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Master equations governing the probability densities of the stochastic
processes driven by explicitly non-Markovian dichotomic noise are derived
and discussed. Such equations form the infinite hierarchy of equations for
different probability densities or correlation functions defined at more and
more time points. Approximations introducing decoupling of such hier-
archies are constructed. Applications to special cases: random telegraph
process and linear relaxation show that one class of approximations leads
in these cases to correct (exact) results.

PACS numbers: 05.40.4j, 02.50.Ey

1. Introduction

In applications of stochastic theory to various physical, chemical, biologi-
cal, etc. problems, the driving noises are assumed, almost without exception,
to be Markovian stochastic processes. However, in real systems where the
noise originates (at least partially) from the averaging out of very many fast
variables [1], we may expect that system variables form a kind of hierar-
chies, in which the “higher-level” variables are driven by “lower-level” ones,
the latter acting as driving stochastic processes. On the other hand, it is
well-known that (i) a stochastic flow X (¢) driven by Markovian white noise
is a correlated process, which may act as a colored noise, and that (7i) almost
any stochastic flow driven by a colored noise, even Markovian one, is a non-
Markovian process by itself. Therefore in many cases the Markovianity of
the driving process (e.g. of the internal fluctuations) is but an idealization.
On the other hand, non-Markovian stochastic processes are more difficult
to deal with than Markovian ones. This seems to be one of the reasons
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why in most of applications so far it is the Markovian processes which have
been used as the driving noises. Only very recently a few papers have been
published which deal with non-Markovian driving, either explicitly [2-5] or
implicitly [6-8]. Implicitly non-Markovian seem to be also harmonic or quasi-
monochromatic noises [9], interrupted Gaussian white noise [10], so-called
real noise [11] and composite noises [12] (at least for some realizations of
these processes). In the latter papers the non-Markovianity of the driving
noise neither has been discussed, nor its implications on the behavior of
driven processes worked out. Besides, specific properties of non-Markovian
processes constructed as stochastic flows driven by Markovian noises [13],
formal properties of stationary non-Markovian reversible measures [14], non-
Markovian Brownian motion [15], and non-Markovian oscillatory system [16]
were discussed. Again, these non-Markovian processes have not been used
as driving noises for other stochastic flows.

In the preceding paper [17] the present author proposed a systematic
theory of explicitly non-Markovian dichotomic noise (DN) with exponential
damping of the memory, and of its “white” limits. In Ref. [17] the general
properties of such noises have been found, together with preliminary dis-
cussion of the properties of processes driven by such non-Markovian noises.
It was shown in the subsequent papers [18] that the behavior of the relax-
ation processes driven by this noise exhibits some unexpected features and
is distinctly different from that of the process driven by Markovian DN.
In this paper we are going to discuss in more detail the master equations
governing the behavior of the probability densities describing the stochastic
flows driven by non-Markovian DN. This investigation is motivated by the
obvious observation that the non-Markovian (and in fact Markovian, too)
stochastic process can be used as a working model of the noise driving some
physical (chemical, biological, ...) process only when there is a workable —
exact or approximate — scheme of calculation of quantities of interest, one
of the latter being the probability functions describing the process under
consideration.

The asymmetric dichotomic noise (DN) £(¢), called also the random tele-
graph signal, is the random two-state process with zero mean:

£(t) € {A1,—Ao}, (1) = A%+ A€(t). (€() =0, (L1
where AQ = AlAQ, AO = Al — AQ.



Stochastic Flows Driven by Non-Markovian Dichotomic Noise 205

The specific, non-Markovian dichotomic process considered in Ref. [17]
is defined by the following non-Markovian master equation, fulfilled by ev-
ery probability IT({,t) = Mpy1(& 81,15 58n,tn), n > 1, 1 > tg =
max{ti,...,tn}:

t
II(A,t) = —IT(—Ag,t) = —/dt’K(t — ) [MIT(A1, #) — A II(—Ag, t')]
to
(1.2)
(overdot denotes d/dt). \; are parameters characterizing the process {(t),
which in the Markovian limit gain the interpretation of switching probabil-
ities (per unit time) between states £ = Ay and & = —As.

The noise £(t) will be fully defined when the initial conditions and the
specific form of the kernel K (7) are given. In preceding papers [12,17,18]
and in the following the initial condition is the obvious relation (uniqueness
condition):

I (6t =561, t1s -3 &notn) = Oee I (&nstrs - 5 6ny tn) (1.3)

and the kernel is assumed to contain both Markovian and non-Markovian
contributions (the latter with exponentially damped memory):

K(t—t) = y8(t —t') + 7y e V) (1.4)

However, part of the results obtained below remains valid for any form of
the kernel K (7).

