Vol. 30 (1999) ACTA PHYSICA POLONICA B No 2

THE WEYL-WIGNER-MOYAL FORMALISM. III. THE
GENERALIZED MOYAL PRODUCT IN THE CURVED
PHASE SPACE

M. PRZANOWSKI AND J. TOSIEK

Institute of Physics, Technical University of £.6dz
Wolczanska 219, 93-005 ¥.6d%, Poland
e-mail: mprzan@ck-sg.p.lodz.pl
e-mail: tosiek@ck-sg.p.lodz.pl

(Received October 10, 1998)

Construction of the symplectic connection on phase space is proposed.
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1. Introduction

This paper is the third one in the series devoted to the formulation of the
nonrelativistic quantum mechanics on the phase space. In previous works
we considered the problem of operator ordering [1] and the formulation of
nonrelativistic quantum mechanics in the phase space R*" [2]. Here we are
going to generalize the Weyl-Wigner—-Moyal formalism [1-8| on the systems
with nontrivial configuration space. In this article we construct the dynamics
of the quantum spinless particle.

Let us consider only observables ! belonging to the set of formal series
IT(h, C*®°(R")). We assume that there is no difference between classical
and quantum observables represented the same physical quantity. In the
presented formalism the quantum mechanics resides in the nonabelian but
associative multiplication “x,)”. For two observables F, G € II(h, C*°(R?))
the quantity defined as their product equals F'- G is the observable too. The
same quantity in the quantum mechanics is calculated as

! The observable is every real continuous function on the phase space.

(179)
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and it is not usually the observable. The operator P acts as

- - - -
Gdet 0 00 0 (2)
Oz dp Opox’
and o2
def
F, = a(— ﬁBpax)F' (3)

From the definition the formal series
2 k
= 4
- 0‘( apax) Zo"“ < apa)’o‘”R @

ap = 1. (5)

and

The expected value of the quantity F

2

(F(p,z)) = % F(p,z)o’ <_h(9§8$) o(p, z)dpdz, (6)
R2

where o(p, z) is the generalized function representing the state 2
The time evolution of the quantum observable F'is given by the formula

dF
prial HYY). (7)
The bracket !
) def
{F,H}{) & = (F #(g) H = H %(g) ) (8)

is called the generalized Moyal bracket and H(p, ) is the Hamiltonian.
The construction of the Weyl-Wigner-Moyal formalism in the curved

phase space can be divided in two steps. First we construct the symplectic

connection on the phase space which includes the Riemannian connection

? For a = 1 the function 5=o(p, z) is called the Wigner function.
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on the configuration space. We prove that this construction is possible but
not unique. In the next section we define the differential forms with values
in the generalized Weyl algebras. We construct the most general abelian
connection defined by the symplectic connection on the phase space T* M.
Finally we give a formula for the generalized Moyal product in the curved
phase space.

We prepared this paper under the inspiration of the excellent works by
Fedosov [9] and [10].

2. The symplectic connection

Let the configuration space of the system be a real C'*° paracompact
differential manifold M (dimM = m). The Riemannian connection Fgﬂ on
this manifold is given uniquely by the quadratic form of kinetic energy.

In the atlas {(Up, ¢,)}oer on the configuration space M the information
about dynamics of the system is given by the vector from the cotangent
space T3 (M) :

[(p7 (UQa (ﬁg)a 0]5 (9)
where 0 = (p1,...,pm) are momentum coordinates at the point p € M in
the chart {(U,, ¢,)}-

Define o
T*"M= | Ty(M). (10)
pEM

T* M has the natural cotangent bundle structure with the symplectic struc-
ture w and it is called the phase space of the system. The dimension of
the phase space is 2m.

Definition 2.1 The symplectic connection on T*M is the torsion free
connection satisfying the condition

wij;k = 0, (11)

113

where a semicolon “ ; 7 stands for the covariant derivative.

