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CLASSICAL METHODS IN DIS AND NUCLEARSCATTERING AT SMALL x �Raju VenugopalanPhysis Department, Brookhaven National LaboratoryUpton, NY 11973, USA(Reeived November 15, 1999)In hadrons and nulei at very small x, parton distributions saturate ata sale Qs(x). Sine the oupation number is large, and Qs(x) � �QCD,lassial weak oupling methods may be used to study this novel regime ofnon-linear lassial �elds in QCD. In these letures, we apply these methodsto ompute struture funtions in deeply inelasti sattering (DIS) and theenergy density of gluons produed in high energy nulear ollisions.PACS numbers: 12.38.�t, 12.38.Lg1. IntrodutionOne of more interesting problems in perturbative QCD is the behaviourof parton distributions at small values of Bjorken x. In deeply inelastisattering (DIS) for instane, for a �xed Q2 � �2QCD, the operator produtexpansion (OPE) eventually breaks down at su�iently small x [1℄. There-fore at asymptoti energies, the onventional approahes towards omputingobservables based on the linear DGLAP [2℄ equations are no longer appli-able. Even at urrent ollider energies suh as those of HERA, where theonventional wisdom is that the DGLAP equations suessfully desribe thedata, there is reason to believe that e�ets due to large parton densitiesare not small. We may be at the threshold of a region where non-linearorretions to the evolution equations are large [3, 4℄.In reent years, a non-OPE based e�etive �eld theory approah to smallx physis has been developed by Lipatov and ollaborators [5℄. Their initiale�orts resulted in an equation known popularly as the BFKL equation [6℄,� Presented at the XXXIX Craow Shool of Theoretial Physis, Zakopane, Poland,May 29�June 8, 1999. (3731)



3732 R. Venugopalanwhih sums the leading logarithms of �S log(1=x) in QCD. In marked on-trast to the leading twist Altarelli�Parisi equations for instane, it sums alltwist operators that ontain the leading logarithms in x. The solutions tothe BFKL equation predit a rapidly rising gluon density. Suh a rapidrise in the gluon density is seen at HERA [7℄ but it an also arguably beaounted for by the next to leading order (NLO) DGLAP equations withappropriate hoies of the initial parton densities [8℄.Moreover, the next to leading logarithmi orretions to the BFKL equa-tion omputed in the above mentioned e�etive �eld theory (EFT) approahare very large [9℄. Reently, as Gavin Salam has disussed in his leturesat this shool [10℄, there has been onsiderable progress in understandingthe soure of these large orretions. The ollinear enhanements fromhigher orders to the NLO BFKL kernel an be resummed, and this results inmore stable estimates for the gluon anomalous dimensions, and for the hardpomeron. However, there are e�ets, not inluded in suh analyses, due tomultiple pomeron exhange (non-linear QCD e�ets) that may beome im-portant at rapidity sales of interest. For instane, running oupling e�etsin the NLO BFKL equation beome important at y � 1=�5=3S . However, dou-ble (hard) pomeron e�ets will beome important for y � 1=�S log(1=�S),a sale that is parametrially larger. How to systematially inlude suhe�ets, whih are enhaned by large parton densities, is an open question,and novel approahes need to be explored.An alternative EFT approah to QCD at small x was put forward in aseries of papers [11�15℄. Our approah, is a Wilson renormalization groupapproah (RG) where the �elds are those of the fundamental theory butthe form of the ation, at small x, is obtained by integrating out modes athigher values of x. This results in a set of non-linear renormalization groupequations [15℄. If the parton densities are not too high, the RG equations anbe linearized, and have been shown to agree identially with the BFKL andsmall x DGLAP equations [14℄. There is muh e�ort underway to exploreand make quantitative preditions for the non-linear regime beyond [16℄.In these letures, we will apply the above EFT to disuss two problems:� Deeply inelasti sattering at small values of Bjorken x [18℄,� high energy hadroni ollisions [19�21℄.Both are problems whih appear extremely di�ult to address in an OPEbased analysis. They simplify in the regime where x is small and momentumtransfers are large beause, a) the gluon �eld at small x an be treatedlassially, and b) weak oupling methods apply. Why is this so? Thereasons for these to apply have been disussed at length by Larry MLerranin his letures [22℄ so we will be brief here.



Classial Methods in DIS and Nulear Sattering at Small x 3733At small x, one an de�ne a sale �2 whih measures the density ofgluons per unit transverse area. One has�2 = 1� dNdy ; (1)where � is the hadroni or nulear ross setion of interest. Here y = y0 �ln(1=x), and y0 is an arbitrarily hosen onstant. When this sale satis�esthe ondition � � �S� � �QCD, the oupation number of gluons in thehadron is large � thereby justifying the use of lassial methods. Also, theintrinsi momentum pt � �S� is large. Thus the gluon dynamis, whilenonperturbative, is both semilassial and weakly oupled.Let us now disuss the lassial �eld approah to small x DIS. The gluon�eld, being bosoni, has to be treated non-perturbatively. This is analogousto the strong �eld limit used in Coulomb problems. Fermions, on the otherhand, do not develop a large expetation value and may be treated pertur-batively. In DIS, to lowest order in �S , the gluon distribution funtion isdetermined by knowing the fermioni propagator in the lassial gluon bak-ground �eld. In general, this propagator must be determined to all ordersin the lassial gluon �eld as the �eld is strong. This an be done due to thesimple struture of the bakground �eld.We will derive analyti expressions for the urrent�urrent orrelator indeeply inelasti sattering by summing a partiular lass of all twist opera-tors. These, we argue, give the dominant ontribution at small x. At highQ2, they redue to the well known expressions for the leading twist struturefuntions [28℄. For light quarks at high Q2, it an be shown expliitly thatthe lassial �eld analysis reprodues the DGLAP evolution equations forthe quark distributions at small x [18℄. The power of the tehnique we useto analyze the problem of DIS at small x is that, unlike the OPE, it doesnot rely on a twist expansion.A similar point an be made about the lassial approah to high en-ergy hadroni sattering. At very high energies, the dominant ontributionto partile prodution is from the interation of the lassial �Weizsäker�Williams� (WW) gluon �elds of the two hadrons or nulei. To lowest order,the piture is that of QCD Bremsstrahlung [43℄. Soft gluons an be emittedfrom the valene quark/hard gluon lines, or from the 2!1 diagram of twovirtual gluons fusing to produe a hard gluon. At small x, in the Fok�Shwinger gauge (x+A� + x�A+ = 0) the latter WW ontribution is thedominant one. The Weizsäker�Williams ontribution agrees with the QCDBremsstrahlung result at small x [41, 42, 44�46℄.It is essential to onsider the full non-perturbative approah for the fol-lowing reasons. Firstly, the lassial gluon radiation omputed perturba-tively is infrared singular, and has to be ut-o� at some sale kt � �S�.