In (1.4) the parameters vy and ; describe the relative contributions
of Markovian and non-Markovian parts, and v is the rate of damping of
the non-Markovian memory. Two different kinds of transition from non-
Markovian process £(t) to Markovian one are possible, viz. (1) non-scaled
transition of weights of both components:

Yv—1, v —0, v=const, (1.5)
and (74) scaled transition of the memory time:

n=01-y)v, v—oo, lim Kt—t)=43t-1). (1.6)
V—r 00
Both transitions are correct in the general case. However, when some ap-
proximations are being used, putting v9 = 1, v1 = 0 may lead to incorrect
Markovian limit, whereas the procedure (1.6) will lead always to correct
results.
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Dichotomic noise described by Eqgs. (1.2)—(1.4) is characterized by the
following two-point correlation function:

(E(t1)E(ta)) = A%(|t1 — L)), (1.7)

where

Q/J(t) = 1—'71[(01 — y) e*tglt _(02 _ V) e702t] ,
O12 =3+ A L), I'= V(A —v)2—dy A, A=)+ Xy, (18)

Properties of the non-Markovian process £(t) itself, and of related dis-
tributions, averages, etc. are given in detail in Refs. [12] and [17]. Here we
shall consider the equations for probability densities describing the stochas-
tic flows:

X = f(X) +g(X)E(t), (1.9)

driven by the non-Markovian DN £(#). Tt is to be noted that exact master
equations describing the time dependence of probability densities of pro-
cesses driven by dichotomic noises can be obtained only for the Markovian
DN’s [19,20]. In the non-Markovian case one must resort to approxima-
tions [12,17]. This paper is devoted to the systematic discussion of such
approximations.

The rest of the paper is organized as follows: Section 2 contains general
formulation of the hierarchy of master equations, whereas in Section 3 the
approximations decoupling this hierarchy are considered. One family of
these approximations is checked in Section 4 against the random telegraph
process and against linear stochastic flows (relaxation processes), and it is
shown — by comparison with exact solutions — that these approximations
lead in these special cases to exact results either for the probability density
P(z,t), or at least for the first moments of P(xz,t). In Section 5 some final
remarks are collected. The appendices list some properties of the functions of
the dichotomic noise, definitions of several auxiliary functions (probability
densities and correlation functions of higher order), the relations between
these functions, and details of derivations of some formulas. Last Appendix
is devoted to the detailed discussion of non-Markovianity of the dichotomic
noise discussed in this paper.

2. Hierarchy of master equations

2.1. General formulation

We shall consider general one-dimensional stochastic flows (1.9). More
general forms of the type of X = F(X,£(¢)), containing £(¢) in a nonlinear
fashion, can be reduced to (1.9) by the use of the property (1.1).
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We shall describe the flow (1.9) by the probability density P(x,t) that
at time interval (¢,¢ + dt) the value of the process X () lies in the interval
(x, z+dz) and by the joint probability density p(z, &4, t) that X (t) € (x, z+dx)
and £(t) = &,, a = 1,21

Pz, t) = (0(X(t[£]) — =), (2.1)
Pa(t) = p(x;&at) = (0(X (& [E]) — 2)0¢)6.) - (2.2)

The (Dirac) delta-function 0(X (¢,[¢]) — z) is the probability density for
k-th realization® of the stochastic process &(t) that at time interval (¢, + dt)
the value of the process X () lies in the interval (z,z+dz), and the averaging
is over all possible realizations of &(¢). Similarly, the (Kronecker) delta-
function d¢(y) ¢, is the probability for k-th realization of the stochastic process
&(t) that this process at time ¢ is in the state &,.

The standard method [19,20] leads to the following master equations for

pa(t) [17]:

Gpa(t) = —FELf(2) + a9 (@)]pa(t) — carolAipi(t) = Aapa(t)]
t
—eam1 / dt' ey (1) — Aoha(81)], (2.3)
to
where €1 = 1, 9 = —1, and the auxiliary function hg(t,t'), together with

several other auxiliary probability densities and correlation functions which
will be needed below, is defined in the Appendix A.
In the same way we find that the function hq(t,¢') fulfils the master

equation (cf. (A5)):
Dha(t, ) = — 2 f () halt, ) — Zg(@) O (1 [E]) — 2D )
— 55 [f (@) + 3 A0g ()] hat,t')
~D 2 g(x)[E1alt,t') — %aa(t, )], (2.4)
valid for ¢ > ¢ only. Here 2D = Ay + Ay, and the function 'kg,(t, ) is de-

fined in the Appendix A. This function fulfils the master equation containing
next higher-order auxiliary probability density, and so on. In general,

% mhﬂém(ta tma . ): —%[f(l‘) + %AOQ(I)]thC(t7 tma . )
—D2g(x) [mkla_,_(t,tm, ) = Thoe (s )] (25)

! To avoid confusion, we assume here the following convention: Greek subscripts will
denote states of a given realization of two-state process, Roman subscripts — different
realizations or different time moments of the same realization of the two-state process.
i.e., given definite series of switches between +A; and —A, at given specific times
0<ti<ta<...<tj<...<t.