In every chart in T* M coefficients I’ ;k of symplectic connection fulfill
the conditions

Ow; i
Wij:k = Dok 2] - Filszj — ijwiz =0, (12)
q
Il — Ik =0 (torsion free). (13)

In the Darboux coordinates we have

wijik = —ipwij — Thwi = Tk — Tijr =0, (14)
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where ot

Tiji = wil}),. (15)
Henceforth we also use the term “symplectic connection” for the coefficients
L.

It is easy to see that in the Darboux coordinates the coefficients I5;;, are
symmetric with respect to indices (i, j, k).

Note that the symplectic connection is not unique. In Darboux coordi-
nates every set of completely symmetric coefficients I'j;, defines a symplectic
connection. The difference

def =
Aijk = Tigr — Lijn (16)
between two symplectic connections is the tensor symmetric with respect to
indices (4,7, k).

Definition 2.2 Let {(W,, pp)}ocr be an atlas on the symplectic manifold
T*M such that in every chart the coordinates q%, 1 < a < m determine
points on the basic manifold M and ¢ = po, 1 < a < m, denote mo-
menta in natural coordinates. Any atlas of this form is called the proper
Darboux atlas. Adequately every chart of proper Darbouz atlas is the
proper Darboux chart. The transition functions are now the point trans-
formations 5

0
Q=@ Pa= 550

The relations (17) define the proper Darbox transformation.

(17)

The proper Darboux charts preserve the obvious from physical point of
view difference between spatial coordinates and momenta.

Note that every proper Darboux atlas {(W,, ¢,)}oer on T* M is uniquely
connected with some atlas {(Uy,, ¢p)}oer on M. For every U, C M the set

T*M>W, & U, x R™ (18)

is assigned. The diffeomorphism ¢, is defined so that for every point p € W,

[N

f
‘PQ(P) = (qla"'aqmapla"'apm)' (19)

From here the small Greek letters: «,f,... denote spatial coordinates.
The capital Latin letters A,B,... (m+1 < A, B < 2m) correspond to
momenta coordinates.

Our aim is to construct the symplectic connection I;; on T* M which
includes Riemannian connection defined on the configuration space M. It
means that in every proper Darboux chart the coefficients I'7,5 are the
coefficients of the Riemannian connection.
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The following theorem holds

Theorem 2.1 For every proper Darboux chart (W,,¢,) in T*M there ez-
ists the connection fulfilling the equations (14) and containing the Rieman-
nian connection.

For example
1. I'kqp is Riemannian connection;
2. I'apy = I'ax1 = I'k15 = 0.
This construction works only in one chart 3.
From the transformation rule for the Christoffel symbols (compare [12])

- aql aqr 8q5 - 8qr a2qd
z’ljk(Qla---aQ2 ) = Q1 9QJ TQkFlrs(qla---an ) +wrda—QiW
(20)
and from (17) we can see that in the proper Darboux transformations

1. coefficients I'ky; transform like tensors. Indeed, all summands

g aqr aqu
"THQK 0QT0Q7

2 d

are 0 because the second derivative (95,273@ vanishes for arbitrary d.
Then coefficients

¢ dq" Og°

8QI GQJ GQK Irs
could be inequal 0 only if /,r, s are momenta coordinates. It means
that I'xjy for proper Darboux transformations transform like tensor
coordinates. If we put I'xr; = 0 for every K,I,J in one of proper
Darboux atlases, then they vanish in all proper Darboux atlases.

2. In the same way we can show that the coefficients I',7; transform like
tensors 4 if we put I'x7; = 0 for every K, I, J. There is no problem to
put I'nr7 = 0 for every o, 1, J.

3. For the Riemannian connection I’k nontensorial summands in (20)
do not vanish. Fortunately these summands depend only on coordi-
nates on the base manifold M. If the I'k;; = 0 and Iy;; = 0 for
every K,I,J and a, then coefficients I'k,p of the symplectic connec-
tion transform like the Riemannian connection on M.

