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COLOR DIELECTRIC MODELS FROM THE LATTICESU(N) GAUGE THEORY �H. Arod¹Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Craow, Polandand H.-J. PirnerInstitute of Theoretial Physis, Rupreht-Karls UniversityPhilosophenweg 19, Heidelberg, Germany(Reeived Otober 29, 1999)The idea of oarse-grained gluon �eld is disussed. We reall motiva-tion for introduing suh a �eld. Next, we outline the approah to smallmomenta limit of lattie oarse-grained gluon �eld presented in our paperhep-ph/9803392. This limit points to olor dieletri type models with anumber of salar and tensor �elds instead of single salar dieletri �eld.PACS numbers: 11.15.�q, 11.15.Ha1. IntrodutionThe most prominent features of quantum hromodynamis suh as as-ymptoti freedom or quark on�nement follow from the presene of gluon�elds with their intriate self-interations. Therefore, the gluon setor ofQCD may be regarded as the most interesting one. Unfortunately, at lowenergies and large distanes the QCD dynamis beomes highly nontrivial.Pratial method to study a ompliated dynamis onsists in onstrutingand solving appropriate e�etive models. Suh approah has turned out tobe extremely fruitful in ondensed matter physis, e.g., Ginzburg�Landaue�etive models play ruial role in physis of superondutors, super�uidHelium, or liquid rystals. Also examples from partile physis, like Skyrmeor Nambu�Jona-Lasinio models are well known. The olor dieletri models,also frequently alled Friedberg�Lee models, an be regarded as e�etive� Presented at the XXXIX Craow Shool of Theoretial Physis, Zakopane, Poland,May 29�June 8, 1999. (3895)



3896 H. Arod¹, H.-J. Pirnermodels for QCD. Their harateristi and attrative feature is that theytake into aount the gluon �elds, hene with these models one ould studythe gluon omponent of hadrons.The olor dieletri models have rather long history. In seventies modelswere proposed in whih single real salar �eld was oupled in a non-minimal,dilaton-like manner to a gauge �eld, [1�3℄. The models implied that theeletri displaement �eld ~D between two opposite harges was squeezedinto a narrow �ux-tube, and onsequently the harges were on�ned. Thesemodels were a little bit arti�ial, nevertheless they evolved and eventuallyprovided quite aurate desription of stati properties of hadrons [4�6℄.Reently they have been applied also to dynamial phenomena: formationand breaking of �ux-tubes in high energy ollisions [7, 8℄.The suesses in desribing the physis of hadrons motivated searhesfor onnetions of the olor dieletri models with QCD. It seems that suhonnetions indeed do exist � the models emerge from QCD when we fo-us on dynamis of so alled oarse-grained gluon �eld, whih is de�nedas an average of the original �mirosopi� gauge �eld over a �nite volumein spae-time. This is analogous to averaging of mirosopi eletri ormagneti �elds when deriving equations of marosopi eletrodynamis ofdieletri or magneti media. The di�erene is that in the non-Abelian asethe nonlinearity of mirosopi Yang�Mills equations, as well as the fat thatnon-Abelian �eld strength tensor is not gauge invariant, exlude straight-forward averaging � suh an average has to be taken in a speial way toguarantee that it is gauge ovariant. We shall present a de�nition of theoarse-grained �eld shortly, but �rst we would like to explain on theoretialgrounds why we think that suh a �eld is interesting.There exists an evidene that the mirosopi gauge �eld onsidered inthe quantum theory based on Yang�Mills ation is subjeted to large infraredquantum �utuations. The quantum tunelling between vaua with di�erentwinding numbers, desribed by instantons [9℄, is the example of suh �utu-ations. The notions of ondensates of monopoles [10℄ or vorties [11℄ an beregarded as a way to desribe and to understand suh �utuations. The �u-tuations are the main raison d'être for the stohasti vauum model [12,13℄,whih exploits spei� assumptions about the probabilisti harateristis ofthe �utuations in Eulidean non-Abelian gauge theory. Due to the �utua-tions, the original mirosopi gauge �eld is not the best variable to disussthe small momenta physis. One may �nd an analogy when onsideringposition operators for a Dira partile. In the standard representation thatdynamial variable exhibits Zitterbewegung, whih an be regarded as er-tain spei� �utuations. On the other hand, there exists another positionoperator, de�ned in Foldy�Wouthuysen representation [14℄ for whih suh�utuations are absent � this dynamial variable has smooth behaviour in



