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The idea of coarse-grained gluon field is discussed. We recall motiva-
tion for introducing such a field. Next, we outline the approach to small
momenta limit of lattice coarse-grained gluon field presented in our paper
hep-ph/9803392. This limit points to color dielectric type models with a
number of scalar and tensor fields instead of single scalar dielectric field.

PACS numbers: 11.15.—q, 11.15.Ha

1. Introduction

The most prominent features of quantum chromodynamics such as as-
ymptotic freedom or quark confinement follow from the presence of gluon
fields with their intricate self-interactions. Therefore, the gluon sector of
QCD may be regarded as the most interesting one. Unfortunately, at low
energies and large distances the QCD dynamics becomes highly nontrivial.
Practical method to study a complicated dynamics consists in constructing
and solving appropriate effective models. Such approach has turned out to
be extremely fruitful in condensed matter physics, e.g., Ginzburg-Landau
effective models play crucial role in physics of superconductors, superfluid
Helium, or liquid crystals. Also examples from particle physics, like Skyrme
or Nambu—Jona-Lasinio models are well known. The color dielectric models,
also frequently called Friedberg—Lee models, can be regarded as effective
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models for QCD. Their characteristic and attractive feature is that they
take into account the gluon fields, hence with these models one could study
the gluon component of hadrons.

The color dielectric models have rather long history. In seventies models
were proposed in which single real scalar field was coupled in a non-minimal,
dilaton-like manner to a gauge field, [1-3]. The models implied that the
electric displacement field D between two opposite charges was squeezed
into a narrow flux-tube, and consequently the charges were confined. These
models were a little bit artificial, nevertheless they evolved and eventually
provided quite accurate description of static properties of hadrons [4-6].
Recently they have been applied also to dynamical phenomena: formation
and breaking of flux-tubes in high energy collisions |7, 8|.

The successes in describing the physics of hadrons motivated searches
for connections of the color dielectric models with QCD. It seems that such
connections indeed do exist — the models emerge from QCD when we fo-
cus on dynamics of so called coarse-grained gluon field, which is defined
as an average of the original “microscopic” gauge field over a finite volume
in space-time. This is analogous to averaging of microscopic electric or
magnetic fields when deriving equations of macroscopic electrodynamics of
dielectric or magnetic media. The difference is that in the non-Abelian case
the nonlinearity of microscopic Yang-Mills equations, as well as the fact that
non-Abelian field strength tensor is not gauge invariant, exclude straight-
forward averaging — such an average has to be taken in a special way to
guarantee that it is gauge covariant. We shall present a definition of the
coarse-grained field shortly, but first we would like to explain on theoretical
grounds why we think that such a field is interesting.

There exists an evidence that the microscopic gauge field considered in
the quantum theory based on Yang—Mills action is subjected to large infrared
quantum fluctuations. The quantum tunelling between vacua with different
winding numbers, described by instantons [9], is the example of such fluctu-
ations. The notions of condensates of monopoles [10] or vortices [11] can be
regarded as a way to describe and to understand such fluctuations. The fluc-
tuations are the main raison d’étre for the stochastic vacuum model [12,13],
which exploits specific assumptions about the probabilistic characteristics of
the fluctuations in Euclidean non-Abelian gauge theory. Due to the fluctua-
tions, the original microscopic gauge field is not the best variable to discuss
the small momenta physics. One may find an analogy when considering
position operators for a Dirac particle. In the standard representation that
dynamical variable exhibits Zitterbewegung, which can be regarded as cer-
tain specific fluctuations. On the other hand, there exists another position
operator, defined in Foldy-Wouthuysen representation [14] for which such
fluctuations are absent — this dynamical variable has smooth behaviour in
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accordance with expectations based on classical limit. It is well-known that
transformation to the Foldy—Wouthuysen representation can be regarded as
averaging over a small space-time cell [15]. The coarse-grained gauge field
can be regarded as a dynamical variable analogous to the position operator
in the Foldy—-Wouthuysen representation.