3 Another symplectic connection has been built by I. Gelfand, V. Retakh and M. Shubin
[11].
4 Under proper Darboux transformations.
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4. The most difficult is to define coefficients I'yg,. Let {U,}oer be a lo-
cally finite open covering of M M. From the theorem of the partition
of unity there exists a partition of unity {f,},er corresponding to
{U,}oer- Using this we define I',3, by

def
Fozﬁ'y = ng(rocﬂ’y)ga (21)
o€l

where (I,g+), are coefficients given in the chart (W,, ¢,).

Thus we construct the symplectic connection on the phase space T* M
of the system for a paracompact base manifold M. Unfortunately this con-
struction is not unique because it depends on covering {U,},cr on M. We
are still working on this problem.

3. The generalized Weyl algebra V,

Let T* M be 2m—dimensional cotangent bundle over a smooth paracom-
pact manifold M. The space T* M has the natural symplectic structure. In
an arbitrary point p € T* M we define the formal series with respect to &
and X;, e ,Xgm.

o
0 Zﬁkak,il...ilXél "'XIZ;I k=0 (22)
1=0

For | = 0 we put a = h¥ay,.

We use the Einstein convention and we summarize with respect to re-
peating indices.

Symbols in the formula (22) mean:
h is a positive parameter;
X;, e ,Xgm are components of an arbitrary vector belonging of the tangent
space Tp(T*M) to the symplectic manifold T M at the point p. The com-
ponents X}}, .. ,Xgm has been written in natural basis (8%1-);, determined
by the chart (W), ¢,) so that p € W,;
ki ,...;i are the components of covariant tensor symmetric with respect to
indices (41,...,1%;), taken in the basis d¢" ® --- ® dg".

Note that series like (22) are scalars.

Our definition is different from that given in [9], [13]. Here ( like in [10])
the parameter A is used only in nonnegative powers.

Let V(X,) be a set of all elements a at the point p € T* M.

Theorem 3.2 The tetrad (V(X;),C,+,-) is the linear space. ®
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C denotes the set of complex numbers.
Define the mapping g : V(X;) — V(X})

1. 0
(a) dzefa<—§m”—‘? ) (23)
0Xi0X]

where « is the formal series characterizing the generalized Weyl ordering.
The covariant tensor 9% in the natural basis (aiqi)P ® (a%j)p, which is deter-
mined by the proper Darboux chart (W, ¢,), has the form

e 21

where 0 and 1 are m X m matrices: null and unity, respectively
(pD)*" = 2p, 1. (25)

Fgﬂ are components of the Riemannian connection on the configuration
space M and p, are the momentum components at p € T*M.

Theorem 3.3 The tensor 99 is invariant under the proper Darbouz trans-
formations.

Proof

Nontrivial is only the transformation for (pI")®?.

The new coordinates we denote by capital letters. Components of tensors
in the new chart are denoted by “’ .” Greek indices, as usually, run from
1 to m.

From the transformation rule

0P, dPs . Py dP5 . 0P, 9P

gratm.B+m ) ) 2 I 2
dq" dp: © * Opy OgF 7 * dpy Op: Prlne (26)
Using (17)
0P, aq”
= , 27
op, Q0 (27)
8q5 aQ"
— 47 )
and
OP;  0QT 9%¢” 0Q™ 92q¥ 0QE (29

9 0 007008 T ¢ 007008 dgv &
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From (27) and the transormation rules for the connection

OP, Bﬁ T _o dq" 0¢° 0QF
apy Ope 1T T T0Qo0QP dg7 ¢

dq7 0Q% 9Q%¥ _,, = dq7 9*Q°
g4 Y% Y% p )
8 <8Q9 ap o " 9Qe ogog i
(28), (29) and (30) give us
gloetm.B+m _ Qﬁanp + 2P, 4+ 2 g o¢° aQQg P (31)
9Q QP ag ¢ T T8 T T9Qa 998 agrag ¢
Using
0 (& 0q° _ 0" PQ° o 0@ Pq g
9Q~ \ 9¢° 9Q% )~ 9Q~ dq"0¢" QP 9gF IQ*IQP
we get finally
gotmitm —op, . (33)

We will write a4 instead of g(a). Notice that a4 are elements of V(Xj)
and they are scalars.
In the set V(X;) we define the new product “o(,)™

9)
def 4 _1 TS 82
aO(g)b— (6] ( 277,’19 78X}7;8X;>

00 . t
«3 <@) L g 'ag O g
—~\2) Xy - OXE OXY - XY

This product does not depend on the proper Darbouz chart. °.

