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TOPOLOGICAL DEFECTS FROM ANINHOMOGENEOUS QUENCH:SECOND AND FIRST ORDER TRANSITIONS�Ja
ek DziarmagaTheoreti
al Division, Los Alamos National LaboratoryLos Alamos NM 87545, USAandInstitute of Physi
s, Jagiellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived O
tober 11, 1999)Kibble-Zurek s
enario of topologi
al defe
ts formation is extended toinhomogeneous �rst and se
ond order transitions. In both 
ases there is
hara
teristi
 threshold velo
ity of 
riti
al front propagation below whi
hno topologi
al defe
ts are produ
ed. Instead oriented 
ondensate is grownbehind moving temperature or pressure front.PACS numbers: 05.70.Fh, 11.15.Ex, 11.27.+d, 67.40.Vs1. Introdu
tionIt was pointed out by Kibble [1,2℄ in the 
ontext of 
osmology that topo-logi
al defe
ts 
an be formed during a rapid symmetry breaking phase tran-sition. The Kibble me
hanism 
an be best illustrated for �rst order phasetransitions. Su
h a transitions pro
eeds by bubble nu
leation. When thetemperature drops below T
 the system at �rst remains in the super
ooledsymmetri
 phase with vanishing order parameter. For su�
ient super
oolingthis phase de
ays thanks to nu
leation of bubbles of the symmetry brokenphase. Ea
h bubble is nu
leated independently so the orientation of theorder parameter in ea
h bubble is 
hosen at random. For simpli
ity let usrestri
t to a planar system with a planar order parameter. It may happenthat 3 bubbles are nu
leated su
h that their order parameters are more orless radial with respe
t to the bubbles' 
enter of mass. The at �rst isolatedbubbles are expanding and they eventually tou
h one another and 
oales
e.� Presented at the XXXIX Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,May 29�June 8, 1999. (3909)



3910 J. DziarmagaThe order parameter smoothly interpolates between orientations in ea
hbubble. The resulting hedgehog 
on�guration is a topologi
ally stable vor-tex. In this way the random statisti
al �u
tuations, whi
h are responsiblefor nu
leation of bubbles and their orientation, are frozen in and preservedin the symmetry broken phase as topologi
al defe
ts. Su
h defe
ts resultingfrom transitions on the GUT s
ale are believed by some 
osmologist to beseeds for stru
ture formation [3℄ in the early Universe. Independently, theproposal passed tests in liquid 
rystals experiments.The situation in se
ond order transitions is slightly di�erent as it was
lari�ed by �urek [4�8℄. There are no bubbles to provide well de�ned sitesfor the topologi
al triangulation. However, rapid phase transition imprintson the order parameter a 
hara
teristi
 length s
ale �̂ whi
h depends on therate of the quen
h. An appropriate inverse power of the s
ale determinesthe density of topologi
al defe
ts: for kinks or domain walls it is n � �̂�1,for vortex lines n � �̂�2, for monopoles or skyrmions n � �̂�3. The s
aleis a result of 
riti
al slowing down at T
. If " is minus mass-squared inthe "'2 term of the Ginzburg-Landau model (' is the order parameter),it vanishes at T
. The relaxation time s
ales as �0=". As we approa
h T
from above the relaxation time diverges, at 
ertain moment of time the timeleft to the transition be
omes 
omparable to the a
tual relaxation time,that is the moment when the system goes out of equilibrium. For "(t) =�t=� , this happens when jtj = ��0=t. At this instant the 
orrelation length,whi
h is given by � = �0=p("), is �̂ = �0(�=�0)1=4. As the system goesout of equilibrium the s
ale is preserved in the subsequent evolution andlater determines density of topologi
al defe
ts. This predi
tion was veri�edin a number of numeri
al experiments [9�13℄ and several experiments insuper�uid 3He and 4He [14�18℄. The experimental results are still a sour
eof mu
h 
ontroversy mainly be
ause of an indire
t or delayed way of 
ountingtopologi
al defe
ts.Homogeneous quen
hes are a 
onvenient idealization and may be a goodapproximation in some 
ases. However, in reality, the 
hange of thermody-nami
 parameters is unlikely to be ideally uniform:1) Experiments 
arried out in 3He [14, 15℄, where a small volume of su-per�uid is re-heated to normal state, and subsequently rapidly 
oolsto the temperature of the surrounding super�uid, are a good exam-ple of an inhomogeneous quen
h: The normal region shrinks from theoutside. Yet, topologi
al defe
ts are 
reated, thus suggesting that thephases of distin
t domains within the re-heated region are sele
tedindependently.2) Another example are relativisti
 heavy ion 
ollisions where, a