2
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o m

5 ko (ttmy <) = =& (@) + Epg(2)] hpa...(t i, - )
t

—€B / dtm+1 K(t — tm+1) |:)\1m+1h1a___(t, Ti+1,-- )

tm

=" g, (s, )] (2.6)

where the relations from Appendices A and B have been used, and where
>t >

One may write down the above hierarchy of master equations in several
different equivalent forms. Most convenient for our present purposes is the
symmetric parametrization by functions R,,, Q. defined in the Appendix A.
This parametrization includes explicitly the master equation for the main
function of interest, i.e. the probability density P(z,t¢). By the use of the
definitions and of the relations (A5), (A6) we get (¢f. also Appendix B):

GP(x.t) = = Zf (@) P(z.) + g(2)Q(z,1)], (2.7)

5Q(. 1) = F[f (2) + Aog()]Q(, 1) — A* Fg(x) P(x, 1)

t
= VOAQ(Iat) - ’YIA/dtl e_y(t_tl) Ry (Iatatl)a (28)
to
and, in general,
SiBm = — & (@) R + 9(2)Qm] (2.9)
2 0m = —2 A — A22 g(2) Ry, — Y04
51 @m az1f (@) + Dog(2)]Qm 529(2) Rm — %0 4Qm

t
—’Yl/l/ dtpir e ") Ry (B b, -0 t) . (2.10)
tm

The solutions of the above equations will provide the probability densities
h, "k, Qm, Rm, as functions of  and of their first time argument, i.e.,
of the actual time ¢ only, and for ¢ > ¢, only, whereas the integrals in
Egs. (2.3), (2.6), (2.8), and (2.10) (written for lower-order densities) require
the knowledge of the densities ™h, R,,, as functions of their second time
argument, t,,, for t,,_1 < t,,, < t. The master equations for ¢,,-dependence
can be obtained in the same way as Eqgs. (2.3)—(2.10). However, the non-
Markovianity of the noise £(¢) implies that changes in the ¢,,-dependence
influence t-dependence. This implies in turn that, when differentiating with
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respect to t,,, the argument ¢ is to be written as ¢t = ¢, + 7, with 7 instead
of ¢ kept constant. Otherwise (i.e., keeping t=const) incorrect results will
be obtained (c¢f. Section 3.3).

Therefore we get:

3R (t, by tm 1, - . .) = =2 [f (@) R (b, by b1, - )
+g(I)Qm(t7 tma tmfla .. )] - ’YOARm(ta tma tmfla .. )

tm

—mA / dt' e O R (8t 1, ..., (2.11)

tm—1

0= Qi (b tms tm1, - ) = — 25 £ (2) + A0g(2))Qum(ts tms trn—15 - - )
—A? 2 g(2) R (ty tons tin—15 - - ) — 290 AQu (b, tis b1, - . )

t
—’}/1/1/ dtm+1 eiu(titm""l) Rm+1(t, 41, - - )

tm

tm

—mA / dt' e = Q! tmt, .. ) s (2.12)

tm—1

and analogous equations for ™h, ™k. In the same way the dependence of all
these densities on ¢,,_1,...%; can be obtained.

This means that for the non-Markovian case the standard procedure does
not lead to a closed set of equations describing the probability densities of
interest, but to an infinite hierarchy of equations (strictly speaking, to a
branched set of such hierarchies). To obtain a workable scheme of calcula-
tion, this hierarchy must be decoupled by some approximation. In Ref. [17]
we have proposed a simple approximation based on an ansatz. More sys-
tematic approximations will be discussed in the subsequent Section.

2.2. Differentiation theorem

The differentiation theorem for averages containing £(¢) can be obtained
in the same way as Eqgs. (2.8)-(2.10) (¢f. also Appendix B). It reads:

GF(X (8 [€). &) = (€W FF (X (t:[€). 1)

t
—A/dt'K(t — ) (F(X (t[€), ) )EW FF (X (E:[€), 1)) - (2.13)

to
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Namely, the basic definition of averages gives:

(F(X (5 [€]),1)E(1) = Z/dISaF(I,t)@(X(t; [€]) = 2)0¢(r).c0)

_ / s F (3, ) Avpr (2, 1) — Aopo(,1)] = / e F (2, Q1) , (2.14)

Dz Dy

and in the same way

(F(X (6 €]), DEW)) = / duF(x, )R, (1, 1) . (2.15)

Dy

In the above D, denotes the domain of z, i.e. the domain of the stochastic
process X ().

