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TOPOLOGICAL DEFECTS FROM ANINHOMOGENEOUS QUENCH:SECOND AND FIRST ORDER TRANSITIONS�Jaek DziarmagaTheoretial Division, Los Alamos National LaboratoryLos Alamos NM 87545, USAandInstitute of Physis, Jagiellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived Otober 11, 1999)Kibble-Zurek senario of topologial defets formation is extended toinhomogeneous �rst and seond order transitions. In both ases there isharateristi threshold veloity of ritial front propagation below whihno topologial defets are produed. Instead oriented ondensate is grownbehind moving temperature or pressure front.PACS numbers: 05.70.Fh, 11.15.Ex, 11.27.+d, 67.40.Vs1. IntrodutionIt was pointed out by Kibble [1,2℄ in the ontext of osmology that topo-logial defets an be formed during a rapid symmetry breaking phase tran-sition. The Kibble mehanism an be best illustrated for �rst order phasetransitions. Suh a transitions proeeds by bubble nuleation. When thetemperature drops below T the system at �rst remains in the superooledsymmetri phase with vanishing order parameter. For su�ient superoolingthis phase deays thanks to nuleation of bubbles of the symmetry brokenphase. Eah bubble is nuleated independently so the orientation of theorder parameter in eah bubble is hosen at random. For simpliity let usrestrit to a planar system with a planar order parameter. It may happenthat 3 bubbles are nuleated suh that their order parameters are more orless radial with respet to the bubbles' enter of mass. The at �rst isolatedbubbles are expanding and they eventually touh one another and oalese.� Presented at the XXXIX Craow Shool of Theoretial Physis, Zakopane, Poland,May 29�June 8, 1999. (3909)



3910 J. DziarmagaThe order parameter smoothly interpolates between orientations in eahbubble. The resulting hedgehog on�guration is a topologially stable vor-tex. In this way the random statistial �utuations, whih are responsiblefor nuleation of bubbles and their orientation, are frozen in and preservedin the symmetry broken phase as topologial defets. Suh defets resultingfrom transitions on the GUT sale are believed by some osmologist to beseeds for struture formation [3℄ in the early Universe. Independently, theproposal passed tests in liquid rystals experiments.The situation in seond order transitions is slightly di�erent as it waslari�ed by �urek [4�8℄. There are no bubbles to provide well de�ned sitesfor the topologial triangulation. However, rapid phase transition imprintson the order parameter a harateristi length sale �̂ whih depends on therate of the quenh. An appropriate inverse power of the sale determinesthe density of topologial defets: for kinks or domain walls it is n � �̂�1,for vortex lines n � �̂�2, for monopoles or skyrmions n � �̂�3. The saleis a result of ritial slowing down at T. If " is minus mass-squared inthe "'2 term of the Ginzburg-Landau model (' is the order parameter),it vanishes at T. The relaxation time sales as �0=". As we approah Tfrom above the relaxation time diverges, at ertain moment of time the timeleft to the transition beomes omparable to the atual relaxation time,that is the moment when the system goes out of equilibrium. For "(t) =�t=� , this happens when jtj = ��0=t. At this instant the orrelation length,whih is given by � = �0=p("), is �̂ = �0(�=�0)1=4. As the system goesout of equilibrium the sale is preserved in the subsequent evolution andlater determines density of topologial defets. This predition was veri�edin a number of numerial experiments [9�13℄ and several experiments insuper�uid 3He and 4He [14�18℄. The experimental results are still a soureof muh ontroversy mainly beause of an indiret or delayed way of ountingtopologial defets.Homogeneous quenhes are a onvenient idealization and may be a goodapproximation in some ases. However, in reality, the hange of thermody-nami parameters is unlikely to be ideally uniform:1) Experiments arried out in 3He [14, 15℄, where a small volume of su-per�uid is re-heated to normal state, and subsequently rapidly oolsto the temperature of the surrounding super�uid, are a good exam-ple of an inhomogeneous quenh: The normal region shrinks from theoutside. Yet, topologial defets are reated, thus suggesting that thephases of distint domains within the re-heated region are seletedindependently.2) Another example are relativisti heavy ion ollisions where, aordingto Bjorken senario (Bjorken 1983 [19℄), a �nite volume of quark-gluon



