = g2�(y; xt) : (42)Solving for U gives U = exp8<:i yprojZy dy0 1r2t �(y0; xt)9=; : (43)We have therefore onstruted an expliit expression for the light one �eldAi in terms of the soure � for arbitrary �! The system is integrable.The struture of the �elds strengths E and B whih follow from this �eldstrength is now easy to understand. The only nonzero longitudinal derivativeis �+. The �eld strength Fij where both ij are transverse vanishes sine the�led looks like a pure gauge transformation in the two dimensional spae.It is in fat a pure gauge everywhere but in the sheet where the harge sits.Therefore the only nonvanishing �eld strength is F i+. This gives E ? B ? ~z,that is the �elds are transversely polarized. This is the preise analog of theLienard�Wiehart potentials of eletrodynamis.



Two Letures on Small x and High Gluon Density 37232.3. The ation and renormalization groupThe e�etive ation for the theory we have desribed must be gaugeinvariant and properly desribe the dynamis in the presene of externalsoures, up to an overall gauge transformation whih is onstant in x�.(The lak of preise gauge invariane arises from the the desire to de�ne theintrinsi transverse momentum of gluon distribution funtions. Althoughwhen used in omputations of gauge dependent quantities, the gauge de-pendene disappears, it is useful to not have the full gauge invariane inintermediate steps of omputation.) The student should verify, that onsis-teny with the Yang�Mills equations in the presene of an external sourerequires that D�J� = 0 : (44)For a soure of the type we have here,J�a = Æ�aÆ(x�)�a(xt) : (45)This is an approximation we make when we desribe the soure on salesmuh larger than the spatial extent of the soure. To properly regularizethe delta funtion, we need to spread the soure out in x� as was done inthe previous setion. We �nd that the ation isS = �14 Z d4xF a��F ��a + iN Z d2xtdx�Æ(x�)�a(xt) tr T a� exp8<:i 1Z�1 dx+T �A�(x)9=; : (46)In this equation, the matrix T is in the adjoint representation of the gaugegroup. This is required for reality of the ation. The student should minimizethis ation to get the Yang�Mills equations, identify the urrent, and showthat the urrent is ovariantly onserved.This ation is gauge invariant under gauge transformations whih arerequired to be periodi in the time x+. This is a onsequene of the gaugeinvariane of the measure of integration over the soures �. This will betaken as a boundary ondition upon the theory. In general if we had notintegrated over soures, one ould not de�ne a gauge invariant soure, asgauge rotations would hange the de�nition of the soure. Here beause thesoure is integrated over in a gauge invariant way, the problem does notarise.In the most general gauge invariant theory whih we an write down isgenerated from Z = Z [d�℄e�F [�℄ Z [dA℄eiS[A;�℄ : (47)



3724 L. MLerranThis is a generalization of the Gaussian ansatz desribed in the previousleture. It allows for a slightly more ompliated struture of stohastivariation of the soures. The Gaussian ansatz an be shown to be validwhen the evaluating struture funtions at large transverse momenta.FGaussian[�℄ = 12� Z d2xt�2(xt) : (48)This theory is a slight modi�ation of what we desribed in the �rstleture. We have here assumed that our theory is an e�etive theory validonly in a limited range of rapidity muh less than the rapidity of the soure.In this restrited range, the struture of the soure in rapidity annot beimportant, and therefore we ouple only to the total harge seen at therapidity of interest. The loal harge density as a funtion of rapidity isreplaed by the total harge at rapidities greater than that at whih wemeasure the �eld. The sale of �utuation of the soure is instead of theloal harge squared per unit are per unit rapidity �2(y) beomes replaesby the sale of �utuation of the total harge. The student should provethat � = yprojZy dy0�2(y0) : (49)To fully determine F in the above equation demands a full solutionof the renormalization group equations of the theory. This has yet to bedone. We shall on�ne our attention in most of the analysis below to theGaussian ansatz. It is remarkable that within this simple ansatz for F , mostof the general feature whih a full treatment should generate, suh as properunitary behavior of deep inelasti sattering, arises in a natural way.Let us turn our attention for the moment to the gluon distribution fun-tion (2�)32p+ dNd3p = hay(p)a(p)i : (50)Using the results of the previous leture, you should prove thatdNd3p = 2p+(2�)3 Xi;a Diiaa(p;�p) : (51)Here a is a olor index and i is a transverse index assoiated with the gluon�eld. D is the gluon propagator in the external �eldD��ab (p; q) = hA�a(p)A�b (q)i : (52)