The five (V(X}),C,+,+,0() is also the noncommutative algebra with
the unity. We will denote it by V,(Xp). The centre of this algebra are
elements (22) not containing X;.

Definition 3.3 The algebra Vy(Xp) is called the generalized Weyl alge-
bra.

The algebras V4(X;) differ between themselves by the multiplication
but they are isomorphic . We consider them separately because they give
different physical results.

® For a = 1, the formula (34) has the same form in every natural basis.
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Let us take the sum

def
V, S | V(X (35)
pET* M

The tetrad (V,, m,T*M) is the algebra bundle.

Definition 3.4 The n-differential form with value in bundle V, is
the form

(o0}
a= Z Ry iygrin(@ oo @™ XM X g A+ Ndg, (36)
1=0

where 0 < n < 2m.

Qe iy .oy oo (¢',...,¢*™) are smooth tensor fields symmetric with re-
spect to indices (i1,...,7;) and antisymmetric with respect to (j1,...,Jn)-
For simplicity we will omit names of variables (¢',...,¢*™) in Qe iy iy 1 i

(¢',...,¢*™). Product of two forms (36) we will denoted by “o(g)"-

The multiplication of forms is now the product “o(,” of elements of
algebra V, and the external product of forms. Let A" be a smooth field of
n— form on the symplectic manifold T* M. The forms (36) are elements of

the direct sum

V,® A% @2 (v, ® AM). (37)

( We denote the bundle and the cross section of the bundle by the same
symbol.)

Definition 3.5 The commutator of the forms a € V; ® A™ and b €
V, ® A™ s the form [a,b]\9) € V, ® A™1F72 defined by

[a, 019 © a0y b— (—~1)"1"™b o, a. (38)

Definition 3.6 The form a € V,®A is called central, if for every b € V,®A
the commutator [a,b]'9) vanishes.

In this sense only forms that do not contain elements X* are central in the
generalized Weyl algebra.
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Let us define two operators acting on the forms from the algebra V, ® A.

Definition 3.7 The operator § : V, ® A" — V, @ A" acts as

da

da = dq® A Xk

(39)

Definition 3.8 The operator §* : V, @ A" — V, @ A" ! is defined by the
relation 5
« def + k

One can eagily prove the theorem:
Theorem 3.4 The operators § and §*:
1. are linear;
2. their definitions do not depend on the chart;

3.
5 = (5)2 = 0; (41)

4. for monomials X* ... X"dg/' A... Ndg" for which I +n > 0 we have
00" +0%6 = (I +n)ld, (42)
where “Id” is the identity mapping. W
Let

5-1d§fli—n for [+n>0 and 6 €0 for [+n=0.  (43)

The following theorem holds

Theorem 3.5 Every form a € V4 ® A can be written as
a=065"a+d""6a + ago, (44)
where agg 1S a central 0—form.

The proof is a consequence of linearity of the operators § and §~! and the
fourth property from the theorem 3.4.
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Theorem 3.6 The operators § and o commute. So for every form a €
VA"
g(da) = da,. m (45)

This theorem is false for the operator 6.

Theorem 3.7 For every two formsa €V A™and b €V ® A™
d(ao(g) b) = (da) ogg) b+ (=1)""a oy (6b). (46)

Theorem 3.8 For every form a € V, ® A™
1 o
da = —[%winqu],a](g). | (47)
i

These theorems are the results of the definitions of the operator ¢ and the
linearity of the mapping g and the product “o(,”.