Color Dieletri Models from the Lattie... 3897aordane with expetations based on lassial limit. It is well-known thattransformation to the Foldy�Wouthuysen representation an be regarded asaveraging over a small spae-time ell [15℄. The oarse-grained gauge �eldan be regarded as a dynamial variable analogous to the position operatorin the Foldy�Wouthuysen representation.In the present artile we would like to reall a de�nition of the oarse-grained gluon �eld given in [16℄ in the ase of ontinuum spae-time, andin papers [17, 18℄ in Eulidean lattie formulation. Next, in Setion 3 wedesribe our proposal [19℄ how to interpret the lattie oarse-grained gluon�eld in terms of a ontinuum �eld theory. This should be possible at leastin the small momenta limit. Setion 4 is devoted to remarks on the problemhow to onstrut the orresponding e�etive models for the low energy QCDdynamis in the gluon setor.2. The oarse-grained gluon �eldLet us start from the de�nition proposed by Nielsen and Patkos [16℄. Itis formulated for the gauge �elds in ontinuum spae-time. Let us divide thespae-time into regular boxes of size b, and take the points x and x+ " fromone suh box. Consider all ontinuous paths onneting these two points,with the restrition that they also lie inside that single box. With everysuh path � we assoiate the parallel transporterW (x+ "; x) = P exp0�iZ� â�dx�1A ; (1)where â� denotes the mirosopi SU(N) gauge �eld. The oarse-graineddesription of the gauge �eld is formulated in terms of an averageW (x+ "; x)over all suh paths � . Preise form of a weighting funtion de�ning the av-erage is not essential in our onsiderations. Next, we expand W (x+ "; x)with respet to ", W (x+ "; x) = �̂(x) + i"�Â�(x) + ::: : (2)The �eld Â�(x) is by de�nition the oarse-grained gluon �eld.Further step, in pratie rather di�ult to perform, would onsist ininserting the funtional identity1 = Z [dW ℄Æ 264W � P exp0�iZ� â�dx�1A 375



3898 H. Arod¹, H.-J. Pirnerin a path integral for a partition funtion of the mirosopi quantum gaugetheory, and in integrating out the mirosopi gauge �eld â�. As the resultwe would obtain a new quantum theory, with W , or �̂; Â�, et., as the basi�elds. It is expeted that in this theory the infrared quantum �utuationswill be less prominent, and that the small momenta physis an essentiallybe desribed in terms of a mean �eld approximation. This hope is basedon the following heuristi piture of �utuations of the mirosopi non-Abelian gauge �eld in the vauum state in a on�ning phase. Due to theself-interations of the gauge �elds a dynamially generated length sale��1 an appear. Suh dimensional transmutation [20℄ is suggested, e.g.,by results obtained within the framework of the instanton piture of QCDvauum [21℄, in partiular by the observation that the physially deisiveontribution omes from instantons of de�nite size of the order ��1 � 0:4fm. Then, if the box size b is larger than ��1, one may assume that thevauum expetation value ofW vanishes, beause the sum over � will involveindependently �utuating parallel transporters. If there is an external fatorwhih fores nonvanishing of W , like an external soure or speial boundaryonditions, then still one an assume that the infrared �utuations of Ware small. On the other hand, if b < ��1 then the infrared �utuationswill in�uene the parallel transporters present in W in a uniform oherentmanner, hene W will be �utuating too. In the piture skethed abovewe have ompletely negleted ultraviolet �utuations. They are expeted tointrodue a �nite multipliative renormalization.The oarse-grained gluon �eld has the following transformation law underthe loal SU(N) gauge transformations !(x)Â0�(x) = !(x)Â�(x)!�1(x)� i��!(x)�̂(x)!�1(x): (3)The other �eld �̂ belongs to the adjoint representation of the gauge group.The e�etive model should involve at least �̂ and Â�. Unfortunately, dueto the presene of �̂ in the seond term on the r.h.s. of formula (3) it isnot lear how to build from �̂ and Â� gauge invariant expressions whihould be used in the orresponding e�etive ation. In paper [16℄ it wasassumed that �̂ is proportional to the unit matrix, �̂ = �I. Then onean onstrut an e�etive ation of the Friedberg�Lie type with � being thesalar dieletri �eld.In 1984 Mak proposed a lattie version of the oarse-grained gluon �eld[17℄. In this ase the paths � run along links of the initial �mirosopi�hiperubi lattie, and " is an integer multiple of the mirosopi link vetoraek (ek has length equal to 1, a is the length of the mirosopi link). Theaverage W (x+ "; x) is regarded as a link variable on a new oarser lattiewith links of length l0 = na, where n is the integer. For larity, W (x+ "; x)