Topologial Defets from an Inhomogeneous Quenh: : : 3911plasma an be reated. The plasma expands in the diretion of ol-lision and ools from the outside in the perpendiular diretion. Thephase transition in this ase an be �rst or seond order (or a smoothrossover) depending on the parameters of the ollision.3) Any generi experiment based on pressure and/or temperature quenhis to some degree inhomogeneous beause of �nite veloity of soundand/or �nite heat ondutane.The mass parameter "(t; ~r), varying in both time and spae, must be on-sidered in defet formation. As a onsequene, loations entering the brokensymmetry phase �rst ould ommuniate their hoie of the new vauum asthe phase ordered region spreads in the wake of the phase transition front.When this proess dominates, symmetry breaking in various, even distant,loations is no longer ausally independent. The domain where the phasetransition ourred �rst may impose its hoie on the rest of the volume, thussuppressing or even halting prodution of topologial defets. This happensif veloity of the ritial front is less than ertain harateristi veloity.2. Seond order transitionThe harateristi veloity in an overdamped transition an be estimatedas follows: The freeze-out healing length is set at t̂ as �̂ = �0 (�Q=�0)1=4. Atthe same instant the relaxation time is �̂ = (�Q�0)1=2. These two sales anbe ombined (Z 1985) to give a veloity salev̂ = �̂=�̂ = v0 (�0=�Q)1=4 ; (2.1)where v0 = �0=�0.The density of defets N as a funtion of ritial front veloity is expetedto hange qualitatively at v̂. Above v̂ the homogeneous estimates shouldhold. Below v̂ the density should be suppressed. Kibble and Volovik [20℄suggested that N � v=v̂ for small v < v̂. Dziarmaga, Laguna and Zurek [21℄argued that N is exponentially suppressed below v̂. There is a lot of qual-itative di�erene between the two proposals. The former option suggeststhat however you make a quenh you will always get some defets, the latterimplies that if your inhomogeneous quenh is su�iently slow you will getno defets at all. In what follows we will quantify what �su�iently slow�means.



3912 J. Dziarmaga2.1. Deay of the false vauumAs a simple warm up exerise, let us onsider deay of a false symmet-ri vauum to a true symmetry broken ground state in a one-dimensionaldissipative '4 model�2t '+ � �t' � �2x' + 12 ('3 � "') = 0 ; (2.2)where '(t; x) is a real order parameter and " measures the degree of symme-try breaking i.e. m2 = �". Without loosing generality, we look for a solu-tion '(t; x) whih interpolates between '(t;�1) = �p" and '(t;+1) = 0.Suh a solution annot be stati. It is a stationary half-kink'(t; x) = �p" 1 + exp"p"2 (x� vtt)p1� v2t #!�1 (2.3)moving with harateristi veloityvt = "1 +� 2�3p"�2#�1=2 �!1� 3p"2� : (2.4)It is worth noting that the deay veloity vt inreases with ".2.2. Shok waveOur shok wave inhomogeneous quenh model onsists of a sharp pres-sure front propagating with veloity v; that is,�2t '+ � �t' � �2x' + 12 ('3 � "(t; x)') = O(t; x) ; (2.5)where "(t; x) = Sign(t� x=v) (2.6)is the relative temperature and O(t; x) is a Gaussian white noise of temper-ature �.There are two qualitatively di�erent regimes:1) v > vt, the phase front propagates faster than the false vauum andeay. The half-kink (2.3) lags behind the front (2.6); a superooledsymmetri phase grows with veloity v � vt. The superooled phaseannot last for long; it is unstable, and the noise makes it deay intothe true vauum.



Topologial Defets from an Inhomogeneous Quenh: : : 39132) v < vt, the phase front is slow enough for a half-kink to move in stepwith the front, '(t; x) = Hv(x � vt). The symmetri vauum deaysinto one de�nite non-symmetri vauum, the hoie is determined bythe boundary ondition at x ! �1. No topologial defets are pro-dued in this regime. The stationary solution Hv(x � vt) is stableagainst small perturbations [21℄.These expetations are borne out by the numerial study of kink formationin [21℄. Numerial results are presented in Fig. 1.

Fig. 1. Density of kinks n as a funtion of veloity v for the shok wave (2.6)with � = 1 (overdamped system). In this overdamped regime, the preditedthreshold veloity is vt = 0:83. The plots from top to bottom orrespond to� = 10�1; 10�2; 10�4; 10�6; 10�8; 10�10. At low �, we get a lear ut-o� veloityat v � 0:8, whih is onsistent with the predition.2.3. Linear frontLet us onsider now a system in whih the inhomogeneous quenh takesplae via linear transition "(t; x) = (t� x=v)=�Q : (2.7)In the absene of noise, the propagating front is followed by a stationaryhalf-kink. This half-kink moves somewhat behind the front, its loationis determined by the plae where the threshold veloity (2.4) is equal tothe front veloity, vt["(t; x)℄ = v. The distane between the front and thehalf-kink inreases as v3. This distane gives the size of the superooled



3914 J. Dziarmagaregion. When the superooled region is narrow then it is stable againstsmall perturbations so that no defets are produed. Ifv > vt � 0�1 + �3=2�1=2Q11:7 1A�1=2 �!1� 3:42� ( ��Q )1=4 � 4:07 v̂ ; (2.8)then the region is broad enough to be unstable [21℄ and the prodution ofdefets is no longer suppressed.This predition is on�rmed by the numerial study of linear quenhesin Ref. [21℄, ompare Fig. 2. However, it is seen that the threshold veloityapparently gradually dereases with inreasing noise temperature �. Thisderease of the threshold for kink formation is due to the thermal nuleationof kinks. Quantitative estimates for this e�et are given in [22℄.