In the present article we would like to recall a definition of the coarse-
grained gluon field given in [16] in the case of continuum space-time, and
in papers [17,18] in Euclidean lattice formulation. Next, in Section 3 we
describe our proposal [19] how to interpret the lattice coarse-grained gluon
field in terms of a continuum field theory. This should be possible at least
in the small momenta limit. Section 4 is devoted to remarks on the problem
how to construct the corresponding effective models for the low energy QCD
dynamics in the gluon sector.

2. The coarse-grained gluon field

Let us start from the definition proposed by Nielsen and Patkos [16]. It
is formulated for the gauge fields in continuum space-time. Let us divide the
space-time into regular boxes of size b, and take the points z and z + ¢ from
one such box. Consider all continuous paths connecting these two points,
with the restriction that they also lie inside that single box. With every
such path I' we associate the parallel transporter

W(z +e,z) = Pexp i/&ﬂdac“ , (1)
T

where @, denotes the microscopic SU(N). gauge field. The coarse-grained
description of the gauge field is formulated in terms of an average W (z + ¢, x)
over all such paths I'. Precise form of a weighting function defining the av-
erage is not essential in our considerations. Next, we expand W (x + ¢, )
with respect to e,

W(z+e,z) = X(x) +ie"Ay(x) + ... . (2)

The field flﬂ(x) is by definition the coarse-grained gluon field.
Further step, in practice rather difficult to perform, would consist in
inserting the functional identity

1=/[dW]5 W — Pexp i/&udx“
r
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in a path integral for a partition function of the microscopic quantum gauge
theory, and in integrating out the microscopic gauge field a,. As the result
we would obtain a new quantum theory, with W, or ﬁ, fl#, etc., as the basic
fields. It is expected that in this theory the infrared quantum fluctuations
will be less prominent, and that the small momenta physics can essentially
be described in terms of a mean field approximation. This hope is based
on the following heuristic picture of fluctuations of the microscopic non-
Abelian gauge field in the vacuum state in a confining phase. Due to the
self-interactions of the gauge fields a dynamically generated length scale
A~' can appear. Such dimensional transmutation [20] is suggested, e.g.,
by results obtained within the framework of the instanton picture of QCD
vacuum [21], in particular by the observation that the physically decisive
contribution comes from instantons of definite size of the order A~! ~ 0.4
fm. Then, if the box size b is larger than A~!, one may assume that the
vacuum expectation value of W vanishes, because the sum over I" will involve
independently fluctuating parallel transporters. If there is an external factor
which forces nonvanishing of W, like an external source or special boundary
conditions, then still one can assume that the infrared fluctuations of W
are small. On the other hand, if b < A~' then the infrared fluctuations
will influence the parallel transporters present in W in a uniform coherent
manner, hence W will be fluctuating too. In the picture sketched above
we have completely neglected ultraviolet fluctuations. They are expected to
introduce a finite multiplicative renormalization.

The coarse-grained gluon field has the following transformation law under
the local SU(N), gauge transformations w(z)

Al (z) = w(z)Au(2)w  (2) — i0,w(z) X (z)w (2). (3)

The other field ¥ belongs to the adjoint representation of the gauge group.
The effective model should involve at least ¥ and flﬂ. Unfortunately, due
to the presence of % in the second term on the r.h.s. of formula (3) it is
not clear how to build from ¥ and Au gauge invariant expressions which
could be used in the corresponding effective action. In paper [16] it was
assumed that X is proportional to the unit matrix, 3 = ¢I. Then one
can construct an effective action of the Friedberg—Lie type with ¢ being the
scalar dielectric field.

In 1984 Mack proposed a lattice version of the coarse-grained gluon field
[17]. In this case the paths I' run along links of the initial “microscopic”
hipercubic lattice, and ¢ is an integer multiple of the microscopic link vector
aey, (ex has length equal to 1, a is the length of the microscopic link). The
average W (z + ¢, z) is regarded as a link variable on a new coarser lattice
with links of length Iy = na, where n is the integer. For clarity, W (z + ¢, x)
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as the link variable will be denoted by @y (x). Here the index k = 1,2, 3,4
enumerates links of positive directions which start at the site x of the coarse
lattice. The end point of the long link is z + lgeg. As before, &p(z) is
expected to be insensitive to the quantum infrared fluctuations if lg > A~!.

