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THE WEYL�WIGNER�MOYAL FORMALISM. III. THEGENERALIZED MOYAL PRODUCT IN THE CURVEDPHASE SPACEM. Przanowski and J. TosiekInstitute of Physis, Tehnial University of �ód¹Wólza«ska 219, 93-005 �ód¹, Polande-mail: mprzan�k-sg.p.lodz.ple-mail: tosiek�k-sg.p.lodz.pl(Reeived Otober 10, 1998)Constrution of the sympleti onnetion on phase spae is proposed.This onnetion is in a sense de�ned by the Riemannian onnetion onthe on�guration spae. The generalized Moyal produt leading to thequantum multipliation in the urved phase spae is given.PACS numbers: 03.65.Ca, 04.20.Cv, 11.15.�q1. IntrodutionThis paper is the third one in the series devoted to the formulation of thenonrelativisti quantum mehanis on the phase spae. In previous workswe onsidered the problem of operator ordering [1℄ and the formulation ofnonrelativisti quantum mehanis in the phase spae R2n [2℄. Here we aregoing to generalize the Weyl�Wigner�Moyal formalism [1�8℄ on the systemswith nontrivial on�guration spae. In this artile we onstrut the dynamisof the quantum spinless partile.Let us onsider only observables 1 belonging to the set of formal series�(~; C1(R6n)): We assume that there is no di�erene between lassialand quantum observables represented the same physial quantity. In thepresented formalism the quantum mehanis resides in the nonabelian butassoiative multipliation \�(g)�. For two observables F;G 2 �(~; C1(R2))the quantity de�ned as their produt equals F �G is the observable too. Thesame quantity in the quantum mehanis is alulated as1 The observable is every real ontinuous funtion on the phase spae.(179)
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F �(g) G = ��1��~ �2�p�x�������~ �2�p�x�F (p; x)� exp� i~2 $P�����~ �2�p�x�G(p; x)��(1)and it is not usually the observable. The operator P ats as$Pdef=  ��x !��p �  ��p !��x; (2)and Fg def= �(�~ �2�p�x )F: (3)From the de�nition the formal series� = ���~ �2�p�x� = 1Xk=0�k � ��~ �2�p�x�k ; �k " R (4)and �0 = 1: (5)The expeted value of the quantity FhF (p; x)i = 12�~ ZR2 F (p; x)�2 ��~ �2�p�x� %(p; x)dpdx; (6)where %(p; x) is the generalized funtion representing the state 2.The time evolution of the quantum observable F is given by the formuladFdt = fF;Hg(g)M : (7)The braket fF;Hg(g)M def= 1i~ (F �(g) H �H �(g) F ) (8)is alled the generalized Moyal braket and H(p; x) is the Hamiltonian.The onstrution of the Weyl�Wigner�Moyal formalism in the urvedphase spae an be divided in two steps. First we onstrut the sympletionnetion on the phase spae whih inludes the Riemannian onnetion2 For � = 1 the funtion 12�~%(p; x) is alled the Wigner funtion.



The Weyl�Wigner�Moyal Formalism... 181on the on�guration spae. We prove that this onstrution is possible butnot unique. In the next setion we de�ne the di�erential forms with valuesin the generalized Weyl algebras. We onstrut the most general abelianonnetion de�ned by the sympleti onnetion on the phase spae T �M:Finally we give a formula for the generalized Moyal produt in the urvedphase spae.We prepared this paper under the inspiration of the exellent works byFedosov [9℄ and [10℄.2. The sympleti onnetionLet the on�guration spae of the system be a real C1 paraompatdi�erential manifold M (dimM = m): The Riemannian onnetion � �� onthis manifold is given uniquely by the quadrati form of kineti energy.In the atlas f(U%; ~'%)g%2I on the on�guration spae M the informationabout dynamis of the system is given by the vetor from the otangentspae T �p (M) : [(p; (U%; ~'%); �℄; (9)where � = (p1; : : : ; pm) are momentum oordinates at the point p 2 M inthe hart f(U%; ~'%)g:De�ne T �M def= [p2MT �p (M): (10)T �M has the natural otangent bundle struture with the sympleti stru-ture ! and it is alled the phase spae of the system. The dimension ofthe phase spae is 2m:De�nition 2.1 The sympleti onnetion on T �M is the torsion freeonnetion satisfying the ondition!ij;k = 0; (11)where a semiolon � ; � stands for the ovariant derivative.In every hart in T �M oe�ients � ijk of sympleti onnetion ful�llthe onditions !ij;k = �!ij�qk � � lik!lj � � ljk!il = 0; (12)� kij � � kji = 0 (torsion free): (13)In the Darboux oordinates we have!ij;k = �� lik!lj � � ljk!il = �jik � �ijk = 0; (14)



