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CLASSICAL METHODS IN DIS AND NUCLEARSCATTERING AT SMALL x �Raju VenugopalanPhysi
s Department, Brookhaven National LaboratoryUpton, NY 11973, USA(Re
eived November 15, 1999)In hadrons and nu
lei at very small x, parton distributions saturate ata s
ale Qs(x). Sin
e the o

upation number is large, and Qs(x) � �QCD,
lassi
al weak 
oupling methods may be used to study this novel regime ofnon-linear 
lassi
al �elds in QCD. In these le
tures, we apply these methodsto 
ompute stru
ture fun
tions in deeply inelasti
 s
attering (DIS) and theenergy density of gluons produ
ed in high energy nu
lear 
ollisions.PACS numbers: 12.38.�t, 12.38.Lg1. Introdu
tionOne of more interesting problems in perturbative QCD is the behaviourof parton distributions at small values of Bjorken x. In deeply inelasti
s
attering (DIS) for instan
e, for a �xed Q2 � �2QCD, the operator produ
texpansion (OPE) eventually breaks down at su�
iently small x [1℄. There-fore at asymptoti
 energies, the 
onventional approa
hes towards 
omputingobservables based on the linear DGLAP [2℄ equations are no longer appli-
able. Even at 
urrent 
ollider energies su
h as those of HERA, where the
onventional wisdom is that the DGLAP equations su

essfully des
ribe thedata, there is reason to believe that e�e
ts due to large parton densitiesare not small. We may be at the threshold of a region where non-linear
orre
tions to the evolution equations are large [3, 4℄.In re
ent years, a non-OPE based e�e
tive �eld theory approa
h to smallx physi
s has been developed by Lipatov and 
ollaborators [5℄. Their initiale�orts resulted in an equation known popularly as the BFKL equation [6℄,� Presented at the XXXIX Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,May 29�June 8, 1999. (3731)



3732 R. Venugopalanwhi
h sums the leading logarithms of �S log(1=x) in QCD. In marked 
on-trast to the leading twist Altarelli�Parisi equations for instan
e, it sums alltwist operators that 
ontain the leading logarithms in x. The solutions tothe BFKL equation predi
t a rapidly rising gluon density. Su
h a rapidrise in the gluon density is seen at HERA [7℄ but it 
an also arguably bea

ounted for by the next to leading order (NLO) DGLAP equations withappropriate 
hoi
es of the initial parton densities [8℄.Moreover, the next to leading logarithmi
 
orre
tions to the BFKL equa-tion 
omputed in the above mentioned e�e
tive �eld theory (EFT) approa
hare very large [9℄. Re
ently, as Gavin Salam has dis
ussed in his le
turesat this s
hool [10℄, there has been 
onsiderable progress in understandingthe sour
e of these large 
orre
tions. The 
ollinear enhan
ements fromhigher orders to the NLO BFKL kernel 
an be resummed, and this results inmore stable estimates for the gluon anomalous dimensions, and for the hardpomeron. However, there are e�e
ts, not in
luded in su
h analyses, due tomultiple pomeron ex
hange (non-linear QCD e�e
ts) that may be
ome im-portant at rapidity s
ales of interest. For instan
e, running 
oupling e�e
tsin the NLO BFKL equation be
ome important at y � 1=�5=3S . However, dou-ble (hard) pomeron e�e
ts will be
ome important for y � 1=�S log(1=�S),a s
ale that is parametri
ally larger. How to systemati
ally in
lude su
he�e
ts, whi
h are enhan
ed by large parton densities, is an open question,and novel approa
hes need to be explored.An alternative EFT approa
h to QCD at small x was put forward in aseries of papers [11�15℄. Our approa
h, is a Wilson renormalization groupapproa
h (RG) where the �elds are those of the fundamental theory butthe form of the a
tion, at small x, is obtained by integrating out modes athigher values of x. This results in a set of non-linear renormalization groupequations [15℄. If the parton densities are not too high, the RG equations 
anbe linearized, and have been shown to agree identi
ally with the BFKL andsmall x DGLAP equations [14℄. There is mu
h e�ort underway to exploreand make quantitative predi
tions for the non-linear regime beyond [16℄.In these le
tures, we will apply the above EFT to dis
uss two problems:� Deeply inelasti
 s
attering at small values of Bjorken x [18℄,� high energy hadroni
 
ollisions [19�21℄.Both are problems whi
h appear extremely di�
ult to address in an OPEbased analysis. They simplify in the regime where x is small and momentumtransfers are large be
ause, a) the gluon �eld at small x 
an be treated
lassi
ally, and b) weak 
oupling methods apply. Why is this so? Thereasons for these to apply have been dis
ussed at length by Larry M
Lerranin his le
tures [22℄ so we will be brief here.
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al Methods in DIS and Nu
lear S
attering at Small x 3733At small x, one 
an de�ne a s
ale �2 whi
h measures the density ofgluons per unit transverse area. One has�2 = 1� dNdy ; (1)where � is the hadroni
 or nu
lear 
ross se
tion of interest. Here y = y0 �ln(1=x), and y0 is an arbitrarily 
hosen 
onstant. When this s
ale satis�esthe 
ondition � � �S� � �QCD, the o

upation number of gluons in thehadron is large � thereby justifying the use of 
lassi
al methods. Also, theintrinsi
 momentum pt � �S� is large. Thus the gluon dynami
s, whilenonperturbative, is both semi
lassi
al and weakly 
oupled.Let us now dis
uss the 
lassi
al �eld approa
h to small x DIS. The gluon�eld, being bosoni
, has to be treated non-perturbatively. This is analogousto the strong �eld limit used in Coulomb problems. Fermions, on the otherhand, do not develop a large expe
tation value and may be treated pertur-batively. In DIS, to lowest order in �S , the gluon distribution fun
tion isdetermined by knowing the fermioni
 propagator in the 
lassi
al gluon ba
k-ground �eld. In general, this propagator must be determined to all ordersin the 
lassi
al gluon �eld as the �eld is strong. This 
an be done due to thesimple stru
ture of the ba
kground �eld.We will derive analyti
 expressions for the 
urrent�
urrent 
orrelator indeeply inelasti
 s
attering by summing a parti
ular 
lass of all twist opera-tors. These, we argue, give the dominant 
ontribution at small x. At highQ2, they redu
e to the well known expressions for the leading twist stru
turefun
tions [28℄. For light quarks at high Q2, it 
an be shown expli
itly thatthe 
lassi
al �eld analysis reprodu
es the DGLAP evolution equations forthe quark distributions at small x [18℄. The power of the te
hnique we useto analyze the problem of DIS at small x is that, unlike the OPE, it doesnot rely on a twist expansion.A similar point 
an be made about the 
lassi
al approa
h to high en-ergy hadroni
 s
attering. At very high energies, the dominant 
ontributionto parti
le produ
tion is from the intera
tion of the 
lassi
al �Weizsä
ker�Williams� (WW) gluon �elds of the two hadrons or nu
lei. To lowest order,the pi
ture is that of QCD Bremsstrahlung [43℄. Soft gluons 
an be emittedfrom the valen
e quark/hard gluon lines, or from the 2!1 diagram of twovirtual gluons fusing to produ
e a hard gluon. At small x, in the Fo
k�S
hwinger gauge (x+A� + x�A+ = 0) the latter WW 
ontribution is thedominant one. The Weizsä
ker�Williams 
ontribution agrees with the QCDBremsstrahlung result at small x [41, 42, 44�46℄.It is essential to 
onsider the full non-perturbative approa
h for the fol-lowing reasons. Firstly, the 
lassi
al gluon radiation 
omputed perturba-tively is infrared singular, and has to be 
ut-o� at some s
ale kt � �S�.