Two Letures on Small x and High Gluon Density 3725(In �eld theory language, D is the propagator in the external �eld inludingboth onneted and disonneted piees.)In lowest order, the A in the expression for D is simply the externalLienard�Wiehart potential. Reall thatAi = �iUriU y ; (53)where the U 's are the expliit funtions of the soure � omputed in theprevious leture.The expetation value above may be omputed using the Gaussian weightfuntion. We need the propagator 1=r4t to perform this alulation. Thestudent should try to do this omputation (it is equivalent to normal orderingexponentials), and if it is too hard, refer to the paper of Jalilian-Marian etal., where it is worked out in some detail [7℄. The result isdNd2pT � Z d2ze�ipT zT 4(N2 � 1)Nz2T �(1� zt�QCD)n1� (z2t �2QCD)2��2s�z2to :(54)At pt >> � where � = �sp�, the1�R2 dNdyd2pt � �2=�sp2t : (55)This is beause this part of the distribution an be thought of as arisingfrom bremstrahlung from the soures of the gluon �eld at high rapidities.As pt � �, the gluon distribution funtion goes to a slowly varying funtionof pT , whih in the Gaussian ansatz is1�R2 dNdyd2pt � 1�s ln (�=pt) : (56)In general, we expet saturation in this region, for arguments whih will bepresented in the next few pages. This means we get a slowly varying funtionof pT , whih by dimensional arguments, is therefore a slowly varying funtionof �The only plae that any non-trivial rapidity dependene enters the prob-lem is through �. This dependene an be found from the renormalizationgroup analysis of the e�etive ation. Therefore in the bremstrahlung re-gion, the dependene on �2 is linear, and in the saturation region it is veryweak.Let us assume that when we go beyond the Gaussian ansatz, the generalfeatures of saturation presented above remain. We will show that this resultsin a reasonable physial piture for small x physis, and solve the unitaritypuzzle outlined in the �rst leture. First onsider the gluon distribution



3726 L. MLerranfuntion. The total number of gluons whih an be measured at some salesize larger than a resolution size sale 1=Q2 isxG(x;Q2) = Q2Z0 d2pT(2�)2 dNdyd2pT : (57)For Q2 >> �2, the integral is dominated by the bremstrahlung tail,and G � R2�2. (The gluon distribution is proportional to the harge perunit area times the area.) In our random walk senario, the e�etive hargesquared must be proportional to the length of the random walk, R, so thatG � R3 whih for a nuleus is proportional to A1=3 . This is what weexpet at large Q2, exept the reasoning is a little di�erent than usual. Thestandard argument would have been that at large Q2, the degrees of freedomin a nuleus for example should at inoherently, and we should have thegluon distribution funtions proportional to A. Here we have random �eldsgenerating preisely the same A dependene!When Q2 � �2, the integral is dominated by the saturation region.Here G � R2Q2, and the gluons an be thought of as arising from thesurfae of the hadron. Again this is onsistent with what is expeted fromphenomenology. The gluons are so soft that they annot see the entirehadron, only its surfae.The e�et of saturation for unitarization of deep inelasti sattering analso be easily understood. Suppose we are at some �xed Q2 >> �2(y).As y dereases orresponding to going to smaller x� the gluon distributionfuntion inreases as �2(y). When x beomes so small that we get into thesaturation region, the linear � dependene is weakened (in the Gaussianansatz it is logarithmi in �), and the struture funtion stops growing. Weexpet that the number of gluons of size smaller than our resolution salehave eased to grow, and the ross setion should beome slowly varying.This is in spite of the fat that � ontinues to grow!The physis is again simple to understand: At small x we are indeedadding more and more gluons to the hadron wavefuntion. These gluons aresmaller as their inverse size sales as gluon density,1=r2 � 1�R2 dNdy : (58)They do not ontribute to a �xed Q2 ross setion when they beome smallerthan the resolution size sale. What saves unitarity is pt broadening.