182 M. Przanowski, J. Tosiekwhere �ijk def= !il� ljk: (15)Heneforth we also use the term �sympleti onnetion� for the oe�ients�ijk:It is easy to see that in the Darboux oordinates the oe�ients �ijk aresymmetri with respet to indies (i; j; k):Note that the sympleti onnetion is not unique. In Darboux oordi-nates every set of ompletely symmetri oe�ients �ijk de�nes a sympletionnetion. The di�erene �ijk def= �ijk � ��ijk (16)between two sympleti onnetions is the tensor symmetri with respet toindies (i; j; k):De�nition 2.2 Let f(W%; '%)g%2I be an atlas on the sympleti manifoldT �M suh that in every hart the oordinates q�; 1 � � � m determinepoints on the basi manifold M and q�+m = p�; 1 � � � m; denote mo-menta in natural oordinates. Any atlas of this form is alled the properDarboux atlas. Adequately every hart of proper Darboux atlas is theproper Darboux hart. The transition funtions are now the point trans-formations Q� = Q�(q�) ; P� = �q��Q� p�: (17)The relations (17) de�ne the proper Darbox transformation.The proper Darboux harts preserve the obvious from physial point ofview di�erene between spatial oordinates and momenta.Note that every proper Darboux atlas f(W%; '%)g%2I on T �M is uniquelyonneted with some atlas f(U%; ~'%)g%2I on M: For every U% �M the setT �M�W% def= U% �Rm (18)is assigned. The di�eomorphism '% is de�ned so that for every point p 2W%'%(p) def= (q1; : : : ; qm; p1; : : : ; pm): (19)From here the small Greek letters: �; �; : : : denote spatial oordinates.The apital Latin letters A;B; : : : (m + 1 � A;B � 2m) orrespond tomomenta oordinates.Our aim is to onstrut the sympleti onnetion �ijk on T �M whihinludes Riemannian onnetion de�ned on the on�guration spae M: Itmeans that in every proper Darboux hart the oe�ients �I�� are theoe�ients of the Riemannian onnetion.



The Weyl�Wigner�Moyal Formalism... 183The following theorem holdsTheorem 2.1 For every proper Darboux hart (W%; '%) in T �M there ex-ists the onnetion ful�lling the equations (14) and ontaining the Rieman-nian onnetion.For example1. �K�� is Riemannian onnetion;2. ��� = ��KI = �KIJ = 0:This onstrution works only in one hart 3.From the transformation rule for the Christo�el symbols (ompare [12℄)� 0ijk(Q1; : : : ; Q2m) = �ql�Qi �qr�Qj �qs�Qk�lrs(q1; : : : ; q2m) + !rd �qr�Qi �2qd�Qj�Qk(20)and from (17) we an see that in the proper Darboux transformations1. oe�ients �KIJ transform like tensors. Indeed, all summands!rd �qr�QK �2qd�QI�QJare 0 beause the seond derivative �2qd�QI�QJ vanishes for arbitrary d:Then oe�ients �ql�QI �qr�QJ �qs�QK �lrsould be inequal 0 only if l; r; s are momenta oordinates. It meansthat �KIJ for proper Darboux transformations transform like tensoroordinates. If we put �KIJ = 0 for every K; I; J in one of properDarboux atlases, then they vanish in all proper Darboux atlases.2. In the same way we an show that the oe�ients ��IJ transform liketensors 4 if we put �KIJ = 0 for every K; I; J: There is no problem toput ��IJ = 0 for every �; I; J:3. For the Riemannian onnetion �K�� nontensorial summands in (20)do not vanish. Fortunately these summands depend only on oordi-nates on the base manifold M: If the �KIJ = 0 and ��IJ = 0 forevery K; I; J and �; then oe�ients �K�� of the sympleti onne-tion transform like the Riemannian onnetion on M:3 Another sympleti onnetion has been built by I. Gelfand, V. Retakh and M. Shubin[11℄.4 Under proper Darboux transformations.