ordingto Bjorken s
enario (Bjorken 1983 [19℄), a �nite volume of quark-gluon
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ts from an Inhomogeneous Quen
h: : : 3911plasma 
an be 
reated. The plasma expands in the dire
tion of 
ol-lision and 
ools from the outside in the perpendi
ular dire
tion. Thephase transition in this 
ase 
an be �rst or se
ond order (or a smooth
rossover) depending on the parameters of the 
ollision.3) Any generi
 experiment based on pressure and/or temperature quen
his to some degree inhomogeneous be
ause of �nite velo
ity of soundand/or �nite heat 
ondu
tan
e.The mass parameter "(t; ~r), varying in both time and spa
e, must be 
on-sidered in defe
t formation. As a 
onsequen
e, lo
ations entering the brokensymmetry phase �rst 
ould 
ommuni
ate their 
hoi
e of the new va
uum asthe phase ordered region spreads in the wake of the phase transition front.When this pro
ess dominates, symmetry breaking in various, even distant,lo
ations is no longer 
ausally independent. The domain where the phasetransition o

urred �rst may impose its 
hoi
e on the rest of the volume, thussuppressing or even halting produ
tion of topologi
al defe
ts. This happensif velo
ity of the 
riti
al front is less than 
ertain 
hara
teristi
 velo
ity.2. Se
ond order transitionThe 
hara
teristi
 velo
ity in an overdamped transition 
an be estimatedas follows: The freeze-out healing length is set at t̂ as �̂ = �0 (�Q=�0)1=4. Atthe same instant the relaxation time is �̂ = (�Q�0)1=2. These two s
ales 
anbe 
ombined (Z 1985) to give a velo
ity s
alev̂ = �̂=�̂ = v0 (�0=�Q)1=4 ; (2.1)where v0 = �0=�0.The density of defe
ts N as a fun
tion of 
riti
al front velo
ity is expe
tedto 
hange qualitatively at v̂. Above v̂ the homogeneous estimates shouldhold. Below v̂ the density should be suppressed. Kibble and Volovik [20℄suggested that N � v=v̂ for small v < v̂. Dziarmaga, Laguna and Zurek [21℄argued that N is exponentially suppressed below v̂. There is a lot of qual-itative di�eren
e between the two proposals. The former option suggeststhat however you make a quen
h you will always get some defe
ts, the latterimplies that if your inhomogeneous quen
h is su�
iently slow you will getno defe
ts at all. In what follows we will quantify what �su�
iently slow�means.



3912 J. Dziarmaga2.1. De
ay of the false va
uumAs a simple warm up exer
ise, let us 
onsider de
ay of a false symmet-ri
 va
uum to a true symmetry broken ground state in a one-dimensionaldissipative '4 model�2t '+ � �t' � �2x' + 12 ('3 � "') = 0 ; (2.2)where '(t; x) is a real order parameter and " measures the degree of symme-try breaking i.e. m2 = �". Without loosing generality, we look for a solu-tion '(t; x) whi
h interpolates between '(t;�1) = �p" and '(t;+1) = 0.Su
h a solution 
annot be stati
. It is a stationary half-kink'(t; x) = �p" 1 + exp"p"2 (x� vtt)p1� v2t #!�1 (2.3)moving with 
hara
teristi
 velo
ityvt = "1 +� 2�3p"�2#�1=2 �!1� 3p"2� : (2.4)It is worth noting that the de
ay velo
ity vt in
reases with ".2.2. Sho
k waveOur sho
k wave inhomogeneous quen
h model 
onsists of a sharp pres-sure front propagating with velo
ity v; that is,�2t '+ � �t' � �2x' + 12 ('3 � "(t; x)') = O(t; x) ; (2.5)where "(t; x) = Sign(t� x=v) (2.6)is the relative temperature and O(t; x) is a Gaussian white noise of temper-ature �.There are two qualitatively di�erent regimes:1) v > vt, the phase front propagates faster than the false va
uum 
ande
ay. The half-kink (2.3) lags behind the front (2.6); a super
ooledsymmetri
 phase grows with velo
ity v � vt. The super
ooled phase
annot last for long; it is unstable, and the noise makes it de
ay intothe true va
uum.