The lattice color dielectric model can be described as a non-standard
lattice gauge theory in which instead of the usual unimodular link variables
Ui (z) € SU(N),. we have more general N by N matrices

Uk(z) = Pk(z).
Upon inversion of the direction of the link
b_p,(z + loey) = DL (2). (4)

The link —£ in formula (4) starts at the point z+Ipex, and it ends at the point
x. Under the SU(N). gauge transformations the macroscopic link variables
& (z) transform in the usual manner,

Pl (2) = w(z + loeg) P (z)w(z) 7" (5)

Such a non-standard lattice model has been investigated with the help of
analytic as well as numerical methods [22-24].

In the small momenta limit the lattice model certainly can be approxi-
mated by a continuum field theory. Such continuum description would offer
the usual advantages, like translational and rotational symmetries. It has
turned out that in spite of the naturalness of such continuum approximation
it is not easy to come by it. The problem is how to identify the continuum
field counterpart of the non-unitary link variable @ (z). In the literature
the polar decomposition of @y, is used,

Di(x) = exp(iby () Vi (z) Xk (), (6)

1/2
Here Vi (z) is a matrix of the SU(N) type, xx(z) = (@L(m)@“m)) / isa N
by N Hermitean matrix with nonnegative eigenvalues, and 6;(z) is a real
number. Then, the problem is shifted to the continuum interpretation of
Xe ().

The polar decomposition (6) is analogous to a transformation from Carte-
sian to spherical coordinates, with 6; and Ay (introduced in formula (10)
below) playing the role of angle variables, while x corresponds to the ra-
dius. Such transformation has the drawback: it is singular at x; = 0. It is
clear from formula (6) that 0 (z) and Vi (z) can be taken arbitrary if xx = 0.
The polar decomposition has also the advantage: it gives a smooth corre-
spondence with the original microscopic SU(N). gauge field theory, which
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is obtained when yx; = I and exp(if;(z)) = 1 — in this region the polar
decomposition is nonsingular.
In order to satisfy the relation (4) we assume that

Vok(z +loer) = Vj(z), (7)
explif_g(z + lpex)] = exp[—ibx(z)]. (8)

Then, formulas (4), (6) give

Kok (z + loex) = Vi(@) % (2)V} (). 9)

Vi, _can be related in the standard manner to a traceless Hermitean gauge
field A, on M:

Vie(z) = exp[z'jlk(x)], (10)

where Aj(x) is the lattice coarse-grained gluon field. The ) (z) field has
been called in the literature the bleached gluon.

By assumption, Vj transforms under the SU(N). gauge transformations
like any lattice SU(N), gauge field — a formula analogous to (5) — and 6
is gauge invariant. Then, it follows from (6) that x; belongs to the adjoint
representation of SU(N),

Xk (2) = w(z)xp(z)w(z) " (11)

Let us note that SU(2). case is special: the 6 field is absent, and each
matrix xx(z) is replaced by a nonnegative number yj(z), invariant under
the SU(2). gauge transformations, [17]. In the following we assume that
N > 2.

3. The continuum counterpart of the lattice field xx(x)

The main problem with the continuum description of the small momenta
sector of the lattice model is the lack of an obvious continuum counterpart
for the fields xx(z). The properties of these fields are rather puzzling. By
construction xx(x) are defined on the links, like the lattice gauge field. In
spite of that, they cannot be related to a gauge field in continuum space-time
because then the gauge transformation law would have to be of the form (5),
and not (11) which has the form typical for a matter field defined on the sites
of the lattice. In [19] we have noticed that there exists a field transformation
which relates the i (z) fields with components of a Hermitean vector field
Bi(z), k =1,2,3,4, located on the sites of the coarse lattice. Namely,