Color Dieletri Models from the Lattie... 3899as the link variable will be denoted by �k(x). Here the index k = 1; 2; 3; 4enumerates links of positive diretions whih start at the site x of the oarselattie. The end point of the long link is x + l0ek. As before, �k(x) isexpeted to be insensitive to the quantum infrared �utuations if l0 > ��1.The lattie olor dieletri model an be desribed as a non-standardlattie gauge theory in whih instead of the usual unimodular link variablesUk(x) 2 SU(N) we have more general N by N matriesUk(x)! �k(x):Upon inversion of the diretion of the link��k(x+ l0ek) = �yk(x): (4)The link �k in formula (4) starts at the point x+l0ek and it ends at the pointx. Under the SU(N) gauge transformations the marosopi link variables�k(x) transform in the usual manner,�0k(x) = !(x+ l0ek)�k(x)!(x)�1: (5)Suh a non-standard lattie model has been investigated with the help ofanalyti as well as numerial methods [22�24℄.In the small momenta limit the lattie model ertainly an be approxi-mated by a ontinuum �eld theory. Suh ontinuum desription would o�erthe usual advantages, like translational and rotational symmetries. It hasturned out that in spite of the naturalness of suh ontinuum approximationit is not easy to ome by it. The problem is how to identify the ontinuum�eld ounterpart of the non-unitary link variable �k(x). In the literaturethe polar deomposition of �k is used,�k(x) = exp(i�k(x))Vk(x)�̂k(x); (6)Here Vk(x) is a matrix of the SU(N) type, �̂k(x) = ��yk(x)�k(x)�1=2 is a Nby N Hermitean matrix with nonnegative eigenvalues, and �k(x) is a realnumber. Then, the problem is shifted to the ontinuum interpretation of�̂k(x).The polar deomposition (6) is analogous to a transformation from Carte-sian to spherial oordinates, with �k and Âk (introdued in formula (10)below) playing the role of angle variables, while �̂k orresponds to the ra-dius. Suh transformation has the drawbak: it is singular at �̂k = 0. It islear from formula (6) that �k(x) and Vk(x) an be taken arbitrary if �̂k = 0.The polar deomposition has also the advantage: it gives a smooth orre-spondene with the original mirosopi SU(N) gauge �eld theory, whih



3900 H. Arod¹, H.-J. Pirneris obtained when �̂k = I and exp(i�k(x)) = 1 � in this region the polardeomposition is nonsingular.In order to satisfy the relation (4) we assume thatV�k(x+ l0ek) = V yk (x) ; (7)exp[i��k(x+ l0ek)℄ = exp[�i�k(x)℄ : (8)Then, formulas (4), (6) give�̂�k(x+ l0ek) = Vk(x)�̂k(x)V yk (x): (9)Vk an be related in the standard manner to a traeless Hermitean gauge�eld Â� on M : Vk(x) = exp[iÂk(x)℄; (10)where Âk(x) is the lattie oarse-grained gluon �eld. The �k(x) �eld hasbeen alled in the literature the bleahed gluon.By assumption, Vk transforms under the SU(N) gauge transformationslike any lattie SU(N) gauge �eld � a formula analogous to (5) � and �kis gauge invariant. Then, it follows from (6) that �̂k belongs to the adjointrepresentation of SU(N)̂�0k(x) = !(x)�̂k(x)!(x)�1: (11)Let us note that SU(2) ase is speial: the �k �eld is absent, and eahmatrix �̂k(x) is replaed by a nonnegative number �k(x), invariant underthe SU(2) gauge transformations, [17℄. In the following we assume thatN > 2.3. The ontinuum ounterpart of the lattie �eld �̂k(x)The main problem with the ontinuum desription of the small momentasetor of the lattie model is the lak of an obvious ontinuum ounterpartfor the �elds �̂k(x). The properties of these �elds are rather puzzling. Byonstrution �̂k(x) are de�ned on the links, like the lattie gauge �eld. Inspite of that, they annot be related to a gauge �eld in ontinuum spae-timebeause then the gauge transformation law would have to be of the form (5),and not (11) whih has the form typial for a matter �eld de�ned on the sitesof the lattie. In [19℄ we have notied that there exists a �eld transformationwhih relates the �̂k(x) �elds with omponents of a Hermitean vetor �eldB̂k(x); k = 1; 2; 3; 4, loated on the sites of the oarse lattie. Namely,�̂k(x) = G�DkB̂k(x)� (12)