3734 R. VenugopalanThis problem also arises in mini-jet 
al
ulations where at high energies re-sults are shown to be rather sensitive to the 
ut-o� [47℄. Se
ondly, thenon-perturbative approa
h is 
ru
ial to a study of the spa
e-time evolutionof the system. In parti
ular, the possible thermalization of the system, aswell as the relevant time s
ales for thermalization, are strongly in�uen
edby the non-linearities that arise in the non-perturbative approa
h [48℄.In these le
tures, we will dis
uss results from real time simulations of thefull, non-perturbative, evolution of 
lassi
al non-Abelian WW �elds. The�elds are generated by sour
es of 
olor 
harge �� (representing the valen
epartons in ea
h of the hadrons or nu
lei) moving along the two light 
ones.For ea
h � 
on�guration, one solves Hamilton's equation numeri
ally to ob-tain the real time behavior of the gauge �elds in the forward light 
one. TheHamiltonian is the Kogut�Susskind Hamiltonian in 2+1-dimensions 
oupledto an adjoint s
alar �eld. The initial 
onditions for the evolution are pro-vided by the non-Abelian Weizsä
ker�Williams �elds for the nu
lei beforethe 
ollisions.To 
ompute observables, one has to average over all the � 
on�gurationsin ea
h of the two nu
lei. In general, these are averaged with a statisti
alweight exp [�F [�℄℄, where F [�℄ is a fun
tional over the 
olor 
harge density� of the higher x modes. The fun
tional F [�℄ obeys the non-linear renor-malization group equation that was mentioned in the pre
eding dis
ussion.If one 
onsiders 
ollisions of large nu
lei, the weight simpli�es to a Gaussianone, and one 
an repla
eF [��℄ �! Z d2xt y�fragZy dy0 1�2(y0) Tr �(��)2� ; (2)where y�frag are the rapidities 
orresponding to the fragmentation regions ofthe two nu
lei.Our approa
h is limited be
ause it is 
lassi
al. However, if the e�e
-tive a
tion approa
h 
aptures the essential physi
s of the small x modes ofinterest, then in the spirit of the Wilson renormalization group, quantuminformation from the large x modes (above the rapidity of interest) is 
on-tained in the parameter �2 dis
ussed above, whi
h grows rapidly as one goesto smaller x's. In prin
iple, this information 
an be in
luded in the 
lassi
allatti
e simulations.The plan of these le
tures is as follows. We will begin in Se
tion 2 byreviewing the e�e
tive a
tion for the small x modes in QCD. We also dis-
uss the 
lassi
al saddle point solutions of this e�e
tive a
tion. In Se
tion 3,we will dis
uss how one 
omputes quark produ
tion in the 
lassi
al gluonba
kground �eld. At small x, this gives the dominant 
ontribution to the
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attering at Small x 3735stru
ture fun
tions measured in deeply inelasti
 s
attering. Stru
ture fun
-tions are 
omputed in Se
tion 4. At high Q2, our results reprodu
e thesmall x DGLAP results. For smaller values of Q2, for Gaussian sour
es,one obtains the Glauber result for the stru
ture fun
tions in agreement withprevious derivations in the nu
lear rest frame. Subsequent se
tions 
on
erngluon produ
tion in high energy s
attering of (in parti
ular) large nu
lei.The 
lassi
al approa
h to the two-nu
leus problem is dis
ussed in Se
tion 5.It is very hard to solve for the non-perturbative dynami
s analyti
ally. Ithas not yet been done. Instead, we derive a numeri
al algorithm whi
h 
ap-tures the essential physi
s of the two-nu
leus problem. Results from ournumeri
al simulations are dis
ussed in Se
tion 6. Se
tion 7 summarizes thematerial 
ontained in the le
tures and outlines dire
tions of future resear
h.2. E�e
tive �eld theory for small x partons in QCDIn the in�nite momentum frame (IMF) P+ !1, the e�e
tive a
tion forthe soft modes of the gluon �eld with longitudinal momenta k+ � P+ (orequivalently x � k+=P+ � 1) 
an be written in light 
one gauge A+ = 0 asSe� = �Z d4x14Ga��G��;a+ iN
 Z d2xtdx��a(xt; x�)Tr ��aW�1;1[A�℄(x�; xt)�+iZ d2xtdx�F [�a(xt; x�)℄ : (3)Above, Ga�� is the gluon �eld strength tensor, �a are the SU(N
) matri
esin the adjoint representation and W is the path ordered exponential in thex+ dire
tion in the adjoint representation of SU(N
),W�1;1[A�℄(x�; xt) = P exp ��ig Z dx+A�a (x�; xt)�a� : (4)The a
tion is a gauge invariant form [14℄ of the a
tion that was proposed inRef. [11℄. One 
an write an alternative gauge invariant form of the a
tionbut the results are the same for the problem of interest.The e�e
tive a
tion 
onsidered here is valid in a limited range ofP+ � �+, where �+ is an ultraviolet 
uto� in the plus 
omponent ofthe momentum. The degrees of freedom at higher values of P+ have beenintegrated out. Their e�e
t is to generate the se
ond and third terms in thea
tion. The �rst term is the usual �eld strength pie
e of the QCD a
tionand des
ribes the dynami
s of the wee partons. The se
ond term is the
oupling of the wee partons to the hard 
olor 
harges at higher rapidities,
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orresponding to values of P+ � �+. When expanded to �rstorder in A�, this term gives the familiar J �A 
oupling for Abelian 
lassi
al�elds. The last term in the e�e
tive a
tion is imaginary. It 
an be thoughtof as a statisti
al weight resulting from integrating out the higher rapiditymodes in the original QCD a
tion. Expe
tation values of gluoni
 operatorsO(A) are then de�ned ashO(A)i = R [d�℄ exp (�F [�℄) R [dA℄O(A) exp (iS[�;A℄)R [d�℄ exp (�F [�℄) R [dA℄ exp (iS[�;A℄) ; (5)where S[�;A℄ 
orresponds to the �rst two terms in Eq. (3).In the IMF, only the J+ 
omponent of the 
urrent is large (the other
omponents being suppressed by 1=P+). The longer wavelength wee partonsdo not resolve the higher rapidity parton sour
es to within 1=P+ and, forall pra
ti
al purposes, one may write�a(xt; x�) �! �a(xt)Æ(x�) : (6)In Ref. [11℄ a Gaussian form for the a
tionZ d2xt 12�2 �a�a (7)was proposed, where �2 was the average 
olor 
harge squared per unit areaof the sour
es at higher rapidities. For large nu
lei A� 1 it was shown that�2 = 1�R2 Nq2N
 � A1=3=6 fm�2: (8)This result was independently 
on�rmed in a model 
onstru
ted in the nu-
lear rest frame [23℄. If we in
lude the 
ontribution of gluons whi
h have beenintegrated out by the renormalization group te
hnique, one �nds that [41℄�2 = 1�R2 � Nq2N
 + N
NgN2
 � 1� : (9)Here Nq is the total number of quarks with x above the 
uto�; Nq =Pi R 1x dx0qi(x0) where the sum is over di�erent �avors, spins, quarks andantiquarks. For gluons, we also have Ng = R 1x dx0g(x0). The value of �R2 iswell de�ned for a large nu
leus. For a smaller hadron, we must take it to be�, the total 
ross se
tion for hadroni
 intera
tions at an energy 
orrespond-ing to the 
uto�. This quantity will be
ome better de�ned for a hadron inthe renormalization group analysis.
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lear S
attering at Small x 3737The above equation for �2 is subtle be
ause, impli
itly, on the right handside, there is a dependen
e on � through the stru
ture fun
tions themselves.This is the s
ale at whi
h they must be evaluated. Cal
ulating � thereforeinvolves solving an impli
it equation. Note that be
ause the gluon distribu-tion fun
tion rises rapidly at small x, the value of � grows as x de
reases. Atsome 
riti
al x, the indi
ations are that the parton distributions saturate.Thus there may be a 
riti
al line in the x�Q2 plane 
orresponding to partonsaturation. This is an important point and we will return to it later.The Gaussian form of the fun
tional F [�℄ is reasonable when the 
olor
harges at higher rapidity are un
orrelated and are random sour
es of 
olor
harge. This is true for instan
e in a very large nu
leus. It is also true ifwe study the Fo
k spa
e distribution fun
tions or deep inelasti
 stru
turefun
tions at a transverse momentum s
ale whi
h is larger than an intrinsi
s
ale set by �S�. In this equation �S is evaluated at the s
ale �. At smallertransverse momenta s
ales, one must do a 
omplete renormalization groupanalysis to determine F [�℄. For heavy quarks, in DIS, the Gaussian analysisshould be adequate.In Ref. [13℄, it was shown that a Wilson renormalization group pro
edure
ould be applied to derive a non-linear renormalization group equation forF [�℄. In the limit of weak �elds, the renormalization group equation 
anbe linearized, and 
an be shown to be none other than the BFKL equationdis
ussed previously. The fa
t that this limit 
an be obtained in a simpleand elegant way suggests the power of this approa
h, and the importan
eof further studying the non-linear region of strong 
lassi
al �elds. We willnot dis
uss the RG pro
edure here but will refer the reader to the relevantpapers, and to Larry M
Lerran's le
tures [22℄.The e�e
tive a
tion in Eq. (3) has a remarkable saddle point solution[11, 13, 23℄. It is equivalent to solving the Yang�Mills equationsD�G�� = J�Æ�+ ; (10)in the presen
e of the sour
e J+;a = �a(xt; x�). Here we will allow thesour
e to be smeared out in x� as this is useful in the renormalization groupanalysis. It is also useful for intuitively understanding the nature of the�eld. One �nds a solution where A� = 0 andAi = �1ig V �iV y ; (11)(i = 1; 2) is a pure gauge �eld in the two transverse dimensions whi
h satis�esthe equation Di dAidy = g�(y; x?) : (12)