%) = G (DuBi (@) (12)
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(no summation over k). Here G(-) denotes a matrix function described
below, and
D;By(x) = V] (x) Bi(w + loe;)Vj (@) — By(w) (13)

is the lattice version of gauge-covariant derivative. The By (z) field has the
following SU(N), gauge transformation

Bi(z) = w(z) By(z)w(z) ™" (14)

Thus, By(z) is a matter field. The function G(-) is supposed to transform
Hermitean matrices into Hermitean ones, hence coefficients of its Taylor
expansion should be real numbers. Moreover, its matrix values should be
positive definite because xy(z) is positive definite. Finally, classical vacuum
value of the i (z) fields is expected to vanish in the color dielectric models.
If we require that the corresponding vacuum value of DkBk(x) also vanishes,
then we may take

G(DB) = (c1DB + co(DB)? + ...)%, (15)

where DB is a shorthand for Dy By,(x), and all ¢; are real. For DB close to
its vacuum value, that is when

DBy (z) < 1, (16)

we may neglect the higher powers of DB, and then
. . 2
wx(2) = (DiBi(x)) (17)

The constant ¢; has been removed by rescaling By (z). Below we shall use
the field transformation (17).

Now, let us turn to the small momenta limit. The lattice fields By (z) in
the small momenta sector are regarded as projections (on the coarse lattice

four-vectors lgey,) of the vector field B, (), which is defined on the continuum
space-time and almost constant on distances [y,

By(x) = loek B, (x). (18)

Similarly, A A
Ap(z) = loef Ay(z), Ok(z) = loef Oy (). (19)

The lattice covariant derivative Dy is interpreted as

Dk = l()elI:Du,
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where D, is the covariant derivative in the continuum space-time. Then,
Dy By(z) = lgezeZDuBV(x) + lgezeZeZDuDgBy(x) + ..., (20)

where . . o
D,B, =0,B, —i[A,, B)]

is the continuum covariant derivative in the adjoint representation. Thus,
in the small momenta limit

DBy = I3ellel D, B,

(no summation over k). This formula implies that Dy By, depends only on
the symmetric part of D, B,

DBy (z) = l%eﬁe%éw(x), (21)
where .
Grun(@) = 5 (DMBV(:E) n DVBM(:C)) = Gyu(a). (22)

It is clear that under the SU(N), gauge transformations
Gl () = w(@) G (@)w(2) ™

Finally, formulas (17), (20) and (21) give

X (%) = lgejefefey G (#)Gox () (23)
(no summation over k).

The field Bu appears in formula (23) only through the symmetrized
covariant derivatives, that is through éuy. Therefore, in most calculations
we may use just the G*W field. Nevertheless, the basic dynamical field in
the small momenta limit is the BM field. This makes difference when, for
example, deriving mean field equations because variational derivative of the
action should be taken with respect to B, and not G, .

The tensor field G*W can be decomposed into two parts which are irre-

ducible with respect to SO(4) group, the continuous Euclidean space-time
symmetry group, namely

Guu(x) = a'(m)(s;w + ﬁuu(ﬁﬁ), (24)

where (g, ) has vanishing trace, g,, = 0. Formulas (22) and (24) imply that
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Because e} e} =1 for each k = 1,2,3,4, formulas (23) and (24) give

Xi(z) =l |62 (x) +efef (6(2)guw (@ )+§;w($)?7(ﬂﬁ))+62‘6Z6£62§W($)§px($)]

(no summation over k). Furthermore, & and g,, can be split into the color
singlet and adjoint representation parts,

R 1 a R 1 a
6(z) =o(x)l + §>\a0 (z), guu(m) = guu($)1+ §>‘ag;¢u($)a

where )\, are Gell-Mann matrices in the case of SU(3). gauge group. The
fields o, 0, g, and gy, are real due to hermicity of G, .
In the SU(2). case only the color singlet parts are present, that is G, =

U(x)duu + guu(x)-

4. Towards the continuum color dielectric action

We have seen that in the small momenta limit the lattice color dielectric
model can be formulated in terms of the fields fl#, Bm ©,,, which are defined
on the continuum space-time. Now we would like to introduce certain lattice
color dielectric action, and to discuss its small momenta limit. Our ultimate
goal, not reached as yet, is to find the corresponding continuum effective
action S, for the fields /Alu, Bm ©,,. The discussion presented below has rather
preliminary character. We concentrate on theoretical aspects, in particular
on the problem of restoration of the SO(4) symmetry broken in the lattice
model.