3734 R. VenugopalanThis problem also arises in mini-jet alulations where at high energies re-sults are shown to be rather sensitive to the ut-o� [47℄. Seondly, thenon-perturbative approah is ruial to a study of the spae-time evolutionof the system. In partiular, the possible thermalization of the system, aswell as the relevant time sales for thermalization, are strongly in�uenedby the non-linearities that arise in the non-perturbative approah [48℄.In these letures, we will disuss results from real time simulations of thefull, non-perturbative, evolution of lassial non-Abelian WW �elds. The�elds are generated by soures of olor harge �� (representing the valenepartons in eah of the hadrons or nulei) moving along the two light ones.For eah � on�guration, one solves Hamilton's equation numerially to ob-tain the real time behavior of the gauge �elds in the forward light one. TheHamiltonian is the Kogut�Susskind Hamiltonian in 2+1-dimensions oupledto an adjoint salar �eld. The initial onditions for the evolution are pro-vided by the non-Abelian Weizsäker�Williams �elds for the nulei beforethe ollisions.To ompute observables, one has to average over all the � on�gurationsin eah of the two nulei. In general, these are averaged with a statistialweight exp [�F [�℄℄, where F [�℄ is a funtional over the olor harge density� of the higher x modes. The funtional F [�℄ obeys the non-linear renor-malization group equation that was mentioned in the preeding disussion.If one onsiders ollisions of large nulei, the weight simpli�es to a Gaussianone, and one an replaeF [��℄ �! Z d2xt y�fragZy dy0 1�2(y0) Tr �(��)2� ; (2)where y�frag are the rapidities orresponding to the fragmentation regions ofthe two nulei.Our approah is limited beause it is lassial. However, if the e�e-tive ation approah aptures the essential physis of the small x modes ofinterest, then in the spirit of the Wilson renormalization group, quantuminformation from the large x modes (above the rapidity of interest) is on-tained in the parameter �2 disussed above, whih grows rapidly as one goesto smaller x's. In priniple, this information an be inluded in the lassiallattie simulations.The plan of these letures is as follows. We will begin in Setion 2 byreviewing the e�etive ation for the small x modes in QCD. We also dis-uss the lassial saddle point solutions of this e�etive ation. In Setion 3,we will disuss how one omputes quark prodution in the lassial gluonbakground �eld. At small x, this gives the dominant ontribution to the



Classial Methods in DIS and Nulear Sattering at Small x 3735struture funtions measured in deeply inelasti sattering. Struture fun-tions are omputed in Setion 4. At high Q2, our results reprodue thesmall x DGLAP results. For smaller values of Q2, for Gaussian soures,one obtains the Glauber result for the struture funtions in agreement withprevious derivations in the nulear rest frame. Subsequent setions onerngluon prodution in high energy sattering of (in partiular) large nulei.The lassial approah to the two-nuleus problem is disussed in Setion 5.It is very hard to solve for the non-perturbative dynamis analytially. Ithas not yet been done. Instead, we derive a numerial algorithm whih ap-tures the essential physis of the two-nuleus problem. Results from ournumerial simulations are disussed in Setion 6. Setion 7 summarizes thematerial ontained in the letures and outlines diretions of future researh.2. E�etive �eld theory for small x partons in QCDIn the in�nite momentum frame (IMF) P+ !1, the e�etive ation forthe soft modes of the gluon �eld with longitudinal momenta k+ � P+ (orequivalently x � k+=P+ � 1) an be written in light one gauge A+ = 0 asSe� = �Z d4x14Ga��G��;a+ iN Z d2xtdx��a(xt; x�)Tr ��aW�1;1[A�℄(x�; xt)�+iZ d2xtdx�F [�a(xt; x�)℄ : (3)Above, Ga�� is the gluon �eld strength tensor, �a are the SU(N) matriesin the adjoint representation and W is the path ordered exponential in thex+ diretion in the adjoint representation of SU(N),W�1;1[A�℄(x�; xt) = P exp ��ig Z dx+A�a (x�; xt)�a� : (4)The ation is a gauge invariant form [14℄ of the ation that was proposed inRef. [11℄. One an write an alternative gauge invariant form of the ationbut the results are the same for the problem of interest.The e�etive ation onsidered here is valid in a limited range ofP+ � �+, where �+ is an ultraviolet uto� in the plus omponent ofthe momentum. The degrees of freedom at higher values of P+ have beenintegrated out. Their e�et is to generate the seond and third terms in theation. The �rst term is the usual �eld strength piee of the QCD ationand desribes the dynamis of the wee partons. The seond term is theoupling of the wee partons to the hard olor harges at higher rapidities,



3736 R. Venugopalanwith x values orresponding to values of P+ � �+. When expanded to �rstorder in A�, this term gives the familiar J �A oupling for Abelian lassial�elds. The last term in the e�etive ation is imaginary. It an be thoughtof as a statistial weight resulting from integrating out the higher rapiditymodes in the original QCD ation. Expetation values of gluoni operatorsO(A) are then de�ned ashO(A)i = R [d�℄ exp (�F [�℄) R [dA℄O(A) exp (iS[�;A℄)R [d�℄ exp (�F [�℄) R [dA℄ exp (iS[�;A℄) ; (5)where S[�;A℄ orresponds to the �rst two terms in Eq. (3).In the IMF, only the J+ omponent of the urrent is large (the otheromponents being suppressed by 1=P+). The longer wavelength wee partonsdo not resolve the higher rapidity parton soures to within 1=P+ and, forall pratial purposes, one may write�a(xt; x�) �! �a(xt)Æ(x�) : (6)In Ref. [11℄ a Gaussian form for the ationZ d2xt 12�2 �a�a (7)was proposed, where �2 was the average olor harge squared per unit areaof the soures at higher rapidities. For large nulei A� 1 it was shown that�2 = 1�R2 Nq2N � A1=3=6 fm�2: (8)This result was independently on�rmed in a model onstruted in the nu-lear rest frame [23℄. If we inlude the ontribution of gluons whih have beenintegrated out by the renormalization group tehnique, one �nds that [41℄�2 = 1�R2 � Nq2N + NNgN2 � 1� : (9)Here Nq is the total number of quarks with x above the uto�; Nq =Pi R 1x dx0qi(x0) where the sum is over di�erent �avors, spins, quarks andantiquarks. For gluons, we also have Ng = R 1x dx0g(x0). The value of �R2 iswell de�ned for a large nuleus. For a smaller hadron, we must take it to be�, the total ross setion for hadroni interations at an energy orrespond-ing to the uto�. This quantity will beome better de�ned for a hadron inthe renormalization group analysis.



Classial Methods in DIS and Nulear Sattering at Small x 3737The above equation for �2 is subtle beause, impliitly, on the right handside, there is a dependene on � through the struture funtions themselves.This is the sale at whih they must be evaluated. Calulating � thereforeinvolves solving an impliit equation. Note that beause the gluon distribu-tion funtion rises rapidly at small x, the value of � grows as x dereases. Atsome ritial x, the indiations are that the parton distributions saturate.Thus there may be a ritial line in the x�Q2 plane orresponding to partonsaturation. This is an important point and we will return to it later.The Gaussian form of the funtional F [�℄ is reasonable when the olorharges at higher rapidity are unorrelated and are random soures of olorharge. This is true for instane in a very large nuleus. It is also true ifwe study the Fok spae distribution funtions or deep inelasti struturefuntions at a transverse momentum sale whih is larger than an intrinsisale set by �S�. In this equation �S is evaluated at the sale �. At smallertransverse momenta sales, one must do a omplete renormalization groupanalysis to determine F [�℄. For heavy quarks, in DIS, the Gaussian analysisshould be adequate.In Ref. [13℄, it was shown that a Wilson renormalization group proedureould be applied to derive a non-linear renormalization group equation forF [�℄. In the limit of weak �elds, the renormalization group equation anbe linearized, and an be shown to be none other than the BFKL equationdisussed previously. The fat that this limit an be obtained in a simpleand elegant way suggests the power of this approah, and the importaneof further studying the non-linear region of strong lassial �elds. We willnot disuss the RG proedure here but will refer the reader to the relevantpapers, and to Larry MLerran's letures [22℄.The e�etive ation in Eq. (3) has a remarkable saddle point solution[11, 13, 23℄. It is equivalent to solving the Yang�Mills equationsD�G�� = J�Æ�+ ; (10)in the presene of the soure J+;a = �a(xt; x�). Here we will allow thesoure to be smeared out in x� as this is useful in the renormalization groupanalysis. It is also useful for intuitively understanding the nature of the�eld. One �nds a solution where A� = 0 andAi = �1ig V �iV y ; (11)(i = 1; 2) is a pure gauge �eld in the two transverse dimensions whih satis�esthe equation Di dAidy = g�(y; x?) : (12)