184 M. Przanowski, J. Tosiek4. The most di�ult is to de�ne oe�ients ��� : Let fU%g%2I be a lo-ally �nite open overing of MM: From the theorem of the partitionof unity there exists a partition of unity ff%g%2I orresponding tofU%g%2I : Using this we de�ne ��� by��� def= X%2I f%(���)%; (21)where (���)% are oe�ients given in the hart (W%; '%):Thus we onstrut the sympleti onnetion on the phase spae T �Mof the system for a paraompat base manifold M: Unfortunately this on-strution is not unique beause it depends on overing fU%g%2I on M: Weare still working on this problem.3. The generalized Weyl algebra VgLet T �M be 2m�dimensional otangent bundle over a smooth paraom-pat manifold M: The spae T �M has the natural sympleti struture. Inan arbitrary point p 2 T �M we de�ne the formal series with respet to ~and X1p ; : : : ;X2mp : a def= 1Xl=0 ~kak;i1:::ilXi1p � � �Xilp k � 0 : (22)For l = 0 we put a = ~kak:We use the Einstein onvention and we summarize with respet to re-peating indies.Symbols in the formula (22) mean:~ is a positive parameter;X1p ; : : : ;X2mp are omponents of an arbitrary vetor belonging of the tangentspae Tp(T �M) to the sympleti manifold T �M at the point p: The om-ponents X1p ; : : : ;X2mp has been written in natural basis ( ��qi )p determinedby the hart (W%; '%) so that p 2W%;ak;i1;:::;il are the omponents of ovariant tensor symmetri with respet toindies (i1; : : : ; il); taken in the basis dqi1 
 � � � 
 dqil :Note that series like (22) are salars.Our de�nition is di�erent from that given in [9℄, [13℄. Here ( like in [10℄)the parameter ~ is used only in nonnegative powers.Let V (Xp) be a set of all elements a at the point p 2 T �M:Theorem 3.2 The tetrad (V (Xp); C;+; �) is the linear spae.



The Weyl�Wigner�Moyal Formalism... 185C denotes the set of omplex numbers.De�ne the mapping g : V (Xp) �! V (Xp)g(a) def= � �12~#ij �2�Xip�Xjp! a; (23)where � is the formal series haraterizing the generalized Weyl ordering.The ovariant tensor #ij in the natural basis ( ��qi )p
 ( ��qj )p; whih is deter-mined by the proper Darboux hart (W%; '%); has the form� 0 11 p� � ; (24)where 0 and 1 are m�m matries: null and unity, respetively(p� )�� def= 2p� �� : (25)� �� are omponents of the Riemannian onnetion on the on�gurationspae M and p are the momentum omponents at p 2 T �M:Theorem 3.3 The tensor #ij is invariant under the proper Darboux trans-formations.ProofNontrivial is only the transformation for (p� )�� :The new oordinates we denote by apital letters. Components of tensorsin the new hart are denoted by \ 0 :� Greek indies, as usually, run from1 to m:From the transformation rule#0�+m;�+m = �P��q �P��p" Æ" + �P��p �P��q" Æ" + �P��p �P��p" 2p�� �": (26)Using (17) �P��p = �q�Q� ; (27)�q��Q! �Q��q� = Æ�! (28)and �P��q" = �Q��q" �2q!�Q��Q� p! = �Q��q" �2q!�Q��Q� �Q��q! P�: (29)



186 M. Przanowski, J. TosiekFrom (27) and the transormation rules for the onnetion�P��p �P��p" 2p�� �" = 2 �q�Q� �q"�Q� �Q��q� P��� �q��Q� �Q��q �Q'�q" � 0��' + �q��Q% �2Q%�q�q"� : (30)(28), (29) and (30) give us#0�+m;�+m = 2 �2q"�Q��Q� �Q��q" P� + 2P�� 0��� + 2 �q�Q� �q"�Q� �2Q��q�q"P�: (31)Using ��Q� ��Q��q" �q"�Q�� = �q�Q� �2Q��q�q" �q"�Q� + �Q��q" �2q"�Q��Q� = 0 (32)we get �nally #0�+m;�+m = 2P�� 0���: (33)We will write ag instead of g(a): Notie that ag are elements of V (Xp)and they are salars.In the set V (Xp) we de�ne the new produt \Æ(g)�:a Æ(g) b def= ��1 �12~#rs �2�Xrp�Xsp!� 1Xt=0 � i~2 �t 1t!!i1j1 � � �!itjt �tag�Xi1p � � � �Xitp �tbg�Xj1p � � �Xjtp : (34)This produt does not depend on the proper Darboux hart. 5.The �ve (V (Xp); C;+; �; Æ(g)) is also the nonommutative algebra withthe unity. We will denote it by Vg(Xp): The entre of this algebra areelements (22) not ontaining Xip:De�nition 3.3 The algebra Vg(Xp) is alled the generalized Weyl alge-bra.The algebras Vg(Xp) di�er between themselves by the multipliationbut they are isomorphi . We onsider them separately beause they givedi�erent physial results.5 For � = 1; the formula (34) has the same form in every natural basis.



