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STOCHASTIC FLOWS DRIVEN BY NON-MARKOVIANDICHOTOMIC NOISE�A. Fuli«skiM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: fulinski�jetta.if.uj.edu.pl; http://zfs.if.uj.edu.pl(Re
eived January 6, 1999)Master equations governing the probability densities of the sto
hasti
pro
esses driven by expli
itly non-Markovian di
hotomi
 noise are derivedand dis
ussed. Su
h equations form the in�nite hierar
hy of equations fordi�erent probability densities or 
orrelation fun
tions de�ned at more andmore time points. Approximations introdu
ing de
oupling of su
h hier-ar
hies are 
onstru
ted. Appli
ations to spe
ial 
ases: random telegraphpro
ess and linear relaxation show that one 
lass of approximations leadsin these 
ases to 
orre
t (exa
t) results.PACS numbers: 05.40.+j, 02.50.Ey1. Introdu
tionIn appli
ations of sto
hasti
 theory to various physi
al, 
hemi
al, biologi-
al, et
. problems, the driving noises are assumed, almost without ex
eption,to be Markovian sto
hasti
 pro
esses. However, in real systems where thenoise originates (at least partially) from the averaging out of very many fastvariables [1℄, we may expe
t that system variables form a kind of hierar-
hies, in whi
h the �higher-level� variables are driven by �lower-level� ones,the latter a
ting as driving sto
hasti
 pro
esses. On the other hand, it iswell-known that (i) a sto
hasti
 �ow _X(t) driven by Markovian white noiseis a 
orrelated pro
ess, whi
h may a
t as a 
olored noise, and that (ii) almostany sto
hasti
 �ow driven by a 
olored noise, even Markovian one, is a non-Markovian pro
ess by itself. Therefore in many 
ases the Markovianity ofthe driving pro
ess (e.g. of the internal �u
tuations) is but an idealization.On the other hand, non-Markovian sto
hasti
 pro
esses are more di�
ultto deal with than Markovian ones. This seems to be one of the reasons� This work was partially supported by the Polish KBN grant No 2 P03B 209 08.(203)



204 A. Fuli«skiwhy in most of appli
ations so far it is the Markovian pro
esses whi
h havebeen used as the driving noises. Only very re
ently a few papers have beenpublished whi
h deal with non-Markovian driving, either expli
itly [2-5℄ orimpli
itly [6-8℄. Impli
itly non-Markovian seem to be also harmoni
 or quasi-mono
hromati
 noises [9℄, interrupted Gaussian white noise [10℄, so-
alledreal noise [11℄ and 
omposite noises [12℄ (at least for some realizations ofthese pro
esses). In the latter papers the non-Markovianity of the drivingnoise neither has been dis
ussed, nor its impli
ations on the behavior ofdriven pro
esses worked out. Besides, spe
i�
 properties of non-Markovianpro
esses 
onstru
ted as sto
hasti
 �ows driven by Markovian noises [13℄,formal properties of stationary non-Markovian reversible measures [14℄, non-Markovian Brownian motion [15℄, and non-Markovian os
illatory system [16℄were dis
ussed. Again, these non-Markovian pro
esses have not been usedas driving noises for other sto
hasti
 �ows.In the pre
eding paper [17℄ the present author proposed a systemati
theory of expli
itly non-Markovian di
hotomi
 noise (DN) with exponentialdamping of the memory, and of its �white� limits. In Ref. [17℄ the generalproperties of su
h noises have been found, together with preliminary dis-
ussion of the properties of pro
esses driven by su
h non-Markovian noises.It was shown in the subsequent papers [18℄ that the behavior of the relax-ation pro
esses driven by this noise exhibits some unexpe
ted features andis distin
tly di�erent from that of the pro
ess driven by Markovian DN.In this paper we are going to dis
uss in more detail the master equationsgoverning the behavior of the probability densities des
ribing the sto
hasti
�ows driven by non-Markovian DN. This investigation is motivated by theobvious observation that the non-Markovian (and in fa
t Markovian, too)sto
hasti
 pro
ess 
an be used as a working model of the noise driving somephysi
al (
hemi
al, biologi
al, : : :) pro
ess only when there is a workable �exa
t or approximate � s
heme of 
al
ulation of quantities of interest, oneof the latter being the probability fun
tions des
ribing the pro
ess under
onsideration.The asymmetri
 di
hotomi
 noise (DN) �(t), 
alled also the random tele-graph signal, is the random two-state pro
ess with zero mean:�(t) 2 f�1;��2g ; �2(t) = �2 +�0 �(t) ; h�(t)i = 0 ; (1.1)where �2 = �1�2, �0 = �1 ��2.
