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In the Model of the Stochastic Vacuum the infrared behaviour of QCD is
approximated by a Gaussian stochastic process in the gluon field strength.
This assumption leads already to confinement for non-Abelian gauge the-
ories. The main part of the contribution is dedicated to the application of
the model to soft high energy reactions as hadron-hadron scattering and
electroproduction. The special role of the odderon is also investigated.

PACS numbers: 12.38.Aw, 12.38.Lg

1. Introduction
1.1. General remarks

To my opinion the most exciting new feature of Quantum Chromo Dy-
namics (QCD) as compared to quantum field theories discussed before its
appearance is the phenomenon of confinement. Whereas the consequences
of confinement on hadron spectroscopy have been studied extensively and
have led to an at least qualitative understanding of the “particle zoo”, its
implications on high energy scattering are much less obvious. The classical
work of Low and Nussinov [1,2]| has shown that a simple two gluon exchange
is already able to reproduce qualitatively essential features of soft hadron—
hadron scattering. The modification of the two gluon exchange exchange by
considering non-perturbative gluon exchange related to specific properties
of the QCD vacuum [3] has not only put the Low Nussinov model on a more
rational basis (in the latter validity of perturbation theory was implied even
for distances as large as hadron radii) but also explained a striking feature
of high energy hadron—hadron scattering, namely the quark additivity rule.
On the other hand the most promising scenario for confinement, the dual
superconductor model of 't Hooft and Mandelstam [4, 5] makes it plausible
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that the gluonic string formed in hadrons plays also an important role in
scattering and it has been shown that such a picture can indeed explain
some systematics observed in the scattering of hadrons of different sizes [6].

The model of the stochastic vacuum [7,8] on which I shall concentrate in
this approach yields confinement for non-Abelian gauge theories under very
general assumptions and can be also applied to high energy scattering. It
leads to a formation of a color—elctric string inside hadrons and shows that
this string plays an essential role in hadron-hadron scattering. Quark addi-
tivity does thus no longer hold, but it turns out that the different hadron
sizes lead to the correct ratios of hadronic cross sections. Since many differ-
ent approaches may lead to similar phenomenological features it is important
to apply proposed models to a large variety of processes in order to obtain
some insight into the basic mechanisms governing hadron—hadron scattering.
In this talk T do not intend to give an exhaustive review of the subject but I
shall present only the principal assumption and some results of the specific
approach presented here. For more details I refer to the original literature
and some specific reviews [9-11]

1.2. Notation

The notation I am using in the following is:
for the color potential:

AE(.’L‘) color F =1...8;
for the gluon field strength tensor:
Fl, = 0,AL — 0,Al + gsfaur AS ALl

Lie-Algebra valued quantities are denoted by bold face symbols:
c F >\C
M—ZA Ao /2; FW_ZF :

The approach to non-perturbative QCD is based on quantization by func-
tional integration written symbolically

(F(y, 4)) = % / Dip Dip DA F (3, A)e!Sacr 041 (1)

with S[i,, A] = [d®zdroLgcn. We shall work mostly in the quenched
approximation, ¢.e. no internal loops are taken into account in the integra-
tion.
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1.8. Some non-perturbative results

Before I come to the more technical points let me just show shortly that
a nonperturbative treatment is unavoidable in high energy scattering. If we
want to calculate a dimensional quantity, e.g. \/op, we have:

Vo = I
NI = o 00 L

0 T MQf(as)
from this follows:
flag) _ 1 o)
flag)  Blas)
with the S-function:
,uciio;j = f(ay) = —% <11 — gnf> o +0(ad).

Integrating equation (2) yields:

7 do!
flas) = f(ap) exp Ao

0
which cannot be expanded in a power series in a; around a;=0, because
terms like e/® occurring on the right hand side cause an essential singular-
ity.

In scattering we use the common kinematical notation for a process
a+b—=c+d s=W?= (po+p)?% t= (pa—pc)? If particle a
is a (virtual) photon, we denote its virtuality by Q% = —p?2.

We consider the following kinematical region: ¢t < 1 GeV?; W > 20 GeV.