Color Dieletri Models from the Lattie... 3901(no summation over k). Here G(�) denotes a matrix funtion desribedbelow, and DjB̂k(x) = V yj (x)B̂k(x+ l0ej)Vj(x)� B̂k(x) (13)is the lattie version of gauge-ovariant derivative. The B̂k(x) �eld has thefollowing SU(N) gauge transformationB̂0k(x) = !(x)B̂k(x)!(x)�1: (14)Thus, B̂k(x) is a matter �eld. The funtion G(�) is supposed to transformHermitean matries into Hermitean ones, hene oe�ients of its Taylorexpansion should be real numbers. Moreover, its matrix values should bepositive de�nite beause �̂k(x) is positive de�nite. Finally, lassial vauumvalue of the �̂k(x) �elds is expeted to vanish in the olor dieletri models.If we require that the orresponding vauum value of DkB̂k(x) also vanishes,then we may take G(DB) = �1DB + 2(DB)2 + :::�2 ; (15)where DB is a shorthand for DkB̂k(x), and all i are real. For DB lose toits vauum value, that is whenDkB̂k(x)� 1; (16)we may neglet the higher powers of DB, and then�̂k(x) = �DkB̂k(x)�2 : (17)The onstant 1 has been removed by resaling B̂k(x). Below we shall usethe �eld transformation (17).Now, let us turn to the small momenta limit. The lattie �elds B̂k(x) inthe small momenta setor are regarded as projetions (on the oarse lattiefour-vetors l0ek) of the vetor �eld B̂�(x); whih is de�ned on the ontinuumspae-time and almost onstant on distanes l0,B̂k(x) = l0e�kB̂�(x): (18)Similarly, Âk(x) = l0e�kÂ�(x); �k(x) = l0e�k��(x): (19)The lattie ovariant derivative Dk is interpreted asDk = l0e�kD�;



3902 H. Arod¹, H.-J. Pirnerwhere D� is the ovariant derivative in the ontinuum spae-time. Then,DkB̂k(x) = l20e�ke�kD�B̂�(x) + l30e�ke�ke�kD�D�B̂�(x) + :::; (20)where D�B̂� = ��B̂� � i[Â�; B̂� ℄is the ontinuum ovariant derivative in the adjoint representation. Thus,in the small momenta limitDkB̂k �= l20e�ke�kD�B̂�(no summation over k). This formula implies that DkB̂k depends only onthe symmetri part of D�B̂� ,DkB̂k(x) �= l20e�ke�kĜ��(x); (21)where Ĝ��(x) = 12 �D�B̂�(x) +D�B̂�(x)� = Ĝ��(x): (22)It is lear that under the SU(N) gauge transformationsĜ0��(x) = !(x)Ĝ��(x)!(x)�1:Finally, formulas (17), (20) and (21) give�̂k(x) �= l40e�ke�ke�ke�kĜ��(x)Ĝ��(x) (23)(no summation over k).The �eld B̂� appears in formula (23) only through the symmetrizedovariant derivatives, that is through Ĝ�� . Therefore, in most alulationswe may use just the Ĝ�� �eld. Nevertheless, the basi dynamial �eld inthe small momenta limit is the B̂� �eld. This makes di�erene when, forexample, deriving mean �eld equations beause variational derivative of theation should be taken with respet to B̂� and not Ĝ�� .The tensor �eld Ĝ�� an be deomposed into two parts whih are irre-duible with respet to SO(4) group, the ontinuous Eulidean spae-timesymmetry group, namelŷG��(x) = �̂(x)Æ�� + ĝ��(x); (24)where (ĝ��) has vanishing trae, ĝ�� = 0. Formulas (22) and (24) imply that�̂(x) = 14D�B̂�(x):