The action S, is assumed to be invariant with respect to the coarse-
grained SU(N), gauge transformations. Moreover, the terms with higher
powers of @ in general are less important, because @;, is expected to be
close to its vacuum value equal to zero. As the first possible contribution to
the action S, let us consider

1= 3 (7], (0) () (25)

z,k,j

where
W j(x) = Bp (@) + 01 Bl (z + loey) Bro(z + loe;) P; (). (26)

In this formula «a; is a real constant. The indices take the following values:
k=1,..,4and j = +1,...,+4. (Link with negative j starting at the point x
ends at the point = — lge|;.) The second term on the r.h.s. of formula (26)
corresponds to a path of length 3ly connecting the points x and z + [peg.
For j # £k the path has a staple-like shape. It is clear that if the constant
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aq is not too large, all ¥ ; vanish only when all @} vanish — this ensures
that Si[®] has the absolute, nondegenerate minimum for @5 = 0.

Let us introduce the field strength ij of the lattice coarse-grained
SU(N). gauge field Vi

exp(iFi;) = Vi (2)V] (z + loex) Vie( + loej) Vi(z). (27)

Similarly, we define f;; — the Abelian field strength corresponding to the
lattice 6, field,

exp(ifr;) = expli(Ok (z + loej) + 0;(z) — Op(2) — 0;(x +loex))].  (28)

In the case of weak fields ﬁ’kj, frj» DjXk, the first nontrivial approxima-
tion to ¥y j() has the form

Ui = exp(ify(z))Vi(z) [Xk(ﬂﬁ) + <>2j($)Xk(I)>2j(I)
+Dxj(z) Xk ()X (%) + Xj(2) Djxe(z)X; ()
+ix;(z) <ij + fij> Xk ()X (iﬁ))] : (29)

The lattice color dielectric effective action can not be just equal to S[@]
because in that case it would have too large symmetry group — Si[®] is
invariant under U(N), gauge transformations. In order to break this sym-
metry down to the SU(N), gauge symmetry we use Det®; which is invariant
under the SU(N). gauge transformations only. The polar decomposition (6)
gives

Det®y, = exp(Nibfx(x))Detxi,

where Detxy can be expressed by traces of powers of x; with the help of
Hamilton—Cayley identity. Because Det®; can be a complex number it can-
not be directly included into the action. Instead, we may take

So[®] = (ImDetdy(x))? = v > (Detxe(x))?sin’(NO(x)),  (30)
z,k z,k

where + is a positive constant. For §, < 1 we may approximate sin?(N§;) &
N22eliel0,(2)0,(z).

We may also include in S, terms which contain powers of x; only. For
example, up to the fourth power in xy
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Sp = A T (ds,t(x)cpk(x))

z,k

o Y Tr (2 (2)04(2)) (2);(a))

m7k7j

Ay T (é,t(x)@k(x)) Tr (cp}(x)@j(x)) , (31)

x7k5j

where )\; are positive constants. It is easy to see that exp(ify) and V}, cancel
out in each term on the r.h.s. of this formula — only x;’s are left.

In the small momenta limit ij and fi; are related to the projections
on the lattice four-vectors of the corresponding tensors in the continuum
space-time, A .

Fij = §ele Fuv,  fij = loeie] fuv, (32)

where ﬁ’“,, = aﬂfly — 8,,%1“ — i[flﬂ,fi,,] and f,, = 0,0, — 0,0,. For x; we
have formula (23), and

D3 = elteferefef (DuGin(@)Gop() + Gir(@)DyuGop()) . (33)

as follows from (23) by Leibniz rule for the covariant derivative of a product.