Eq. (2.13) is now obtained by differentiating (2.14), and taking into
account (2.10), (2.15) and the following property:

F(z,8) 7 {[f (2) + Aog(2)]Q(, 1) + A%g(2) P(z, 1)}
—F(I, £) g (E(6) X (D3(X (¢, [€]) — =)
= —(E(t) (X (1, [€]) — 2) F(X (t: [€]), 1)) + Q(x, 1) F F(x,1) . (2.16)

The theorem (2.13) is the generalization for the non-Markovian DN of
the Shapiro-Loginov theorem [21] stating that for any (Markovian) expo-
nentially correlated noise 7(t) of zero mean,

(2.17)

The Shapiro-Loginov theorem proved to be very useful in treating linear
stochastic problems [22-24], especially the systems of several linear kinetic
equations |22], and the linear stochastic equations with time-dependent coef-
ficients [24]. The application of differentiation theorem (2.13) will be demon-
strated in the subsequent Section.

2.3. Hierarchy of telegrapher’s equations

The hierarchy simplifies considerably for the random telegraph process:
X() =¢(1), (2.18)

i.e. when f(z) =0, g(x) = 1. In this case the auxiliary functions @Q,, can
be easily eliminated and the m-th order master equations become the m-th
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order telegrapher’s equation:
2 2 2
(% + ’)/0/1% + AOB?W — A2§?> Rm(.’L‘,t)
t
= 71‘/1% f dthrl e—u(t—tm+1) Rm+1($a ta thrla s atl) ) (2]‘9)
tm

with Ro(z,t) = P(z,t). In a similar way the hierarchy can be written for a
linear process and for some other special cases.

3. Approximation schemes

To obtain a workable scheme of calculations, the hierarchy of master
equations (2.5)-(2.6) or (2.9)-(2.10) must be decoupled in some way. There
are two obvious systematic approximations which can be applied to achieve
this goal: weak noise and short-memory expansions.

3.1. Weak-noise expansion

The condition for weak noise reads:
KB <1, e, A2<1. (3.1)
Therefore, from Eqgs. (A3), (A4):
Qm < Ry, Ry < Ry, (3.2)
which enables us to neglect the second term of the r.h.s. of Eq. (2.9) at

the prescribed level of the hierarchy (which corresponds to the prescribed
approximation order), so that we get in the m-th-order approximation:

Rm(t,tm,...)%exp{—a%f(m)(t—tm)}Qm,l(tm,tm,l,...). (3.3)

At the same level, we have, by virtue of Egs. (Al), (A2), and (A5),
equivalent approximations:

mka ~ Pst,amha ) (3'4)
which leads eventually to the m-th-order approximation:

"he. (tytm, . ..) = exp{—2 f(z)(t — tm)} ™ %a..(tmstm-1,...) . (3.5)
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Zero-order approximation of this kind:

2 P(a,t) = — £ f ()P, 1), (3.6)

or equivalently
%pa(t) = _%f(m)pa(t) ’ (37)

is equivalent to the deterministic description. First-order approximation
gives:
Gipa(t) + 1 (2) + €ag(2)]pa(t) = —ear0[Mip1(t) = Aopa2(D)]

t
, 0 '
—Ea1 /dt'eu(tt)e_amﬂm)(t_t )P\lpl(tl) — Xapa(t)], (3.8)

to

GQ(,) + L f (x) + Aog(@)]Q(z, 1) + A*Fg(x) Pz, 1)

ot
L 0
—Mwmﬂﬂm/wfmﬂe%mm”Qmﬂ,@m

to

1.e., after removing the integral:

v+ &+ 2@ [5+ 2 (/@ +tag@) pa®

= —£q [’YOV + v+ 72 f(z) + ’YO%} [Ap1(t) — Aopa(t)], (3.10)

2 (@) + Bog(@)) +704] Q1)

v+ g+ 2rw|{[a+2
+A2%g(x)P(x,t)} — o AQ(x,1) . (3.11)

The last of these equations is to be supplemented by Eq. (2.7). Tt will be
shown below (Section 4) that this first-order approximation leads to correct
(exact) results for linear flows. The same procedure can be applied at the

m-th hierarchy level.

3.2. Short-memory expansion

)+ 55 [f () +209(2)]Q(x, )+ A% Fg(x) P(a, t)+70/1Q((§,1752))
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Acting N times by the operator (v 4+ 9/0t) on Eq. (2.8) we get:

(1/ + %) NW(m, t)

N—-1 N-2 _
= Ay <u+%) +(u+%) %+...+%]Q(m,t)
t
-y / at =) 0% R (1,11 (3.13)
to

In the short-memory limit: v = 1/7,, — oo, and for N — oo, we get the
short-memory expansion:

o.¢]
W(a,t) = —Am Yy o G Q(a.t), (3.14)
n=0
or, with the scaling (1.6),

oo
%Q('xa t) =+ ’YleA Z T%%Q(iﬁ, t)

n=1
= —AQ(x,t) — F[f(z) + Aog()]Q(z, 1) — A* Fg(z) P(a,1) .(3.15)

However, the results obtained in Refs. [18] suggest that qualitatively
the influence of non-Markovian DN with short memory is similar to that
of Markovian DN. Therefore this expansion seems to be of little practical
value.