We shall extensively use the optical theorem relating the total cross
section to the imaginary part of the elastic forward scattering:

1
Otot = —ImT'(s,0).
s
Axiomatic field theory leads to the Martin—Froissart bound:

Otot = 0(10g2[5]) .

The Regge picture gives a very successful description of high energy
scattering, I therefore recapitulate a few essential features.
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The Regge-ansatz for the scattering amplitude is:

Tls:1) = A() exps[f;rfig)éﬁ e, 3)

Regge trajectories «(t) are given in the following Table

Soft (DL) pomeron: | ap(t) = 1.08 + 0.25t/GeV?, | S =1
Reggeon: agr(t) = 0.5 +1/GeV?; “S=0
Searched for:

Odderon: ap(0) =1 S=-1
Hard pomeron: app(0) > 1.1 S=1

The intercepts larger than 1 cannot describe the true asymptotic be-
haviour since they would lead to a violation of the Froissart—-Martin bound.
The scattering amplitude (3) has therefore to be modified by unitarity terms
at really high energies which are however beyond the present experimental
limits.

2. High energy scattering in eikonal approximation

In soft high energy scattering there are two different scales: hard ones,
the c.m. energy W = /s and eventually the photon virtuality Q2 and soft
ones, namely the momentum transfer ¢ , and the sizes of hadrons.

As an effect of hard energy scale W the partons move in the CM-frame
on (nearly) light-like trajectories and an eikonal (semi-classical) treatment
is possible.

We shall follow the treatment given by Nachtmann [12| and consider
first quarks moving in an external “classical’ colour field and then incor-
porate quantization by using a non-perturbative model for the functional
integration over all external field configurations denoted by (...) 4.

A quark moving along a trajectory I" in a color Field A, picks up a
phase factor: Pexp[—igs [ A, dz"]

r

Two quarks moving on lightlike paths: I'y = (mo,i5/2,$3 = xg) receive
thus the factor:

Pexp —igs/Audm“ Pexp —igs/AMd:E”
Iy I

depending on the impact parameter b.
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The T-matrix element for the (fictitious) quark—quark scattering in the
quenched approximation is thus given by:

=,

T(s,t) = is / 2beih 7 (5)

—igs / A#dx“]

Iy

1
J(b) = E/DAexp[—iSYM]Pexp

x P exp —igs/A#dm“

<Pexp —igs/A#dac“ * Pexp —igs/A#dx“]>

L _ r A

This expression can in principle be evaluated, e.g. on the lattice (with

gauge fixing) but the lightlike path shrinks in Euclidean metrics to (nearly)

a point, so at least we have to use for the next time models in order to
evaluate the integration over the external colour fields.

23 X
R, ) o -
_— /
b S
- - L
o —
Ry

Fig.1. Wegner Wilson loops formed by the paths of quarks and antiquarks inside
two mesons. R1 and Rz are the vectors in the transverse plane from the middle
lines to the quark lines of meson 1 and 2 respectively. For the antiquarks the
corresponding vectors are —R, and —R,. The front lines of the loops guarantee
that the mesons behave as singlets under local gauge transformations.
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For models it is much safer to ensure gauge invariance and indeed, in
actual scattering process we have to deal with hadrons and not with quarks
and therefore near each quark there is an antiquark moving on a (nearly)
lightlike trajectory too and we have in the femtouniverse the picture depicted
in Fig. 1 which may serve as a building block for hadron—hadron scattering
[13,14].

A quark antiquark pair in a color singlet state moving in a color field A,
on parallel lightlike lines picks thus up as phase factor a trace of Wegner—
Wilson-loop:

1
W, =tr | —Pexp —igszudx“
Ne
S+

which depends on the transversal extension R of the loop.
The T-matrix element for dipole—dipole scattering (quenched) reads:

—

T(s,t,§+,§_,z+,z_) = is/dgbeiqgj(g’ﬁ+’R_’Z+’z_)’
Jb, Ry, R_,zq,2_) = (W, W_)4 17> = —t.