3738 R. VenugopalanHere Di is the 
ovariant derivative �i + V �iV y and y = y0 + log(x�=x�0 ) isthe spa
e-time rapidity and y0 is the spa
e-time rapidity of the hard partonsin the fragmentation region. At small x, we will use the spa
e-time andmomentum spa
e notions of rapidity inter
hangeably [17℄. The momentumspa
e rapidity is de�ned to be y = y0 � ln(1=x). The solution of the aboveequation isAi�(xt) = 1ig 0�P eig y0Ry dy0 1r2? �(y0;xt)1Ari0�P eig y0Ry dy0 1r2? �(y0 ;xt)1Ay : (13)The 
lassi
al nu
lear gluon distribution fun
tion is 
omputed by aver-aging over the produ
t of the 
lassi
al �elds in Eq. (13) at two spa
e-timepoints with the weight F [�℄ [11℄. For a Gaussian sour
e, one obtainsdNd2xt = 12��S CFx2t �1� exp�� �S�22�CF x2txG�x; 1x2t ��� ; (14)where CF is the Casimir in the fundamental representation and � is thenu
lear 
ross-se
tion1. For large xt (but smaller than 1=�QCD), the distri-bution falls like a power law 1=x2t and has a 1=�S dependen
e! For verysmall xt, the behavior is the perturbative distribution log(xt�QCD). Thes
ale whi
h determines the 
ross-over from a logarithmi
 to a power lawdistribution is, following Mueller's notation [24℄, the saturation s
ale Qs.Setting xt = 1=Qs and the argument of the exponential above to unity, oneobtains the relation, Q2s = �S�22� 1CF xG(x;Q2s) ; (15)whi
h, for a parti
ular x, 
an be solved self-
onsistently to determine Qs.Be
ause of the sharp 
ut-o� in 
o-ordinate spa
e, the momentum spa
edistribution is not well de�ned. A smooth Fourier transform has been de-�ned, on physi
al grounds, by Lam and Mahlon by requiring that the 
hargein light 
one gauge R d2xt�(xt) vanish [25℄ for ea
h � 
on�guration.1 Above, we have re-written the expression for the gluon distribution in Ref. [13℄, usingthe leading log gluon distribution to repla
e �2 and log(xt�QCD) with the gluondistribution xG(x; 1x2t ) at the s
ale 1=x2t .
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lear S
attering at Small x 37393. Quark produ
tion in the 
lassi
al gluon ba
kground �eldIn this se
tion, we will 
ompute the 
orrelator of ele
tromagneti
 
urrentsin the 
lassi
al gluon ba
kground �eld. In deeply inelasti
 ele
troprodu
tion,the hadron tensor 
an be expressed in terms of the forward Compton s
at-tering amplitude T�� by the relation [26℄W ��(q2; P � q) = 2 Dis
 T ��(q2; P � q) � 12� ImZ d4x exp(iq � x)�hP jT (J�(x)J�(0))jP i ; (16)where �T� denotes time ordered produ
t, J� = � 
� is the hadron ele
-tromagneti
 
urrent and �Dis
� denotes the dis
ontinuity of T�� along itsbran
h 
uts in the variable P � q. Also, q2 ! 1 is the momentum transfersquared of the virtual photon2 and P is the momentum of the target. In theIMF, P+ !1 is the only large 
omponent of the momentum. The fermionstate above is normalized as hP j P 0i = (2�)3E=mÆ(3)(P � P 0) where m isthe mass of the target hadron. This de�nition of W �� and normalization ofthe state is traditional. In the end, all fa
tors of m 
an
el from the de�ni-tion of quantities of physi
al interest. (The normalization we will use in thispaper for quark and lepton states will have E/m repla
ed by 2P+.)We now generalize our de�nition ofW �� to a sour
e whi
h has a positiondependen
e. We obtainW ��(q2; P �q)= 12��P+m ImZ d4xdX�eiq�xDT �J� �X�+x2� J� �X��x2��E:(17)To see this, �rst note that we 
an de�ne hOi = hP j O j P i hP j P i where Ois any operator. From the dis
ussion above, the expe
tation value hP j P i =(2�)3E=mÆ(3)(0) = (2�)3E=m V . Here we shall take the spatial volumeV to be � times an integral over the longitudinal extent of the state. Thevariable X� is a 
enter of mass 
oordinate and x� is the relative longitudi-nal position. The above de�nition of W �� is Lorentz 
ovariant. The inte-gration over X� is required sin
e we must in
lude all of the 
ontributionsfrom quarks at all X� to the distribution fun
tion. In the external sour
elanguage, the variable P+ 
an be taken to be the longitudinal momentum
orresponding to the fragmentation region.The expe
tation value is straightforward to 
ompute in the limit wherethe gluon �eld is treated as a 
lassi
al ba
kground �eld. If we writehT (J�(x)J�(y))i = 
T � (x)
� (x) (y)
� (y)�� ; (18)2 Note that in our metri
 
onvention, a spa
e-like photon has q2 = Q2 > 0.



3740 R. Venugopalanthen when the ba
kground �eld is 
lassi
al, we obtainhT (J�(x)J�(y))i = Tr (
�SA(x))Tr (
�SA(y))+Tr (
�SA(x; y)
�SA(y; x)) : (19)In this expression, SA(x; y) is the Green's fun
tion for the fermion �eld inthe external �eld A SA(x; y) = �i 
 (x) (y)�A : (20)The �rst term on the right hand side of Eq. (19) is a tadpole 
ontributionwithout an imaginary part. It therefore does not 
ontribute to W �� . We�nd then thatW ��(q2; p � q) = 12��P+m ImZ dX�d4xeiq�x DTr�
�SA(X�+ x=2;X��x=2)� 
�SA(X� � x=2;X�+x=2)�E : (21)The expression we derived above for W �� is entirely general and makesno referen
e to the operator produ
t expansion. In parti
ular, it is relevantat the small x values and moderate q2 where the operator produ
t expansionis not reliable [1℄. At su�
iently high q2 though (and for massless quarks)it should agree with the usual leading twist 
omputation of the stru
turefun
tions.We 
an derive an expression for the sea quark Fo
k distribution in termsof the propagator in light 
one quantization [27℄. One obtainsdNd3k = 2i(2�)3 Z d3x d3y e�ik�(x�y)Tr �
+SA(x; y)� ; (22)where the fermion propagator SA(x; y) is de�ned as in Eq. (20). In a ni
epedagogi
al paper, (see Ref. [28℄ and referen
es within), Ja�e has shown thatthe Fo
k spa
e distribution fun
tion 
an be simply related to the leading twiststru
ture fun
tion F2 by the relationF2(x;Q2) = Q2Z0 dk2t x dNdk2t dx : (23)A
tually, Ja�e's expression is de�ned as the sum of the quark and anti-quark distributions. At small x, these are identi
al and the resulting fa
torof 2 is already in
luded in our de�nition of the light 
one quark distributionfun
tion. At high q2, our general (all twist) result for F2 agrees with theleading twist result derived using Eq. (23) [18℄.