Topologi
al Defe
ts from an Inhomogeneous Quen
h: : : 39132) v < vt, the phase front is slow enough for a half-kink to move in stepwith the front, '(t; x) = Hv(x � vt). The symmetri
 va
uum de
aysinto one de�nite non-symmetri
 va
uum, the 
hoi
e is determined bythe boundary 
ondition at x ! �1. No topologi
al defe
ts are pro-du
ed in this regime. The stationary solution Hv(x � vt) is stableagainst small perturbations [21℄.These expe
tations are borne out by the numeri
al study of kink formationin [21℄. Numeri
al results are presented in Fig. 1.

Fig. 1. Density of kinks n as a fun
tion of velo
ity v for the sho
k wave (2.6)with � = 1 (overdamped system). In this overdamped regime, the predi
tedthreshold velo
ity is vt = 0:83. The plots from top to bottom 
orrespond to� = 10�1; 10�2; 10�4; 10�6; 10�8; 10�10. At low �, we get a 
lear 
ut-o� velo
ityat v � 0:8, whi
h is 
onsistent with the predi
tion.2.3. Linear frontLet us 
onsider now a system in whi
h the inhomogeneous quen
h takespla
e via linear transition "(t; x) = (t� x=v)=�Q : (2.7)In the absen
e of noise, the propagating front is followed by a stationaryhalf-kink. This half-kink moves somewhat behind the front, its lo
ationis determined by the pla
e where the threshold velo
ity (2.4) is equal tothe front velo
ity, vt["(t; x)℄ = v. The distan
e between the front and thehalf-kink in
reases as v3. This distan
e gives the size of the super
ooled



3914 J. Dziarmagaregion. When the super
ooled region is narrow then it is stable againstsmall perturbations so that no defe
ts are produ
ed. Ifv > vt � 0�1 + �3=2�1=2Q11:7 1A�1=2 �!1� 3:42� ( ��Q )1=4 � 4:07 v̂ ; (2.8)then the region is broad enough to be unstable [21℄ and the produ
tion ofdefe
ts is no longer suppressed.This predi
tion is 
on�rmed by the numeri
al study of linear quen
hesin Ref. [21℄, 
ompare Fig. 2. However, it is seen that the threshold velo
ityapparently gradually de
reases with in
reasing noise temperature �. Thisde
rease of the threshold for kink formation is due to the thermal nu
leationof kinks. Quantitative estimates for this e�e
t are given in [22℄.

Fig. 2. Density of kinks n as a fun
tion of velo
ity v for the linear inhomogeneousquen
h (2.7) with �Q = 64 and � = 1. The predi
ted threshold is vt = 0:77.This 
ut-o� is a
hieved for low �. The plots from top to bottom 
orrespond to� = 10�1; 10�2; 10�4; 10�6; 10�8; 10�10.3. First order transitionWe assume the transition is strongly �rst order and that it goes by bubblenu
leation. To be more spe
i�
 we 
onsider a toy model in 3 dimensions�t' = r2'� a'+ b'3 � 
'5 +O ; (3.1)