3738 R. VenugopalanHere Di is the ovariant derivative �i + V �iV y and y = y0 + log(x�=x�0 ) isthe spae-time rapidity and y0 is the spae-time rapidity of the hard partonsin the fragmentation region. At small x, we will use the spae-time andmomentum spae notions of rapidity interhangeably [17℄. The momentumspae rapidity is de�ned to be y = y0 � ln(1=x). The solution of the aboveequation isAi�(xt) = 1ig 0�P eig y0Ry dy0 1r2? �(y0;xt)1Ari0�P eig y0Ry dy0 1r2? �(y0 ;xt)1Ay : (13)The lassial nulear gluon distribution funtion is omputed by aver-aging over the produt of the lassial �elds in Eq. (13) at two spae-timepoints with the weight F [�℄ [11℄. For a Gaussian soure, one obtainsdNd2xt = 12��S CFx2t �1� exp�� �S�22�CF x2txG�x; 1x2t ��� ; (14)where CF is the Casimir in the fundamental representation and � is thenulear ross-setion1. For large xt (but smaller than 1=�QCD), the distri-bution falls like a power law 1=x2t and has a 1=�S dependene! For verysmall xt, the behavior is the perturbative distribution log(xt�QCD). Thesale whih determines the ross-over from a logarithmi to a power lawdistribution is, following Mueller's notation [24℄, the saturation sale Qs.Setting xt = 1=Qs and the argument of the exponential above to unity, oneobtains the relation, Q2s = �S�22� 1CF xG(x;Q2s) ; (15)whih, for a partiular x, an be solved self-onsistently to determine Qs.Beause of the sharp ut-o� in o-ordinate spae, the momentum spaedistribution is not well de�ned. A smooth Fourier transform has been de-�ned, on physial grounds, by Lam and Mahlon by requiring that the hargein light one gauge R d2xt�(xt) vanish [25℄ for eah � on�guration.1 Above, we have re-written the expression for the gluon distribution in Ref. [13℄, usingthe leading log gluon distribution to replae �2 and log(xt�QCD) with the gluondistribution xG(x; 1x2t ) at the sale 1=x2t .



Classial Methods in DIS and Nulear Sattering at Small x 37393. Quark prodution in the lassial gluon bakground �eldIn this setion, we will ompute the orrelator of eletromagneti urrentsin the lassial gluon bakground �eld. In deeply inelasti eletroprodution,the hadron tensor an be expressed in terms of the forward Compton sat-tering amplitude T�� by the relation [26℄W ��(q2; P � q) = 2 Dis T ��(q2; P � q) � 12� ImZ d4x exp(iq � x)�hP jT (J�(x)J�(0))jP i ; (16)where �T� denotes time ordered produt, J� = � � is the hadron ele-tromagneti urrent and �Dis� denotes the disontinuity of T�� along itsbranh uts in the variable P � q. Also, q2 ! 1 is the momentum transfersquared of the virtual photon2 and P is the momentum of the target. In theIMF, P+ !1 is the only large omponent of the momentum. The fermionstate above is normalized as hP j P 0i = (2�)3E=mÆ(3)(P � P 0) where m isthe mass of the target hadron. This de�nition of W �� and normalization ofthe state is traditional. In the end, all fators of m anel from the de�ni-tion of quantities of physial interest. (The normalization we will use in thispaper for quark and lepton states will have E/m replaed by 2P+.)We now generalize our de�nition ofW �� to a soure whih has a positiondependene. We obtainW ��(q2; P �q)= 12��P+m ImZ d4xdX�eiq�xDT �J� �X�+x2� J� �X��x2��E:(17)To see this, �rst note that we an de�ne hOi = hP j O j P i hP j P i where Ois any operator. From the disussion above, the expetation value hP j P i =(2�)3E=mÆ(3)(0) = (2�)3E=m V . Here we shall take the spatial volumeV to be � times an integral over the longitudinal extent of the state. Thevariable X� is a enter of mass oordinate and x� is the relative longitudi-nal position. The above de�nition of W �� is Lorentz ovariant. The inte-gration over X� is required sine we must inlude all of the ontributionsfrom quarks at all X� to the distribution funtion. In the external sourelanguage, the variable P+ an be taken to be the longitudinal momentumorresponding to the fragmentation region.The expetation value is straightforward to ompute in the limit wherethe gluon �eld is treated as a lassial bakground �eld. If we writehT (J�(x)J�(y))i = 
T � (x)� (x) (y)� (y)�� ; (18)2 Note that in our metri onvention, a spae-like photon has q2 = Q2 > 0.



3740 R. Venugopalanthen when the bakground �eld is lassial, we obtainhT (J�(x)J�(y))i = Tr (�SA(x))Tr (�SA(y))+Tr (�SA(x; y)�SA(y; x)) : (19)In this expression, SA(x; y) is the Green's funtion for the fermion �eld inthe external �eld A SA(x; y) = �i 
 (x) (y)�A : (20)The �rst term on the right hand side of Eq. (19) is a tadpole ontributionwithout an imaginary part. It therefore does not ontribute to W �� . We�nd then thatW ��(q2; p � q) = 12��P+m ImZ dX�d4xeiq�x DTr��SA(X�+ x=2;X��x=2)� �SA(X� � x=2;X�+x=2)�E : (21)The expression we derived above for W �� is entirely general and makesno referene to the operator produt expansion. In partiular, it is relevantat the small x values and moderate q2 where the operator produt expansionis not reliable [1℄. At su�iently high q2 though (and for massless quarks)it should agree with the usual leading twist omputation of the struturefuntions.We an derive an expression for the sea quark Fok distribution in termsof the propagator in light one quantization [27℄. One obtainsdNd3k = 2i(2�)3 Z d3x d3y e�ik�(x�y)Tr �+SA(x; y)� ; (22)where the fermion propagator SA(x; y) is de�ned as in Eq. (20). In a niepedagogial paper, (see Ref. [28℄ and referenes within), Ja�e has shown thatthe Fok spae distribution funtion an be simply related to the leading twiststruture funtion F2 by the relationF2(x;Q2) = Q2Z0 dk2t x dNdk2t dx : (23)Atually, Ja�e's expression is de�ned as the sum of the quark and anti-quark distributions. At small x, these are idential and the resulting fatorof 2 is already inluded in our de�nition of the light one quark distributionfuntion. At high q2, our general (all twist) result for F2 agrees with theleading twist result derived using Eq. (23) [18℄.



