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Kibble-Zurek scenario of topological defects formation is extended to
inhomogeneous first and second order transitions. In both cases there is
characteristic threshold velocity of critical front propagation below which
no topological defects are produced. Instead oriented condensate is grown
behind moving temperature or pressure front.
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1. Introduction

It was pointed out by Kibble [1,2] in the context of cosmology that topo-
logical defects can be formed during a rapid symmetry breaking phase tran-
sition. The Kibble mechanism can be best illustrated for first order phase
transitions. Such a transitions proceeds by bubble nucleation. When the
temperature drops below T, the system at first remains in the supercooled
symmetric phase with vanishing order parameter. For sufficient supercooling
this phase decays thanks to nucleation of bubbles of the symmetry broken
phase. Each bubble is nucleated independently so the orientation of the
order parameter in each bubble is chosen at random. For simplicity let us
restrict to a planar system with a planar order parameter. It may happen
that 3 bubbles are nucleated such that their order parameters are more or
less radial with respect to the bubbles’ center of mass. The at first isolated
bubbles are expanding and they eventually touch one another and coalesce.
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The order parameter smoothly interpolates between orientations in each
bubble. The resulting hedgehog configuration is a topologically stable vor-
tex. In this way the random statistical fluctuations, which are responsible
for nucleation of bubbles and their orientation, are frozen in and preserved
in the symmetry broken phase as topological defects. Such defects resulting
from transitions on the GUT scale are believed by some cosmologist to be
seeds for structure formation [3] in the early Universe. Independently, the
proposal passed tests in liquid crystals experiments.

The situation in second order transitions is slightly different as it was
clarified by Zurek [4-8]. There are no bubbles to provide well defined sites
for the topological triangulation. However, rapid phase transition imprints
on the order parameter a characteristic length scale £ which depends on the
rate of the quench. An appropriate inverse power of the scale determines
the density of topological defects: for kinks or domain walls it is n ~ & -1
for vortex lines n ~ ¢~2, for monopoles or skyrmions n ~ ¢~3. The scale
is a result of critical slowing down at 7.. If € is minus mass-squared in
the £p? term of the Ginzburg-Landau model (¢ is the order parameter),
it vanishes at Tc. The relaxation time scales as 79/e. As we approach Tt
from above the relaxation time diverges, at certain moment of time the time
left to the transition becomes comparable to the actual relaxation time,
that is the moment when the system goes out of equilibrium. For e(t) =
—t/7, this happens when |t| = 77¢/t. At this instant the correlation length,
which is given by ¢ = &//(e), is £ = &(r/m)Y%. As the system goes
out of equilibrium the scale is preserved in the subsequent evolution and
later determines density of topological defects. This prediction was verified
in a number of numerical experiments [9-13] and several experiments in
superfluid *He and *He [14-18]. The experimental results are still a source
of much controversy mainly because of an indirect or delayed way of counting
topological defects.

Homogeneous quenches are a convenient idealization and may be a good
approximation in some cases. However, in reality, the change of thermody-
namic parameters is unlikely to be ideally uniform:

1) Experiments carried out in 3He [14, 15], where a small volume of su-
perfluid is re-heated to normal state, and subsequently rapidly cools
to the temperature of the surrounding superfluid, are a good exam-
ple of an inhomogeneous quench: The normal region shrinks from the
outside. Yet, topological defects are created, thus suggesting that the
phases of distinct domains within the re-heated region are selected
independently.

2) Another example are relativistic heavy ion collisions where, according
to Bjorken scenario (Bjorken 1983 [19]), a finite volume of quark-gluon
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plasma can be created. The plasma expands in the direction of col-
lision and cools from the outside in the perpendicular direction. The
phase transition in this case can be first or second order (or a smooth
crossover) depending on the parameters of the collision.

3) Any generic experiment based on pressure and/or temperature quench
is to some degree inhomogeneous because of finite velocity of sound
and /or finite heat conductance.