The Weyl�Wigner�Moyal Formalism... 187Let us take the sum Vg def= [p2T �MVg(Xp): (35)The tetrad (Vg; �; T �M) is the algebra bundle.De�nition 3.4 The n-di�erential form with value in bundle Vg isthe forma = 1Xl=0 ~kak;i1:::il;j1:::jn(q1; : : : ; q2m)Xi1 � � �Xildqj1 ^ � � � ^ dqjn ; (36)where 0 � n � 2m:ak;i1:::il;j1:::jn(q1; : : : ; q2m) are smooth tensor �elds symmetri with re-spet to indies (i1; : : : ; il) and antisymmetri with respet to (j1; : : : ; jn):For simpliity we will omit names of variables (q1; : : : ; q2m) in ak;i1:::il;j1:::jn(q1; : : : ; q2m): Produt of two forms (36) we will denoted by \Æ(g)�.The multipliation of forms is now the produt \Æ(g)� of elements ofalgebra Vg and the external produt of forms. Let �n be a smooth �eld ofn� form on the sympleti manifold T �M: The forms (36) are elements ofthe diret sum Vg 
 � def= �2mn=0(Vg 
 �n): (37)( We denote the bundle and the ross setion of the bundle by the samesymbol.)De�nition 3.5 The ommutator of the forms a 2 Vg 
 �n1 and b 2Vg 
 �n2 is the form [a; b℄(g) 2 Vg 
 �n1+n2 de�ned by[a; b℄(g) def= a Æ(g) b� (�1)n1�n2b Æ(g) a: (38)De�nition 3.6 The form a 2 Vg
� is alled entral, if for every b 2 Vg
�the ommutator [a; b℄(g) vanishes.In this sense only forms that do not ontain elements Xi are entral in thegeneralized Weyl algebra.



188 M. Przanowski, J. TosiekLet us de�ne two operators ating on the forms from the algebra Vg
�:De�nition 3.7 The operator Æ : Vg 
 �n �! Vg 
 �n+1 ats asÆa = dqk ^ �a�Xk : (39)De�nition 3.8 The operator Æ� : Vg 
 �n �! Vg 
 �n�1 is de�ned by therelation Æ�a def= Xk � ��qk�a: (40)One an easily prove the theorem:Theorem 3.4 The operators Æ and Æ�:1. are linear;2. their de�nitions do not depend on the hart;3. Æ2 = (Æ�)2 = 0; (41)4. for monomials Xi1 : : : Xildqj1 ^ : : :^ dqjn for whih l+n > 0 we haveÆÆ� + Æ�Æ = (l + n)Id; (42)where \Id� is the identity mapping.Let Æ�1 def= Æ�l + n for l + n > 0 and Æ�1 def= 0 for l + n = 0: (43)The following theorem holdsTheorem 3.5 Every form a 2 Vg 
 � an be written asa = ÆÆ�1a+ Æ�1Æa+ a00; (44)where a00 is a entral 0�form.The proof is a onsequene of linearity of the operators Æ and Æ�1 and thefourth property from the theorem 3.4.



The Weyl�Wigner�Moyal Formalism... 189Theorem 3.6 The operators Æ and � ommute. So for every form a 2V 
 �n g(Æa) = Æag: (45)This theorem is false for the operator Æ�1:Theorem 3.7 For every two forms a 2 V 
 �n1and b 2 V 
 �n2Æ(a Æ(g) b) = (Æa) Æ(g) b+ (�1)n1a Æ(g) (Æb): (46)Theorem 3.8 For every form a 2 Vg 
 �n1Æa = �[ 1i~!ijXidqj ; a℄(g): (47)These theorems are the results of the de�nitions of the operator Æ and thelinearity of the mapping g and the produt \Æ(g)�.4. The abelian onnetionDe�nition 4.9 The exterior ovariant derivative � is the linear oper-ator � : V 
 �n �! V 
 �n+1;de�ned by the formula �a def= dqr ^ a;r; a 2 V 
 �n: (48)The ovariant derivative a;ra;r = 1Xl=0 ~k ��ak;i1:::il;j1:::jn�qr Xi1 � � �Xildqj1 ^ � � � ^ dqjn�� di1rak;d i2:::il;j1:::jnXi1 � � �Xildqj1 ^ � � � ^ dqjn� � � � �� dilrak;i1:::il�1 d;j1:::jnXi1 � � �Xildqj1 ^ � � � ^ dqjno ; (49)so �a = 1Xl=0 ~k ��ak;i1:::il;j1:::jn�qr Xi1 � � �Xildqr ^ dqj1 ^ � � � ^ dqjn�� di1rak;d i2:::il;j1:::jnXi1 � � �Xildqr ^ dqj1 ^ � � � ^ dqjn� � � � �� dilrak;i1:::il�1 d;j1:::jnXi1 � � �Xildqr ^ dqj1 ^ � � � ^ dqjno : (50)