Classial Methods in DIS and Nulear Sattering at Small x 3741Clearly, to ompute W �� , we �rst need to ompute the fermion Green'sfuntion in the lassial bakground �eld. The �eld strength arried bythese lassial gluons is highly singular, being peaked about the soure (or-responding to the parton urrent at x values larger than those in the �eld)loalized at x� = 0. Away from the soure, the �eld strengths are zero andthe gluon �elds are pure gauges on both sides of x� = 0 (see Eq. (11)).The fermion wavefuntion is obtained by solving the Dira equation in thebakground �eld on either side of the soure and mathing the solutionsaross the disontinuity at x� = 0. One the eigenfuntions are known, thefermion propagator an be onstruted, in the standard fashion, by writingS(x; y) = Z d4q(2�)4 1q2 +M2 � i"Xpol  q(x) � q(y) ; (24)after identifying q+ = (q2t +M2��)=2q�. We will not disuss the details ofthe derivation here but refer the interested reader to Ref. [18℄.De�ne G(xt; x�) = �(�x�) + �(x�)V (xt) ; (25)a gauge transformation matrix that transforms the gluon �eld at hand toa singular �eld with the only non-zero omponent, A0� = Æ�+�(xt). Ourresult then is that the fermion propagator in the bakground �eld has theform [18, 29℄SA(x; y) = G(x)S0(x� y)Gy(y)� iZ d4zG(x)(�(x�)�(�y�)(V y(zt)� 1)��(�x�)�(y�)(V (zt)� 1))Gy(y)S0(x� z)�Æ(z�)S0(z � y)(26)with the free fermion Green's funtionS0(x� y) = Z d4q(2�)4 eiq�(x�y) (M � q=)q2 +M2 � i" : (27)Reall that V (xt) is the gauge transformation matrix in the fundamentalrepresentation and that the lassial solution Ai = V (xt)�iV y(xt)=(�ig).This very simple form of the propagator is useful in the manipulations below.In fat, sine the urrent-urrent orrelation funtion is expliitly gaugeinvariant, we may use the singular gauge form of the propagator [30,31℄ for



3742 R. Venugopalanomputing the urrent-urrent orrelation funtionSsingA (x; y) = S0(x� y)� iZ d4z(�(x�)�(�y�)(V y(zt)� 1)��(�x�)�(y�)(V (zt)� 1))S0(x� z)�Æ(z�)S0(z � y) :(28)A diagrammati representation of the form of the propagator above is shownin Fig. 1 In the expressions below for W �� we will drop the supersript singand simply use the singular gauge expression for the propagator.				�������� ���� 				�������� ���� 				�������� ����� � �� � � = + 6~�

1

Fig. 1. Diagrammati representation of the propagator in Eq. (28).Our result for the fermion propagator in the lassial bakground �eldwas obtained for a Æ-funtion soure in the x� diretion. This assump-tion was motivated by the observation that small x modes with wavelengthsgreater than 1=P+ pereive a soure whih is a Æ-funtion in x�. The prop-agator above an also be derived for the general ase where the soure hasa dependene on x�. The gauge transforms above are transformed fromV (xt) ! V (xt; x�), to path ordered exponentials, where V (xt; x�) is givenby Eq. (13). Our result for the propagator is obtained as a smooth limit of�x� = 1=xP+ � x�(= 1=P+). Therefore our form for the propagator isthe orret one provided we interpret the �-funtions and Æ-funtions in x�to be so only for distanes of interest greater than 1=P+, the sale of thelassial soure.We are now in a position to alulate the urrent�urrent orrelator. Thisalulation is aurate to lowest order in �S but to all orders in �S�. Beforewe go ahead with the omputation, we will disuss brie�y the averagingproedure over the labels of olor harges at rapidities higher than those ofinterest. This is required if we are to ompute gauge invariant observables.If we average the Green's funtion in Eq. (26) over all possible valuesof the olor labels orresponding to the partons at higher rapidities, we anemploy the following de�nitions for future referene. De�ning1N DTr �V (xt)V y(yt)�E� = (xt � yt) ; (29)



Classial Methods in DIS and Nulear Sattering at Small x 3743we see that (0) = 1, whih follows from the unitarity of the matries V .Now de�ning the Fourier transform3~(pt) = Z d2xt e�iptxt [(xt)� 1℄ ; (30)we have the sum rule Z d2pt(2�)2 ~(pt) = 0 : (31)The funtion ~(pt) will appear frequently in our future disussions and aswe shall see, an be related to the gluon density at small x.We will now use the fermion Green's funtion in Eq. (26) to derive anexpliit result for the hadroni tensor W �� . In the following setion, we willompute the struture funtions F1 and F2. As previously, we de�neW ��(q; P;X�) = Im Z d4z eiq�z DT �J� �X� + z2�� J� �X� � z2�E ; (32)where �Imaginary� stands for the disontinuity in q�. ThenW ��(q; P ) = 12��P+m Z dX�W ��(q; P;X�)� 12��P+Im Z dX� Z d4z eiq�z�Tr �SAl �X� + z2 ;X� � z2� �SAl �X� � z2 ;X� + z2� �� :(33)The only terms in the propagator that ontribute to the above are the� (�x�) � (� y�) piees. Using our representation for the propagator inEq. (28), after onsiderable manipulations, we an write W �� asW ��(q; P ) = �P+N2�m ImZ d4p(2�)4 d2kt(2�)2 dk+(2�) ~(kt)�Tr � (M � p=)�(M � l=)�(M � l0=)�(M � p0=)�(p2 +M2 � i") (l2 +M2 � i") (l02 +M2 � i") (p02 +M2 � i")� ;(34)where l = p� k, l0 = l� q, p0 = p� q and k� = 0. Correspondingly, we anwrite W �� as the imaginary part of the diagram shown in Fig. 2.3 We de�ne the Fourier transform in this way beause it orresponds to only the on-neted piees in the orrelator.
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Fig. 2. Polarization tensor with arbitrary number of insertions from the lassialbakground �eld. Wavy lines are photon lines, the solid irle denotes the fermionloop and the dashed lines are the insertions from the bakground �eld (see Fig. 1).The imaginary part of this diagram gives W �� .
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Fig. 3. Cut diagrams orresponding to the imaginary part of W�� .For the DIS ase, q2 > 0 (see footnote 1), we an ut the above diagramonly in the two ways shown in Fig. 3 (the diagram where both insertionsfrom the external �eld are on the same side of the ut is forbidden by thekinematis).Also interestingly, the ontribution to W �� an be represented solely bythe diagram in Fig. 4 and not, as is usually the ase, from the sum of thisdiagram and the standard box diagram. This is beause in our representationof the propagator multiple insertions from the external �eld on a quark linean be summarized into a single insertion. Eq. (28) makes this point lear.Applying the Landau�Cutkosky rule, shifting p ! p + k, and hangingvariables appropriately, Eq. (34) an be written asW ��(q; P )= �P+N2�m Z d4p(2�)4 d2kt(2�)2 dk+(2�) ~(kt)M���(p+ + k+)�(�p+)�(2�)2Æ((p+ k)2 +M2) Æ((p � q)2 +M2)) 1p2 +M2 1(p+ k � q)2 +M2 ;(35)
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Fig. 4. In the singular gauge representation for the propagator (see Eq. (28) andFig. 1), the urrent�urrent orrelator (imaginary part of LHS) is equivalent to theimaginary part of RHS.where above the trae is represented by 4M��=Tr �(M � p=�k=)�(M � p=)�(M � p=+ q=)�(M � p=�k=+q=)�+�$ �	 :(36)In Ref. [18℄, the integral over p� in Eq. (34) was performed before the p+integral. Here, we instead perform the p+ integral �rst. Further, de�ning z =p�=q�, we note that the �-funtion and Æ-funtion onstraints in Eq. (34)restrit 0 < z < 1. This simpli�es the result in Ref. [18℄ onsiderably.Performing the p+ integral, one obtainsW ��(q; P ) = �P+q�N�2m 1(q�)2 1Z0 dz Z d2pt(2�)2 d2kt(2�)2 ~(kt)M��16� 1M2p + z(1� z)q2t 1M2p+k�q + z(1 � z)q2t ; (37)whereM2p = p2t +M2. SimilarlyM2p+k�q = (pt+kt�qt)2+M2. The above isthe �nal result of this setion, and will be used below in omputing struturefuntions.4 Kinemati note: the observant reader will notie we have put q+ = 0 here. Sinewe are working in the in�nite momentum frame, the hadron has only one large mo-mentum omponent, P+. The rest are put to zero. For the photon, we hoose a leftmoving frame suh that q0 = jqzj and q+ = 0. Then, q2 = q2t > 0, P � q = �P+q�and xBj = �q2=(2P � q) � q2t =(2P+q�). Sine in the in�nite momentum frame0 < xBj < 1, this gives q� > 0.