For consistency the impact parameter b has to be the distance of the
lightcone barycenter of the partons [15] (see figure 2), the profile function J
depends therefore (weakly) on the longitudinal momentum fraction z of the
partons.

Fig.2. The definition of the impact parameter. z4 is the fraction of longitudinal
momentum carried by the quark on the path I'y.

A hadronic scattering process hy + ho — h3 + hy is given by:
T(s,t) = /dz+dzd2R+d2RT(s,t,é+,ﬁ,z+,z)

x¢1(§+,z+)¢g(ﬁ_,z_)¢§(§+,z+)¢1(§_,z_) ; (4)

where ¢, (R,,2;) is a transverse (light cone) wave function depending on
the transverse coordinates R and the longitudinal momentum fraction z.
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We have to construct a model for the scattering of dipoles, where the
dipoles may be large and hence the scattering process has to be treated
nonperturbatively. This is in contradistinction to quarkonium—quarkonium
scattering where the dipoles are assumed to be small and hence the scat-
tering can be treated perturbatively, but the distribution function is non-
perturbative, see e.g. [16,17].

In order to arrive at the scattering amplitudes for baryons [14], we have
to construct the analogs of the traces of the loops W in the way depicted in
figure 3

Fig. 3. The path of a baryon constructed from quark paths

The analogue of the dipole as starting point for a meson is the following
expression

€abcCa't/ ¢! (F—H)a,a’ (F+2)b,b’ (F+3)c,c’ (5)
with

and

Oy = P/exp —igS/AHdm“
r ab
Since in SU(3) we have: €,cPq,a Pb,p P’ = €q'tyer We can express Eq. (5)
through Wegner-Wilson loops (without traces):

€abc€a't/ ¢! (FJrl)a,a’ (F+2)b,b’ (F+3)c,c’ €abc€a'b' ¢! (W+1)a,a’ (W+2)b,b’ (W+3)c,c’
with
(Wii)aw = (B(z () 26)) (@) 200y )P (@) 21)) (T ys Bh))) g g - (6)

For practical — and also for phenomenological — reasons we shall work
often in the diquark picture, where the distance between two quarks is zero
(small).
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Since two quarks coupled antisymmetrically g, gp€qpe transform in SU(3)
like an antiquark g, the baryon in the diquark picture can be treated like a
meson.

3. Model of the stochastic vacuum (MSV)

The model of the stochastic vacuum (MSV) |7, 8] (for reviews see
[9-11, 18, 19]) is the underlying model for non-perturbative QCD used in
the following for calculating soft high energy scattering. I shall only sketch
roughly the principal ideas and consequences of the model and refer to the
original literature and reviews for more details. The basic assumption of the
model is that the infrared behaviour of QCD can be approximated by a
Gaussian stochastic process in the gluon field strength.

Formally this can be written as:

DAS &Svm
p

|k|<p

_1FG
~ [DEGew (—gz [ driyEl l,mu,y)FS(y)) ™

So the full domain of nonperturbative QCD is governed by the single
correlator K Zﬁ)\.
In order to make the non-local correlator gauge invariant we have parallel

transported all color fields to a reference point y:

Fﬂu(may) = ¢($7y)F,uV($)¢(y7$) (8)
F(0,y) F(z,y)
F(0) F(z)

If we neglect the dependence on the reference point y the most general
form for the correlator K ﬁi}\ contains two independent scalar functions, D
and D;.
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KL ) = WEL ) G 0.) = S EE)
X {((5#”5”)\ — (SMA(SVK)D(IQ)K
I A S U B S
2 0z, 2 0z,
x Di(z3)(1 —k)} . (9)

In an Abelian gauge theory without monopoles, like QED, the homo-
geneous Maxwell equations imply: x = 0, i.e. only the term with D; can
contribute.

Gaussian factorization implies:

(FAFPFOFP) = (PARP)(FOFP)

+(FAFC)(FPFP) + (FAFP)(FPFC). (10)

The model is therefore characterized by essentially two parameters: The
value of the correlator at zero distance (the gluon condensate [20]) and the
correlation length.