Fig. 2. Density of kinks n as a funtion of veloity v for the linear inhomogeneousquenh (2.7) with �Q = 64 and � = 1. The predited threshold is vt = 0:77.This ut-o� is ahieved for low �. The plots from top to bottom orrespond to� = 10�1; 10�2; 10�4; 10�6; 10�8; 10�10.3. First order transitionWe assume the transition is strongly �rst order and that it goes by bubblenuleation. To be more spei� we onsider a toy model in 3 dimensions�t' = r2'� a'+ b'3 � '5 +O ; (3.1)



Topologial Defets from an Inhomogeneous Quenh: : : 3915where ' is real order parameter. The e�etive potential is of the '6 type.Provided that b2 > 4a, it has symmetri minimum at ' = 0 and two sym-metry broken minima at ' = �'m � �q(b+pb2 � 4a)=2. We assumethat b;  are onstant and that symmetry breaking transition is driven by adereasing below its ritial value a = 3b2=16. At a = a all three minimaare degenerate. 3.1. Deay of the false vauumSuppose that a < a. Let us onsider deay of the false symmetrivauum to the true symmetry broken phase in a one dimensional version ofthe model (3.1). We look for a solution whih interpolates between ' = 'mfor x! �1 and ' = 0 for x! +1. The solution is found as a stationaryhalf-kink H(x� vtt) moving with veloityvt = �b+ 2pb2 � 4ap3 (3.2)whih has an envelope funtionH(x) = 'mq1 + exp�x2 ; (3.3)where � =p4=3'2m. This way the false ' = 0 vauum deays into the true' = 'm vauum in the absene of noise. The deay veloity vt is zero fora = a, it inreases with inreasing superooling or with dereasing a.3.2. Shok waveIn the shok wave model a sharp pressure front propagates with veloity va = a ��a Sign(t� x=v) : (3.4)Similarly as for seond order transitions there are two regimes:1) v > vt, the pressure front propagates faster than the false vauum andeay. The half-kink lags behind the front. The superooled phasein between them grows linearly with time. The phase is unstable,it deays by bubble nuleation just as for a homogeneous transition.Homogeneous estimates of defet density apply in this ase.2) v < vt, the half-kink is faster. It moves in step with the front withits tail penetrating into the symmetri phase. There is no superooledphase where bubbles ould be nuleated. The symmetri phase goessmoothly into one of the symmetry broken phases.



3916 J. Dziarmaga3.3. Linear frontLet the inhomogeneous quenh proeed by a linear front moving withveloity v a = a � (t� x=v)=�Q : (3.5)The half-kink follows the ritial front keeping ertain distane behind it.The distane D is suh that the half-kink veloity vt, whih depends on theloal value of a, is equal to the front veloity v, vt(a) = v. With inreasingv the half-kink settles at inreasing values of loal a. Close to the ritialfront the radius of the ritial bubble is in�nite and at the same time thenuleation rate is in�nitely small. As we go away from the front in thediretion of the half-kink the ritial radius shrinks. At a ertain distane Lfrom the front the energy of the ritial bubble beomes omparable to thetemperature �. At this point bubble nuleation beomes possible. If L < Dbubbles an be nuleated in the superooled region between the front andthe half-kink. If L > D then there is no bubble nuleation and no defetsan be born in the superooled area.Now we estimate the ritial veloity suh that L = D. The half-kink isloated at suh an a that vt(a) = v. L = D providing that for this a theenergy of the ritial bubble E(a) is equal to temperature �. The ritialbubble is a metastable spherially symmetri stati solution of Eq. (3.1)with, say, 'm vauum inside and 0 vauum outside its wall. Its energy anbe easily estimated when the width of its wall is negligible as ompared toits radius R(a). An approximate solution is given by H[r � R(a)℄, wherethe ritial radius is R(a) = p12�b+ 2pb2 � 4a : (3.6)The energy of the ritial bubble E(a) has a negative volume ontribu-tion, (4�R3=3)V ('m), and a positive surfae tension term,(4�R2)Z dx[H 0(x)℄2:When the solution of vt(a) = v is put into E(a) and then the equationE(a) = � is solved, one obtains a ritial veloityvr = ��b(3b2 � 6b+ 162)43� �1=3 (3.7)when L = D. For v > vr bubbles an nuleate in between the half-kink andthe front and thus the neessary ondition for topologial defets produtionis satis�ed.