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i�
, non-Markovian di
hotomi
 pro
ess 
onsidered in Ref. [17℄is de�ned by the following non-Markovian master equation, ful�lled by ev-ery probability �(�; t) � �n+1(�; t; �1; t1; : : : ; �n; tn), n � 1, t � t0 �maxft1; : : : ; tng:_�(�1; t) = � _�(��2; t) = � tZt0 dt0K(t� t0)[�1�(�1; t0)� �2�(��2; t0)℄(1.2)(overdot denotes d=dt). �j are parameters 
hara
terizing the pro
ess �(t),whi
h in the Markovian limit gain the interpretation of swit
hing probabil-ities (per unit time) between states �1 = �1 and �2 = ��2.The noise �(t) will be fully de�ned when the initial 
onditions and thespe
i�
 form of the kernel K(�) are given. In pre
eding papers [12,17,18℄and in the following the initial 
ondition is the obvious relation (uniqueness
ondition):�n+1(�; t = t1; �1; t1; : : : ; �n; tn) = Æ�;�1�n(�1; t1; : : : ; �n; tn) ; (1.3)and the kernel is assumed to 
ontain both Markovian and non-Markovian
ontributions (the latter with exponentially damped memory):K(t� t0) = 
0Æ(t� t0) + 
1 e��(t�t0) : (1.4)However, part of the results obtained below remains valid for any form ofthe kernel K(�).In (1.4) the parameters 
0 and 
1 des
ribe the relative 
ontributionsof Markovian and non-Markovian parts, and � is the rate of damping ofthe non-Markovian memory. Two di�erent kinds of transition from non-Markovian pro
ess �(t) to Markovian one are possible, viz. (i) non-s
aledtransition of weights of both 
omponents:
0 ! 1 ; 
1 ! 0 ; � = 
onst ; (1.5)and (ii) s
aled transition of the memory time:
1 = (1� 
0)� ; � !1 ; lim�!1K(t� t0) = Æ(t� t0) : (1.6)Both transitions are 
orre
t in the general 
ase. However, when some ap-proximations are being used, putting 
0 = 1, 
1 = 0 may lead to in
orre
tMarkovian limit, whereas the pro
edure (1.6) will lead always to 
orre
tresults.



206 A. Fuli«skiDi
hotomi
 noise des
ribed by Eqs. (1.2)�(1.4) is 
hara
terized by thefollowing two-point 
orrelation fun
tion:h�(t1)�(t2)i = �2 (jt1 � t2j) ; (1.7)where  (t) = ��1[(�1 � �) e��1t�(�2 � �) e��2t℄ ;�1;2 = 12 (� + 
0�� � ) ; � =p(
0�� �)2 � 4
1� ; � = �1 + �2 : (1.8)Properties of the non-Markovian pro
ess �(t) itself, and of related dis-tributions, averages, et
. are given in detail in Refs. [12℄ and [17℄. Here weshall 
onsider the equations for probability densities des
ribing the sto
has-ti
 �ows: _X = f(X) + g(X)�(t) ; (1.9)driven by the non-Markovian DN �(t). It is to be noted that exa
t masterequations des
ribing the time dependen
e of probability densities of pro-
esses driven by di
hotomi
 noises 
an be obtained only for the MarkovianDN's [19,20℄. In the non-Markovian 
ase one must resort to approxima-tions [12,17℄. This paper is devoted to the systemati
 dis
ussion of su
happroximations.The rest of the paper is organized as follows: Se
tion 2 
ontains generalformulation of the hierar
hy of master equations, whereas in Se
tion 3 theapproximations de
oupling this hierar
hy are 
onsidered. One family ofthese approximations is 
he
ked in Se
tion 4 against the random telegraphpro
ess and against linear sto
hasti
 �ows (relaxation pro
esses), and it isshown � by 
omparison with exa
t solutions � that these approximationslead in these spe
ial 
ases to exa
t results either for the probability densityP (x; t), or at least for the �rst moments of P (x; t). In Se
tion 5 some �nalremarks are 
olle
ted. The appendi
es list some properties of the fun
tions ofthe di
hotomi
 noise, de�nitions of several auxiliary fun
tions (probabilitydensities and 
orrelation fun
tions of higher order), the relations betweenthese fun
tions, and details of derivations of some formulas. Last Appendixis devoted to the detailed dis
ussion of non-Markovianity of the di
hotomi
noise dis
ussed in this paper.2. Hierar
hy of master equations2.1. General formulationWe shall 
onsider general one-dimensional sto
hasti
 �ows (1.9). Moregeneral forms of the type of _X = F (X; �(t)), 
ontaining �(t) in a nonlinearfashion, 
an be redu
ed to (1.9) by the use of the property (1.1).