Using formulas given above and replacing >, by Iy 4 i d*z, we obtain
the action functional Sc[flu, e,, G’W] = S1+ 52+ 5, of the effective model in
the Euclidean continuum space-time. It is clear that all terms in S, have the

form of contractions of multiple factors ©,, CA?W,D;LG*V)\,F’M, fow with the

products eﬁe%ei@ﬁe?‘ef ... of components of the lattice unit four-vectors ey.

Such products are lattice artifacts, and they explicitly break the Euclidean
SO(4) invariance. The contractions give SO(4) scalars, but their form in
general is not invariant with respect to the SO(4) transformations. Thus, the
action Sc[flﬂ, O, é;w] is not SO(4) invariant, eventhough it is SO(4) scalar.
To solve this problem, we apply the following trick. The four-vectors ey, k =
1,....4, form an orthonormal basis in the Euclidean space-time. This basis
does not have any physical meaning and it can be arbitrary — the lattice
can have any orientation with respect to a “laboratory” reference frame.
Nevertheless, each concrete choice and the subsequent lattice formulation
break the SO(4) invariance. We can restore this symmetry by integrating
over all SO(4) orientations of the basis. Formally, this can be achieved
by preceding each term in the effective action by the normalized to unity
Haar integral [ dO over the SO(4) group, and by regarding the four four-
SO(4)
vectors ey as (orthonormal) columns of the matrix O € SO(4), that is

B
€L = Ok#.
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Due to the SO(4) invariance of the Haar measure, the integrals are
forminvariant with respect to simultaneous SO(4) transformations of all
indices u, v, p, etc., which refer to the “laboratory” reference frame in the

continuous Euclidean space-time. For example, the term Tr (@L(m)é“m))
acquires the form

nulm---uslg Tr (GM1M2 (m)Gmm (m)éusue (x)éuws (x)) )

where

Mpips...us = / dOOky, --Okpg
SO(4)

(no summation over k). It is easy to see that 7, ,...us does not depend on k,
and that it is forminvariant under simultaneous SO(4) transformations of all
its indices. Because 1), 4,...us 1S symmetric with respect to permutations of
its indices, it is equal to a sum of products of Kronecker deltas d;,,,, where
1,7 = 1...8. In general case we encounter integrals of the type

/dOezl...egmelyl...e;’”,
$6(4)

where e’,i = Oy, € = Op. They can be calculated with the help of
generating functions [19].

5. Summary

1. Our main new result is the field transformation (12), which replaces
the lattice color dielectric field xx(z) by the square of the gauge-covariant
derivative of the vector field By. We have also shown how the integration
over SO(4) group can be used to restore SO(4) invariance.

2. We have focused our attention on the theoretical problems which
hampered the previous investigations of the small momenta limit of the glu-
onic part of the lattice SU(N). color dielectric model. Our results suggest
that the Friedberg—Lee type phenomenological models in the SU(N), case
can have natural extentions which would incorporate more color dielectric
fields, in particular the scalar fields in the adjoint representation, as well as
the tensor fields. We have not made any attempt to construct a phenomeno-
logically viable model of that kind. Such a task would require many more
steps, among them inclusion of quarks and a discussion of their coupling to
the color dielectric fields. This is one direction in which one could continue
our work.
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We also see two very interesting topics which could be studied in the
framework of the pure glue sector discussed in the present paper: QCD
flux-tube and glueballs. Such investigations, while extremely interesting on
their own rights, can also reveal the physical role played by the fields 6,
and BM. In the presented derivation of the continuum color dielectric model
these fields appear in rather formal way as the mathematical consequence of
@ (z) being nonunitary matrix. Their physical role has not been elucidated,
and it seems to us that at the present stage we do not have enough physical
input for this.

3. For the physical applications one needs the Minkowski space-time
version of the model. Tt can be obtained by the inverse Wick rotation,
zt = +iz®, By — +iB°%, 604 — +i0°, etc. The resulting Minkowski space-
time metric has the signature (-,-+,+,+).
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