Classi
al Methods in DIS and Nu
lear S
attering at Small x 3741Clearly, to 
ompute W �� , we �rst need to 
ompute the fermion Green'sfun
tion in the 
lassi
al ba
kground �eld. The �eld strength 
arried bythese 
lassi
al gluons is highly singular, being peaked about the sour
e (
or-responding to the parton 
urrent at x values larger than those in the �eld)lo
alized at x� = 0. Away from the sour
e, the �eld strengths are zero andthe gluon �elds are pure gauges on both sides of x� = 0 (see Eq. (11)).The fermion wavefun
tion is obtained by solving the Dira
 equation in theba
kground �eld on either side of the sour
e and mat
hing the solutionsa
ross the dis
ontinuity at x� = 0. On
e the eigenfun
tions are known, thefermion propagator 
an be 
onstru
ted, in the standard fashion, by writingS(x; y) = Z d4q(2�)4 1q2 +M2 � i"Xpol  q(x) � q(y) ; (24)after identifying q+ = (q2t +M2��)=2q�. We will not dis
uss the details ofthe derivation here but refer the interested reader to Ref. [18℄.De�ne G(xt; x�) = �(�x�) + �(x�)V (xt) ; (25)a gauge transformation matrix that transforms the gluon �eld at hand toa singular �eld with the only non-zero 
omponent, A0� = Æ�+�(xt). Ourresult then is that the fermion propagator in the ba
kground �eld has theform [18, 29℄SA(x; y) = G(x)S0(x� y)Gy(y)� iZ d4zG(x)(�(x�)�(�y�)(V y(zt)� 1)��(�x�)�(y�)(V (zt)� 1))Gy(y)S0(x� z)
�Æ(z�)S0(z � y)(26)with the free fermion Green's fun
tionS0(x� y) = Z d4q(2�)4 eiq�(x�y) (M � q=)q2 +M2 � i" : (27)Re
all that V (xt) is the gauge transformation matrix in the fundamentalrepresentation and that the 
lassi
al solution Ai = V (xt)�iV y(xt)=(�ig).This very simple form of the propagator is useful in the manipulations below.In fa
t, sin
e the 
urrent-
urrent 
orrelation fun
tion is expli
itly gaugeinvariant, we may use the singular gauge form of the propagator [30,31℄ for
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omputing the 
urrent-
urrent 
orrelation fun
tionSsingA (x; y) = S0(x� y)� iZ d4z(�(x�)�(�y�)(V y(zt)� 1)��(�x�)�(y�)(V (zt)� 1))S0(x� z)
�Æ(z�)S0(z � y) :(28)A diagrammati
 representation of the form of the propagator above is shownin Fig. 1 In the expressions below for W �� we will drop the supers
ript singand simply use the singular gauge expression for the propagator.				�������� ���� 				�������� ���� 				�������� ����� � �� � � = + 6~�

1

Fig. 1. Diagrammati
 representation of the propagator in Eq. (28).Our result for the fermion propagator in the 
lassi
al ba
kground �eldwas obtained for a Æ-fun
tion sour
e in the x� dire
tion. This assump-tion was motivated by the observation that small x modes with wavelengthsgreater than 1=P+ per
eive a sour
e whi
h is a Æ-fun
tion in x�. The prop-agator above 
an also be derived for the general 
ase where the sour
e hasa dependen
e on x�. The gauge transforms above are transformed fromV (xt) ! V (xt; x�), to path ordered exponentials, where V (xt; x�) is givenby Eq. (13). Our result for the propagator is obtained as a smooth limit of�x� = 1=xP+ � x�(= 1=P+). Therefore our form for the propagator isthe 
orre
t one provided we interpret the �-fun
tions and Æ-fun
tions in x�to be so only for distan
es of interest greater than 1=P+, the s
ale of the
lassi
al sour
e.We are now in a position to 
al
ulate the 
urrent�
urrent 
orrelator. This
al
ulation is a