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 Noise 207We shall des
ribe the �ow (1.9) by the probability density P (x; t) thatat time interval (t; t + dt) the value of the pro
ess X(t) lies in the interval(x; x+dx) and by the joint probability density p(x; ��; t) thatX(t)2(x; x+dx)and �(t) = ��, � = 1; 21:P (x; t) � hÆ(X(t; [�℄) � x)i ; (2.1)p�(t) � p(x; ��; t) � hÆ(X(t; [�℄) � x)Æ�(t);��i : (2.2)The (Dira
) delta-fun
tion Æ(X(t; [�℄) � x) is the probability density fork-th realization2 of the sto
hasti
 pro
ess �(t) that at time interval (t; t+dt)the value of the pro
essX(t) lies in the interval (x; x+dx), and the averagingis over all possible realizations of �(t). Similarly, the (Krone
ker) delta-fun
tion Æ�(t);�� is the probability for k-th realization of the sto
hasti
 pro
ess�(t) that this pro
ess at time t is in the state ��.The standard method [19,20℄ leads to the following master equations forp�(t) [17℄:��tp�(t) = � ��x [f(x) + ��g(x)℄p�(t)� "�
0[�1p1(t)� �2p2(t)℄�"�
1 tZt0 dt0 e��(t�t0)[�1h1(t; t0)� �2h2(t; t0)℄ ; (2.3)where "1 = 1, "2 = �1, and the auxiliary fun
tion h�(t; t0), together withseveral other auxiliary probability densities and 
orrelation fun
tions whi
hwill be needed below, is de�ned in the Appendix A.In the same way we �nd that the fun
tion h�(t; t0) ful�ls the masterequation (
f. (A5)):��th�(t; t0) = � ��xf(x)h�(t; t0)� ��xg(x)hÆ(X(t; [�℄) � x)�(t)Æ�(t0);��i= � ��x [f(x) + 12�0g(x)℄h�(t; t0)�D ��xg(x)[1k1�(t; t0)� 1k2�(t; t0)℄ ; (2.4)valid for t > t0 only. Here 2D = �1 +�2, and the fun
tion 1k��(t; t0) is de-�ned in the Appendix A. This fun
tion ful�ls the master equation 
ontainingnext higher-order auxiliary probability density, and so on. In general,��t mh�:::(t; tm; : : :)= � ��x [f(x) + 12�0g(x)℄mh�:::(t; tm; : : :)�D ��xg(x)hmk1�:::(t; tm; : : :)� mk2�:::(t; tm; : : :)i ; (2.5)1 To avoid 
onfusion, we assume here the following 
onvention: Greek subs
ripts willdenote states of a given realization of two-state pro
ess, Roman subs
ripts � di�erentrealizations or di�erent time moments of the same realization of the two-state pro
ess.2 i.e., given de�nite series of swit
hes between +�1 and ��2 at given spe
i�
 times0 < t1 < t2 < ::: < tj < ::: < t.



208 A. Fuli«ski��t mk��:::(t; tm; : : :) = � ��x [f(x) + ��g(x)℄mk��:::(t; tm; : : :)�"� tZtm dtm+1K(t� tm+1) h�1m+1h1�:::(t; tm+1; : : :)��2m+1h2�:::(t; tm+1; : : :)i ; (2.6)where the relations from Appendi
es A and B have been used, and wheret � tm � : : : :One may write down the above hierar
hy of master equations in severaldi�erent equivalent forms. Most 
onvenient for our present purposes is thesymmetri
 parametrization by fun
tions Rm, Qm de�ned in the Appendix A.This parametrization in
ludes expli
itly the master equation for the mainfun
tion of interest, i.e. the probability density P (x; t). By the use of thede�nitions and of the relations (A5), (A6) we get (
f. also Appendix B):��tP (x; t) = � ��x [f(x)P (x; t) + g(x)Q(x; t)℄ ; (2.7)��tQ(x; t)� ��x [f(x) +�0g(x)℄Q(x; t)��2 ��xg(x)P (x; t)= 
0�Q(x; t)� 
1� tZt0 dt0 e��(t�t0) R1(x; t; t0) ; (2.8)and, in general, ��tRm = � ��x [f(x)Rm + g(x)Qm℄ ; (2.9)��tQm = � ��x [f(x) +�0g(x)℄Qm ��2 ��xg(x)Rm � 
0�Qm�
1� tZtm dtm+1 e��(t�tm+1)Rm+1(t; tm+1; : : : ; t1) : (2.10)The solutions of the above equations will provide the probability densitiesmh, mk, Qm, Rm, as fun
tions of x and of their �rst time argument, i.e.,of the a
tual time t only, and for t � tm only, whereas the integrals inEqs. (2.3), (2.6), (2.8), and (2.10) (written for lower-order densities) requirethe knowledge of the densities mh, Rm, as fun
tions of their se
ond timeargument, tm, for tm�1 � tm � t. The master equations for tm-dependen
e
an be obtained in the same way as Eqs. (2.3)�(2.10). However, the non-Markovianity of the noise �(t) implies that 
hanges in the tm-dependen
ein�uen
e t-dependen
e. This implies in turn that, when di�erentiating with
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t to tm, the argument t is to be written as t = tm + � , with � insteadof t kept 
onstant. Otherwise (i.e., keeping t=
onst) in
orre
t results willbe obtained (
f. Se
tion 3.3).Therefore we get:��tmRm(t; tm; tm�1; : : :) = � ��x [f(x)Rm(t; tm; tm�1; : : :)+g(x)Qm(t; tm; tm�1; : : :)℄� 
o�Rm(t; tm; tm�1; : : :)�
1� tmZtm�1 dt0 e�(t�t0)Rm(t; t0; tm�1; : : :) ; (2.11)��tmQm(t; tm; tm�1; : : :) = � ��x [f(x) +�0g(x)℄Qm(t; tm; tm�1; : : :)��2 ��xg(x)Rm(t; tm; tm�1; : : :)� 2
0�Qm(t; tm; tm�1; : : :)�
1� tZtm dtm+1 e��(t�tm+1)Rm+1(t; tm+1; : : :)�
1� tmZtm�1 dt0 e��(t�t0)Qm(t; t0; tm�1; : : :) ; (2.12)and analogous equations for mh, mk. In the same way the dependen
e of allthese densities on tm�1; : : : t1 
an be obtained.This means that for the non-Markovian 
ase the standard pro
edure doesnot lead to a 
losed set of equations des
ribing the probability densities ofinterest, but to an in�nite hierar
hy of equations (stri
tly speaking, to abran
hed set of su
h hierar
hies). To obtain a workable s
heme of 
al
ula-tion, this hierar
hy must be de
oupled by some approximation. In Ref. [17℄we have proposed a simple approximation based on an ansatz. More sys-temati
 approximations will be dis
ussed in the subsequent Se
tion.2.2. Di�erentiation theoremThe di�erentiation theorem for averages 
ontaining �(t) 
an be obtainedin the same way as Eqs. (2.8)�(2.10) (
f. also Appendix B). It reads:��thF (X(t; [�℄); t)�(t)i = h�(t) ��tF (X(t; [�℄); t)i�� tZt0 dt0K(t� t0)hF (X(t; [�℄); t)�(t0)ih�(t) ��tF (X(t; [�℄); t)i : (2.13)



210 A. Fuli«skiNamely, the basi
 de�nition of averages gives:hF (X(t; [�℄); t)�(t)i =X� ZDx dx��F (x; t)hÆ(X(t; [�℄) � x)Æ�(t);��i= ZDx dxF (x; t)[�1p1(x; t) ��2p2(x; t)℄ = ZDx dxF (x; t)Q(x; t) ; (2.14)and in the same wayhF (X(t; [�℄); t)�(t0)i = ZDx dxF (x; t)R1(t; t0) : (2.15)In the above Dx denotes the domain of x, i.e. the domain of the sto
hasti
pro
ess X(t).Eq. (2.13) is now obtained by di�erentiating (2.14), and taking intoa

ount (2.10), (2.15) and the following property:F (x; t) ��xf[f(x) +�0g(x)℄Q(x; t) +�2g(x)P (x; t)g= F (x; t) ��x h�(t) _X(t)Æ(X(t; [�℄) � x)i= �h�(t) ��tÆ(X(t; [�℄) � x)F (X(t; [�℄); t)i +Q(x; t) ��tF (x; t) : (2.16)The theorem (2.13) is the generalization for the non-Markovian DN ofthe Shapiro�Loginov theorem [21℄ stating that for any (Markovian) expo-nentially 
orrelated noise �(t) of zero mean,��t hF (X(t; [�℄); t)�(t)i = h�(t) ��t hF (X(t; [�℄); t)i � �hF (X(t; [�℄); t)�(t)i :(2.17)The Shapiro�Loginov theorem proved to be very useful in treating linearsto
hasti
 problems [22-24℄, espe
ially the systems of several linear kineti
equations [22℄, and the linear sto
hasti
 equations with time-dependent 
oef-�
ients [24℄. The appli
ation of di�erentiation theorem (2.13) will be demon-strated in the subsequent Se
tion.2.3. Hierar
hy of telegrapher's equationsThe hierar
hy simpli�es 
onsiderably for the random telegraph pro
ess:_X(t) = �(t) ; (2.18)i.e. when f(x) = 0, g(x) = 1. In this 
ase the auxiliary fun
tions Qm 
anbe easily eliminated and the m-th order master equations be
ome the m-th
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0� ��t +�0 �2�t�x ��2 �2�x2!Rm(x; t)= 
1� ��x tRtm dtm+1 e��(t�tm+1)Rm+1(x; t; tm+1; : : : ; t1) ; (2.19)with R0(x; t) = P (x; t). In a similar way the hierar
hy 
an be written for alinear pro
ess and for some other spe
ial 
ases.3. Approximation s
hemesTo obtain a workable s
heme of 
al
ulations, the hierar
hy of masterequations (2.5)�(2.6) or (2.9)�(2.10) must be de
oupled in some way. Thereare two obvious systemati
 approximations whi
h 
an be applied to a
hievethis goal: weak noise and short-memory expansions.3.1. Weak-noise expansionThe 
ondition for weak noise reads:j�(t)j � 1 ; i.e., �2 � 1 : (3.1)Therefore, from Eqs. (A3), (A4):Qm � Rm ; Rm+1 � Rm ; (3.2)whi
h enables us to negle
t the se
ond term of the r.h.s. of Eq. (2.9) atthe pres
ribed level of the hierar
hy (whi
h 
orresponds to the pres
ribedapproximation order), so that we get in the m-th-order approximation:Rm(t; tm; : : :) � expn� ��xf(x)(t� tm)oQm�1(tm; tm�1; : : :) : (3.3)At the same level, we have, by virtue of Eqs. (A1), (A2), and (A5),equivalent approximations: mk� � Pst;�mh� ; (3.4)whi
h leads eventually to the m-th-order approximation:mh�:::(t; tm; : : :) � expf� ��xf(x)(t� tm)g m�1k�:::(tm; tm�1; : : :) : (3.5)



212 A. Fuli«skiZero-order approximation of this kind:��tP (x; t) = � ��xf(x)P (x; t) ; (3.6)or equivalently ��tp�(t) = � ��xf(x)p�(t) ; (3.7)is equivalent to the deterministi
 des
ription. First-order approximationgives: ��tp�(t) + ��x [f(x) + ��g(x)℄p�(t) = �"�
0[�1p1(t)� �2p2(t)℄�"�
1 tZt0 dt0 e��(t�t0) e� ��xf(x)(t�t0)[�1p1(t0)� �2p2(t0)℄ ; (3.8)��tQ(x; t) + ��x [f(x) +�0g(x)℄Q(x; t) +�2 ��xg(x)P (x; t)= ��
0Q(x; t)� �
1 tZt0 dt0e��(t�t0) e� ��xf(x)(t�t0)Q(x; t0) ; (3.9)i.e., after removing the integral:h� + ��t + ��xf(x)ih ��t + ��x�f(x) + ��g(x)�ip�(t)= �"�h
0� + 
1 + 
0 ��xf(x) + 
0 ��ti[�1p1(t)� �2p2(t)℄ ; (3.10)h� + ��t + ��xf(x)inh ��t + ��x�f(x) +�0g(x)� + 
0�iQ(x; t)+�2 ��xg(x)P (x; t)o = �
1�Q(x; t) : (3.11)The last of these equations is to be supplemented by Eq. (2.7). It will beshown below (Se
tion 4) that this �rst-order approximation leads to 
orre
t(exa
t) results for linear �ows. The same pro
edure 
an be applied at them-th hierar
hy level. 3.2. Short-memory expansionDenoteW(x; t)� ��tQ(x; t)+ ��x [f(x)+�0g(x)℄Q(x; t)+�2 ��xg(x)P (x; t)+
0�Q(x; t):(3.12)
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ting N times by the operator (� + �=�t) on Eq. (2.8) we get:�� + ��t�NW (x; t)= ��
1"�� + ��t�N�1 + �� + ��t�N�2 ��t + : : : + �N�1�tN�1 #Q(x; t)�
1� tZt0 dt0 e��(t�t0) �N�tNR1(x; t; t0) : (3.13)In the short-memory limit: � � 1=�m ! 1, and for N ! 1, we get theshort-memory expansion:W (x; t) = ��
1 1Xn=0 �n+1m �n�tnQ(x; t) ; (3.14)or, with the s
aling (1.6),��tQ(x; t) + 
1�m� 1Xn=1 �nm �n�tnQ(x; t)= ��Q(x; t)� ��x [f(x) +�0g(x)℄Q(x; t)��2 ��xg(x)P (x; t) :(3.15)However, the results obtained in Refs. [18℄ suggest that qualitativelythe in�uen
e of non-Markovian DN with short memory is similar to thatof Markovian DN. Therefore this expansion seems to be of little pra
ti
alvalue. 3.3. Other approximationsAnother type of seemingly obvious method of de
oupling the hierar
hyof master equations is to negle
t the last (expressly non-Markovian) term inthe hierar
hy equation Eq. (2.10) (this is equivalent to putting Rm+1 = 0 atthe m-th order approximation). However, this leads to manifestly in
orre
tresults even for the random telegraph pro
ess � we have 
he
ked this fa
tnumeri
ally up to 4-th order, obtaining both P (x; t), and its se
ond andfourth moments diverging strongly from exa
t results.Another type of approximations, related to the ansatz approximation(4.17) of Ref. [17℄, 
an be obtained by negle
ting the non-Markovian 
har-a
ter of the pro
ess �(t) in Eqs. (2.11)�(2.12). In this 
ase we get:��tmSm(t; tm; : : :) = �� tmRtm�1dt0K(t� t0)Sm(t; t0; : : :) (3.16)



214 A. Fuli«skiwith solution:Sm(t; tm; tm�1; : : :)=  (tm�tm�1)[�2Sm�2(t; tm�2; : : :)+�0Sm�1(t; tm�1; : : :)℄ ; (3.17)where Sm = Rm; Qm. Neither these approximations, nor more naive ansatzones of the type of Eq. (4.17) of Ref. [17℄:m+1h�:::(t; tm+1; tm; : : :) � �2 (t� tm+1)mh�:::(tm+1; tm; : : :) ; (3.18)Rm+1(t; tm+1; tm; : : :) � �2 (t� tm+1)Qm(tm+1; tm; : : :) ; (3.19)give 
orre
t or near-to-
orre
t results for simple �ows 
onsidered in Se
-tion 4, although the se
ond-order approximation (3.19) produ
es 
orre
t(up to numeri
al a

ura
y, at least) result for the se
ond moment hX2(t)i,and reasonable results for P (x; t), for the random telegraph pro
ess.4. Spe
ial 
asesIn a few simplest 
ases the probability density P (x; t), or at least its�rst moments, 
an be 
al
ulated dire
tly and exa
tly. In this Se
tion weshall dis
uss three su
h 
ases, the sole purpose being the demonstrationthat the approximation (3.11) leads in these 
ases to 
orre
t (i.e. identi
alwith exa
t) results. For the sake of simpli
ity, only symmetri
 (�0 = 0) DNwill be 
onsidered. Note that the solutions for the �ows (4.3), (4.10), and(4.20) driven by Markovian DN, are well-known. The details of solutions forthese �ows driven by non-Markovian DN 
an be found in Refs. [17�18℄.In the following we shall make use of the general expression for the
hara
teristi
 fun
tion T (k; t) of the sto
hasti
 pro
ess (1.9):T (k; t) = ZDx dx eikx P (x; t) = D eikX(t) E ; (4.1)where Dx denotes the domain of x, equal to the domain of the physi
alpro
ess X(t). The above expression is related dire
tly to the de�nition(2.1) of P (x; t) by the well-known Fourier representation of the Dira
 delta-fun
tion: P (x; t) = 12� +1Z�1 dk e�ikx heikX(t)i for x 2 Dx ;= 0 otherwise : (4.2)
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essConsider the symmetri
 (�0 = 0) random telegraph pro
ess:_X(t) = �(t) ; Dx = (�1;+1) ; (4.3)driven by non-Markovian DN �(t). It was shown in Ref. [17℄ that thebehavior of this pro