190 M. Przanowski, J. TosiekTheorem 4.9 For every a 2 V 
 �n1 ; b 2 V 
 ��(a Æ b) = �a Æ b+ (�1)n1a Æ �b; (51)�Æa+ Æ�a = 0: (52)The proof is a onsequene of the linearity and the de�nitions of the opera-tors Æ and �:Let d be the exterior derivative and let the 1� form � be de�ned by� def= 12�ijkXiXjdqk: (53)Note that the form � is de�ned in Darboux oordinates.It easy to see that in the Darboux atlas the exterior ovariant derivative�a = da+ 1i~ [�; a℄: (54)The onnetion �ijk is not a tensor but in every Darboux hart we anmultiply 6 1� form � and the elements of the algebra V 
 �:Similarly as in the theory of vetor bundles (see [12℄) we de�ne the ur-vature of the onnetion �:De�nition 4.10 2� form RR def= d� + 12i~ [�; � ℄: (55)is alled the urvature of the onnetion �:In Darboux oordinatesR = 14!imRmjklXiXjdqk ^ dql; (56)where Rmjkl def= ��mjl�qk � ��mjk�ql + � ujl�muk � � ujk�mul : (57)From (54) and the de�nition 4.10 it is easy to see that for every forma 2 V 
 �n the seond exterior ovariant derivative�(�a) = dqr ^ (dqs ^ a;s);r = dqr ^ dqs ^ a;sr = 1i~ [R; a℄: (58)In the previous paper ( [2℄) we have showed that the mapping g is an iso-morphism between algebras (�(~; C1(R6n)); �(g)) and (�(~; C1(R6n)); �):Here this mapping is also the isomorphism between Vg(Xp) and V(Xp): Itseems to be natural that the mapping g de�nes some relation between theabsoult ovariant derivative � ating on forms from V 
 � and the linearoperator �(g) de�ned on the ross setions of the boundle Vg 
 �:6 In the sense of produt \Æ�.



The Weyl�Wigner�Moyal Formalism... 191De�nition 4.11 The exterior ovariant derivative �(g) is a linear op-erator �(g) : Vg 
 �n �! Vg 
 �n+1;de�ned by g(�(g)a) def= �ag = dqr ^ ag;r: (59)The following theorem holdsTheorem 4.10 For every a 2 Vg 
 �n1 ; b 2 Vg 
 ��(g)(a Æ(g) b) = �(g)a Æ(g) b+ (�1)n1a Æ(g) �(g)b; (60)�(g)Æa+ Æ�(g)a = 0: (61)This theorem is a onsequene of the theorems 3.6, 4.9 and the de�nition ofthe operator �(g):Remark that �(g)a = g�1(�ag) (54)= g�1 (dag + [�; ag℄) :The di�erene (�g � � ) is a entral 1� form so�(g)a = da+ g�1[�g; ag℄ = da+ [�; a℄(g): (62)It is easy to hek that �(g)(�(g)a) = 1i~ [R; a℄(g); (63)where R def= d� + 12i~ [�; � ℄(g): (64)De�nition 4.12 The onnetion ~� in the bundle Vg is alled abelian, ifthe exterior ovariant derivativeD(g)a = da+ 1i~ [ ~�; a℄(g)ful�lls the equation D(g)(D(g)a) = 1i~ [
; a℄(g) = 0 (65)for every a 2 Vg 
 � where 
 is the urvature of the onnetion ~�
 def= d ~� + 12i~ [ ~� ; ~� ℄(g): (66)



192 M. Przanowski, J. TosiekFormally the abelian onnetion is similar to the �at onnetion beausea;sd = a;ds for 1 � s; d � 2m: But its urvature an be entral form di�erentfrom 0:Using the sympleti onnetion given by 1� form � (look (53)) weonstrut the abelian onnetion ~� in the bundle Vg:We assume that the abelian onnetion ~� is the sum (� + ); where 2 Vg 
 �1: Now D(g)a = da+ 1i~ [� + ; a℄(g) (67)for every a 2 Vg 
 �:The urvature of the abelian onnetion from (64) and (66)
 = R+ �(g) + 1i~2; (68)where 2 def=  Æ(g) :It is more onvenient to write the equation (67) in the formD(g)a = �Æa+ �(g)a+ 1i~ [r; a℄(g); (69)where r 2 Vg 
 �1:From the theorem 3.8D(g)a = �(g)a+ 1i~ [!ijXidqj + r; a℄(g): (70)Comparing (67) and (70) we see that = !ijXidqj + r: (71)The urvature 
 de�ned by (68) takes now the form
 = �12!j1j2dqj1 ^ dqj2 +R� Ær + �(g)r + 1i~r2: (72)The onnetion ~� is abelian i� 
 is the entral 2� form. It means that( see (72)) Ær = R+ �(g)r + 1i~r2 +�; (73)where � is some entral 2� form. From the Bianhi identityD(g)
 = 0 (74)