Topologi
al Defe
ts from an Inhomogeneous Quen
h: : : 3915where ' is real order parameter. The e�e
tive potential is of the '6 type.Provided that b2 > 4a
, it has symmetri
 minimum at ' = 0 and two sym-metry broken minima at ' = �'m � �q(b+pb2 � 4a
)=2
. We assumethat b; 
 are 
onstant and that symmetry breaking transition is driven by ade
reasing below its 
riti
al value a
 = 3b2=16
. At a = a
 all three minimaare degenerate. 3.1. De
ay of the false va
uumSuppose that a < a
. Let us 
onsider de
ay of the false symmetri
va
uum to the true symmetry broken phase in a one dimensional version ofthe model (3.1). We look for a solution whi
h interpolates between ' = 'mfor x! �1 and ' = 0 for x! +1. The solution is found as a stationaryhalf-kink H(x� vtt) moving with velo
ityvt = �b+ 2pb2 � 4a
p3
 (3.2)whi
h has an envelope fun
tionH(x) = 'mq1 + exp�x2
 ; (3.3)where � =p4
=3'2m. This way the false ' = 0 va
uum de
ays into the true' = 'm va
uum in the absen
e of noise. The de
ay velo
ity vt is zero fora = a
, it in
reases with in
reasing super
ooling or with de
reasing a.3.2. Sho
k waveIn the sho
k wave model a sharp pressure front propagates with velo
ity va = a
 ��a Sign(t� x=v) : (3.4)Similarly as for se
ond order transitions there are two regimes:1) v > vt, the pressure front propagates faster than the false va
uum 
ande
ay. The half-kink lags behind the front. The super
ooled phasein between them grows linearly with time. The phase is unstable,it de
ays by bubble nu
leation just as for a homogeneous transition.Homogeneous estimates of defe
t density apply in this 
ase.2) v < vt, the half-kink is faster. It moves in step with the front withits tail penetrating into the symmetri
 phase. There is no super
ooledphase where bubbles 
ould be nu
leated. The symmetri
 phase goessmoothly into one of the symmetry broken phases.



3916 J. Dziarmaga3.3. Linear frontLet the inhomogeneous quen
h pro
eed by a linear front moving withvelo
ity v a = a
 � (t� x=v)=�Q : (3.5)The half-kink follows the 
riti
al front keeping 
ertain distan
e behind it.The distan
e D is su
h that the half-kink velo
ity vt, whi
h depends on thelo
al value of a, is equal to the front velo
ity v, vt(a) = v. With in
reasingv the half-kink settles at in
reasing values of lo
al a. Close to the 
riti
alfront the radius of the 
riti
al bubble is in�nite and at the same time thenu
leation rate is in�nitely small. As we go away from the front in thedire
tion of the half-kink the 
riti
al radius shrinks. At a 
ertain distan
e Lfrom the front the energy of the 
riti
al bubble be
omes 
omparable to thetemperature �. At this point bubble nu
leation be
omes possible. If L < Dbubbles 
an be nu
leated in the super
ooled region between the front andthe half-kink. If L > D then there is no bubble nu
leation and no defe
ts
an be born in the super
ooled area.Now we estimate the 
riti
al velo
ity su
h that L = D. The half-kink islo
ated at su
h an a that vt(a) = v. L = D providing that for this a theenergy of the 
riti
al bubble E(a) is equal to temperature �. The 
riti
albubble is a metastable spheri
ally symmetri
 stati
 solution of Eq. (3.1)with, say, 'm va
uum inside and 0 va
uum outside its wall. Its energy 
anbe easily estimated when the width of its wall is negligible as 
ompared toits radius R
(a). An approximate solution is given by H[r � R
(a)℄, wherethe 
riti
al radius is R
(a) = p12
�b+ 2pb2 � 4a
 : (3.6)The energy of the 
riti
al bubble E(a) has a negative volume 
ontribu-tion, (4�R3
=3)V ('m), and a positive surfa
e tension term,(4�R2
)Z dx[H 0(x)℄2:When the solution of vt(a) = v is put into E(a) and then the equationE(a) = � is solved, one obtains a 
riti
al velo
ityv
r = ��b(3b2 � 6b
+ 16
2)4
3� �1=3 (3.7)when L = D. For v > v
r bubbles 
an nu
leate in between the half-kink andthe front and thus the ne
essary 
ondition for topologi
al defe
ts produ
tionis satis�ed.