Under this assumption we can evaluate the Euclidean Wegner—Wilson
loop of width r and length 24 using the non-Abelian Stokes theorem [21-23]:

(pess[-in fant]) = (pesn[-in [Enin]). o

The static potential is then obtained as:

-1
= 1 R —9 py
V(r) ml:go o log [<Pexp [ zgs/FW do ]>] .

Inserting (9) and (10) we obtain linear confinement for non-Abelian gauge

theories:
TR

T 3ANG (g*FF) /deD(xQ) . (12)

Since only the term proportional to D contributes, an Abelian gauge theory
without monopoles cannot lead to confinement and a non-Abelian one leads
to confinement only if k # 0. Lattice calculations [24,25] have shown that
this typical non-Abelian term is indeed dominant in QCD, since x =~ 0.8.

The model yields also the correct spin structure of potentials between
heavy quarks [26-28|.

Vir) —
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Let me emphasize that an Abelian gauge theory with magnetic monopoles
can have x # 0 and hence leads to confinement. Furthermore, the assump-
tion of a Gaussian process is necessary for direct applications, but the con-
vergence of cluster expansion alone is already enough in order to yield linear
confinement [7].

The physical reason for confinement can also be investigated in the
model. One can calculate the gauge invariant color field energy density
produced by a static quark—antiquark pair and obtains that a color electric
flux tube is formed. The results of the calculations with the model of the
stochastic vacuum [29] show qualitative agreement with numerical calcula-
tions on the lattice [30] (in SU(2)-gauge theory):

n

Fig.4. The energy density of the colour fields induced by a static quark antiquark
pair as calculated in the MSV (top) [29] and on the lattice (bottom) [30]

4. Application of the MSV to high energy scattering

4.1. Formalism and general results

We now use the MSV as described in Section 3 in order to calculate
the dipole—dipole scattering amplitude derived in the eikonal approach in
Section 2. The basic formalism of this section has been developed in [13,
14], the application to high energy processes involving (virtual) photons in
[15,31]; energy dependence has been incorporated in [32].

The starting point is equation (3):

J([;, R+,§_,Z+,Z_) = <W+ W—>A (13)
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with the basic input:

1
W, =tr| —Pexp —igszudx“
N¢
St

As in Section 3, equation (11) we use the non-Abelian Stokes Theorem:

1

Wi=t
+ TNC

Pexp —igS/FWdU‘“’ (14)
X+

and Gaussian factorization (10) in order to evaluate the expectation value
of two Wegner—Wilson loops:

. _ -
<tr<—PeXp —igs/FWda‘“’ )
N¢

- 4+

, _ -

Xtr(—Pexp —igS/FWdU’“’ >> .
Ne

s A

In a straightforward method [13,14] the exponentials in this equation can
be expanded in power series of the field strength tensor and Gaussian ap-
proximation can be used for the resulting products. In a more sophisticated
approach [33] one can use the cumulant expansion for the product group
SU(3)®SU(3). For small momentum transfer both methods give similar
results, for values of ¢ ~ 0.5 GeV? the second method is certainly more
appropriate, since it guarantees local unitarity even for small impact pa-
rameters. The reference point y introduced in (8) must be common to both
surfaces 31 and X _.

A ‘reasonable’ choice of the surfaces obtained after applying the non-
Abelian Stokes theorem has little effect on the results and can generally be
absorbed in a slightly different choice of the parameters. The standard choice
for the surfaces in all phenomenological applications is given in figure 5.

The expression obtained in this way contains I = 0 and both C, P = +1
exchange, i.e. in Regge terminology the pomeron and the odderon exchange.

The lowest contribution, i.e. the quadratic term from each exponential
corresponds to the C' = P = +1 exchange, i.e. the pomeron, the cubic terms
to C = P = %1 exchange, i.e. the odderon. We come back to the odderon
problem later.
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Fig.5. Somewhat tilted view of the loops after applying the non-Abelian Stoke’s
theorem with the reference point y which is common to both surfaces.