4. The abelian connection

Definition 4.9 The exterior covariant derivative 0 is the linear oper-

ator
VA" — VAT,

defined by the formula

00 Y dq" Nay, a€V® A (48)

The covariant derivative a.,

(o0}

k kyi1..90,1---Jn n

sy :Zh {%X“ L XNdgt A A dg
1=0

T ak iy i jn X XdgT A A dgm

QT

— oo =T g iy dgrg, X X0dg A A dan} o (49)

ur
S0
& oan i . i ) )
8a:th{WX“---X”dqr/\dqﬁ/\---/\qu"
q
1=0

-r Ahedinrigjooin XL X0dg" Ndg™ A -+ A dgi

ir
— T Ak iq...0_1 d,jl...anil Tt Xildqr A dqjl ARERNAN dan} . (50)

qr
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Theorem 4.9 For everya e VR A™M, beVRA
d(aob) =0aob+ (—1)" a0 db; (51)
dda+9dda=0. m (52)

The proof is a consequence of the linearity and the definitions of the opera-
tors § and 0.
Let d be the exterior derivative and let the 1— form I" be defined by

€ In X xidg. (53)

Note that the form I is defined in Darbouz coordinates.
It easy to see that in the Darboux atlas the exterior covariant derivative

8a:da+.l[F,a]. (54)
ih
The connection I is not a tensor but in every Darboux chart we can
multiply 8 1— form I" and the elements of the algebra V ® A.
Similarly as in the theory of vector bundles (see [12]) we define the cur-
vature of the connection I

Definition 4.10 2— form R

def 1
R=dI'+ —[I''T". 55
1s called the curvature of the connection I

In Darboux coordinates
R = jwim R}, X' X dg* A dg, (56)
where . .
jkl 8qk 8q1 it uk gkt ul -
From (54) and the definition 4.10 it is easy to see that for every form
a €V ® A™ the second exterior covariant derivative

1
; h[R’ al. (58)

In the previous paper ( [2]) we have showed that the mapping g is an iso-
morphism between algebras (II (i, C*(R%")), x(4)) and (I (h, C*(R®™")), ).
Here this mapping is also the isomorphism between V,(X,) and V(Xy). It
seems to be natural that the mapping g defines some relation between the
absoult covariant derivative 0 acting on forms from V ® A and the linear
operator 919 defined on the cross sections of the boundle V, ® A.

d(9a) = dq" A (dg® A a;s);r =dq" Ndq® N Qior =

6 In the sense of product “o”.
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Definition 4.11 The exterior covariant derivative 919 is a linear op-
erator

09V, @ A" — VY, @ A,
defined by
def
g(09a) = dag = dq" N agy. (59)

The following theorem holds
Theorem 4.10 For every a € Vo @ A", beV,® A

89 (a oy b) = 09Da oy b+ (—1)"a oy dDb; (60)

09sa 4 609a=0. m (61)

This theorem is a consequence of the theorems 3.6, 4.9 and the definition of
the operator 9).
Remark that

99a = g7 (9a,) P g7 (day + [ a,))

The difference (I'y — I') is a central 1— form so
09Wa = da+ g [Ty, a,) = da + [I',a)9). (62)

It is easy to check that

99 (09q) = [R a]®), (63)

ih

where 1
RY dr' + 5 [T, (64)

Definition 4.12 The connection I' in the bundle V, is called abelian, if
the exterior covariant derivative

1 -
DWa = da+ —ITI".al@

a=da+ ih[ ,al
fulfills the equation

DW(DWg) = [Q a9 =0 (65)

ih
for every a € Vy ® A where {2 is the curvature of the connection r

def P )
0 dF+2h[F @, (66)
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Formally the abelian connection is similar to the flat connection because
a.q = .45 for 1 < s,d < 2m. But its curvature can be central form different
from 0.

Using the symplectic connection given by 1— form I' (look (53)) we
construct the abelian connection I" in the bundle V.

We assume that the abelian connection I" is the sum (I" + ), where
v €V, ® A'. Now

DWq = da + %[F +v,a] (67)

for every a € V, ® A.