Topologi
al Defe
ts from an Inhomogeneous Quen
h: : : 3917The formula for v
r, Eq. (3.7), is still a 
rude lower estimate for the
riti
al velo
ity. In fa
t it is not su�
ient to nu
leate some bubbles. Indi-vidual bubbles would 
oales
e with the half-kink without any 
han
e to trapany nontrivial winding number. The bubbles should be nu
leated in largenumbers or have enough time to grow so that they 
an mutually 
oales
ebefore merging with the half-kink. Still, the argument whi
h leads to v
rdemonstrates that there is a threshold velo
ity for defe
t formation.4. Higher dimensionsThe theory 
an be generalized to higher dimensions and to 
omplexorder parameter in a straightforward manner. Its major result is that asubthreshold inhomogeneous quen
h does not produ
e any variation of theorder parameter in the dire
tion normal to the front. This ex
ludes anypossibility of produ
tion of vortex loops or 
losed membranes entirely 
on-tained in the bulk, as well as of any pointlike defe
ts. Some extended defe
ts
an grow into the bulk provided their seeds were 
reated at this edge of thesystem where the symmetry was broken �rst. In �rst approximation su
h,say, vorti
es grow into the bulk, following the passing front, keeping theirdire
tion normal to the front. In the end we do not get any 
haoti
 tangleof strings and string loops but parallel �
ombed� vorti
es. There are twoimportant perturbations to this �
ombed� pi
ture:1) Thermal �u
tuations make the strings look more random but withoutba
ktra
king and with string tension tending to smooth the small s
ale�u
tuations. The ends of the strings and antistrings at the 
riti
alfront are wandering around. Eventually an end of a string and of anantistring may meet so that the strings join into a half-loop with itsboth ends atta
hed to the initial edge of the system. String tensionshrinks the half-loop to the edge where it unwinds.2) A mu
h more e�
ient fa
tor to remove vorti
es from the bulk are theirmutual intera
tions. Global parallel string and antistring attra
t oneanother so that their ends at the 
riti
al front do not seek ea
h otherat random but tend to fuse in a deterministi
 way. This me
hanismmakes the number of strings in the bulk de
ay qui
kly with in
reasingdistan
e between the front and the initial edge.The fa
tors (1) and (2) lead to a pi
ture in whi
h the 
riti
al front initiallydraws some parallel strings and antistrings from the edge, then the stringsre
ombine by joining ends and shrinking ba
k to the edge. In the end onlythe net surplus of strings (or antistrings) is left in the bulk.These ideas are supported by experiments:



3918 J. Dziarmaga1) Dis
linations produ
ed during a quen
h from disordered to nemati
phase in liquid 
rystals. This is a weakly �rst order transition. Inearly attempts to make 
osmologi
al experiments in liquid 
rystalsthe dis
linations were observed to grow approximately 
ombed, joinends and shrink to the initial edge. Later on it was realized that thesequen
hes were not homogeneous enough [23℄.2) Czo
hralski method of growing mono
rystals, whi
h is widely used togrow sili
on mono
rystals ne
essary for mi
ro
hips. In this method,dis
overed in the thirties, a surfa
e of liquid material is tou
hed witha mono
rystal template. As the template is slowly lifted up it dragsa 
olumn of 
rystal out of the 
ontainer. The top part of the 
olumnis 
old while its bottom part is at the melting temperature - the tran-sition is inhomogeneous. If the template is lifted slowly enough, thenno defe
ts of the 
rystal latti
e are produ
ed whi
h might spoil themono
rystal.To 
on
lude: in an inhomogeneous quen
h there is a threshold velo
ity vtof the 
riti
al front. Above the threshold defe
ts are produ
ed like in a ho-mogeneous quen
h. Below the threshold one gets no defe
ts; instead a 
leanmono
rystal or a "disoriented 
hiral 
ondensate� is grown with a va
uumwhi
h may be uniform over signi�
ant distan
es, but whi
h di�ers from thetrue va
uum.This talk is partially based on work done in 
ollaboration with PabloLaguna and Woj
ie
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