3746 R. Venugopalan4. Struture funtions at small xThe hadroni tensor W �� an be deomposed in terms of the struturefuntions F1 and F2 as [26℄mW ��=� g��� q�q�q2 !F1+�P �� q�(P � q)q2 ��P �� q�P � qq2 � F2(P � q) ;(38)where P � is the four-momentum of the hadron or nuleus and P 2 = m2 � 0(� q2). In the in�nite momentum frame, we have P+!1 and P�; Pt � 0.The above equation an be inverted to obtain expressions for F1 and F2 interms of omponents ofW �� . Sine in our kinematis q+ = 0 (see footnote 3for a kinemati note) we haveF1 = F22x +� q2(q�)2� W�� ; 12xF2 = ��(q�)2q2 � W++ : (39)It is useful to verify expliitly that our expression for W �� derived in anexternal �eld an be written in the form of Eq. (38). Reall that W �� anbe written in Lorentz ovariant form by using the vetor n� = Æ�+. Usingn �  = �� in Eq. (34), we see that W �� is a Lorentz ovariant funtion ofthe only vetors in the problem � q� and n�. Identifying n� = P �=P+ inEq. (38), we see that these forms are in omplete agreement. Note that allfators of m disappear from F1 and F2 by the explit forms of Eqs. (38) and(34).We also see that the struture funtions an only be funtions of q2 andn � q by Lorentz invariane. We an therefore take q+ = 0 for the purpose ofomputing F1 and F2.To ompute W++ and W��, we need to know the the traes M++ andM��, respetively in Eq. (37). We an ompute them expliitly and theresults an be represented ompatly as116M++ = 12 �M2pM2p+k�q +M2p+kM2p�q � q2t k2t � ; (40)and M�� = 32(p�)2(p� � q�)2 : (41)From the relations above of F1 and F2 to W++ and W��, we obtain fromEq. (37) the following general results for the struture funtions for arbitrary



Classial Methods in DIS and Nulear Sattering at Small x 3747values of Q2, M2 and the intrinsi sale �,5F2 = Q2�N2�3 1Z0 dz 1�QCDZ0 dxt xt (1� (xt; y))� �K20 (xtA) �4z2(1� z)2Q2 +M2�+K21 (xtA)A2 �z2 + (1� z)2�� :(42)Here A2 = Q2z(1� z)+M2 and K0;1 are the modi�ed Bessel funtions. Forsimpliity, we have ignored the impat parameter dependene of  � andreplaed the integral over impat parameter by the transverse area �. For thesame reason, we ignore the sum over the harge squared of the quark �avors.Both of these must of ourse be inluded in numerial omputations. The�rst (seond) term in the braket above is the probability for a longitudinally(transversely) polarized photon to split into a �qq pair. Ignoring target massorretions whih are negligible at small x,FL = F2 � 2xF1� Q2�N�3 1Z0 dz 1�QCDZ0 dxt xt (1� (xt; y)) z2(1� z)2Q2K20 (xtA) :(43)For a Gaussian soure (see Ref. [18℄ and footnote 1),(xt; y) = exp���S�22�Nx2txG(x; 1x2t )� ; (44)where the sale is set by the transverse separation xt between the quark andthe anti-quark.The equation for F2 with the Gaussian soure is the well known Glauberexpression [32℄ usually derived in the rest frame of the nuleus. It is hearten-ing to see that the formalism of Ref. [18℄ for struture funtions in the in�nitemomentum frame reprodues it. For large Q2, it redues to the standardsmall x DGLAP expression6 while at small Q2 it goes to zero as Q2 log(Q2).One then reovers, qualitatively, the shape of the famous Caldwell plot fordF2=d log(Q2) measured at HERA [33℄. Similar forms were used by severalauthors to understand the reent data [34℄.5 whih is impliitly ontained in the funtion ~(kt) in Eq. (37).6 In Ref. [18℄, it was shown expliitly that our general expression for F2 formally reduesto the leading twist expression obtained from Eq. (22).



3748 R. VenugopalanOne obtains from the above equation for F2, in a manner analogous toEq. (14), the quark saturation sale Qqs by replaing CF �! CA in Eq. (15).The relative size of the two saturation sales, glue to quark, is thereforedetermined simply by the ratio of the two Casimirs, CA=CF .What about quantum orretions to the above quark and gluon distribu-tions? At the one loop level, one gets log(1=x) orretions to the Weizsaker�Williams distribution [12,24,35℄. However, Mueller has argued reently thatbeyond the one loop level, the distribution has the same form as the as theabove lassial gluon distribution. What does hange due to small x evolu-tion is the x dependene of the saturation sale [24℄. Reently, there havebeen detailed studies by Kovhegov, and by Levin and Tuhin, of partonevolution in the non-linear region [36, 37℄. Their results appear to on�rmthe intuitive piture of Mueller.As q2 �!1, we �nd remarkably that the integral on the RHS of Eq. (43)vanishes and it redues to F1 = F22x : (45)The above is the well known Callan�Gross relation. The reader may noteabove that the deviation from the Callan�Gross relation vanishes as a powerlaw as q2 ! 1. On the other hand, it is well known in QCD [39, 40℄ thatthe violations of the Callan�Gross relation only disappear logarithmiallyas q2 ! 1. The apparent ontradition is resolved by one realizing thatthe logarithmi violations at large q2 in QCD ome from diagrams wherethe sea quark emits a gluon (thereby violating Feynman's parton modelheliity argument). These diagrams are of higher order in our piture andare therefore not inluded. In fat, the deviations from the Callan�Grossrelation of the sort disussed above (at small x) should die o� faster thanlogarithmially at very large q2 beause for su�iently large q2, the violationsof the Callan�Gross relation should ome from preisely the diagrams notinluded here. At moderate q2 however, the ontributions we have disussedabove should be important.5. The non-Abelian Weizsäker�Williams approahto high energy nulear ollisionsIn nulear ollisions at very high energies, the hard valene parton modesin eah of the nulei at as highly Lorentz ontrated, stati soures of olorharge for the wee parton, Weizsäker�Williams modes in the nulei. Thesoures are desribed by the urrentJ�;a(rt) = Æ�+g�a1(rt)Æ(x�) + Æ��g�a2(rt)Æ(x+) ; (46)