Color Dieletri Models from the Lattie... 3903Beause e�ke�k = 1 for eah k = 1; 2; 3; 4; formulas (23) and (24) give�̂k(x)= l40 h�̂2(x)+e�ke�k (�̂(x)ĝ��(x)+ĝ��(x)�̂(x))+e�ke�ke�ke�k ĝ��(x)ĝ��(x)i(no summation over k). Furthermore, �̂ and ĝ�� an be split into the olorsinglet and adjoint representation parts,�̂(x) = �(x)I + 12�a�a(x); ĝ��(x) = g��(x)I + 12�aga��(x);where �a are Gell-Mann matries in the ase of SU(3) gauge group. The�elds �, �a, g�� and ga�� are real due to hermiity of Ĝ�� .In the SU(2) ase only the olor singlet parts are present, that is G�� =�(x)Æ�� + g��(x).4. Towards the ontinuum olor dieletri ationWe have seen that in the small momenta limit the lattie olor dieletrimodel an be formulated in terms of the �elds Â�; B̂�; ��; whih are de�nedon the ontinuum spae-time. Now we would like to introdue ertain lattieolor dieletri ation, and to disuss its small momenta limit. Our ultimategoal, not reahed as yet, is to �nd the orresponding ontinuum e�etiveation S for the �elds Â�; B̂�; ��: The disussion presented below has ratherpreliminary harater. We onentrate on theoretial aspets, in partiularon the problem of restoration of the SO(4) symmetry broken in the lattiemodel.The ation S is assumed to be invariant with respet to the oarse-grained SU(N) gauge transformations. Moreover, the terms with higherpowers of �k in general are less important, beause �k is expeted to belose to its vauum value equal to zero. As the �rst possible ontribution tothe ation S let us onsiderS1[�℄ = Xx;k;jTr�	 yk;j(x)	k;j(x)� ; (25)where 	k;j(x) = �k(x) + �1�yj(x+ l0ek)�k(x+ l0ej)�j(x): (26)In this formula �1 is a real onstant. The indies take the following values:k = 1; :::; 4 and j = �1; :::;�4. (Link with negative j starting at the point xends at the point x� l0ejjj.) The seond term on the r.h.s. of formula (26)orresponds to a path of length 3l0 onneting the points x and x + l0ek.For j 6= �k the path has a staple-like shape. It is lear that if the onstant



3904 H. Arod¹, H.-J. Pirner�1 is not too large, all 	k;j vanish only when all �k vanish � this ensuresthat S1[�℄ has the absolute, nondegenerate minimum for �k = 0.Let us introdue the �eld strength F̂kj of the lattie oarse-grainedSU(N) gauge �eld Vkexp(iF̂kj) = V yk (x)V yj (x+ l0ek)Vk(x+ l0ej)Vj(x): (27)Similarly, we de�ne fkj � the Abelian �eld strength orresponding to thelattie �k �eld,exp(ifkj) = exp[i(�k(x+ l0ej) + �j(x)� �k(x)� �j(x+ l0ek))℄: (28)In the ase of weak �elds F̂kj; fkj;Dj�̂k, the �rst nontrivial approxima-tion to 	k;j(x) has the form	k;j �= exp(i�k(x))Vk(x)��̂k(x) + �1��̂j(x)�̂k(x)�̂j(x)+Dk�̂j(x)�̂k(x)�̂j(x) + �̂j(x)Dj �̂k(x)�̂j(x)+i�̂j(x)�F̂kj + fkjI��̂k(x)�̂j(x)�� : (29)The lattie olor dieletri e�etive ation an not be just equal to S1[�℄beause in that ase it would have too large symmetry group � S1[�℄ isinvariant under U(N) gauge transformations. In order to break this sym-metry down to the SU(N) gauge symmetry we use Det�k whih is invariantunder the SU(N) gauge transformations only. The polar deomposition (6)gives Det�k = exp(Ni�k(x))Det�̂k;where Det�̂k an be expressed by traes of powers of �̂k with the help ofHamilton�Cayley identity. Beause Det�k an be a omplex number it an-not be diretly inluded into the ation. Instead, we may takeS2[�℄ = Xx;k (ImDet�k(x))2 = Xx;k (Det�̂k(x))2 sin2(N�k(x)); (30)where  is a positive onstant. For �k � 1 we may approximate sin2(N�k) �=N2l20e�ke�k��(x)��(x):We may also inlude in S terms whih ontain powers of �̂k only. Forexample, up to the fourth power in �̂k