3.3. Other approximations

Another type of seemingly obvious method of decoupling the hierarchy
of master equations is to neglect the last (expressly non-Markovian) term in
the hierarchy equation Eq. (2.10) (this is equivalent to putting R,,+1 = 0 at
the m-th order approximation). However, this leads to manifestly incorrect
results even for the random telegraph process — we have checked this fact
numerically up to 4-th order, obtaining both P(z,t), and its second and
fourth moments diverging strongly from exact results.

Another type of approximations, related to the ansatz approximation
(4.17) of Ref. [17], can be obtained by neglecting the non-Markovian char-
acter of the process £(t) in Egs. (2.11)—(2.12). In this case we get:

tm
5 St tm, . ..) = _At [ dt' K(t—1)Sm(t,1',...) (3.16)
m—1
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with solution:

S (s tons b1, - - -)
= (tm—tm—1)[A%Sm_o(t, tm—o,...) + AoSm—1(t, tm_1,...)], (3.17)

where S,, = R, Qm. Neither these approximations, nor more naive ansatz
ones of the type of Eq. (4.17) of Ref. [17]:

M e (bt s tms - - 2) = A2P(t — tis1) "ha.. (bt tms ---) s (3.18)

Rt (b tms 1, by - - ) = A2(t — b 1) Qo (b1, s - - ) (3.19)

give correct or near-to-correct results for simple flows considered in Sec-
tion 4, although the second-order approximation (3.19) produces correct
(up to numerical accuracy, at least) result for the second moment (X2(t)),
and reasonable results for P(x,t), for the random telegraph process.

4. Special cases

In a few simplest cases the probability density P(z,t), or at least its
first moments, can be calculated directly and exactly. In this Section we
shall discuss three such cases, the sole purpose being the demonstration
that the approximation (3.11) leads in these cases to correct (i.e. identical
with exact) results. For the sake of simplicity, only symmetric (49 = 0) DN
will be considered. Note that the solutions for the flows (4.3), (4.10), and
(4.20) driven by Markovian DN, are well-known. The details of solutions for
these flows driven by non-Markovian DN can be found in Refs. [17-18|.

In the following we shall make use of the general expression for the
characteristic function T'(k,t) of the stochastic process (1.9):

T(k,t) = | dz e*® P(z,t) = ( FXD ) (4.1)
D{ (")

where D, denotes the domain of z, equal to the domain of the physical
process X (t). The above expression is related directly to the definition
(2.1) of P(z,t) by the well-known Fourier representation of the Dirac delta-
function:

1 i
P(z,t) = ﬁ/ dk e *e (kXY for z € D,

=0 otherwise . (4.2)
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4.1. Random telegraph process

Consider the symmetric (A¢ = 0) random telegraph process:
X(t) = f(t) y Dy = (—OO, +OO) ) (43)

driven by non-Markovian DN £(¢). It was shown in Ref. [17] that the
behavior of this process differs from that driven by Markovian DN: among
others, the transients oscillate in wide range of noise parameters v, A.

The average (4.1) for the process (4.3) can be calculated in a straight-
forward way [12]| (cf. also Appendix C):

etk X (t Z s et (4.4)

S1 = (Zl + 91)(21 + 92)/(21 - ZQ)(Zl - 23) y (45)
etc., and z; are the solutions of Eq. (C6) (with a = ik):
234 (61 + 02)2% + (0102 + k2 A?)z + vE* A% = 0. (4.6)

On the other hand, Eqs. (2.7) and (3.11) reduce in this case (f = 0,
g = 1) to an equation which reads after Fourier transforming:

d3 d? d
(dt3+AE+Bdt+C> (k,#) =0, (4.7)
A=60,4+6,, B=00+kA% C=vA%?, (4.8)

the solution of which is just the exact result above for the following initial
conditions:

T(k,0) =To(k), T(k,0) =0,  T(k0)=—k>A>Ty(k). (4.9)

These conditions result from the obvious initial condition Q(z,0) = 0,
from Eq. (2.8) differentiated with respect to ¢ and from Eq. (2.9), and there-
fore contain no approximations.

4.2. Multiplicative linear relaxation
Consider now the stochastic flow
X(1) = —aX () + £ X (t), Dy =[0,00), (4.10)

discussed in detail — in various contexts — in Refs. [18]. It was shown
there that the behavior of the process (4.10) driven by non-Markovian DN
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differs significantly from that driven by Markovian DN: new transient most
probable states may appear, average values may become non-monotonous
functions of time, stochastic resonance may appear, etc.