Classial Methods in DIS and Nulear Sattering at Small x 3749where �1 (�2) orrespond to the olor harge densities of the hard modesin nuleus 1 (nuleus 2) respetively. The lassial �eld of two nulei isdesribed by the solution of the Yang�Mills equations in the presene of thelight one soures: D�F �� = J� ; (47)Gluon distributions are simply related to the Fourier transform Aai (kt) ofthe solution to the above equation by hAai (kt)Aai (kt)i�. The averaging overthe lassial harge distributions is de�ned byhOi� = Z d�1d�2O(�1; �2) exp �Z d2rtTr ��21(rt) + �22(rt)�2�2 ! ; (48)and is performed independently for eah nuleus with equal Gaussian weight�2. Of ourse, this is only true for idential nulei.Before the nulei ollide (t < 0), a solution of the equations of motion isA� = 0 ; Ai = �(x�)�(�x+)�i1(rt) + �(x+)�(�x�)�2(rt) ; (49)where �iq(rt) (q = 1; 2 denote the labels of the nulei) are pure gauge �elds ofthe two nulei before the ollision and have the form desribed in Eq. (13).The above expression suggests that for t < 0 the solution is simply the sumof two disonneted pure gauges.For t > 0 the solution is no longer pure gauge. Working in the Shwingergauge A� � x+A�+ x�A+ = 0 the authors of Ref. [42℄ found that with theansatz A� = �x��(�; rt) ; Ai = �i?(�; rt) ; (50)where � = p2x+x�, Eq. (47) ould be written in the simpler form1�3�� �3���+ [Di; �Di; ��℄ = 0 ;1� [Di; ���i?℄ + ig� [�; ���℄ = 0 ;1� �� ����i? � ig�2[�; �Di; ��℄� [Dj ; F ji℄ = 0 : (51)The above equations of motion are independent of � � the gauge �eldsin the forward light one are therefore only funtions of � and rt and areexpliitly boost invariant. This result follows from the assumption that thesoures of olor harge are delta funtions on the light one. Of ourse thisis not true in general. However, we are interested in the region of entral



3750 R. Venugopalanrapidity, about one unit of rapidity around � = 0. The boost invarianeassumption should be Ok in this region. Also note that boost invariane isnot assumed when solving for the �elds of the nulei before the ollision.The initial onditions for the �elds �(�; rt) and �i? at � = 0 are obtainedby mathing the equations of motion (Eq. (47)) at the point x� = 0 andalong the boundaries x+ = 0; x� > 0 and x� = 0; x+ > 0. Remarkably,there exist a set of non-singular initial onditions for the smooth evolutionof the lassial �elds in the forward light one. These an be written interms of the �elds of eah of the nulei before the ollision (t < 0) as follows,�i?j�=0 = �i1 + �i2 ; �j�=0 = ig2 [�i1; �i2℄ : (52)Gyulassy and MLerran have shown [41℄ that even when the �elds �i1;2 beforethe ollision are smeared out in rapidity to properly aount for singularontat terms in the equations of motion the above boundary onditionsremain unhanged. Further, the only ondition on the derivatives of the�elds that would lead to regular solutions are ���j�=0; ���i?j�=0 = 0.In Ref. [42℄, perturbative solutions (for small �) were found to order �2 byexpanding the initial onditions and the �elds in powers � (or equivalently,in powers of �S�=kt) We will not disuss the details of the perturbativesolution but wish to refer the reader to the original papers.Perturbatively, at late times, the �elds in the forward light one an beexpanded out in plane waves. The energy distribution in a transverse boxof size R and longitudinal extent dz an be omputed by summing over theenergy of the modes in the box with the oupation number of the modesgiven by the mode funtions ai(kt). We have thendEdyd2kt = 1(2�)2 Xi;b jabi (kt)j2 : (53)The multipliity distribution of lassial gluons is de�ned as dE=dyd2kt=!.After performing the averaging over the Gaussian soures, the number dis-tribution of lassial gluons isdNdyd2kt = �R2 2g6�4(2�)4 N(N2 � 1)k4t L(kt; �) ; (54)where L(kt; �) is an infrared divergent funtion at the sale �. This resultagrees with the quantum bremsstrahlung formula of Gunion and Bertsh [43℄and with several later works [41, 44�46℄.The funtion L(kt; �) arises from long range olor orrelations that areut-o� either by a nulear form fator (as in Refs. [43, 44℄), by dynamial



Classial Methods in DIS and Nulear Sattering at Small x 3751sreening e�ets [49, 50℄ or in the lassial Yang�Mills ase of Ref. [42℄,non-linearities that beome large at the sale kt � �S�. In the lassialase, L(kt; �) = log(k2t =�2), where � = �S�. The formalism used in allthese derivations breaks down at small momenta and one annot distinguishbetween the di�erent parametrizations of the nulear form fators. However,at su�iently high energies, the behaviour of L(kt; �) in the infrared is givenby higher order (in �S�=kt) non-linear terms in the lassial e�etive theory.We hope to understand in the near future how non-perturbative e�ets inthe lassial e�etive theory dynamially hange the gluon distributions atsmall transverse momenta.While the Yang�Mills equations disussed above an be solved perturba-tively in the limit �S�� kt, it is unlikely that a simple analytial solutionexists for Eq. (47) in general. The lassial solutions have to be determinednumerially for t > 0. The straightforward proedure would be to disretizeEq. (47) but it will be more onvenient for our purposes to onstrut the lat-tie Hamiltonian and obtain the lattie equations of motion from Hamilton'sequations.Let us �rst onsider the ontinuum Hamiltonian [19℄. In the appropriate(�; �; xt) o-ordinates, the metri is diagonal with g�� = �gxx = �gyy = 1and g�� = �1=�2. After a little algebra, the Hamiltonian an be writtenas [51℄H = �Z d�d2rt�12p�p�+ 12�2 prpr+ 12�2F�rF�r+14FxyFxy+j�A�+jrAr� :(55)Here we have adopted the gauge A� = 0. Also, p� = 1� ��A� and pr = ���Arare the onjugate momenta.Consider the �eld strength F�r in the above Hamiltonian. If we assumeapproximate boost invariane, orAr(�; �; ~rt) � Ar(�; ~rt); A�(�; �; ~rt) � �(�; ~rt); (56)we obtain F a�r = �Dr�a ; (57)where Dr = �r� igAr is the ovariant derivative. Further, if we express j�;rin terms of the j� de�ned in Eq. (46) we obtain the enormously simplifyingresult that j�;r = 0 for � > 0. Due to boost invariane, our e�etive Hamil-tonian ats in 2+1-dimensions. It is possible to relax this assumption, butthen the numerial simulations are more ompliated.We now onsider the equivalent lattie ation and Hamiltonian. The ap-propriate ation is derived starting from the Minkowski Wilson ation in the