ess di�ers from that driven by Markovian DN: amongothers, the transients os
illate in wide range of noise parameters �, �.The average (4.1) for the pro
ess (4.3) 
an be 
al
ulated in a straight-forward way [12℄ (
f. also Appendix C):heikX(t)i = 3Xj=1 sj ezjt ; (4.4)s1 = (z1 + �1)(z1 + �2)=(z1 � z2)(z1 � z3) ; (4.5)et
., and zj are the solutions of Eq. (C6) (with � = ik):z3 + (�1 + �2)z2 + (�1�2 + k2�2)z + �k2�2 = 0 : (4.6)On the other hand, Eqs. (2.7) and (3.11) redu
e in this 
ase (f = 0,g = 1) to an equation whi
h reads after Fourier transforming:� d3dt3 +A d2dt2 +B ddt + C�T (k; t) = 0 ; (4.7)A = �1 + �2 ; B = �1�2 + k2�2 ; C = ��2k2 ; (4.8)the solution of whi
h is just the exa
t result above for the following initial
onditions:T (k; 0) = T0(k) ; _T (k; 0) = 0 ; �T (k; 0) = �k2�2T0(k) : (4.9)These 
onditions result from the obvious initial 
ondition Q(x; 0) = 0,from Eq. (2.8) di�erentiated with respe
t to t and from Eq. (2.9), and there-fore 
ontain no approximations.4.2. Multipli
ative linear relaxationConsider now the sto
hasti
 �ow_X(t) = �aX(t) + �(t)X(t); Dx = [0;1) ; (4.10)dis
ussed in detail � in various 
ontexts � in Refs. [18℄. It was shownthere that the behavior of the pro
ess (4.10) driven by non-Markovian DN
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antly from that driven by Markovian DN: new transient mostprobable states may appear, average values may be
ome non-monotonousfun
tions of time, sto
hasti
 resonan
e may appear, et
.In this 
ase Eqs. (2.7) and (3.11) read:� ��t � a ��xx�P (x; t) = � ��xxQ(x; t) ; (4.11)� ��t +��a ��xx�h� ��t +
0��a ��xx�Q(x; t)+�2 ��xxP (x; t)i = �
1�Q(x; t) :(4.12)Multiplying �rst of these equations by x, se
ond by x ��xx, and eliminat-ing the fun
tion Q(x; t), we get, after some rearrangements:nD̂3 + (�1 + �2)D̂2 + h�1�2 ��2�x ��x�2iD̂ � ��2�x ��x�2oxP (x; t) = 0 ;D̂ = ��t � ax ��x : (4.13)Assuming that P (x; t) together with its �rst three x-derivatives goes tozero for x!1 rapidly enough, i.e. thatlimx!1xmP (x; t) = 0 = limx!1xm �n�xnP (x; t) ; n = 1; 2; 3; m = 0; 1; 2; : : :(4.14)we gethxm(t)i = 1Z0 dxxm P (x; t) = (�1)n 1Z0 dxxm�1�x ��x�nxP (x; t) : (4.15)Therefore, multiplying Eq. (4.12) by xm�1 and integrating over x we getthe kineti
 equation for m-th moment of P (x; t):h� ddt +ma�3 + (�1 + �2)� ddt +ma�2+(�1�2 �m�2)� ddt +ma��m��2ihXm(t)i = 0 : (4.16)On the other hand, by dire
t integration of the sto
hasti
 equation (4.10)we obtain:hXm(t)i = e�mat xm0 D exphm tZ0 dt0�(t0)iE = e�mat xm0 3Xj=1 smj ezmj t ;(4.17)
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he
k that the above expression is the solution of Eq. (4.16) withinitial 
onditions equivalent to 
onditions (4.9):hXm(0)i = xm0 ; ddt hXm(t)i���t=0 = �maxm0 ;d2dt2 hXm(t)i���t=0 = �m(�2 + a2)xm0 : (4.18)Therefore Eq. (4.13) 
orre
tly reprodu
es all moments of P (x; t), i.e., repro-du
es 
orre
tly P (x; t) for linear pro
ess with multipli
ative noise. P (x; t)itself 
an be 
al
ulated dire
tly by noting that Eq. (4.10) 
an be transformedinto Eq. (4.3) by putting y = lnx+ at. Therefore P (x; t) for multipli
ativelinear pro
ess, x 2 [0;1) is given by P (y; t), y 2 (�1;+1), i.e.,P (x; t) = 12� +1Z�1 dk e�ik(lnx+at) T (k; t) ; x � 0 ; (4.19)with T (k; t) given by Eq. (4.1)�(4.4).4.3. Additive linear relaxationConsider the linear relaxation driven by additive symmetri
 non-Marko-vian DN: _X(t) = �aX(t) + �(t) ; Dx = (�1;1) ; (4.20)dis
ussed in Ref. [17℄. Again, properties of this �ow di�er signi�
antly fromthose of su
h pro
ess driven by Markovian DN.In this 
ase the probability density 
annot be 
al
ulated dire
tly by thepro
edures of Appendix C. It is possible, however, to 
al
ulate �rst fewmoments of the pro
ess (4.20). The �rst moment is justx(t) = hX(t)i = e�at x0 ; (4.21)the se
ond one:
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x2(t) = hX2(t)i = x2(t) + tZ0 dt1 tZ0 dt2 e�a(2t�t1�t2)h�(t1)�(t2)i= x2(t) + 2�2 tZ0 dt1 t1Z0 dt2 e�a(2t�t1�t2)  (t1 � t2)= x2(t) + �2(a+ �)a(a+ �1)(a+ �2) + 2�2(a� �)a(a� �1)(a� �2) e�2at+2�2� " � � �1a2 � �21 e�(a+�1)t� � � �2a2 � �22 e�(a+�2)t# ; (4.22)et
. On the other hand, su
h quantities 
an be also 
al
ulated as follows.De�ne:x(t) = hX(t)i ; y(t) = hX(t)�(t)i ; z(t) = x2(t) = hX2(t)i : (4.23)This leads to the set of kineti