The curvature of the abelian connection from (64) and (66)

1
Q=R+09y+ E72’ (68)

where
2 def
Y= YOy 7

It is more convenient to write the equation (67) in the form
1
DWa = —ga+ 89a + E[T’ a)\9), (69)

where r € V, ® AL,
From the theorem 3.8

D =39 + =y X' +1,0]. (70)

Comparing (67) and (70) we see that
v = wij X'dg +r. (71)

The curvature (2 defined by (68) takes now the form

1 . . 1
2= i jda" Adg” + R = dr + 097 + —r?. (72)

The connection I is abelian iff £2 is the central 2— form. It means that
( see (72))

1
or = R+ 0Wr + %7’2 + A, (73)
i
where A is some central 2— form. From the Bianchi identity

DWW =0 (74)
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and the assumption that the connection I is abelian we get that

A2 =0. (75)
and, consequently,
dA = 0. (76)
The most general form of r satisfying (73) is
1
r=06"'"R+6'A+5" <a<g>r + E’"2> +48, (77)

where S = 6 !r is an arbitrary 0—form. From the formula (77) we can see
that 6 'r = S — Sgo, where Spp does not contain X*. There exists also a
bijection from the set of S's with So9 = 0 onto the set of 0— forms 0~ 'r,
where r fulfills (77).

We must prove that every solution of (77) for an arbitrary S such that
Soo = 0 fulfills the condition (73).

From (77)
1
r—08=06"or=06" <R +A+09p 4 %TQ) :
S0 ,
§r =R+ A+09r 4 ET2+F’ (78)

where F'is an arbitrary 2— form such that
SlF =0. (79)

If we prove that F' = 0, then we get the equation (73). It means that every
r fulfilling (77) is the solution of (73).
(78)

—6R — 6A — §(09r) — Sy, (80)

oF
ih

A is the central form so
0A = 0. (81)

Consider the last expression in (80).

1 (46) 1
6(ET2) = E(dr O(g) T — T O(g) OT)-

From the definition 3.5 of the commutator we get

L o

() = = or, ] = —fr, ). (2)

ih
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Now
§F = —0R — 6(09)r) + —[r, 6r]9). (83)

From the theorem 4.10

5(09r) = -89 (6r) (84)
and
0R = Ri1i2,j1j2Xi2dqi1 A dqjl A dqj2
iRiliQ’jleXil dqZ~2 N dqjl A dqj2
RiliQ’jleXildqu A dqj1 A dqj2
RilinleXil dqZ~2 N dqjl A dqj2

_|_ =

= N

+Ri1j2i2j1Xi1dqj2 A dqu A dqjl

+Riy g wia X g A dg® A dqi2) . (85)
Using the identity ( [12])

Rijri + Rijjik + Riggj = 0 (86)

we get
6R = 0. (87)

From (80)-(87) we can see that

L i, 61]9). (88)

— 99 il
0F =0 (6r)+m

This form of the equation is inconvenient for analysis. Let us modify (88).
DR = 1R i ju X X2dg" A dg?2 A dg!
= % (Ri1i2j1j2;lXi1Xi2dqjl A dqj2 A dql
+Riyistjrjy X 1 X 2dg! A dg? A dg”
+Risi o1 X X 2 dg” A dg' A dqjl) :

From the Bianchi identity

Rm'kl;m + Rm'mk;l + Rnilm;k =0 (89)



The Weyl-Wigner-Moyal Formalism... 195

we can see that
YR =0. (90)

The formula (90) is of course the Bianchi identity for the curvature R (com-
pare [12]) and it can be proved from (62) and (64) directly.
Using (63) we get

99 (09r) = —[R,r]W (91)
ih
From the theorem 4.9
a(g)(_iﬂ) = — [0, )@ (92)
ih )
It is easy to see that
[r, 729 = 0. (93)
The 2— form A is closed so
A9 A=0. (94)

From (90)—(94)

M7:6@<M—R—A—8@r—fﬁ>

1 ) 1 9 (9)
+E|:'I",5'I'—R—A—a T_ET]
1
= 9WF 4+ ﬁ[r’ F9). (95)

The most general shape 2— form F' which fulfills (95) is

F=5" <a<9>F + %[r, F]“”) : (96)

There is no element 66~! F because as we noticed earlier (the formula (79)),
§7'F =0.