In this case Eqgs. (2.7) and (3.11) read:

(% - a%x)P(m,t) = —%xQ(m,t), (4.11)

(% +v— aa%m) [(% +y0A— a%x) Q(z,1) +A2a%mP(m, t)] = —7AQ(z,1).

(4.12)

Multiplying first of these equations by x, second by m%m, and eliminat-
ing the function Q(x,t), we get, after some rearrangements:

{]_53 + (61 + 92)]_52 + [0102 — A? (m%)Q]ﬁ —vA? (m%f}xP(m,t) =0,

D= % - axa% . (4.13)

Assuming that P(z,t) together with its first three z-derivatives goes to
zero for  — oo rapidly enough, i.e. that
n

0
lim 2" P(z,t) =0= lim ™ —P(z,t), n=1,2,3, m=0,1,2,...
T—00 T—00 rn
(4.14)

we get
(™ (t)) = /dmxm P(x,t) = (—1)"/dacanm1 (x%)nxP(x,t). (4.15)
0 0

Therefore, multiplying Eq. (4.12) by 2™~! and integrating over = we get
the kinetic equation for m-th moment of P(z,1):

[(% +ma>3 + (61 +02)<% +ma>2

(6,0, — mA?) (% + ma) - myAQ} (X™(#)=0.  (4.16)

On the other hand, by direct integration of the stochastic equation (4.10)
we obtain:

(X™(t)) = e ™M $6n< exp [m /t dt’f(t’)} > = e mat g 23: Smj €°mit
: " (4.17)



Stochastic Flows Driven by Non-Markovian Dichotomic Noise 217

with s,,; given by Eq. (4.5), and z,; given by Eq. (C6) with @ = m. It is
easy to check that the above expression is the solution of Eq. (4.16) with
initial conditions equivalent to conditions (4.9):

(X™(0)) = a5, FHX™(D)) i = ey’

& X)) =&+ a?)af (4.18)
Therefore Eq. (4.13) correctly reproduces all moments of P(x,t), i.e., repro-
duces correctly P(z,t) for linear process with multiplicative noise. P(z,t)
itself can be calculated directly by noting that Eq. (4.10) can be transformed
into Eq. (4.3) by putting y = Inz + at. Therefore P(z,t) for multiplicative
linear process, z € [0, 00) is given by P(y,t), y € (—o0, +00), i.e.,

“+o00o
1 .
P(z.t) = o / di; e"knatat) pp 4y - 2 >0, (4.19)
—0o0

with T'(k,t) given by Eq. (4.1)—(4.4).

4.8. Additive linear relazation

Consider the linear relaxation driven by additive symmetric non-Marko-
vian DN: ]
X(t) = —aX(t) +£(t), Dy=(—00,00), (4.20)

discussed in Ref. [17]|. Again, properties of this flow differ significantly from
those of such process driven by Markovian DN.

In this case the probability density cannot be calculated directly by the
procedures of Appendix C. It is possible, however, to calculate first few
moments of the process (4.20). The first moment is just

z(t) = (X(t)) =e " xq, (4.21)

the second one:
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t

(1) = (X°(1)) = 2°(t) +/dt1/dtz e~ TR (g (1)E (1))
0

0
t t1
= z2(t) +24? / dt / dty et h=t2) gy — 1)
0 0
2 2(, —
_ mQ(t) N A%(a+v) 2A%(a —v) o2t
ala+61)(a+62)  ala—61)(a—069)
2A2 vV — 01 —(a+01)t vV — 92 —(a+02)t

etc. On the other hand, such quantities can be also calculated as follows.
Define:

z(t) =(X(1), y(t) = (X(DE®),  2(t) = @o(t) = (X2(t)) . (4.23)
This leads to the set of kinetic equations (¢f. Appendix B):

T = —ar, (4.24)
Z = —2az+2y, (4.25)

§ = (XE4+XE) = —(a+yd)y+A%—714 / dt' e VU X (1)) . (4.26)
0

The approximation (3.2) gives:
o

(X()ER)) = /dmel(ac,t,t')

0
o0

O
~ /dm =027 Q(, '), (4.27)
0

= M g (X (V1) (4.28)

Note that the interpretation of the form (4.28) is given by (4.27). Assuming
that Q(x,t) together with all its logarithmic derivatives vanishes sufficiently
rapidly at £ — oc:

m
lim (x%) Q) =0, m=0,1,2,..., (4.29)

T—00
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we get (1=t —1t):

ST X ()W) = [ dow oI Q(a, )

n=0
@D [ o
—;%m<1)!dan

Therefore,
¢
§=—(a+yA)y+ A% —y4 / dt' e+t g 41y
0

with the solution:

y(t) = Co+ Cre Mt 4 Cye H2t

A%(v +a)

i = 9'5 Co = )
i = ot = a1 0)at )
A291—V A2 HQ—V
O =S =2

I a4+ 06 I' a+ 65
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(4.30)

(4.31)

(4.32)

(4.33)

This result substituted into Eq. (4.25) for z leads to the correct expression
for the second moment, Eq. (4.22), which proves that the approximation
(3.2) leads to the correct results for the linear relaxation driven by non-
Markovian additive DN, at least up to second moment of the probability

density.