The mass parameter (t,7), varying in both time and space, must be con-
sidered in defect formation. As a consequence, locations entering the broken
symmetry phase first could communicate their choice of the new vacuum as
the phase ordered region spreads in the wake of the phase transition front.
When this process dominates, symmetry breaking in various, even distant,
locations is no longer causally independent. The domain where the phase
transition occurred first may impose its choice on the rest of the volume, thus
suppressing or even halting production of topological defects. This happens
if velocity of the critical front is less than certain characteristic velocity.

2. Second order transition

The characteristic velocity in an overdamped transition can be estimated
as follows: The freeze-out healing length is set at  as £ = & (1g/7m0)"/*. At
the same instant the relaxation time is 7 = (7g7)'/?. These two scales can

be combined (Z 1985) to give a velocity scale

b =&/ =g (ro/mQ)"*, (2.1)

where vy = &/ 70.

The density of defects IV as a function of critical front velocity is expected
to change qualitatively at ©. Above © the homogeneous estimates should
hold. Below © the density should be suppressed. Kibble and Volovik [20]
suggested that N ~ v/0 for small v < 0. Dziarmaga, Laguna and Zurek [21]
argued that N is exponentially suppressed below 0. There is a lot of qual-
itative difference between the two proposals. The former option suggests
that however you make a quench you will always get some defects, the latter
implies that if your inhomogeneous quench is sufficiently slow you will get
no defects at all. In what follows we will quantify what “sufficiently slow”
means.
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2.1. Decay of the false vacuum

As a simple warm up exercise, let us consider decay of a false symmet-
ric vacuum to a true symmetry broken ground state in a one-dimensional
dissipative ¢* model

1
Go+nop — 0o +5 (9" —ep) =0, (2.2)
where (i, ) is a real order parameter and ¢ measures the degree of symme-
try breaking i.e. m? = —e. Without loosing generality, we look for a solu-
tion (¢, z) which interpolates between p(t, —o00) = —+/e and ¢(t, +00) = 0.
Such a solution cannot be static. It is a stationary half-kink

-1
VE (@ —uit) ”tt)D (2.3)

2 \/1-2?

o(t,z) = —e (1 + exp

moving with characteristic velocity

2n \? e 3\/e
n nioo £
1+ <—3\/E) ] ~ S (2.4)

It is worth noting that the decay velocity v; increases with e.

Ut =

2.2. Shock wave

Our shock wave inhomogeneous quench model consists of a sharp pres-
sure front propagating with velocity v; that is,

1
8152()0+778t()0 - a:%ﬂp + 5 (303 —E(t,I) 30) = O(t,.’L‘), (25)
where
e(t,z) = Sign(t — z/v) (2.6)

is the relative temperature and O(t,z) is a Gaussian white noise of temper-
ature ©.
There are two qualitatively different regimes:

1) v > vy, the phase front propagates faster than the false vacuum can
decay. The half-kink (2.3) lags behind the front (2.6); a supercooled
symmetric phase grows with velocity v — v;. The supercooled phase
cannot last for long; it is unstable, and the noise makes it decay into
the true vacuum.
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2) v < vy, the phase front is slow enough for a half-kink to move in step
with the front, ¢(t,2) = Hy(z — vt). The symmetric vacuum decays
into one definite non-symmetric vacuum, the choice is determined by
the boundary condition at x — —oo. No topological defects are pro-
duced in this regime. The stationary solution H,(x — vt) is stable
against small perturbations [21].

These expectations are borne out by the numerical study of kink formation
in [21]. Numerical results are presented in Fig. 1.
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Fig.1. Density of kinks n as a function of velocity v for the shock wave (2.6)
with n = 1 (overdamped system). In this overdamped regime, the predicted
threshold velocity is vy = 0.83. The plots from top to bottom correspond to
6 =10"11072,107%, 1075 1078, 10719, At low O, we get a clear cut-off velocity
at v = 0.8, which is consistent with the prediction.

2.3. Linear front

Let us consider now a system in which the inhomogeneous quench takes
place via linear transition

e(t,z) =(t —z/v)/1q. (2.7)

In the absence of noise, the propagating front is followed by a stationary
half-kink. This half-kink moves somewhat behind the front, its location
is determined by the place where the threshold velocity (2.4) is equal to
the front velocity, vy[e(t,z)] = v. The distance between the front and the
half-kink increases as v3. This distance gives the size of the supercooled
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region. When the supercooled region is narrow then it is stable against
small perturbations so that no defects are produced. If

-1/2

1/2
2y 100 3.42

v > =1+ (L)'= 4075, (28

11.7 n o TQ

then the region is broad enough to be unstable [21] and the production of
defects is no longer suppressed.