There is however a fundamental problem:

The MSV as approximation to a stochastic process is primarily man-
agable in Euclidean field theory (like lattice gauge theory). But for high
energy scattering processes the Euclidean description is very delicate, since
the lightlike paths introduced above shrink to points in Fuclidean field the-
ory. We can however introduce an Minkowski version of the MSV in mo-
mentum space and at the end it turns out that only the Euclidean part of
the correlators matter, i.e. we can safely use the Euclidean input.

This is done in the following way:

(1) We first express correlators through Fourier transforms:

6OD 1 .

(9> i (x,y) Fla(y,y))B =

d'k —ik(z—2)/a L~ 9
x (2r) € (9up9ve — Guo9up) KiDar (k)

D 5y (K?
+(_guo'kukp + g”ﬂkuka - gupkukg + gug-kykp)(l - H)Z%} .

(15)
(2) We then evaluate the surface integral over the sliding sides of the

pyramids as volume integrals minus the surface integral over the basis
using Gauss theorem.



Non-Perturbative Diffractive Scattering 3825

(3) We realize that we have integrals over lightlike paths like the one

T L
lim lim /dmo/dm35(m3 —20) ... (16)
T—o0 L—00
-T —L
from pyramid ‘4+’ and a corresponding expression from ‘—’. Together

with the exponentials from the Fourier transform in (15) this gives rise
to the integral:

T
lim ... lim dz® da3dy® dy? 5(I3 — CEO) 5(2/3 + yo)

T—o00 L—oo
-T

xexpi[ko(xo — ) - BB+ ... (17)
Such an integral yields a factor
(271’)2(5(]% - kg) (S(ko + kg)

and hence the correlator Dys(k2) is evaluated only at kg = 0 i.e. in
the Euclidean region. The correlators depending on the Euclidean
momenta ET are obtained as two dimensional Fourier transforms of
the Euclidean correlators introduced in Section 3.

Before we come to detailed applications I want to quote some general
results:

(1) The model introduces no new energy dependence, i.e. the scattering
amplitudes T are proportional to s and the cross sections are therefore
energy independent.

(2) The invariants D and D; of the correlator (9) lead to completely dif-
ferent behaviour of the cross section o with the dipole size R: D, the
Abelian, nonconfining structure leads to o o« const whereas D, the
non-Abelian, confining structure: implies a cross section which rises
with the dipole size R, see figure 6.

A further investigation shows [14] , that the rise of the cross section with
dipole size is due to an interaction of the strings described in Section 3,
figure 4. Hence the same mechanism which leads to string formation and
confinement also leads to string—string interaction in scattering.
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Fig.6. The dependence of the total dipole—dipole cross section on the size of the
dipoles for the Abelian correlator Dy and the confining correlator D.

4.2. Parameters of the model and hadron—hadron scattering

In order to make specific predictions for various high energy reactions
we have to fix the parameters of the model. They are for the MSV itself:

(1) the correlation length;
(2) the correlator at zero distance (Gluon condensate [20]);
(3) the form of the correlation functions;
and for the hadrons:
(4) the transversal wave function of the scattered hadrons;
and finally there is for hadrons a weak dependence on:
(5) the longitudinal momentum fraction.
The parameters of the fundamental correlator (9) are constrained by:

(1) the string tension, see equation (12);

(2) QCD sum rules [20] (the gluon condensate) and finally we have as most
important source of information;

(3) lattice calculations [24,25, 34].

For the second group of parameters we have the following constraints:

e Electromagnetic form factors of hadrons; decay constants of mesons;
and we get some important hints from quark hadron duality and from
the non-relativistic quark model.

e For photons with high virtuality we may use perturbative QCD.
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These constraints allow us to estimate the parameters and therefore to
predict the dipole—dipole cross sections without using any information from
high energy scattering. Using for the correlation length a ~ 0.35 fm, the
gluon condensate (g2FF) ~ 3 GeV* !. The transverse radius of proton is
estimated from the electromagnetic form factor to = 0.8 fm.

In reference [36] the dipole—proton cross sections were reconstructed from
the photoproduction data. The results of this analysis are displayed as
points with error bars in figure 7. The solid line shows the prediction of
the MSV [37| with the parameters given above. The qualitative agreement
shows that it is indeed possible to calculate high energy cross sections from
low energy data.