urate to lowest order in �S but to all orders in �S�. Beforewe go ahead with the 
omputation, we will dis
uss brie�y the averagingpro
edure over the labels of 
olor 
harges at rapidities higher than those ofinterest. This is required if we are to 
ompute gauge invariant observables.If we average the Green's fun
tion in Eq. (26) over all possible valuesof the 
olor labels 
orresponding to the partons at higher rapidities, we 
anemploy the following de�nitions for future referen
e. De�ning1N
 DTr �V (xt)V y(yt)�E� = 
(xt � yt) ; (29)
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(0) = 1, whi
h follows from the unitarity of the matri
es V .Now de�ning the Fourier transform3~
(pt) = Z d2xt e�iptxt [
(xt)� 1℄ ; (30)we have the sum rule Z d2pt(2�)2 ~
(pt) = 0 : (31)The fun
tion ~
(pt) will appear frequently in our future dis
ussions and aswe shall see, 
an be related to the gluon density at small x.We will now use the fermion Green's fun
tion in Eq. (26) to derive anexpli
it result for the hadroni
 tensor W �� . In the following se
tion, we will
ompute the stru
ture fun
tions F1 and F2. As previously, we de�neW ��(q; P;X�) = Im Z d4z eiq�z DT �J� �X� + z2�� J� �X� � z2�E ; (32)where �Imaginary� stands for the dis
ontinuity in q�. ThenW ��(q; P ) = 12��P+m Z dX�W ��(q; P;X�)� 12��P+Im Z dX� Z d4z eiq�z�Tr �SA
l �X� + z2 ;X� � z2� 
�SA
l �X� � z2 ;X� + z2� 
�� :(33)The only terms in the propagator that 
ontribute to the above are the� (�x�) � (� y�) pie
es. Using our representation for the propagator inEq. (28), after 
onsiderable manipulations, we 
an write W �� asW ��(q; P ) = �P+N
2�m ImZ d4p(2�)4 d2kt(2�)2 dk+(2�) ~
(kt)�Tr � (M � p=)
�(M � l=)
�(M � l0=)
�(M � p0=)
�(p2 +M2 � i") (l2 +M2 � i") (l02 +M2 � i") (p02 +M2 � i")� ;(34)where l = p� k, l0 = l� q, p0 = p� q and k� = 0. Correspondingly, we 
anwrite W �� as the imaginary part of the diagram shown in Fig. 2.3 We de�ne the Fourier transform in this way be
ause it 
orresponds to only the 
on-ne
ted pie
es in the 
orrelator.
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Fig. 2. Polarization tensor with arbitrary number of insertions from the 
lassi
alba
kground �eld. Wavy lines are photon lines, the solid 
ir
le denotes the fermionloop and the dashed lines are the insertions from the ba
kground �eld (see Fig. 1).The imaginary part of this diagram gives W �� .
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Fig. 3. Cut diagrams 
orresponding to the imaginary part of W�� .For the DIS 
ase, q2 > 0 (see footnote 1), we 
an 
ut the above diagramonly in the two ways shown in Fig. 3 (the diagram where both insertionsfrom the external �eld are on the same side of the 
ut is forbidden by thekinemati
s).Also interestingly, the 
ontribution to W �� 
an be represented solely bythe diagram in Fig. 4 and not, as is usually the 
ase, from the sum of thisdiagram and the standard box diagram. This is be
ause in our representationof the propagator multiple insertions from the external �eld on a quark line
an be summarized into a single insertion. Eq. (28) makes this point 
lear.Applying the Landau�Cutkosky rule, shifting p ! p + k, and 
hangingvariables appropriately, Eq. (34) 
an be written asW ��(q; P )= �P+N
2�m Z d4p(2�)4 d2kt(2�)2 dk+(2�) ~
(kt)M���(p+ + k+)�(�p+)�(2�)2Æ((p+ k)2 +M2) Æ((p � q)2 +M2)) 1p2 +M2 1(p+ k � q)2 +M2 ;(35)
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Fig. 4. In the singular gauge representation for the propagator (see Eq. (28) andFig. 1), the 
urrent�
urrent 
orrelator (imaginary part of LHS) is equivalent to theimaginary part of RHS.where above the tra
e is represented by 4M��=Tr �(M � p=�k=)
�(M � p=)
�(M � p=+ q=)
�(M � p=�k=+q=)
�+�$ �	 :(36)In Ref. [18℄, the integral over p� in Eq. (34) was performed before the p+integral. Here, we instead perform the p+ integral �rst. Further, de�ning z =p�=q�, we note that the �-fun
tion and Æ-fun
tion 
onstraints in Eq. (34)restri
t 0 < z < 1. This simpli�es the result in Ref. [18℄ 
onsiderably.Performing the p+ integral, one obtainsW ��(q; P ) = �P+q�N
�2m 1(q�)2 1Z0 dz Z d2pt(2�)2 d2kt(2�)2 ~
(kt)M��16� 1M2p + z(1� z)q2t 1M2p+k�q + z(1 � z)q2t ; (37)whereM2p = p2t +M2. SimilarlyM2p+k�q = (pt+kt�qt)2+M2. The above isthe �nal result of this se
tion, and will be used below in 
omputing stru
turefun
tions.4 Kinemati
 note: the observant reader will noti
e we have put q+ = 0 here. Sin
ewe are working in the in�nite momentum frame, the hadron has only one large mo-mentum 
omponent, P+. The rest are put to zero. For the photon, we 
hoose a leftmoving frame su
h that q0 = jqzj and q+ = 0. Then, q2 = q2t > 0, P � q = �P+q�and xBj = �q2=(2P � q) � q2t =(2P+q�). Sin
e in the in�nite momentum frame0 < xBj < 1, this gives q� > 0.
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ture fun
tions at small xThe hadroni
 tensor W �� 
an be de
omposed in terms of the stru
turefun
tions F1 and F2 as [26℄mW ��=� g��� q�q�q2 !F1+�P �� q�(P � q)q2 ��P �� q�P � qq2 � F2(P � q) ;(38)where P � is the four-momentum of the hadron or nu
leus and P 2 = m2 � 0(� q2). In the in�nite momentum frame, we have P+!1 and P�; Pt � 0.The above equation 
an be inverted to obtain expressions for F1 and F2 interms of 
omponents ofW �� . Sin
e in our kinemati
s q+ = 0 (see footnote 3for a kinemati
 note) we haveF1 = F22x +� q2(q�)2� W�� ; 12xF2 = ��(q�)2q2 � W++ : (39)It is useful to verify expli
itly that our expression for W �� derived in anexternal �eld 
an be written in the form of Eq. (38). Re
all that W �� 
anbe written in Lorentz 
ovariant form by using the ve
tor n� = Æ�+. Usingn � 
 = �
� in Eq. (34), we see that W �� is a Lorentz 
ovariant fun
tion ofthe only ve
tors in the problem � q� and n�. Identifying n� = P �=P+ inEq. (38), we see that these forms are in 
omplete agreement. Note that allfa
tors of m disappear from F1 and F2 by the expli
t forms of Eqs. (38) and(34).We also see that the stru
ture fun
tions 
an only be fun
tions of q2 andn � q by Lorentz invarian
e. We 
an therefore take q+ = 0 for the purpose of
omputing F1 and F2.To 
ompute W++ and W��, we need to know the the tra
es M++ andM��, respe
tively in Eq. (37). We 
an 
ompute them expli
itly and theresults 
an be represented 
ompa
tly as116M++ = 12 �M2pM2p+k�q +M2p+kM2p�q � q2t k2t � ; (40)and M�� = 32(p�)2(p� � q�)2 : (41)From the relations above of F1 and F2 to W++ and W��, we obtain fromEq. (37) the following general results for the stru
ture fun
tions for arbitrary
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attering at Small x 3747values of Q2, M2 and the intrinsi
 s
ale �,5F2 = Q2�N
2�3 1Z0 dz 1�QCDZ0 dxt xt (1� 
(xt; y))� �K20 (xtA) �4z2(1� z)2Q2 +M2�+K21 (xtA)A2 �z2 + (1� z)2�� :(42)Here A2 = Q2z(1� z)+M2 and K0;1 are the modi�ed Bessel fun
tions. Forsimpli
ity, we have ignored the impa
t parameter dependen
e of 
 � andrepla
ed the integral over impa
t parameter by the transverse area �. For thesame reason, we ignore the sum over the 
harge squared of the quark �avors.Both of these must of 
ourse be in
luded in numeri
al 
omputations. The�rst (se
ond) term in the bra
ket above is the probability for a longitudinally(transversely) polarized photon to split into a �qq pair. Ignoring target mass
orre
tions whi
h are negligible at small x,FL = F2 � 2xF1� Q2�N
�3 1Z0 dz 1�QCDZ0 dxt xt (1� 
(xt; y)) z2(1� z)2Q2K20 (xtA) :(43)For a Gaussian sour
e (see Ref. [18℄ and footnote 1),
(xt; y) = exp���S�22�N
x2txG(x; 1x2t )� ; (44)where the s
ale is set by the transverse separation xt between the quark andthe anti-quark.The equation for F2 with the Gaussian sour
e is the well known Glauberexpression [32℄ usually derived in the rest frame of the nu
leus. It is hearten-ing to see that the formalism of Ref. [18℄ for stru
ture fun
tions in the in�nitemomentum frame reprodu
es it. For large Q2, it redu
es to the standardsmall x DGLAP expression6 while at small Q2 it goes to zero as Q2 log(Q2).One then re
overs, qualitatively, the shape of the famous Caldwell plot fordF2=d log(Q2) measured at HERA [33℄. Similar forms were used by severalauthors to understand the re
ent data [34℄.5 whi
h is impli
itly 
ontained in the fun
tion ~
(kt) in Eq. (37).6 In Ref. [18℄, it was shown expli
itly that our general expression for F2 formally redu
esto the leading twist expression obtained from Eq. (22).



3748 R. VenugopalanOne obtains from the above equation for F2, in a manner analogous toEq. (14), the quark saturation s
ale Qqs by repla
ing CF �! CA in Eq. (15).The relative size of the two saturation s
ales, glue to quark, is thereforedetermined simply by the ratio of the two Casimirs, CA=CF .What about quantum 
orre
tions to the above quark and gluon distribu-tions? At the one loop level, one gets log(1=x) 
orre
tions to the Weizsa
ker�Williams distribution [12,24,35℄. However, Mueller has argued re
ently thatbeyond the one loop level, the distribution has the same form as the as theabove 
lassi
al gluon distribution. What does 
hange due to small x evolu-tion is the x dependen
e of the saturation s
ale [24℄. Re
ently, there havebeen detailed studies by Kov
hegov, and by Levin and Tu
hin, of partonevolution in the non-linear region [36, 37℄. Their results appear to 
on�rmthe intuitive pi
ture of Mueller.As q2 �!1, we �nd remarkably that the integral on the RHS of Eq. (43)vanishes and it redu
es to F1 = F22x : (45)The above is the well known Callan�Gross relation. The reader may noteabove that the deviation from the Callan�Gross relation vanishes as a powerlaw as q2 ! 1. On the other hand, it is well known in QCD [39, 40℄ thatthe violations of the Callan�Gross relation only disappear logarithmi
allyas q2 ! 1. The apparent 
ontradi
tion is resolved by one realizing thatthe logarithmi
 violations at large q2 in QCD 
ome from diagrams wherethe sea quark emits a gluon (thereby violating Feynman's parton modelheli
ity argument). These diagrams are of higher order in our pi
ture andare therefore not in
luded. In fa
t, the deviations from the Callan�Grossrelation of the sort dis
ussed above (at small x) should die o� faster thanlogarithmi
ally at very large q2 be
ause for su�
iently large q2, the violationsof the Callan�Gross relation should 
ome from pre
isely the diagrams notin
luded here. At moderate q2 however, the 
ontributions we have dis
ussedabove should be important.5. The non-Abelian Weizsä
ker�Williams approa
hto high energy nu
lear 
ollisionsIn nu
lear 
ollisions at very high energies, the hard valen
e parton modesin ea
h of the nu
lei a
t as highly Lorentz 
ontra
ted, stati
 sour
es of 
olor
harge for the wee parton, Weizsä
ker�Williams modes in the nu
lei. Thesour
es are des
ribed by the 
urrentJ�;a(rt) = Æ�+g�a1(rt)Æ(x�) + Æ��g�a2(rt)Æ(x+) ; (46)
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orrespond to the 
olor 
harge densities of the hard modesin nu
leus 1 (nu
leus 2) respe
tively. The 
lassi
al �eld of two nu
lei isdes
ribed by the solution of the Yang�Mills equations in the presen
e of thelight 
one sour
es: D�F �� = J� ; (47)Gluon distributions are simply related to the Fourier transform Aai (kt) ofthe solution to the above equation by hAai (kt)Aai (kt)i�. The averaging overthe 
lassi
al 
harge distributions is de�ned byhOi� = Z d�1d�2O(�1; �2) exp �Z d2rtTr ��21(rt) + �22(rt)�2�2 ! ; (48)and is performed independently for ea
h nu
leus with equal Gaussian weight�2. Of 
ourse, this is only true for identi
al nu
lei.Before the nu
lei 
ollide (t < 0), a solution of the equations of motion isA� = 0 ; Ai = �(x�)�(�x+)�i1(rt) + �(x+)�(�x�)�2(rt) ; (49)where �iq(rt) (q = 1; 2 denote the labels of the nu
lei) are pure gauge �elds ofthe two nu
lei before the 
ollision and have the form des
ribed in Eq. (13).The above expression suggests that for t < 0 the solution is simply the sumof two dis
onne
ted pure gauges.For t > 0 the solution is no longer pure gauge. Working in the S
hwingergauge A� � x+A�+ x�A+ = 0 the authors of Ref. [42℄ found that with theansatz A� = �x��(�; rt) ; Ai = �i?(�; rt) ; (50)where � = p2x+x�, Eq. (47) 
ould be written in the simpler form1�3�� �3���+ [Di; �Di; ��℄ = 0 ;1� [Di; ���i?℄ + ig� [�; ���℄ = 0 ;1� �� ����i? � ig�2[�; �Di; ��℄� [Dj ; F ji℄ = 0 : (51)The above equations of motion are independent of � � the gauge �eldsin the forward light 
one are therefore only fun
tions of � and rt and areexpli
itly boost invariant. This result follows from the assumption that thesour
es of 
olor 
harge are delta fun
tions on the light 
one. Of 
ourse thisis not true in general. However, we are interested in the region of 
entral