 equations (
f. Appendix B):_x = �ax ; (4.24)_z = �2az + 2y ; (4.25)_y = h _X�+X _�i = �(a+
0�)y+�2�
1� tZ0 dt0 e��(t�t0)hX(t)�(t0)i : (4.26)The approximation (3.2) gives:hX(t)�(t0)i = 1Z0 dxxR1(x; t; t0)� 1Z0 dxx ea(t�t0) ��xxQ(x; t0) ; (4.27)= ea(t�t0) ��xxhX(t0)�(t0)i : (4.28)Note that the interpretation of the form (4.28) is given by (4.27). Assumingthat Q(x; t) together with all its logarithmi
 derivatives vanishes su�
ientlyrapidly at x!1:limx!1�x ��x�mxQ(x; t) = 0; m = 0; 1; 2; : : : ; (4.29)
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 Noise 219we get (� = t� t0):ea� ��xxhX(t0)�(t0)i = 1Z0 dxx ea� ��xxQ(x; t0)= 1Xn=0 (a�)nn! 1Z0 dx�x ��x�nxQ(x; t0)= 1Xn=0 (a�)nn! (�1)n 1Z0 dxxQ(x; t0)= e�a� hX(t0)�(t0)i : (4.30)Therefore,_y = �(a+ 
0�)y +�2 � 
1� tZ0 dt0 e�(�+a)(t�t0) y(t0) ; (4.31)with the solution: y(t) = C0 + C1 e��1t+C2 e��2t ; (4.32)�j = a+ �j ; C0 = �2(� + a)(a+ �1)(a+ �2) ;C1 = ��2� �1 � �a+ �1 ; C2 = �2� �2 � �a+ �2 : (4.33)This result substituted into Eq. (4.25) for z leads to the 
orre
t expressionfor the se
ond moment, Eq. (4.22), whi
h proves that the approximation(3.2) leads to the 
orre
t results for the linear relaxation driven by non-Markovian additive DN, at least up to se
ond moment of the probabilitydensity. 5. Final remarksAs we have mentioned in Se
tion 1, part of the results obtained in thispaper do not depend on the detailed form of the kernel K(�) in the generalnon-Markovian master equations. These are, espe
ially: the general form ofthe di�erentiation theorem, Eq. (2.13), and general forms of the hierar
hyof master equations, Eqs. (2.5)�(2.6). Other forms � viz. Eqs. (2.3), (2.10),



220 A. Fuli«ski(2.12), (2.19), the approximations (3.12), and like, 
an be easily 
ast into theform 
ontaining general kernel K(�). On the other hand, the spe
i�
 resultsare true only for the kernel (1.4) � esp. Se
tion 3.2, the equations withremoved time integral, e.g. Eqs. (3.10)�(3.11), (4.7) (4.12), (4.13), (4.16),et
., the averages (4.4), (4.17), (4.22), and like.For the derivation of formulas (4.4)�(4.6) (and the formulas of Appen-dix C) 
ru
ial is the formula (C2) (Eq. (3.11) of Ref. [17℄). Assumptionsabout initial 
onditions and about behavior of P (x; t), Q(x; t) for x ! 1seem to be justi�ed by the fa
t that they lead to 
orre
t (i.e. identi
al withexa
t) results. The same 
an be said about the radius of 
onvergen
e of theweak noise expansion, whi
h is di�
ult to estimate otherwise.Minimal requirements for the approximate equations seem to be: (i) theyshould be simple enough to enable pra
ti
al appli
ations (
al
ulations);(ii) they should lead to 
orre
t or almost-
orre
t results in simpler 
asesand/or in well-de�ned limits. These requirements seem to be satis�ed byapproximation (3.10)�(3.11), or its higher-order generalizations (3.3),(3.5).All m = 1 approximations of this type lead to 
orre
t (exa
t) results for therandom telegraph pro
ess and for linear sto
hasti
 pro
esses. As we havementioned above, other types of approximations, although similar at �rstsight to those generated by (3.3)�(3.5), lead to manifestly in
orre
t results.The approximations (3.10)�(3.11) have been 
he
ked against simpleststo
hasti
 �ows only. For nonlinear kineti
 equations these approximationsmay turn out to be not so satisfying. Nevertheless, the di
hotomi
 noisesare powerful tools mainly for linear systems [22�24℄. Therefore the approx-imations proposed in this paper seem to be of pra
ti
al signi�
an
e.Appendix ADe�nitions of and relations between auxiliary fun
tionsWe introdu
e the following auxiliary and higher-order distributions (den-sities), whi
h will be of use below, for hierar
hy of master equations des
rib-ing the non-Markovian 
ase3:mh�:::�(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)Æ�(tm);�� : : : Æ�(t1);��i ; (A.1)mk
�:::�(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)Æ�(t);�
 Æ�(tm);�� : : : Æ�(t1);��i; (A.2)Rm(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)�(tm) : : : �(t1)i ; (A.3)Qm(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)�(t)�(tm) : : : �(t1)i ; (A.4)t � tm � � � � � t1, and R0 = P (t) = 0h, Q0 = Q(t), 1h� = h�.3 To keep the notation short, the expli
it indi
ation of the dependen
e of these fun
tionson x, �� : : :, et
., is omitted.