10.0
Utot[fmZ]
* pP°-NMC =
1.0 F #°-NMC O ]
J/@-EMC WV
J/U-E687
#°-FNAL <@
#°, p°-ZEUS %
p’-H1 +
J/P-HERA <
01 1 L L 1

Fig. 7. Comparison of our result for the total cross section for dipole (extension Rp)
proton scattering with values extracted from cross sections of lepto-production of
vector—mesons by the method of Nemchik et al. [36]. The solid line is our result [37]
without any fitting of the parameters to high-energy data. The dashed line is the
ansatz of Nemchik et al. for the total cross section.

In order to determine the parameters more precisely we make use of
experimental input from proton—proton scattering and adjust the form of
the correlators to the results of the lattice calculations. A convenient form

! In a quenched theory in which we are working the gluon condensate is expected to
be about a factor 3 larger than in the case of full QCD, see [35]
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of the input correlators which allows an analytic continuation and which
gives a perfect agreement with the lattice data [34] is:

2 d4k ) B B 9 4
D <Z—2) :/ D) D)= —2 (1)
a (2m) A (k2 ~ %>
64
For the determination of the parameters we also use data from proton—

(anti)proton scattering at s= 20 GeV and arrive to the following values:
a =0.346 fm, (g°FF) =249 GeV, x=0.74, S, = 0.739 fm.

4.83. Results for hadron—hadron scattering

Once the parameters ar fixed, we can calculate all possible hadron—
hadron cross sections once we know the transversal extension. For the 7
and K-meson we assume that the: transverse extension is proportional to
the electromagnetic radius. For the J/¥ we use the experimental electro-
magnetic width. Results of the model are displayed in Table I.

TABLE 1
Ratios of different total hadronic cross sections to the proton—proton cross section
at W =20 GeV.

Quantity Model Reference Experiment

o/ Top 0.66 [14] 0.63
Okp/Tnpy  0.82 [14] 0.87
o5/w/0pp 0.12 [38] -
ow [Tpp 0.49 [38] -
By, — By, 130 [14] 2.48
Bry— B, 0.4 [14] 0.3

It should be remarked that the correct ratio or,/0p, =~ 2/3 is in the
model not a consequence of quark additivity, but due to the different (mea-
sured) electromagnetic radii.

4.4. Reactions involving photons (real and virtual)

For high energies the dominant contribution to photon hadron interac-
tions in the CM or hadron rest frame is the splitting of the photon into a
quark antiquark pair and the subsequent interaction of the quark—antiquark
pair with the hadron. We can therefore use the general equation (4) also in
order to calculate high energy interactions involving photons by choosing for
the corresponding transverse wave function the light cone wave function of
the photon. The kinematical and internal variables are defined in figure 8.
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Fig.8. Sketch of the dynamical and light cone variables entering the photonpro-
duction off hadrons: Transverse momentum k | resp. extension R 1; longitudinal
momentum fraction z; virtuality of photon: @Q? = —¢?, total Energy: s = W?2,
momentum transfer §.

Whereas the photon wave function at high virtualities Q2 can be calcu-
lated by perturbation theory, this is not the case for low virtualities. Usually
vector meson dominance is applied, but we shall show that quark hadron
duality allows a more economical description of the photon wave function
at low virtualities, which interpolates smoothly to high virtualities and even
takes care of the “hard part of the photon” at low virtualities. This is espe-
cially relevant for photon—photon interactions.

Let us begin with a model investigation with scalar photons and quarks
as given in [31]. In such a case the “photon”wave function at high virtualities
would be given by:

“ o 1
k = 5 ,
Py (k1) 2 t2(1- 2@+ m?
Yo(f) = - Koly/=(1 — )@ +m3 KL ). (19)

For low Q? however we expect confinement to modify these perturbative
expressions considerably.