Color Dieletri Models from the Lattie... 3905Sp = �2Xx;k Tr��yk(x)�k(x)�+�3 Xx;k;jTr��yk(x)�k(x)�yj(x)�j(x)�+�4 Xx;k;jTr��yk(x)�k(x)�Tr��yj(x)�j(x)� ; (31)where �i are positive onstants. It is easy to see that exp(i�k) and Vk anelout in eah term on the r.h.s. of this formula � only �̂k's are left.In the small momenta limit F̂kj and fkj are related to the projetionson the lattie four-vetors of the orresponding tensors in the ontinuumspae-time, F̂kj �= l20e�ke�j F̂�� ; fkj �= l20e�ke�j f�� ; (32)where F̂�� = ��Â� � ��Â� � i[Â�; Â� ℄ and f�� = ���� � ����: For �̂k wehave formula (23), andDj�̂k �= l50e�j e�ke�ke�ke�k �D�Ĝ��(x)Ĝ��(x) + Ĝ��(x)D�Ĝ��(x)� ; (33)as follows from (23) by Leibniz rule for the ovariant derivative of a produt.Using formulas given above and replaing Px by l�40 R d4x, we obtainthe ation funtional S[Â�; �� ; Ĝ�� ℄ = S1+S2+Sp of the e�etive model inthe Eulidean ontinuum spae-time. It is lear that all terms in S have theform of ontrations of multiple fators ��; Ĝ�� ;D�Ĝ��; F̂�� ; f�! with theproduts e�ke�ke�ke�ke�j e�j ::: of omponents of the lattie unit four-vetors ek.Suh produts are lattie artifats, and they expliitly break the EulideanSO(4) invariane. The ontrations give SO(4) salars, but their form ingeneral is not invariant with respet to the SO(4) transformations. Thus, theation S[Â�; �� ; Ĝ�� ℄ is not SO(4) invariant, eventhough it is SO(4) salar.To solve this problem, we apply the following trik. The four-vetors ek; k =1; :::; 4; form an orthonormal basis in the Eulidean spae-time. This basisdoes not have any physial meaning and it an be arbitrary � the lattiean have any orientation with respet to a �laboratory� referene frame.Nevertheless, eah onrete hoie and the subsequent lattie formulationbreak the SO(4) invariane. We an restore this symmetry by integratingover all SO(4) orientations of the basis. Formally, this an be ahievedby preeding eah term in the e�etive ation by the normalized to unityHaar integral RSO(4) dO over the SO(4) group, and by regarding the four four-vetors ek as (orthonormal) olumns of the matrix O 2 SO(4), that ise�k = Ok�:



3906 H. Arod¹, H.-J. PirnerDue to the SO(4) invariane of the Haar measure, the integrals areforminvariant with respet to simultaneous SO(4) transformations of allindies �; �; �, et., whih refer to the �laboratory� referene frame in theontinuous Eulidean spae-time. For example, the term Tr��yk(x)�k(x)�aquires the form��1�2 :::�8l80 Tr�Ĝ�1�2(x)Ĝ�3�4(x)Ĝ�5�6(x)Ĝ�7�8(x)� ;where ��1�2:::�8 = ZSO(4) dOOk�1 :::Ok�8(no summation over k). It is easy to see that ��1�2:::�8 does not depend on k,and that it is forminvariant under simultaneous SO(4) transformations of allits indies. Beause ��1�2:::�8 is symmetri with respet to permutations ofits indies, it is equal to a sum of produts of Kroneker deltas Æ�i�j , wherei; j = 1:::8: In general ase we enounter integrals of the typeZSO(4) dOe�1k :::e�mk e�1l :::e�nl ;where e�k = Ok�; e�l = Ol� . They an be alulated with the help ofgenerating funtions [19℄. 5. Summary1. Our main new result is the �eld transformation (12), whih replaesthe lattie olor dieletri �eld �̂k(x) by the square of the gauge-ovariantderivative of the vetor �eld B̂k. We have also shown how the integrationover SO(4) group an be used to restore SO(4) invariane.2. We have foused our attention on the theoretial problems whihhampered the previous investigations of the small momenta limit of the glu-oni part of the lattie SU(N) olor dieletri model. Our results suggestthat the Friedberg�Lee type phenomenologial models in the SU(N) asean have natural extentions whih would inorporate more olor dieletri�elds, in partiular the salar �elds in the adjoint representation, as well asthe tensor �elds. We have not made any attempt to onstrut a phenomeno-logially viable model of that kind. Suh a task would require many moresteps, among them inlusion of quarks and a disussion of their oupling tothe olor dieletri �elds. This is one diretion in whih one ould ontinueour work.
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