Topologial Defets from an Inhomogeneous Quenh: : : 3917The formula for vr, Eq. (3.7), is still a rude lower estimate for theritial veloity. In fat it is not su�ient to nuleate some bubbles. Indi-vidual bubbles would oalese with the half-kink without any hane to trapany nontrivial winding number. The bubbles should be nuleated in largenumbers or have enough time to grow so that they an mutually oalesebefore merging with the half-kink. Still, the argument whih leads to vrdemonstrates that there is a threshold veloity for defet formation.4. Higher dimensionsThe theory an be generalized to higher dimensions and to omplexorder parameter in a straightforward manner. Its major result is that asubthreshold inhomogeneous quenh does not produe any variation of theorder parameter in the diretion normal to the front. This exludes anypossibility of prodution of vortex loops or losed membranes entirely on-tained in the bulk, as well as of any pointlike defets. Some extended defetsan grow into the bulk provided their seeds were reated at this edge of thesystem where the symmetry was broken �rst. In �rst approximation suh,say, vorties grow into the bulk, following the passing front, keeping theirdiretion normal to the front. In the end we do not get any haoti tangleof strings and string loops but parallel �ombed� vorties. There are twoimportant perturbations to this �ombed� piture:1) Thermal �utuations make the strings look more random but withoutbaktraking and with string tension tending to smooth the small sale�utuations. The ends of the strings and antistrings at the ritialfront are wandering around. Eventually an end of a string and of anantistring may meet so that the strings join into a half-loop with itsboth ends attahed to the initial edge of the system. String tensionshrinks the half-loop to the edge where it unwinds.2) A muh more e�ient fator to remove vorties from the bulk are theirmutual interations. Global parallel string and antistring attrat oneanother so that their ends at the ritial front do not seek eah otherat random but tend to fuse in a deterministi way. This mehanismmakes the number of strings in the bulk deay quikly with inreasingdistane between the front and the initial edge.The fators (1) and (2) lead to a piture in whih the ritial front initiallydraws some parallel strings and antistrings from the edge, then the stringsreombine by joining ends and shrinking bak to the edge. In the end onlythe net surplus of strings (or antistrings) is left in the bulk.These ideas are supported by experiments:



3918 J. Dziarmaga1) Dislinations produed during a quenh from disordered to nematiphase in liquid rystals. This is a weakly �rst order transition. Inearly attempts to make osmologial experiments in liquid rystalsthe dislinations were observed to grow approximately ombed, joinends and shrink to the initial edge. Later on it was realized that thesequenhes were not homogeneous enough [23℄.2) Czohralski method of growing monorystals, whih is widely used togrow silion monorystals neessary for mirohips. In this method,disovered in the thirties, a surfae of liquid material is touhed witha monorystal template. As the template is slowly lifted up it dragsa olumn of rystal out of the ontainer. The top part of the olumnis old while its bottom part is at the melting temperature - the tran-sition is inhomogeneous. If the template is lifted slowly enough, thenno defets of the rystal lattie are produed whih might spoil themonorystal.To onlude: in an inhomogeneous quenh there is a threshold veloity vtof the ritial front. Above the threshold defets are produed like in a ho-mogeneous quenh. Below the threshold one gets no defets; instead a leanmonorystal or a "disoriented hiral ondensate� is grown with a vauumwhih may be uniform over signi�ant distanes, but whih di�ers from thetrue vauum.This talk is partially based on work done in ollaboration with PabloLaguna and Wojieh �urek [21℄.REFERENCES[1℄ T.W.B. Kibble, J. Phys. A9, 1387 (1976).[2℄ T.W.B. Kibble, Phys. Rep. 67, 183 (1980).[3℄ A. Vilenkin, E.P.S. Shellard, Cosmi Strings and Other Topologial Defets,Cambridge University Press, Cambridge 1994.[4℄ W.H. Zurek, Experimental osmology: strings in super�uid Helium, LosAlamos preprint LA-UR-84-3818.[5℄ W.H. Zurek, Nature 317, 505 (1985).[6℄ W.H. Zurek, Ata Phys. Pol. B24, 1301 (1993).[7℄ W.H. Zurek, Nature 368, 292 (1994).[8℄ W.H. Zurek, Phys. Rep. 276, 177 (1996).[9℄ P. Laguna, W.H. Zurek, Phys. Rev. Lett. 78, 2519 (1997).[10℄ P. Laguna, W.H. Zurek, Phys. Rev. D58, 5021, (1998).
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