The Weyl�Wigner�Moyal Formalism... 193and the assumption that the onnetion ~� is abelian we get thatd
 = 0: (75)and, onsequently, d� = 0: (76)The most general form of r satisfying (73) isr = Æ�1R+ Æ�1�+ Æ�1��(g)r + 1i~r2�+ ÆS; (77)where S = Æ�1r is an arbitrary 0�form. From the formula (77) we an seethat Æ�1r = S � S00; where S00 does not ontain Xi: There exists also abijetion from the set of S0s with S00 = 0 onto the set of 0� forms Æ�1r;where r ful�lls (77).We must prove that every solution of (77) for an arbitrary S suh thatS00 = 0 ful�lls the ondition (73).From (77)r � ÆS = Æ�1Ær = Æ�1 �R+�+ �(g)r + 1i~r2� ;so Ær = R+�+ �(g)r + 1i~r2 + F; (78)where F is an arbitrary 2� form suh thatÆ�1F = 0: (79)If we prove that F = 0; then we get the equation (73). It means that everyr ful�lling (77) is the solution of (73).ÆF (78)= �ÆR� Æ�� Æ(�(g)r)� Æ 1i~r2: (80)� is the entral form so Æ� = 0: (81)Consider the last expression in (80).Æ( 1i~r2) (46)= 1i~(Ær Æ(g) r � r Æ(g) Ær):From the de�nition 3.5 of the ommutator we getÆ( 1i~r2) = 1i~ [Ær; r℄(g) = � 1i~ [r; Ær℄(g): (82)



194 M. Przanowski, J. TosiekNow ÆF = �ÆR � Æ(�(g)r) + 1i~ [r; Ær℄(g): (83)From the theorem 4.10 Æ(�(g)r) = ��(g)(Ær) (84)and ÆR = 14Ri1i2;j1j2Xi2dqi1 ^ dqj1 ^ dqj2+14Ri1i2;j1j2Xi1dqi2 ^ dqj1 ^ dqj2= 12Ri1i2;j1j2Xi1dqi2 ^ dqj1 ^ dqj2= 16�Ri1i2j1j2Xi1dqi2 ^ dqj1 ^ dqj2+Ri1j2i2j1Xi1dqj2 ^ dqi2 ^ dqj1+Ri1j1j2i2Xi1dqj1 ^ dqj2 ^ dqi2� : (85)Using the identity ( [12℄) Rijkl +Riljk +Riklj = 0 (86)we get ÆR = 0: (87)From (80)�(87) we an see thatÆF = �(g)(Ær) + 1i~ [r; Ær℄(g): (88)This form of the equation is inonvenient for analysis. Let us modify (88).�(g)R = 14Ri1i2j1j2;lXi1Xi2dqj1 ^ dqj2 ^ dql= 112�Ri1i2j1j2;lXi1Xi2dqj1 ^ dqj2 ^ dql+Ri1i2lj1;j2Xi1Xi2dql ^ dqj1 ^ dqj2+Ri1i2j2l;j1Xi1Xi2dqj2 ^ dql ^ dqj1� :From the Bianhi identityRnikl;m +Rnimk;l +Rnilm;k = 0 (89)



The Weyl�Wigner�Moyal Formalism... 195we an see that �(g)R = 0: (90)The formula (90) is of ourse the Bianhi identity for the urvature R (om-pare [12℄) and it an be proved from (62) and (64) diretly.Using (63) we get �(g)(�(g)r) = 1i~ [R; r℄(g): (91)From the theorem 4.9 �(g)( 1i~r2) = 1i~ [�(g)r; r℄(g): (92)It is easy to see that [r; r2℄(g) = 0: (93)The 2� form � is losed so �(g)� = 0: (94)From (90)�(94)ÆF = �(g) �Ær �R��� �(g)r � 1i~r2�+ 1i~ �r; Ær �R��� �(g)r � 1i~r2�(g)= �(g)F + 1i~ [r; F ℄(g) : (95)The most general shape 2� form F whih ful�lls (95) isF = Æ�1��(g)F + 1i~ [r; F ℄(g)� : (96)There is no element ÆÆ�1F beause as we notied earlier (the formula (79)),Æ�1F = 0:The equation (77) determines the abelian onnetion i� F = 0 is theonly one solution of (96).Let r(l; n) denotes the omponent of r whih ontain ~l and n elementsof Xi:The equation (96) has the only one iterative solution F = 0 if r(0; 0) =r(0; 1) = 0:The 1�form r whih ful�lls this ondition and the equation (77) givesus the abelian onnetion.