The equation (77) determines the abelian connection iff F' = 0 is the
only one solution of (96).

Let r(l,n) denotes the component of r which contain Ai! and n elements
of X*.

The equation (96) has the only one iterative solution F' = 0 if »(0,0) =
r(0,1) = 0.

The 1—form r which fulfills this condition and the equation (77) gives
us the abelian connection.
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Let us solve the equation (77):
1
r=0"'R+0"A+5 109 + Er2) + 8.
i

The first term is (0, 2). Hence,

1. Ais the central form A(l,0) where [ > 0. We can see that the operator
0 is the only one component of » which does not contain h. The same
result has been presented in the paper [13];

2. We must put S(0,1) = 5(0,2) = 0. because of the conditions r(0,0) =
r(0,1) = 0. We remind that S determines 6~'r if Spg = 0.

Now the formula (77) is iterative and the first nonvanishing element
7(0,2) is determined by S.
For the Weyl ordering when « =1, =01 A =0,

1 o 1 o
r= gRijleZXijdql + %8mRijleZX3Xkadql 4 (97)

Next components also contain A.

5. The generalized Moyal product “x(4)” on the phase space T*M

Using the abelian connection I constructed in the previous section we
can define the generalized Moyal product “x5” on the curved phase space

T M.

Theorem 5.11 The set of forms a € Vy; ® A such that DWa = 0 is the
subalgebra VgD ® A of the algebra Vy @ A. ®

Let o(a) be a “projection” of a 0— form a € V, onto the phase space
T*M 1i.e., mapping which assigns to a its component that does not contain
X', ..., X?m. This mapping is unique.

The following theorem holds

Theorem 5.12 Every formal series A € II(h, C°(T*M)) on the symplec-
tic manifold T* M defines uniquely the element o~ '(A) of the boundle Vé)

such that o(o~1(A)) = A.

Proof
The condition D@ ¢ = 0 means (compare (69)) that

DWa = —da+089a+ %[7’, a9 =o, (98)
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so
1
sa=0Wq + = a)9). (99)
i
a is O—form so from the theorem 3.5 the most general form of the solution
(99) is
1
a=A+0"6a=A+0" <8(g)a+%[r,a](g)), (100)
i
where A % o(a).
This equation is similar to (77). Per analogy we can see that this is an
iterative equation with the solution determined by A.
The only problem is to prove that every solution of (100) fulfills (99).

a—Aa=5"5a"Y 57 (90q+ L, a)
i’
S0 .
ba =09a + = a9 + F, (101)
i
where F' is a 0— form such that
SIF =0. (102)
We will prove that F' = 0.
From (101)
F=6a—09a— %[r, a9 = —DWa. (103)
i

We do not know if DWga = 0 because the 0— form a is only the solution of
(100). But I' is the abelian connection. Therefore

DWFE = DW(DWg) = 0. (104)

It means that .
§F = 0YWF + [, F)9). (105)

?

From (102) we deduce that any F(k,0) (k > 0) vanishes. From the
previous section we know that the first nonvanishing component of r is
r(0,2). Calculating

F=¢6" <a(9)F + %[7‘, F]@)) (106)
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we find that F = 0. F = 0 is the solution of (105) too. It means that every
a defined by (100) fulfills (99). Thus we have proved that for every formal
series A € II(h,C*°(T*M)) exists one and only one a € VgD. [ ]

For the Weyl algebra V (=1 ), if r is defined by (97),

a = A+ @'AXi + %8iajAXin + %aiajakAXinXk

1 o
—ﬂRijklwlmamAXZXJXk + - (107)

Now we can define the generalized Moyal product on the curved phase
space.