This prediction is confirmed by the numerical study of linear quenches
in Ref. [21], compare Fig. 2. However, it is seen that the threshold velocity
apparently gradually decreases with increasing noise temperature ©. This
decrease of the threshold for kink formation is due to the thermal nucleation
of kinks. Quantitative estimates for this effect are given in [22].

0.02 —

Fig.2. Density of kinks n as a function of velocity v for the linear inhomogeneous
quench (2.7) with 79 = 64 and n = 1. The predicted threshold is v; = 0.77.
This cut-off is achieved for low @. The plots from top to bottom correspond to
©=10"110"2,107%,10°%, 1078, 1010,

3. First order transition

We assume the transition is strongly first order and that it goes by bubble
nucleation. To be more specific we consider a toy model in 3 dimensions

o = V23p —ap +bp® —cp® + O, (3.1)
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where ¢ is real order parameter. The effective potential is of the ¢° type.
Provided that b > 4ac, it has symmetric minimum at ¢ = 0 and two sym-

metry broken minima at ¢ = ¢, = :l:\/(b + Vb? — 4ac)/2c. We assume
that b, c are constant and that symmetry breaking transition is driven by a

decreasing below its critical value a. = 3b?/16c. At a = a. all three minima
are degenerate.

3.1. Decay of the false vacuum

Suppose that a < a.. Let us consider decay of the false symmetric
vacuum to the true symmetry broken phase in a one dimensional version of
the model (3.1). We look for a solution which interpolates between ¢ = ¢y,
for £ -+ —oo and ¢ = 0 for x — 4o00. The solution is found as a stationary
half-kink H (z — vst) moving with velocity

_ —b+2vb? —dac

v 3.2
t \/& ( )

which has an envelope function
H(z) = ——2m (3.3)

/ exp azx ’
1+ 2c

where a = /4c/3¢?2,. This way the false ¢ = 0 vacuum decays into the true
© = @ vacuum in the absence of noise. The decay velocity v, is zero for
a = a, it increases with increasing supercooling or with decreasing a.

3.2. Shock wave

In the shock wave model a sharp pressure front propagates with velocity v
a = ac — Aa Sign(t — z/v). (3.4)
Similarly as for second order transitions there are two regimes:

1) v > vy, the pressure front propagates faster than the false vacuum can
decay. The half-kink lags behind the front. The supercooled phase
in between them grows linearly with time. The phase is unstable,
it decays by bubble nucleation just as for a homogeneous transition.
Homogeneous estimates of defect density apply in this case.

2) v < vy, the half-kink is faster. It moves in step with the front with
its tail penetrating into the symmetric phase. There is no supercooled
phase where bubbles could be nucleated. The symmetric phase goes
smoothly into one of the symmetry broken phases.
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3.3. Linear front

Let the inhomogeneous quench proceed by a linear front moving with
velocity v

a=ac— (t—z/v)/1q. (3.5)

The half-kink follows the critical front keeping certain distance behind it.
The distance D is such that the half-kink velocity v;, which depends on the
local value of a, is equal to the front velocity v, vi(a) = v. With increasing
v the half-kink settles at increasing values of local a. Close to the critical
front the radius of the critical bubble is infinite and at the same time the
nucleation rate is infinitely small. As we go away from the front in the
direction of the half-kink the critical radius shrinks. At a certain distance L
from the front the energy of the critical bubble becomes comparable to the
temperature ©. At this point bubble nucleation becomes possible. If L < D
bubbles can be nucleated in the supercooled region between the front and
the half-kink. If L > D then there is no bubble nucleation and no defects
can be born in the supercooled area.