3750 R. Venugopalanrapidity, about one unit of rapidity around � = 0. The boost invarian
eassumption should be Ok in this region. Also note that boost invarian
e isnot assumed when solving for the �elds of the nu
lei before the 
ollision.The initial 
onditions for the �elds �(�; rt) and �i? at � = 0 are obtainedby mat
hing the equations of motion (Eq. (47)) at the point x� = 0 andalong the boundaries x+ = 0; x� > 0 and x� = 0; x+ > 0. Remarkably,there exist a set of non-singular initial 
onditions for the smooth evolutionof the 
lassi
al �elds in the forward light 
one. These 
an be written interms of the �elds of ea
h of the nu
lei before the 
ollision (t < 0) as follows,�i?j�=0 = �i1 + �i2 ; �j�=0 = ig2 [�i1; �i2℄ : (52)Gyulassy and M
Lerran have shown [41℄ that even when the �elds �i1;2 beforethe 
ollision are smeared out in rapidity to properly a

ount for singular
onta
t terms in the equations of motion the above boundary 
onditionsremain un
hanged. Further, the only 
ondition on the derivatives of the�elds that would lead to regular solutions are ���j�=0; ���i?j�=0 = 0.In Ref. [42℄, perturbative solutions (for small �) were found to order �2 byexpanding the initial 
onditions and the �elds in powers � (or equivalently,in powers of �S�=kt) We will not dis
uss the details of the perturbativesolution but wish to refer the reader to the original papers.Perturbatively, at late times, the �elds in the forward light 
one 
an beexpanded out in plane waves. The energy distribution in a transverse boxof size R and longitudinal extent dz 
an be 
omputed by summing over theenergy of the modes in the box with the o