196 M. Przanowski, J. TosiekLet us solve the equation (77):r = Æ�1R+ Æ�1�+ Æ�1(�(g)r + 1i~r2) + ÆS:The �rst term is r(0; 2): Hene,1. � is the entral form �(l; 0) where l > 0:We an see that the operatorÆ is the only one omponent of r whih does not ontain ~: The sameresult has been presented in the paper [13℄;2. We must put S(0; 1) = S(0; 2) = 0: beause of the onditions r(0; 0) =r(0; 1) = 0: We remind that S determines Æ�1r if S00 = 0:Now the formula (77) is iterative and the �rst nonvanishing elementr(0; 2) is determined by S:For the Weyl ordering when � = 1; S = 0 i � = 0;r = 18RijklXiXjXkdql + 120�mRijklXiXjXkXmdql + � � � (97)Next omponents also ontain ~:5. The generalized Moyal produt \�(g)� on the phase spae T �MUsing the abelian onnetion ~� onstruted in the previous setion wean de�ne the generalized Moyal produt \�(g)� on the urved phase spaeT �M:Theorem 5.11 The set of forms a 2 Vg 
 � suh that D(g)a = 0 is thesubalgebra VDg 
 � of the algebra Vg 
 �:Let �(a) be a �projetion� of a 0� form a 2 Vg onto the phase spaeT �M i.e., mapping whih assigns to a its omponent that does not ontainX1; : : : ;X2m: This mapping is unique.The following theorem holdsTheorem 5.12 Every formal series A 2 �(~; C1(T �M)) on the symple-ti manifold T �M de�nes uniquely the element ��1(A) of the boundle VDgsuh that �(��1(A)) = A:ProofThe ondition D(g)a = 0 means (ompare (69)) thatD(g)a = �Æa+ �(g)a+ 1i~ [r; a℄(g) = 0; (98)



The Weyl�Wigner�Moyal Formalism... 197so Æa = �(g)a+ 1i~ [r; a℄(g): (99)a is 0�form so from the theorem 3.5 the most general form of the solution(99) is a = A+ Æ�1Æa = A+ Æ�1��(g)a+ 1i~ [r; a℄(g)� ; (100)where A def= �(a):This equation is similar to (77). Per analogy we an see that this is aniterative equation with the solution determined by A:The only problem is to prove that every solution of (100) ful�lls (99).a�A = Æ�1Æa (100)= Æ�1��(g)a+ 1i~ [r; a℄(g)�so Æa = �(g)a+ 1i~ [r; a℄(g) + F; (101)where F is a 0� form suh that Æ�1F = 0: (102)We will prove that F = 0:From (101) F = Æa� �(g)a� 1i~ [r; a℄(g) = �D(g)a: (103)We do not know if D(g)a = 0 beause the 0� form a is only the solution of(100). But ~� is the abelian onnetion. ThereforeD(g)F = D(g)(D(g)a) = 0: (104)It means that ÆF = �(g)F + 1i~ [r; F ℄(g): (105)From (102) we dedue that any F (k; 0) (k � 0) vanishes. From theprevious setion we know that the �rst nonvanishing omponent of r isr(0; 2): Calulating F = Æ�1��(g)F + 1i~ [r; F ℄(g)� (106)



198 M. Przanowski, J. Tosiekwe �nd that F = 0: F = 0 is the solution of (105) too. It means that everya de�ned by (100) ful�lls (99). Thus we have proved that for every formalseries A 2 �(~; C1(T �M)) exists one and only one a 2 VDg :For the Weyl algebra V (� = 1 ), if r is de�ned by (97),a = A+ �iAXi + 12�i�jAXiXj + 16�i�j�kAXiXjXk� 124Rijkl!lm�mAXiXjXk + � � � : (107)Now we an de�ne the generalized Moyal produt on the urved phasespae.De�nition 5.13 Let A;B 2 �(~; C1(T �M)) be formal series de�ned onthe phase spae T �M: The generalized Moyal produt \�(g)� of theformal series A;B is de�ned byA �(g) B def= � ���1(A) Æ(g) ��1(B)� : (108)The reasons whih have deided that the produt de�ned above is thegeneralization of the Moyal produt given in the phase spae R6n are thefollowing ones:1. For the phase spae R6n the produt de�ned by the formula (108) isthe generalized Moyal produt de�ned in our previous paper [2℄;2. In the lassial limit ~! 0 the produt �(g) is the usual multipliationof formal series;3. The produt �(g) is nonabelian but assoiative;4. The de�nition of the multipliation (108) is invariant under the properDarboux transformations.The nontrivial is only the proof that for the phase spae R6n the produtde�ned by (108) is equivalent to the produt (1).Let us over the spae spae R6n by the artesian hart. In this hart�ijk = 0 so � = 0: It means (see (48) and (59)) that�(g)a = �a = da: (109)If we put S = 0 and � = 0 if R = 0; then we get r = 0: From (100)��1(A)�A = Æ�1d(��1(A)) : (110)