Indeed the structure of (19) is the same as that of a free nonrelativistic
Greens function:

Go(R1,0,M) =~ Ko(vV2mM R, |). (20)

where M = —F stands for the virtuality Q2.
As as been pointed out in reference [20] the harmonic oscillator is a
very reasonable model for QCD: it shows both confinement and asymptotic
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freedom. We therefore investigate the effects of confinement by comparing
the free Greens function (20) with that of the full harmonic oscillator which
can be calculated easily.

Pa(R 1 )pa(R1)
(ni+ny+VDw+ M’

GH(RJ_aoaM) = Z

ni,n2

As can be seen from figures 9 Greens functions with the shift: M — M +

s(M) yield an excellent fit to the exact Greens functions. Vector dominance

corresponds to keeping one or a few terms in the sum of equation (21) which
leads visibly to a poorer fit to the wave function.

(21)

Fig.9. Green functions (in units of m) of an harmonic oscillator as function of r
(in units of 1/y/wm) for different values of M/w. Solid line: exact Green function
G(r,0, M), long dashes: our approximation G,(r,0, M, sg), i.e., the shifted free
Green function; short dashes: approximation with two resonances, corresponding
to generalized vector dominance; dots: free Green function.

We transfer this procedure to QCD by performing a Q? dependent shift of
the flavor mass my — m+m(Q?) in the perturbative photon wave function.
The shift m(Q?) can be fixed by a fit to the phenomenologically known
vector-current twopoint function and thus introduces no new parameter.
The following linear parametrizations can be used [31]:

me(Q%) = 0.22(1.0 — Q*/Q3), in GeV, for Q? < Q% = 1.05 GeV?,
me(Q%) = 0, for Q* > QF. (22)
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Mgt (Q%) = 0.15+0.16 (1.0 — Q?/Q3), in GeV, for Q> < Q% = 1.6 GeV?,
mse(Q?) = 0.15, for Q* > Q2. (23)

We see that above Q? = 1.05 resp. 1.6 GeV? the perturbative expression
with the Lagrangian quark mass is used.

The resulting wave functions for the longitudinal and transverse photon
are:

[ —
bro = —5oVNedy g0y, 522(1 = 2)QKo(V(1 = 2)Q% + m(Q?) K1 )).
(& . 4
Q[)%l = —ﬁ\/ QNC(Sff{’Le 0 (Z(S]H_(Sﬁf - (1 - Z)Z(S]‘L 5ﬁ+)

xVz(1 = 2)Q% + m*(Q1) K1(v/2(1 - 2)Q% + m2(Q?) |R. |)
+m(Q%)dn+ 7y Ko(V/2(1 = 2)Q2 + m2(Q?) |R1|)} - (24)

The longitudinal wave function has a factor ) as compared to the trans-
verse wave function and vector meson productiondominates at large Q? but
one should note that the “hadronic size” of the virtual photon is determined
by 1/4/2(1 — 2)Q? and that the transverse photon has no suppression at
z =0, and 1; hence a transverse photon can be large (i.e. non-perturbative)
even at fairly large values of Q2.

We have calculated in the model [15,31,39] the following reactions and
compared to experiment (at W = 20 GeV):

Y = pV; V=p, o, o\ w, ¢, J)¥

and v*p — X without introducing any new parameters.
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Fig. 10. Left: The scaled cross section Q* o(Q?) for p-production in nb. GeV* as
function of Q? [GeV?]. The circles are the NMC-results and the diamonds represent
our prediction [15] for the quantity Q* (eor + o) with the experimental polariza-
tion rate of NMC. Right:The differential cross section, do/dt(A%) [nb GeV 2] as
function of ¢ [GeV?], for v* +p — p+ p at Q> = 6 GeV>. Data from Ref. [40].
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Generally the agreement with experiment is good, except for ¢-production
where the model predictions are to large by a factor 2.

As an example I show in figure 10 the (parameter free) predictions for
the @? and t-dependence of electroproduction of p°-mesons.