upation number of the modesgiven by the mode fun
tions ai(kt). We have thendEdyd2kt = 1(2�)2 Xi;b jabi (kt)j2 : (53)The multipli
ity distribution of 
lassi
al gluons is de�ned as dE=dyd2kt=!.After performing the averaging over the Gaussian sour
es, the number dis-tribution of 
lassi
al gluons isdNdyd2kt = �R2 2g6�4(2�)4 N
(N2
 � 1)k4t L(kt; �) ; (54)where L(kt; �) is an infrared divergent fun
tion at the s
ale �. This resultagrees with the quantum bremsstrahlung formula of Gunion and Berts
h [43℄and with several later works [41, 44�46℄.The fun
tion L(kt; �) arises from long range 
olor 
orrelations that are
ut-o� either by a nu
lear form fa
tor (as in Refs. [43, 44℄), by dynami
al
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reening e�e
ts [49, 50℄ or in the 
lassi
al Yang�Mills 
ase of Ref. [42℄,non-linearities that be
ome large at the s
ale kt � �S�. In the 
lassi
al
ase, L(kt; �) = log(k2t =�2), where � = �S�. The formalism used in allthese derivations breaks down at small momenta and one 
annot distinguishbetween the di�erent parametrizations of the nu
lear form fa
tors. However,at su�
iently high energies, the behaviour of L(kt; �) in the infrared is givenby higher order (in �S�=kt) non-linear terms in the 
lassi
al e�e
tive theory.We hope to understand in the near future how non-perturbative e�e
ts inthe 
lassi
al e�e
tive theory dynami
ally 
hange the gluon distributions atsmall transverse momenta.While the Yang�Mills equations dis
ussed above 
an be solved perturba-tively in the limit �S�� kt, it is unlikely that a simple analyti
al solutionexists for Eq. (47) in general. The 
lassi
al solutions have to be determinednumeri
ally for t > 0. The straightforward pro
edure would be to dis
retizeEq. (47) but it will be more 
onvenient for our purposes to 
onstru
t the lat-ti
e Hamiltonian and obtain the latti
e equations of motion from Hamilton'sequations.Let us �rst 
onsider the 
ontinuum Hamiltonian [19℄. In the appropriate(�; �; xt) 
o-ordinates, the metri
 is diagonal with g�� = �gxx = �gyy = 1and g�� = �1=�2. After a little algebra, the Hamiltonian 
an be writtenas [51℄H = �Z d�d2rt�12p�p�+ 12�2 prpr+ 12�2F�rF�r+14FxyFxy+j�A�+jrAr� :(55)Here we have adopted the gauge A� = 0. Also, p� = 1� ��A� and pr = ���Arare the 
onjugate momenta.Consider the �eld strength F�r in the above Hamiltonian. If we assumeapproximate boost invarian
e, orAr(�; �; ~rt) � Ar(�; ~rt); A�(�; �; ~rt) � �(�; ~rt); (56)we obtain F a�r = �Dr�a ; (57)where Dr = �r� igAr is the 
ovariant derivative. Further, if we express j�;rin terms of the j� de�ned in Eq. (46) we obtain the enormously simplifyingresult that j�;r = 0 for � > 0. Due to boost invarian
e, our e�e
tive Hamil-tonian a
ts in 2+1-dimensions. It is possible to relax this assumption, butthen the numeri
al simulations are more 
ompli
ated.We now 
onsider the equivalent latti
e a
tion and Hamiltonian. The ap-propriate a
tion is derived starting from the Minkowski Wilson a
tion in the
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retized 4-spa
e and taking the naive 
ontinuum limit in the longitudinaland time dire
tions. Repla
ing a2Pzt with R dzdt in the Minkowski Wilsona
tion, we then have for the 2+1-dimensional a
tionS = Z dzdtX? � 12N
TrF 2zt + 1N
<Tr (Mt? �Mz?)��1� 1N
<TrU?�� ;(58)whereMt;jn � 12(A2t;j +A2t;j+n)� Uj;n� �12�2t U yj;n + i(At;j+n�tU yj;n � �tU yj;nAt;j) +At;j+nU yj;nAt;j� ;(59)and similarly for Mz;jn.The equation of motion for a �eld is obtained by varying S with respe
tto that �eld. For the longitudinal �elds At;z the variation has the usualmeaning of a partial derivative. For transverse link matri
es U? the variationamounts to a 
ovariant derivative. Just as in the 
ontinuum 
ase, the latti
einitial 
onditions 
an be determined from the latti
e a
tion in Eq. (58). Oneobtains the latti
e equations of motion in the four light 
one regions andthen determines non-singular initial 
onditions by mat
hing at � = 0 the
oe�
ients of the most singular terms in the equations of motion.On the latti
e, the initial 
onditions are the 
onstraints on the longitu-dinal gauge potential A� and the transverse link matri
es U? at � = 0. Thelongitudinal gauge potentials 
an be written as in the 
ontinuum 
ase (seeEq. (50)) as A� = �x��(x+)�(x�)�(�; xt) : (60)The transverse link matri
es are, for ea
h nu
leus, pure gauges before the
ollision. This fa
t is re�e
ted by writingU? = �(�x+)�(�x�)I + �(x+)�(x�)U(�)+�(�x+)�(x�)U1 + �(x+)�(�x�)U2 ; (61)where U1;2 are pure gauge. The pure gauges are de�ned on the latti
e asfollows. To ea
h latti
e site j we assign two SU(N
) matri
es V1;j and V2;j.Ea
h of these two de�nes a pure gauge latti
e gauge 
on�guration with thelink variables U qj;n̂ = Vq;jV yq;j+n where q = 1; 2 labels the two nu
lei. As inthe 
ontinuum, the gauge transformation matri
es Vq;j are determined by
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al Methods in DIS and Nu
lear S
attering at Small x 3753the 
olor 
harge distribution �q;j of the nu
lei, normally distributed with thestandard deviation �2:P [�q℄ / exp0�� 12�2 Xj �2q;j1A : (62)Parametrizing Vq;j as exp(i�qj) with Hermitean tra
eless �qj , we then obtain�qj by solving the latti
e Poisson equation�L�qj �Xn ��qj+n + �qj�n � 2�qj� = �q;j : (63)It is easy to verify that the 
orre
t 
ontinuum solution (Eqs. 49 and 50) forthe transverse �elds A? is re
overed by taking the formal 
ontinuum limitof Eq. (61).The equation of motion for U?, 
ontains, upon substitution of U? from(61) and A� from (60), singular terms 
ontaining the produ
t Æ(x�)Æ(x+).These originate in the double-derivative 
ontributions <TrU y?�+��U? inthe a
tion, when both derivative operators a
t on the step fun
tions. Sin
ethe 
oe�
ient in front of Æ(x+)Æ(x�) must vanish in order to satisfy theequation of motion, a mat
hing relation between U? and U1;2 is obtained.Tr�
 h(U1 + U2)(I + U y?)� h:
:i = 0 : (64)Our result is that (U1+U2)(I+U y?) should have no anti-Hermitean tra
elesspart. Note that this 
ondition has the 
orre
t formal 
ontinuum limit: writ-ing U1;2 as exp(ia?�1;2) and U? as exp(ia?�?), we have, for small a?, theresult �? = �1+�2, as required. The above 
ondition in Eq. (64) 
an easilybe resolved in the SU(2) 
ase but we have not yet found a simple 
losed formexpression for N
 > 2. For SU(2), one obtains for the initial 
onditionU? = (U1 + U2)(U y1 + U y2 )�1 : (65)For the A� �eld, the singularities arise from the Abelian part of the F 2+�term in the a
tion whose variation with respe
t to A+;
 gives1N
Tr�
�+(��A+ � �+A�) : (66)
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�(x�)Æ(x+). Varying the �;? terms (Eq. (59))in the a
tion (Eq. (58)) with respe
t to A+;
j and sele
ting the 
ontributions
ontaining derivatives, one obtains eventually the result�
 = i4N
 Xn Tr�
 �[(U1 � U2)(U y � I)� h:
:℄j;n� [(U y � I)(U1 � U2)� h:
:℄j�n;n� : (67)It is easily seen that the above equation has the 
orre
t formal 
ontinuumlimit. Writing again U1;2 as exp(ia?�1;2) and U as exp(ia?�?), one �ndsin the limit of smooth �elds, � = iPn[�1; �2℄n, as required.The latti
e a
tion is essential to obtain the initial 
onditions for theevolution of �elds in the forward light 
one. For the evolution, we need thelatti
e Hamiltonian. It is obtained by performing a Legendre transform ofEq. (58) following the standard Kogut-Susskind pro
edure [52℄. The analogof the Kogut�Susskind Hamiltonian here isHL = 12� Xl�(j;n̂)Eal Eal + �X2 �1� 12TrU2�+ 14� Xj;n̂ Tr ��j � Uj;n̂�j+n̂U yj;n̂�2 + �4Xj Tr p2j ; (68)where El are generators of right 
ovariant derivatives on the group and Uj;n̂is a 
omponent of the usual SU(2) matri
es 
orresponding to a link from thesite j in the dire
tion n̂. The �rst two terms 
orrespond to the 
ontribu-tions to the Hamiltonian from the 
hromoele
tri
 and 
hromomagneti
 �eldstrengths respe
tively. In the last equation � � �a�a is the adjoint s
alar�eld with its 
onjugate momentum p � pa�a.Latti
e equations of motion follow dire
tly from HL of Eq. (68). Forany dynami
al variable v with no expli
it time dependen
e _v = fHL; vg,where _v is the derivative with respe
t to � , and fg denote Poisson bra
kets.We take El, Ul, pj, and �j as independent dynami
al variables, whose onlynonvanishing Poisson bra
kets arefpai ; �bjg = ÆijÆab; fEal ; Umg = �iÆlmUl�a; fEal ; Ebmg = 2Ælm�ab
E
l(no summing of repeated indi
es). The equations of motion are 
onsistentwith a set of lo
al 
onstraints (Gauss' laws).The results of this se
tion 
an be summarized as follows. The four in-dependent dynami
al variables are El, U?, pj and �j. Their evolution in �after the nu
lear 
ollision is determined by Hamilton's equations above and
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al Methods in DIS and Nu
lear S
attering at Small x 3755their values at the initial time � = 0 are spe
i�ed by the following initial
onditions: U?j�=0 = (U1 + U2)(U y1 + U y2 )�1 ; Elj�=0 = 0 :pj j�=0 = 2� ; �j = 0 ; (69)where U? and � are given by Eq. (65) and Eq. (67) respe
tively.6. Results for gluon produ
tion in high energy nu
lear 
ollisionsIn this se
tion we will dis
uss re
ent results for the energy density " as afun
tion of the proper time � [21℄. Work on 
omputing number distributionsis in progress and will be reported at a later date [53℄. In an earlier work, we
on�rmed that, in weak 
oupling, the results from our numeri
al simulationsagreed with latti
e perturbation theory [20℄.The 
omputation of energy densities on the latti
e is straightforward.Our main result is 
ontained in Eq. (70). To obtain this result, we 
om-pute the Hamiltonian density on the latti
e for ea
h ��, and then take theGaussian average (with the weight �2) over between 40 � traje
tories for thelarger latti
es and 160 � traje
tories for the smallest ones.In our numeri
al simulations, all the relevant physi
al information is
ontained in g2� and L, and in their dimensionless produ
t g2�L [54℄.The strong 
oupling 
onstant g depends on the hard s
ale of interest; fromEq. (9), we see that � depends on the nu
lear size, the 
enter of mass en-ergy, and the hard s
ale of interest; L2 is the transverse area of the nu
leus.Assuming g = 2 (or �S = 1=�), � = 0:5 GeV (1:0 GeV) for RHIC (LHC),and L = 11:6 fm for Au-nu
lei, we �nd g2�L � 120 for RHIC and � 240for LHC. (The latter number would be smaller for a smaller value of g atthe typi
al LHC momentum s
ale.) As will be dis
ussed later, these valuesof g2�L 
orrespond to a region in whi
h one expe
ts large non-perturbative
ontributions from a sum to all orders in Qs � 6�S�, even if �S � 1.(Re
all the de�nition of the saturation s
ale in Eq. (15).) Deviations fromlatti
e perturbation theory, as a fun
tion of in
reasing g2�L, were observedin our earlier work [20℄.We shall now dis
uss some of the results from our numeri
al simulations.In Fig. 5, we plot "�=(g2�)3, as a fun
tion of g2�� , in dimensionless units,for the smallest, largest, and an intermediate value in the range of g2�L'sstudied.The quantity "� has the physi
al interpretation of the energy densityof produ
ed gluons dE=L2=d� only at late times � when � � t. Though"� goes to a 
onstant in all three 
ases, the approa
h to the asymptoti
value is di�erent. For the smallest g2�L, "� in
reases 
ontinuously beforesaturating at late times. For larger values of g2�L, "� in
reases rapidly,
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Fig. 5. "�=(g2�)3 as a fun
tion of g2�� for g2�L = 5:66 (diamonds), 35:36 (pluses)and 296:98 (squares). Both axes are in dimensionless units. Note that "� = 0 at� = 0 for all g2�L. The lines are exponential �ts � + � e�
� in
luding all pointsbeyond the peak. TABLE IThe fun
tion f = dE=L2=d� and the relaxation rate 
 = 1=�D=g2� tabulated asa fun
tion of g2�L. 
 has no entry for the smallest g2�L sin
e there "�=(g2�)3 vsg2�� di�ers qualitatively from the other g2�L values.g2�L 5.66 8.84 17.68 35.36 70.7f :436� :007 :427� :004 :323� :004 :208� :004 :200� :005
 :101� :024 :232� :046 :165� :013 :275� :011g2�L 106.06 148.49 212.13 296.98f :211� :001 :232� :001 :234� :002 :257� :005
 :322� :012 :362� :023 :375� :038 :378� :053develops a transient peak at � � 1=g2�, and de
ays exponentially thereonwards, satisfying the relation �+ � e�
� , to a 
onstant value � (equal tothe latti
e dE=L2=d�!). The lines shown in the �gure are from an exponential�t in
luding all the points past the peak. This behavior is satis�ed for allg2�L � 8:84, independently of N .Given the ex
ellent exponential �t, one 
an interpret the de
ay time�D = 1=
=g2� as the appropriate s
ale 
ontrolling the formation of gluonswith a physi
ally well de�ned energy. In other words, �D is the �formationtime� in the sense used by Bjorken [55℄. In Table I, we tabulate 
 versusg2�L for the largest N �N latti
es for all but the smallest g2�L. For largeg2�L, the formation time de
reases with in
reasing g2�L, as we expe
t itshould. The reason the smallest value of g2�L does not have a transientpeak is likely be
ause in this 
ase the kt modes do not su�
iently sample
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al Methods in DIS and Nu
lear S
attering at Small x 3757the region kt � Qs where non-linearities are important. The few modesthere are, lie in the perturbative region where the �elds 
an be linearized at� = 0.The physi
al energy per unit area per unit rapidity of produ
ed gluons
an be de�ned in terms of a fun
tion f(g2�L) as1L2 dEd� = 1g2 f(g2�L) (g2�)3 : (70)As dis
ussed in Ref. [21℄, the fun
tion f is obtained for ea
h �xed valueof g2�L, by taking the 
ontinuum limit, i.e., extrapolating g2�a �! 0. InFig. 6, we plot the striking behavior of f with g2�L. For very small g2�L's,it 
hanges very slightly but then 
hanges rapidly by a fa
tor of two from0:427 to 0:208 when g2�L is 
hanged from 8:84 to 35:36. From 35:36 to296:98, nearly an order of magnitude in g2�L, it 
hanges by � 25%. Thepre
ise values of f and the errors are tabulated in Table I.
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Fig. 6. "�=(g2�)3 extrapolated to the 
ontinuum limit: f as a fun
tion of g2�L.The error bars are smaller than the plotting symbols.What is responsible for the dramati
 