3752 R. Venugopalandisretized 4-spae and taking the naive ontinuum limit in the longitudinaland time diretions. Replaing a2Pzt with R dzdt in the Minkowski Wilsonation, we then have for the 2+1-dimensional ationS = Z dzdtX? � 12NTrF 2zt + 1N<Tr (Mt? �Mz?)��1� 1N<TrU?�� ;(58)whereMt;jn � 12(A2t;j +A2t;j+n)� Uj;n� �12�2t U yj;n + i(At;j+n�tU yj;n � �tU yj;nAt;j) +At;j+nU yj;nAt;j� ;(59)and similarly for Mz;jn.The equation of motion for a �eld is obtained by varying S with respetto that �eld. For the longitudinal �elds At;z the variation has the usualmeaning of a partial derivative. For transverse link matries U? the variationamounts to a ovariant derivative. Just as in the ontinuum ase, the lattieinitial onditions an be determined from the lattie ation in Eq. (58). Oneobtains the lattie equations of motion in the four light one regions andthen determines non-singular initial onditions by mathing at � = 0 theoe�ients of the most singular terms in the equations of motion.On the lattie, the initial onditions are the onstraints on the longitu-dinal gauge potential A� and the transverse link matries U? at � = 0. Thelongitudinal gauge potentials an be written as in the ontinuum ase (seeEq. (50)) as A� = �x��(x+)�(x�)�(�; xt) : (60)The transverse link matries are, for eah nuleus, pure gauges before theollision. This fat is re�eted by writingU? = �(�x+)�(�x�)I + �(x+)�(x�)U(�)+�(�x+)�(x�)U1 + �(x+)�(�x�)U2 ; (61)where U1;2 are pure gauge. The pure gauges are de�ned on the lattie asfollows. To eah lattie site j we assign two SU(N) matries V1;j and V2;j.Eah of these two de�nes a pure gauge lattie gauge on�guration with thelink variables U qj;n̂ = Vq;jV yq;j+n where q = 1; 2 labels the two nulei. As inthe ontinuum, the gauge transformation matries Vq;j are determined by



Classial Methods in DIS and Nulear Sattering at Small x 3753the olor harge distribution �q;j of the nulei, normally distributed with thestandard deviation �2:P [�q℄ / exp0�� 12�2 Xj �2q;j1A : (62)Parametrizing Vq;j as exp(i�qj) with Hermitean traeless �qj , we then obtain�qj by solving the lattie Poisson equation�L�qj �Xn ��qj+n + �qj�n � 2�qj� = �q;j : (63)It is easy to verify that the orret ontinuum solution (Eqs. 49 and 50) forthe transverse �elds A? is reovered by taking the formal ontinuum limitof Eq. (61).The equation of motion for U?, ontains, upon substitution of U? from(61) and A� from (60), singular terms ontaining the produt Æ(x�)Æ(x+).These originate in the double-derivative ontributions <TrU y?�+��U? inthe ation, when both derivative operators at on the step funtions. Sinethe oe�ient in front of Æ(x+)Æ(x�) must vanish in order to satisfy theequation of motion, a mathing relation between U? and U1;2 is obtained.Tr� h(U1 + U2)(I + U y?)� h::i = 0 : (64)Our result is that (U1+U2)(I+U y?) should have no anti-Hermitean traelesspart. Note that this ondition has the orret formal ontinuum limit: writ-ing U1;2 as exp(ia?�1;2) and U? as exp(ia?�?), we have, for small a?, theresult �? = �1+�2, as required. The above ondition in Eq. (64) an easilybe resolved in the SU(2) ase but we have not yet found a simple losed formexpression for N > 2. For SU(2), one obtains for the initial onditionU? = (U1 + U2)(U y1 + U y2 )�1 : (65)For the A� �eld, the singularities arise from the Abelian part of the F 2+�term in the ation whose variation with respet to A+; gives1NTr��+(��A+ � �+A�) : (66)



3754 R. VenugopalanIts most singular part is ��(x�)Æ(x+). Varying the �;? terms (Eq. (59))in the ation (Eq. (58)) with respet to A+;j and seleting the ontributionsontaining derivatives, one obtains eventually the result� = i4N Xn Tr� �[(U1 � U2)(U y � I)� h::℄j;n� [(U y � I)(U1 � U2)� h::℄j�n;n� : (67)It is easily seen that the above equation has the orret formal ontinuumlimit. Writing again U1;2 as exp(ia?�1;2) and U as exp(ia?�?), one �ndsin the limit of smooth �elds, � = iPn[�1; �2℄n, as required.The lattie ation is essential to obtain the initial onditions for theevolution of �elds in the forward light one. For the evolution, we need thelattie Hamiltonian. It is obtained by performing a Legendre transform ofEq. (58) following the standard Kogut-Susskind proedure [52℄. The analogof the Kogut�Susskind Hamiltonian here isHL = 12� Xl�(j;n̂)Eal Eal + �X2 �1� 12TrU2�+ 14� Xj;n̂ Tr ��j � Uj;n̂�j+n̂U yj;n̂�2 + �4Xj Tr p2j ; (68)where El are generators of right ovariant derivatives on the group and Uj;n̂is a omponent of the usual SU(2) matries orresponding to a link from thesite j in the diretion n̂. The �rst two terms orrespond to the ontribu-tions to the Hamiltonian from the hromoeletri and hromomagneti �eldstrengths respetively. In the last equation � � �a�a is the adjoint salar�eld with its onjugate momentum p � pa�a.Lattie equations of motion follow diretly from HL of Eq. (68). Forany dynamial variable v with no expliit time dependene _v = fHL; vg,where _v is the derivative with respet to � , and fg denote Poisson brakets.We take El, Ul, pj, and �j as independent dynamial variables, whose onlynonvanishing Poisson brakets arefpai ; �bjg = ÆijÆab; fEal ; Umg = �iÆlmUl�a; fEal ; Ebmg = 2Ælm�abEl(no summing of repeated indies). The equations of motion are onsistentwith a set of loal onstraints (Gauss' laws).The results of this setion an be summarized as follows. The four in-dependent dynamial variables are El, U?, pj and �j. Their evolution in �after the nulear ollision is determined by Hamilton's equations above and