Now we estimate the critical velocity such that L = D. The half-kink is
located at such an a that v;(a) = v. L = D providing that for this a the
energy of the critical bubble E(a) is equal to temperature ©. The critical
bubble is a metastable spherically symmetric static solution of Eq. (3.1)
with, say, ¢, vacuum inside and 0 vacuum outside its wall. Its energy can
be easily estimated when the width of its wall is negligible as compared to
its radius R¢(a). An approximate solution is given by H[r — R.(a)], where
the critical radius is

12¢

T b+ 2V —dac

The energy of the critical bubble E(a) has a negative volume contribu-
tion, (47R3/3)V (¢m), and a positive surface tension term,

R(a) (3.6)

(4 R2) / daH' (2)]2.

When the solution of v:(a) = v is put into F(a) and then the equation
E(a) = O is solved, one obtains a critical velocity

(3.7)

[ mh(362 — 6be + 16¢2)\
Yer = 4c3O
when L = D. For v > v bubbles can nucleate in between the half-kink and

the front and thus the necessary condition for topological defects production
is satisfied.
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The formula for v, Eq. (3.7), is still a crude lower estimate for the
critical velocity. In fact it is not sufficient to nucleate some bubbles. Indi-
vidual bubbles would coalesce with the half-kink without any chance to trap
any nontrivial winding number. The bubbles should be nucleated in large
numbers or have enough time to grow so that they can mutually coalesce
before merging with the half-kink. Still, the argument which leads to ver
demonstrates that there is a threshold velocity for defect formation.

4. Higher dimensions

The theory can be generalized to higher dimensions and to complex
order parameter in a straightforward manner. Its major result is that a
subthreshold inhomogeneous quench does not produce any variation of the
order parameter in the direction normal to the front. This excludes any
possibility of production of vortex loops or closed membranes entirely con-
tained in the bulk, as well as of any pointlike defects. Some extended defects
can grow into the bulk provided their seeds were created at this edge of the
system where the symmetry was broken first. In first approximation such,
say, vortices grow into the bulk, following the passing front, keeping their
direction normal to the front. In the end we do not get any chaotic tangle
of strings and string loops but parallel “combed” vortices. There are two
important perturbations to this “combed” picture:

1) Thermal fluctuations make the strings look more random but without
backtracking and with string tension tending to smooth the small scale
fluctuations. The ends of the strings and antistrings at the critical
front are wandering around. Eventually an end of a string and of an
antistring may meet so that the strings join into a half-loop with its
both ends attached to the initial edge of the system. String tension
shrinks the half-loop to the edge where it unwinds.

2) A much more efficient factor to remove vortices from the bulk are their
mutual interactions. Global parallel string and antistring attract one
another so that their ends at the critical front do not seek each other
at random but tend to fuse in a deterministic way. This mechanism
makes the number of strings in the bulk decay quickly with increasing
distance between the front and the initial edge.

The factors (1) and (2) lead to a picture in which the critical front initially
draws some parallel strings and antistrings from the edge, then the strings
recombine by joining ends and shrinking back to the edge. In the end only
the net surplus of strings (or antistrings) is left in the bulk.

These ideas are supported by experiments:
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Disclinations produced during a quench from disordered to nematic
phase in liquid crystals. This is a weakly first order transition. In
early attempts to make cosmological experiments in liquid crystals
the disclinations were observed to grow approximately combed, join
ends and shrink to the initial edge. Later on it was realized that these
quenches were not homogeneous enough [23].

Czochralski method of growing monocrystals, which is widely used to
grow silicon monocrystals necessary for microchips. In this method,
discovered in the thirties, a surface of liquid material is touched with
a monocrystal template. As the template is slowly lifted up it drags
a column of crystal out of the container. The top part of the column
is cold while its bottom part is at the melting temperature - the tran-
sition is inhomogeneous. If the template is lifted slowly enough, then
no defects of the crystal lattice are produced which might spoil the
monocrystal.

To conclude: in an inhomogeneous quench there is a threshold velocity vy
of the critical front. Above the threshold defects are produced like in a ho-
mogeneous quench. Below the threshold one gets no defects; instead a clean

mon

ocrystal or a "disoriented chiral condensate” is grown with a vacuum

which may be uniform over significant distances, but which differs from the

true

vacuum.

This talk is partially based on work done in collaboration with Pablo
Laguna and Wojciech Zurek [21].
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