Definition 5.13 Let A, B € II(h,C°(T*M)) be formal series defined on
the phase space T*M. The generalized Moyal product “x” of the
formal series A, B is defined by

A *(g) B def o (0_1(A) °(g) O'_l(B)) . (108)

The reasons which have decided that the product defined above is the
generalization of the Moyal product given in the phase space R®" are the
following ones:

1. For the phase space R%" the product defined by the formula (108) is
the generalized Moyal product defined in our previous paper [2];

2. In the classical limit 7 — 0 the product (4 is the usual multiplication
of formal series;

3. The product #(4) is nonabelian but associative;

4. The definition of the multiplication (108) is invariant under the proper
Darboux transformations.

The nontrivial is only the proof that for the phase space RS the product
defined by (108) is equivalent to the product (1).

Let us cover the space space R5" by the cartesian chart. In this chart
Tjr, = 0so I' = 0. It means (see (48) and (59)) that

09a = da = da. (109)
If we put S =0 and A =0 if R =0, then we get r = 0. From (100)

o HA) - A=¢6"tdo }(A)). (110)
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The solution of (110) reads

D I D S R
=0 d(q q
X Xl Xl g(ﬁn---XG’g, (111)
71 tlmes 16n Emes
where (q',...,¢%") are coordinates on the phase space R%". But this formula
is the expansion of A in the Taylor series at the point (¢',...,q%").

So o071 (A) = A(¢" + X1,...,¢°" + X®) and the same for o' B. For
every 1 <k < 6n

0 0
akA( +X1,...,q6n+X6”)—anA( + X1+ X, (112)
Now

1 9?
-1 -1 _ -1

() o) o7 (B) = <‘§’wmm)

o0 . k

X kE_O <5) leljl R wlk‘]k

8"“Ag(q1 +X1,...,q6” +X6") 8’“Bg(q1 +X1,...,q6" —|—X6")
% oXu ... 90Xk OXit ... 90Xk

(113)

We can change the derivatives with respect to X’ in the formula(112) by
the derivatives with respect to ¢'. We see that

oY A) oy o Y (B)=a"! _Lpgrs o
(9) - 9 aqraqs

< /in\F 1o .
XZ(E) Hw“]l...wlk]k

akA Jd+ XN+ X5 9FB (¢t + X, .., gB + XOT)

aq“ . 8qzk (9qj1 "-aqjk )
(114)
S0
AxgyB=0 (0" (A) oy, o (B) =a" lhﬁ o
2 (©) 2 0q"0q*
00 N k N n
> "L g i @ Agdhs - a™) 0" By(a's ™)
Pt 2 k! gt - - - Ogi Aot - - - Dgin

(115)
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Using the definition of the Poisson bracket we get finally

1 d* ih
_ -1 _ = rs
=« < 2h19 8q7“8q5) Agexp <—2 ’P) By, (116)

Note that we assumed that S and A vanish for R=10. m

6. Conclusions

The construction of the generalized Moyal product on the phase space
T* M shows that the symplectic connection on T* M is necessary to define
the product “x(4)”

The advantage of this formalism is that one uses the classical phase space
of the system. The quantum mechanics appears as a deformation of the
classical system with respect to the Planck constant / so the Weyl- Wigner-
Moyal formalism seems to be very helpful for approximate calculations.

From mathematical point of view all orderings (determined by the series
«) are equivalent. But they all give different physical results i.e., different
eigenvalues and the equation of motion.

This paper closes the series of papers devoted to mathematical founda-
tions of the quantum dynamics of the spinless nonrelativistic particle. The
main problems still waiting for the solutions are:

1. What kind of generalized function does represent the information about
the state of the system or what is the equivalent of the density matrix
on the phase spaces ?

2. Is quantum mechanics the only one deformation of the classical me-
chanics or there are many possibilities 7 If it is the only one which of
the series « is the physical one.

3. What does the integral form of the equation (108) look like? The
answer to this question is important when the generalized function of
the state is not the smooth function. This problem is probably closely
related to the fact that one cannot find the solution of the eigenvalue
equation for a rotator within the Moyal formalism (see for example [7]).
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