4.5. Soft and hard pomeron

As mentioned above the MSV as it stands predicts constant cross sec-
tions. In order to overcome this shortcoming an energy dependence in the
spirit of the two pomerons of Donnachie and Landshoff [41] was introduced in
the model in [32] in (roughly) the following way: If both dipoles are larger
than the correlation length (ca. 0.35 fm) an energy dependence of a soft
pomeron with intercept 1.08 is introduced, if one of the dipoles is smaller
than that correlation length the energy dependence of a hard pomeron with
intercept 1.28 is chosen. In that way a perfect fit to the proton structure
function has been obtained over a huge range of W and Q? values [32].

Of particular interest are y*) —~(*) interactions, because in that case one
can tune the size of both dipoles by varying the virtualities of the photons.
The MSV has been applied to such reactions in [42,43], in figure 11 the
A(*) —~) cross section is given for real photons and photons with an average
virtuality of 14 GeV? as function of the CM energy W. Even for real photons
the energy dependence is markedly stronger than for hadrons, a consequence
of the concentration of the quarks at small distances due to the logarithmic
singularity of the photon wave function (24). It can be seen from the figure 11
that for Q% = 14 GeV? the model grossly underestimates the contribution of
the hard pomeron. The photon structure function is well predicted by the
model [43].
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400

300

200

100 ——

O &~ — o i
0 20 40 60 VE\S/O 100 120 140

Fig. 11. Cross sections in nb for 4(*)4(*) scattering for virtualities Q> = 0 and 14
GeV? respectively compared with L3 data. The solid curve is our model. It consists
of the following contributions: soft pomeron: long dashes; hard pomeron: short
dashes; fixed pole (box): dot—dashes; reggeon: dots; for details see reference [43].
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4.6. The odderon problem

The odderon is the C, P partner of the pomeron (i.e. has an intercept
near 1), but is odd under C' and P transformations.It has been introduced
in [44] and shown to be well compatible with axiomatic field theory. It
contributes differently to pp and pp scattering and can lead to a difference
of the cross sections op, — 0p)p rising with energy W.

In QCD the odderon is by no means an odd concept since three or more
gluons can couple to form a C = P = —1 object. Therefore it must be
present in perturbative QCD. This has renewed the interest in the odderon,
especially in perturbative QCD (see [45,46] and references there). In prin-
ciple it is even more important in non-perturbative QCD since there is no
small o, suppression!

The newer Tevatron data for pp scattering and extrapolations of pp-
scattering by DPR are compatible with

Re[TPP(t =0)] Re[TPP(t = 0)] N

AP = [Tt =0)] ~ Tm[T7(t = 0)] ~

0

which could not be the case if there is a sizeable odderon exchange.

A possible solution to this problem was proposed in [47]: If a quark—
antiquark pair in the nucleon couples to a diquark with a size smaller than
ca. 0.3 fm, the odderon coupling is strongly suppressed as can be seen from
figure 12.

Ap

Fig.12. Ap as a function of the “diquark size” r; measured in units of the corre-
lation length a ~ 0.35 fm.

This suppression however does not take place if the proton breaks up
[48]. Therefore a possible way to see the exchange of an odderon is to look
for electroproduction of those mesons [46] which can only be produced by
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C = P = —1 exchange and in which exchange the proton breaks up, i.e.
processes like y+p — w9+ X or v+ p — fo + X. The cross section for the
reaction y +p — mg + (2P) resp e+ p — €' + mp + (2P) is given in figure 13;
2P stands for a quark diquark 2P-state 7.e. N(1/27) or N(3/2:7) [46].

“— ~ 10*
> 3
3
O 10°F (O]
= o 3
Qo o 10
c ~—
N—r ~
oS
% % 102
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102 °
0 F -
1E R
s b e b b b b b b b 10-1\\\\\\\\\\\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

It,| / Gev? k;/(GeV)

Fig.13. Left: The differential cross section for the reaction v + p — 7 (2P)s
as a function of the momentum transfer ¢. Right: The kp-distribution in pion
production for the reaction e+p — €’ +m+ (2P) : solid line: odderon contribution,
dotted line: photon exchange; from [46].

It is a pleasure to thank the organizers of the conference for providing
an at the same time stimulating and relaxed atmosphere
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