hange in the behavior of f as afun
tion of g2�L? In A� = 0 gauge, the dynami
al evolution of the gauge�elds depends entirely on the initial 
onditions, namely, the parton distri-butions in the wavefun
tions of the in
oming nu
lei [56℄. In the nu
learwavefun
tion, at small x, non-perturbative, albeit weak 
oupling, e�e
ts be-
ome important for transverse momenta Qs � 6�s�. Now on the latti
e, ptis de�ned to be 2�n=L, where n labels the momentum mode. The 
onditionthat momenta in the wavefun
tions of the in
oming nu
lei have saturated,pt � 6�S�, translates roughly into the requirement that g2�L � 13 forn = 1. Thus for g2�L = 13, one is only beginning to sample those modes.Indeed, this is the region in g2�L in whi
h one sees the rapid 
hange in f .
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rease in f is likely be
ause the �rst non-perturbative 
orre
-tions are large, and have a negative sign relative to the leading term. Un-derstanding the later slow rise and apparent saturation with g2�L requires abetter understanding of the number and energy distributions with pt. Thiswork is in progress and will be reported on separately [53℄.Our results are 
onsistent with an estimate by Mueller [57℄ for thenumber of produ
ed gluons per unit area per unit rapidity. He obtainsdN=L2=d� = 
 (N2
 � 1)Q2s=4�2 �S N
, and argues that the number 
 is anon-perturbative 
onstant of order unity. If most of the gluons have pt � Qs,then dE=L2=d� = 
0 (N2
 �1)Q3s=4�2 �S N
 whi
h is of the same form as ourEq. (70). In the g2�L region of interest, our fun
tion f � 0:23�0:26. Usingthe appropriate relation between Qs and g2�, we obtain 
0 = 4:3�4:9. Sin
eone expe
ts a distribution in momenta about Qs, it is very likely that 
0is at least a fa
tor of 2 greater than 
 � thereby yielding a number of or-der unity for 
 as estimated by Mueller. This 
oe�
ient 
an be determinedmore pre
isely when we 
ompute the non-perturbative number and energydistributions.We will now estimate the initial energy per unit rapidity of produ
edgluons at RHIC and LHC energies. We do so by extrapolating from ourSU(2) results to SU(3) assuming the N
 dependen
e to be (N2
 �1)=N
 as inMueller's formula. At late times, the energy density is " = (g2�)4 f(g2�L)
(g2�L)=g2, where the formation time is �D = 1=
(g2�L)=g2� as dis
ussedearlier. We �nd that "RHIC � 66:49 GeV/fm3 and "LHC � 1315:56 GeV/fm3.Multiplying these numbers by the initial volumes at the formation time �D,we obtain the 
lassi
al Yang�Mills estimate for the initial energies per unitrapidity ET to be ERHICT � 2703 GeV and ELHCT � 24572 GeV respe
tively.We have 
ompared these numbers to results presented re
ently [58℄ forthe mini-jet energy (
omputed for pt > psat, where psat is a saturation s
aleakin to Qs). He obtains ERHICT = 2500 GeV and ELHCT = 12000. The re-markable 
loseness between our results for RHIC is very likely a 
oin
iden
e.The Finnish groups results in
lude K fa
tor estimates range from 1:5�2:5.If we pi
k a re
ent value of K � 2 [59℄, we obtain as our �nal estimate,ERHICT � 5406 GeV and ELHCT � 49144 GeV.To summarize, we dis
ussed in this se
tion a non-perturbative, numer-i
al 
omputation, for a SU(2) gauge theory, of the initial energy, per unitrapidity, of gluons produ
ed in very high energy nu
lear 
ollisions. Extrapo-lating our results to SU(3), we estimated the initial energy per unit rapidityat RHIC and LHC. We plan to improve our estimates by performing ournumeri
al analysis for SU(3). Moreover, 
omputations in progress to deter-mine the energy and number distributions should enable us to mat
h ourresults at large transverse momenta to mini-jet 
al
ulations [53℄.
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lear S
attering at Small x 37597. SummaryIn these le
tures, we have dis
ussed a 
lassi
al e�e
tive �eld theory ap-proa
h to s
attering at very high energies. At these energies, a saturations
ale Qs(x) 
ontrols the dynami
s of high energy s
attering. How this s
ale
hanges as we go to small x is des
ribed by a non-linear renormalizationgroup equation [15, 36℄. The solutions of the RG equations and the in
lu-sion of e�e
ts su
h as the running of the 
oupling in the regime of strongnon-linear �elds need to be better understood. In parti
ular, one would liketo investigate possibly striking experimental signatures of this regime. Sin
eQs(x)� �QCD, weak 
oupling methods may be appli
able. In these le
tureswe have shown how one may begin to apply these weak 
oupling methodsto study DIS and high energy s
attering.These le
tures summarize work done in 
ollaboration with Alex Krasnitzand Larry M
Lerran. I would like to thank Mi
hal Praszalowi
z and theother organizers of the Zakopane S
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