The Weyl�Wigner�Moyal Formalism... 199The solution of (110) reads��1(A) = 1Xi1=0 � � � 1Xi6n=0 1i1! � � � i6n! �i1�(q1)i1 � � � �i6n�(q6n)i6nA(q1; : : : ; q6n)�X1 � � �X1| {z }i1 times � � �X6n � � �X6n| {z }i6n times ; (111)where (q1; : : : ; q6n) are oordinates on the phase spae R6n: But this formulais the expansion of A in the Taylor series at the point (q1; : : : ; q6n):So ��1(A) = A(q1 + X1; : : : ; q6n + X6n) and the same for ��1B: Forevery 1 � k � 6n��qkA(q1 +X1; : : : ; q6n +X6n) = ��XkA(q1 +X1; : : : ; q6n +X6n): (112)Now ��1(A) Æ(g) ��1(B) = ��1��12~#rs �2�Xr�Xs�� 1Xk=0� i~2 �k 1k!!i1j1 � � �!ikjk��kAg(q1 +X1; : : : ; q6n +X6n)�Xi1 � � � �Xik �kBg(q1 +X1; : : : ; q6n +X6n)�Xj1 � � � �Xjk :(113)We an hange the derivatives with respet to Xi in the formula(112) bythe derivatives with respet to qi: We see that��1(A) Æ(g) ��1(B) = ��1��12~#rs �2�qr�qs�� 1Xk=0� i~2 �k 1k!!i1j1 � � �!ikjk��kAg(q1 +X1; : : : ; q6n +X6n)�qi1 � � � �qik �kBg(q1 +X1; : : : ; q6n +X6n)�qj1 � � � �qjk ;(114)so A �(g) B = � ���1(A) Æ(g) ��1(B)� = ��1��12~#rs �2�qr�qs�� 1Xk=0� i~2 �k 1k!!i1j1 � � �!ikjk �kAg(q1; : : : ; q6n)�qi1 � � � �qik �kBg(q1; : : : ; q6n)�qj1 � � � �qjk :(115)



200 M. Przanowski, J. TosiekUsing the de�nition of the Poisson braket we get �nally= ��1��12~#rs �2�qr�qs�Ag exp� i~2 $P�Bg; (116)Note that we assumed that S and � vanish for R = 0:6. ConlusionsThe onstrution of the generalized Moyal produt on the phase spaeT �M shows that the sympleti onnetion on T �M is neessary to de�nethe produt \�(g)�The advantage of this formalism is that one uses the lassial phase spaeof the system. The quantum mehanis appears as a deformation of thelassial system with respet to the Plank onstant ~ so the Weyl- Wigner-Moyal formalism seems to be very helpful for approximate alulations.From mathematial point of view all orderings (determined by the series�) are equivalent. But they all give di�erent physial results i.e., di�erenteigenvalues and the equation of motion.This paper loses the series of papers devoted to mathematial founda-tions of the quantum dynamis of the spinless nonrelativisti partile. Themain problems still waiting for the solutions are:1. What kind of generalized funtion does represent the information aboutthe state of the system or what is the equivalent of the density matrixon the phase spaes ?2. Is quantum mehanis the only one deformation of the lassial me-hanis or there are many possibilities ? If it is the only one whih ofthe series � is the physial one.3. What does the integral form of the equation (108) look like? Theanswer to this question is important when the generalized funtion ofthe state is not the smooth funtion. This problem is probably loselyrelated to the fat that one annot �nd the solution of the eigenvalueequation for a rotator within the Moyal formalism (see for example [7℄).REFERENCES[1℄ J. Tosiek, M. Przanowski, Ata Phys. Pol. B26, 1703 (1995).[2℄ J.F. Pleba«ski, M. Przanowski, J. Tosiek, Ata Phys. Pol. B27, 1961 (1996).
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