Two Letures on Small x and High Gluon Density 37272.4. Deep inelasti satteringIn the previous disussion, we were onerned with the gluon distributionfuntion. In deep inelasti sattering, we measure the quark distributionfuntions. How are these related?In deep inelasti sattering we measureWmu� = 12� Im Z d4xeiqxhPhad j T (J�(x)J�(0) j Phadi= 1Mhad ���g�� � q�q�q2 �F1+ �p� � q� p � qq2 ��p� � q� p � qq2 � 1p � qF2� : (59)We must be able to ompute the imaginary part of the urrent-urrentorrelation funtion. This is simply vauum polarization in the presene ofthe Lienard�Wiehart potentials. In fat, it is straightforward to omputethe propagators in these bakground �elds [13℄. The reason why it is simpleis beause the bakground �eld is basially gauge transformations in tworegions of spaes separated by a surfae of disontinuity.This propagator may be then used to ompute the vauum polarization.The omputation an be done so far as to relate expliitly the struturefuntions to orrelation funtions of exponentials involving � and expressionsvery similar to those for the gluon distribution funtion result. These resultsare urrently being applied to the study of deep inelasti sattering to seewhether the e�ets of saturation might be seen experimentally.2.5. Renormalization group and how it worksIn the above omputation of the gluon propagator, one used the lassiale�etive ation to ompute the Lienard�Wiehart potentials. These lassial�elds were then used to ompute the propogator. What about the quantumorretions?When the quantum orretions are omputed, one gets a orretion tothe lassial �eld of order �s ln (xuto�=x), where x is the value for gluondistribution funtion, and xuto� is the maximum x appropriate for the ef-fetive ation. Although the oupling is small, the logarithm an beome bigif we go to x values far below the uto�. The overall theory should remainvalid however, the problem is that the lassial approximation is no longergood.The way to �x this up is to use the renormalization group. Supposewe want a new e�etive theory below xnew, and we require that xnew <<xuto� but that �s ln (xuto�=xnew) << 1. This means that the quantum



3728 L. MLerranorretions are small in the range xnew << x << xuto� , and an be handledperturbatively. We proeed by integrating out the degrees of freedom in thisintermediate range of x, to generate a new e�etive theory in the regionx << xnew.In this proess, the one an show that the only thing that hanges in thee�etive ation formalism is the weight funtion F [�℄ for �utuations in theolor soure . E�etively, we are hanging what we all soure for the gluon�eld, and trading it for what we all the gluon �eld. This renormalizationgroup proedure is that of Wilson�Kadano�. One an derive the form of therenormalization group equations and they an be written expliitly in thelow gluon density region. One an prove that here the funtion F is Gaus-sian, and that in appropriate kinemati limits, one reprodues the BFKLequation, the DGLAP equation and their non-linear generalizations to �rstorder in the non-linearities. Work is urrently in progress to get the expliitform of these equations in the high density region, and to solve them.If we are in the low density region, we evolve in x by the BFKL equationand in Q2 by the DGLAP equation. Hopefully a full solution to the problemwill lead to an e�etive ation whih is at a �xed point of the renormalizationgroup. In this ase, at very small x, the form for F will simplify, and allorrelation funtions will have universal ritial exponents. If this is true,the dynamis of high energy sattering for all hadrons beomes the same,and presumably has a simple struture.I thank my olleagues Alejandro Ayala-Merado, Miklos Gyulassy, YuriKovhegov, Alex Kovner, Jamal Jalilian-Marian, Andrei Leonidov, RajuVenugopalan and Heribert Weigert with whom the ideas presented in thistalk were developed. This work was supported under Department of En-ergy grants in high energy and nulear physis DOE-FG02-93ER-40764 andDOE-FG02-87-ER-40328. REFERENCES[1℄ E.A. Kuraev, L.N. Lipatov, Y.S. Fadin, Zh. Eksp. Teor. Fiz 72, 3 (1977) (Sov.Phys. JETP 45, 1 (1977) ); I.A. Balitsky, L.N. Lipatov, Sov. J. Nul. Phys.28, 822 (1978); G. Altarelli, G. Parisi, Nul. Phys. B126, 298 (1977); Yu.L.Dokshitzer, Sov.Phys.JETP 46, 641 (1977).[2℄ J. Breitweg et al., Eur. Phys. J. 67, 609 (1999) and referenes therein.[3℄ L. V. Gribov, E. M. Levin, M. G. Ryskin, Phys. Rep. 100, 1 (1983).[4℄ J.D. Bjorken, Phys. Rev. D27, 140 (1983).[5℄ L. MLerran, R. Venugopalan, Phys. Rev. D49, 2233 (1994); D49, 3352(1994).[6℄ Y. Kovhegov, Phys. Rev. D54, 5463 (1996); D55, 5445 (1997).



Two Letures on Small x and High Gluon Density 3729[7℄ J. Jalilian-Marian, A. Kovner, L. MLerran, H. Weigert, Phys. Rev.D55, 5414(1997);[8℄ J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert Nul. Phys. B504,415 (1997); Phys. Rev. D59, 014014 (1999); J. Jalilian-Marian, A. Kovner, H.Weigert, Phys. Rev. D59, 014015 (1999).[9℄ E. Ianu, A. Leonidov, L. MLerran, work in progress.[10℄ R. Venugopalan nul-th/9808023.[11℄ M. Gyulassy, L. MLerran, Phys. Rev. C56, 2219 (1997).[12℄ A. Mueller Nul. Phys. B307, 34 (1988); B355, 115 (1990).[13℄ L. Mlerran, R. Venugopalan, Phys. Rev. D59, 094002 (1999).