Classial Methods in DIS and Nulear Sattering at Small x 3755their values at the initial time � = 0 are spei�ed by the following initialonditions: U?j�=0 = (U1 + U2)(U y1 + U y2 )�1 ; Elj�=0 = 0 :pj j�=0 = 2� ; �j = 0 ; (69)where U? and � are given by Eq. (65) and Eq. (67) respetively.6. Results for gluon prodution in high energy nulear ollisionsIn this setion we will disuss reent results for the energy density " as afuntion of the proper time � [21℄. Work on omputing number distributionsis in progress and will be reported at a later date [53℄. In an earlier work, weon�rmed that, in weak oupling, the results from our numerial simulationsagreed with lattie perturbation theory [20℄.The omputation of energy densities on the lattie is straightforward.Our main result is ontained in Eq. (70). To obtain this result, we om-pute the Hamiltonian density on the lattie for eah ��, and then take theGaussian average (with the weight �2) over between 40 � trajetories for thelarger latties and 160 � trajetories for the smallest ones.In our numerial simulations, all the relevant physial information isontained in g2� and L, and in their dimensionless produt g2�L [54℄.The strong oupling onstant g depends on the hard sale of interest; fromEq. (9), we see that � depends on the nulear size, the enter of mass en-ergy, and the hard sale of interest; L2 is the transverse area of the nuleus.Assuming g = 2 (or �S = 1=�), � = 0:5 GeV (1:0 GeV) for RHIC (LHC),and L = 11:6 fm for Au-nulei, we �nd g2�L � 120 for RHIC and � 240for LHC. (The latter number would be smaller for a smaller value of g atthe typial LHC momentum sale.) As will be disussed later, these valuesof g2�L orrespond to a region in whih one expets large non-perturbativeontributions from a sum to all orders in Qs � 6�S�, even if �S � 1.(Reall the de�nition of the saturation sale in Eq. (15).) Deviations fromlattie perturbation theory, as a funtion of inreasing g2�L, were observedin our earlier work [20℄.We shall now disuss some of the results from our numerial simulations.In Fig. 5, we plot "�=(g2�)3, as a funtion of g2�� , in dimensionless units,for the smallest, largest, and an intermediate value in the range of g2�L'sstudied.The quantity "� has the physial interpretation of the energy densityof produed gluons dE=L2=d� only at late times � when � � t. Though"� goes to a onstant in all three ases, the approah to the asymptotivalue is di�erent. For the smallest g2�L, "� inreases ontinuously beforesaturating at late times. For larger values of g2�L, "� inreases rapidly,
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Fig. 5. "�=(g2�)3 as a funtion of g2�� for g2�L = 5:66 (diamonds), 35:36 (pluses)and 296:98 (squares). Both axes are in dimensionless units. Note that "� = 0 at� = 0 for all g2�L. The lines are exponential �ts � + � e�� inluding all pointsbeyond the peak. TABLE IThe funtion f = dE=L2=d� and the relaxation rate  = 1=�D=g2� tabulated asa funtion of g2�L.  has no entry for the smallest g2�L sine there "�=(g2�)3 vsg2�� di�ers qualitatively from the other g2�L values.g2�L 5.66 8.84 17.68 35.36 70.7f :436� :007 :427� :004 :323� :004 :208� :004 :200� :005 :101� :024 :232� :046 :165� :013 :275� :011g2�L 106.06 148.49 212.13 296.98f :211� :001 :232� :001 :234� :002 :257� :005 :322� :012 :362� :023 :375� :038 :378� :053develops a transient peak at � � 1=g2�, and deays exponentially thereonwards, satisfying the relation �+ � e�� , to a onstant value � (equal tothe lattie dE=L2=d�!). The lines shown in the �gure are from an exponential�t inluding all the points past the peak. This behavior is satis�ed for allg2�L � 8:84, independently of N .Given the exellent exponential �t, one an interpret the deay time�D = 1==g2� as the appropriate sale ontrolling the formation of gluonswith a physially well de�ned energy. In other words, �D is the �formationtime� in the sense used by Bjorken [55℄. In Table I, we tabulate  versusg2�L for the largest N �N latties for all but the smallest g2�L. For largeg2�L, the formation time dereases with inreasing g2�L, as we expet itshould. The reason the smallest value of g2�L does not have a transientpeak is likely beause in this ase the kt modes do not su�iently sample



Classial Methods in DIS and Nulear Sattering at Small x 3757the region kt � Qs where non-linearities are important. The few modesthere are, lie in the perturbative region where the �elds an be linearized at� = 0.The physial energy per unit area per unit rapidity of produed gluonsan be de�ned in terms of a funtion f(g2�L) as1L2 dEd� = 1g2 f(g2�L) (g2�)3 : (70)As disussed in Ref. [21℄, the funtion f is obtained for eah �xed valueof g2�L, by taking the ontinuum limit, i.e., extrapolating g2�a �! 0. InFig. 6, we plot the striking behavior of f with g2�L. For very small g2�L's,it hanges very slightly but then hanges rapidly by a fator of two from0:427 to 0:208 when g2�L is hanged from 8:84 to 35:36. From 35:36 to296:98, nearly an order of magnitude in g2�L, it hanges by � 25%. Thepreise values of f and the errors are tabulated in Table I.
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Fig. 6. "�=(g2�)3 extrapolated to the ontinuum limit: f as a funtion of g2�L.The error bars are smaller than the plotting symbols.What is responsible for the dramati hange in the behavior of f as afuntion of g2�L? In A� = 0 gauge, the dynamial evolution of the gauge�elds depends entirely on the initial onditions, namely, the parton distri-butions in the wavefuntions of the inoming nulei [56℄. In the nulearwavefuntion, at small x, non-perturbative, albeit weak oupling, e�ets be-ome important for transverse momenta Qs � 6�s�. Now on the lattie, ptis de�ned to be 2�n=L, where n labels the momentum mode. The onditionthat momenta in the wavefuntions of the inoming nulei have saturated,pt � 6�S�, translates roughly into the requirement that g2�L � 13 forn = 1. Thus for g2�L = 13, one is only beginning to sample those modes.Indeed, this is the region in g2�L in whih one sees the rapid hange in f .



3758 R. VenugopalanThe rapid derease in f is likely beause the �rst non-perturbative orre-tions are large, and have a negative sign relative to the leading term. Un-derstanding the later slow rise and apparent saturation with g2�L requires abetter understanding of the number and energy distributions with pt. Thiswork is in progress and will be reported on separately [53℄.Our results are onsistent with an estimate by Mueller [57℄ for thenumber of produed gluons per unit area per unit rapidity. He obtainsdN=L2=d� =  (N2 � 1)Q2s=4�2 �S N, and argues that the number  is anon-perturbative onstant of order unity. If most of the gluons have pt � Qs,then dE=L2=d� = 0 (N2 �1)Q3s=4�2 �S N whih is of the same form as ourEq. (70). In the g2�L region of interest, our funtion f � 0:23�0:26. Usingthe appropriate relation between Qs and g2�, we obtain 0 = 4:3�4:9. Sineone expets a distribution in momenta about Qs, it is very likely that 0is at least a fator of 2 greater than  � thereby yielding a number of or-der unity for  as estimated by Mueller. This oe�ient an be determinedmore preisely when we ompute the non-perturbative number and energydistributions.We will now estimate the initial energy per unit rapidity of produedgluons at RHIC and LHC energies. We do so by extrapolating from ourSU(2) results to SU(3) assuming the N dependene to be (N2 �1)=N as inMueller's formula. At late times, the energy density is " = (g2�)4 f(g2�L)(g2�L)=g2, where the formation time is �D = 1=(g2�L)=g2� as disussedearlier. We �nd that "RHIC � 66:49 GeV/fm3 and "LHC � 1315:56 GeV/fm3.Multiplying these numbers by the initial volumes at the formation time �D,we obtain the lassial Yang�Mills estimate for the initial energies per unitrapidity ET to be ERHICT � 2703 GeV and ELHCT � 24572 GeV respetively.We have ompared these numbers to results presented reently [58℄ forthe mini-jet energy (omputed for pt > psat, where psat is a saturation saleakin to Qs). He obtains ERHICT = 2500 GeV and ELHCT = 12000. The re-markable loseness between our results for RHIC is very likely a oinidene.The Finnish groups results inlude K fator estimates range from 1:5�2:5.If we pik a reent value of K � 2 [59℄, we obtain as our �nal estimate,ERHICT � 5406 GeV and ELHCT � 49144 GeV.To summarize, we disussed in this setion a non-perturbative, numer-ial omputation, for a SU(2) gauge theory, of the initial energy, per unitrapidity, of gluons produed in very high energy nulear ollisions. Extrapo-lating our results to SU(3), we estimated the initial energy per unit rapidityat RHIC and LHC. We plan to improve our estimates by performing ournumerial analysis for SU(3). Moreover, omputations in progress to deter-mine the energy and number distributions should enable us to math ourresults at large transverse momenta to mini-jet alulations [53℄.
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