5. Final remarks

As we have mentioned in Section 1, part of the results obtained in this
paper do not depend on the detailed form of the kernel K(7) in the general
non-Markovian master equations. These are, especially: the general form of
the differentiation theorem, Eq. (2.13), and general forms of the hierarchy
of master equations, Egs. (2.5)—(2.6). Other forms — viz. Egs. (2.3), (2.10),
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(2.12), (2.19), the approximations (3.12), and like, can be easily cast into the
form containing general kernel K (7). On the other hand, the specific results
are true only for the kernel (1.4) — esp. Section 3.2, the equations with
removed time integral, e.g. Egs. (3.10)—(3.11), (4.7) (4.12), (4.13), (4.16),
etc., the averages (4.4), (4.17), (4.22), and like.

For the derivation of formulas (4.4)—(4.6) (and the formulas of Appen-
dix C) crucial is the formula (C2) (Eq. (3.11) of Ref. [17]). Assumptions
about initial conditions and about behavior of P(z,t), Q(x,t) for z — oo
seem to be justified by the fact that they lead to correct (i.e. identical with
exact) results. The same can be said about the radius of convergence of the
weak noise expansion, which is difficult to estimate otherwise.

Minimal requirements for the approximate equations seem to be: (i) they
should be simple enough to enable practical applications (calculations);
(73) they should lead to correct or almost-correct results in simpler cases
and/or in well-defined limits. These requirements seem to be satisfied by
approximation (3.10)—(3.11), or its higher-order generalizations (3.3),(3.5).
All m = 1 approximations of this type lead to correct (exact) results for the
random telegraph process and for linear stochastic processes. As we have
mentioned above, other types of approximations, although similar at first
sight to those generated by (3.3)-(3.5), lead to manifestly incorrect results.

The approximations (3.10)—(3.11) have been checked against simplest
stochastic flows only. For nonlinear kinetic equations these approximations
may turn out to be not so satisfying. Nevertheless, the dichotomic noises
are powerful tools mainly for linear systems [22-24|. Therefore the approx-
imations proposed in this paper seem to be of practical significance.

Appendix A
Definitions of and relations between auxiliary functions

We introduce the following auxiliary and higher-order distributions (den-
sities), which will be of use below, for hierarchy of master equations describ-

ing the non-Markovian case:
"hp...alttm - t1) = (6(X (2 [¢]) - x)dﬁ(tm),gﬂ--'dﬁ(h)&a) (A1)
Koyp...altstm, - 1) = (6(X (4 [€]) — 2)0¢(t).¢, Oe(tm).cs - - Oe(tr) 0 )s (A2)
Rn(t,tm, - 1) = (6(X (2, [6]) = 2)&(tm) ... £(F1)) (A.3)
Qm(t;tm, - 11) = (6(X(,[€]) — 2)E(B)E(Em) - - £(81)) (A.4)
t >ty > >t1, and Ry = P(t) = b, Qo = Q(t), 'ha = ha-

3 To keep the notation short, the explicit indication of the dependence of these functions
onzx,&y..., etc., is omitted.
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The definition (1.1) of DN implies that
Ea A

6§(t),£a = Pst,a + ﬁf(t) s Pst,a =P (fa) =1- ﬁa (A5)
AQ Al
&) = 2D[dew,a, — 55] = 2D |bet, -2 — 575
1
= 54 +D |:5§(t),A1 - 55(15),ng} : (A.6)

where €1 = 1, e9 = =1, D = (A; + Ag)/2. This leads to the following
relations (sum rules) between these various probability densities:

p1(t) + pa(t) = b (8, 1) + ha(t,¢') = P(2), (A7)
1k1,ﬂ (ta tl) + le,ﬂ (ta tl) = h’ﬂ (ta tl) ; lkﬂ,l(ta tl) + 1k,3,2 (ta tl) = Pp (t) ; (As)
Thig..alt tm, .. t1)+"hog. ot tm, ... t1) :milhﬁ...a(ta tm—1,.--t1), (A.9)
"E1g. ot tms - t1) + "koga(titm, o t1) = "hg a(t, tm, .- 1), (A.10)
Oka :pa(t)a Oh:P(t)a (All)
Aipi(t) — Aopa(t) = Q(2), (A.12)
Arhy(t, 1) — Agho(t,t') = Ry(t, 1), (A.13)
€
Ar'E1o (8, 1) = As'koa(t, 1) = Py,aQ(t) + %Ql(tatl) ; (A.14)
Aot (8,) — Apkas(t, ) = PyaRi(t,t) + %Ql(t, £y, (A.15)
€
pa(t) = Pst,aP(t) + _aQ(t) ) (AlG)
2D
ha(t,t') = PyoP(t) + 2’5—;‘) Ri(t, 1) . (A.17)
We have also the following boundary conditions:
lha (tla tl) = poc(tl) » 1kﬂa (tla tl) = 5/3apa (tl) ) (Alg)
Ri(t' ) =Qt), Qu(t'.t") = A*P(t') + AQ(t), (A.19)
Ryt tytm—t .- t1) = Quu—1(tstm—1...t1), (A.20)
Qm(t, tytm—1 .- tl) = A2Rm_1(t, t—1--- tl) + A()Qm_l(t, tm—1--- tl) .
(A.21)

These functions may serve for calculation of various averages —
of. (2.14), (2.15).
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Appendix B

Deriwation of master equations

Master equations of Section 2 can be also derived by the method due to
Haken [25]:

2P(@,1) = ZOX® ) - o) = (550X (1) - 2)X (1))

21(5.1) = (Lm0 (X (516D ~2)X (1)) a, )+ (5K (0 [€]) ) &0y 2, )

—/dth(t—tl) (O(X (& [€]) = =) [ Mgy, 2, — X2Oe1r),— 0] ) - (B-2)

to

which leads directly to Eqs. (2.3) and (2.7). Here use has been made of
the well-known properties of the Dirac delta-functions. In particular, the
distribution %6(X(t) — ) f(x) is equivalent to the distribution f(X(t))%
d(X (t)—z): multiply both distributions by a trial function ¢(z) and integrate
(by parts) over a small interval around 2 = X (t); in both cases the result is
—f(X)[dq(X)/dX], which proves the equivalence.

Besides, in the same manner we have:

GO (8 [€]) —)E(1)) = — 5 (6 (X (: [€]) ) X (£)€ (1)) +(5(X (8 [€]) —x)é(](gt)g),

which, compared with Eqs. (2.8), (2.3), (B10), (A4) and (A5) gives

t
(B(X(#:[€]) - 2)E(t) = —A/dt'K(t — )X (L [E]) —=)E(E)).  (BA)

to

The above relation can be generalized to averages containing arbitrary
function of time (cf. also Eq. (2.13)):

G(F(E®) = (F)EW) — Atft dt’' K (t — ') (F(£)$(t')) - (B.5)
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Appendix C
Derivation of the formula (4.4)

For the sake of completeness, we present here the derivation of the aver-
ages of the type of (4.4), given in Ref. [12].

For symmetric DN (4¢ = 0):
- 1+Z /dtl---/dtn<£(t1 +t0) ... E(tn +10))

T

a/dt’g(t’ + o)

0

At to; ) = <exp

t
a/dt'ﬁ(t')] >: <exp
to

= 1‘1‘2 /dtl/dt2 /dtn £t +t0)é(t2 + to). - .£(tn + t0))

0
S1 tm—1 Sm
— 1+Z anAQm/dsl/dm/;(sl—tl).../dsm/dtm¢(sm—tm).
m=1 0 0 0 to

(C.1)

In the above, the following property (Eq. (3.11) of Ref. [17]) of averages
of the products of symmetric DN’s (both non-Markovian and Markovian®
has been used:

(€(t1) .. E(tn)) = A%P(t1 — 1) (E(t3) .. . E(tn)), 1 212> ... 2 ty. (C.2)

Using the Laplace transform and its well-known properties [26] we get,
subsequently:

0 T t1

$1(2) = /dT e " /dtl /dt2 Pt —t2) = Z%@(Z)
0 00

zZ+v
T 21 00)(z+0) (C.3)

4 This property, and some other, resemble those of Markovian DN. This is the result
of the initial conditions (1.3) used in Ref. [17]. Other properties — e.g. the form of
two-point correlation function, Eq. (1.7) — are distinctly non-Markovian. Especially,
the conditional probabilities do not satisfy the Smoluchowski—-Chapman—Kolmogorov
functional equation [20,27,28].
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oo T S1 t1 S
/dT e *7 /dSl /dtl ’(ﬁ(Sl — tl) /d82 /dtg QlJ(SQ — tg)
0 0 0 0 0
i —2T 1 / I - 2
= [dre™™ — [t (T —t)¢i(t) = S[¥(2)] (C4)
0 0
etc., which leads eventually to:
" 1 1S m 1
A(z) = —+ —Z[W /2] =
z o zA= z — a?A%)(z)
(2’ + 91)(2’ + 92)
= , C.h
(z—21)(z — 29) (2 — 23) (C5)
where z; are the solutions of the cubic equation:
23 4 (01 4 09)2° 4 (6102 — oAz — va’A? = 0. (C.6)

[1]

2]

3]

[4]

[5]
[6]
7]
18]

The inverse Laplace transform of the above gives the formula (4.4)—(4.5).
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