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 Noise 221The de�nition (1.1) of DN implies thatÆ�(t);�� = Pst;� + "�2D�(t) ; Pst;� = P1(��) = 1� ��2D ; (A.5)�(t) = 2DhÆ�(t);�1 � �22D i = �2DhÆ�(t);��2 � �12D i= 12�0 +DhÆ�(t);�1 � Æ�(t);��2i ; (A.6)where "1 = 1, "2 = �1, D = (�1 + �2)=2. This leads to the followingrelations (sum rules) between these various probability densities:p1(t) + p2(t) = h1(t; t0) + h2(t; t0) = P (t) ; (A.7)1k1;�(t; t0)+ 1k2;�(t; t0) = h�(t; t0) ; 1k�;1(t; t0)+ 1k�;2(t; t0) = p�(t) ; (A.8)mh1�:::�(t; tm; : : : t1)+mh2�:::�(t; tm; : : : t1)=m�1h�:::�(t; tm�1; : : : t1) ; (A.9)mk1�:::�(t; tm; : : : t1) + mk2�:::�(t; tm; : : : t1) = mh�:::�(t; tm; : : : t1) ; (A.10)0k� = p�(t) ; 0h = P (t) ; (A.11)�1p1(t)��2p2(t) = Q(t) ; (A.12)�1h1(t; t0)��2h2(t; t0) = R1(t; t0) ; (A.13)�11k1�(t; t0)��21k2�(t; t0) = Pst;�Q(t) + "�2DQ1(t; t0) ; (A.14)�11k�1(t; t0)��21k�2(t; t0) = Pst;�R1(t; t0) + "�2DQ1(t; t0) ; (A.15)p�(t) = Pst;�P (t) + "�2DQ(t) ; (A.16)h�(t; t0) = Pst;�P (t) + "�2D R1(t; t0) : (A.17)We have also the following boundary 
onditions:1h�(t0; t0) = p�(t0) ; 1k��(t0; t0) = Æ��p�(t0) ; (A.18)R1(t0; t0) = Q(t0) ; Q1(t0; t0) = �2P (t0) +�0Q(t0) ; (A.19)Rm(t; t; tm�1 : : : t1) = Qm�1(t; tm�1 : : : t1) ; (A.20)Qm(t; t; tm�1 : : : t1) = �2Rm�1(t; tm�1 : : : t1) +�0Qm�1(t; tm�1 : : : t1) :(A.21)These fun
tions may serve for 
al
ulation of various averages �
f. (2.14), (2.15).



222 A. Fuli«skiAppendix BDerivation of master equationsMaster equations of Se
tion 2 
an be also derived by the method due toHaken [25℄:��tP (x; t) = ��thÆ(X(t; [�℄) � x)i = D ��X(t) Æ(X(t; [�℄) � x) _X(t)E= � ��xDÆ(X(t; [�℄) � x) _X(t)E ; (B.1)��tp1(x; t) = D ��X(t) Æ(X(t; [�℄)�x) _X (t)Æ�(t);�1E+DÆ(X(t; [�℄)�x) ddt Æ�(t);�1E= � ��x DÆ(X(t; [�℄) � x) _X(t)Æ�(t);�1E� tZt0 dt0K(t�t0) 
Æ(X(t; [�℄)�x)��1Æ�(t0);�1��2Æ�(t0);��2�� ;(B.2)whi
h leads dire
tly to Eqs. (2.3) and (2.7). Here use has been made ofthe well-known properties of the Dira
 delta-fun
tions. In parti
ular, thedistribution ��xÆ(X(t) � x)f(x) is equivalent to the distribution f(X(t)) ��xÆ(X(t)�x): multiply both distributions by a trial fun
tion q(x) and integrate(by parts) over a small interval around x = X(t); in both 
ases the result is�f(X)[dq(X)=dX℄, whi
h proves the equivalen
e.Besides, in the same manner we have:��t hÆ(X(t; [�℄)�x)�(t)i=� ��x hÆ(X(t; [�℄)�x) _X (t)�(t)i+hÆ(X(t; [�℄)�x) _�(t)i;(B.3)whi
h, 
ompared with Eqs. (2.8), (2.3), (B10), (A4) and (A5) giveshÆ(X(t; [�℄) � x) _�(t)i = �� tZt0 dt0K(t� t0)hÆ(X(t; [�℄) � x)�(t0)i : (B.4)The above relation 
an be generalized to averages 
ontaining arbitraryfun
tion of time (
f. also Eq. (2.13)):��thF (t)�(t)i = h _F (t)�(t)i � � tRt0 dt0K(t� t0)hF (t)�(t0)i : (B.5)
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 Noise 223Appendix CDerivation of the formula (4.4)For the sake of 
ompleteness, we present here the derivation of the aver-ages of the type of (4.4), given in Ref. [12℄.For symmetri
 DN (�0 = 0):A(t; t0;�) = *exp"� tZt0 dt0�(t0)#+=*exp"� �Z0 dt0�(t0 + t0)#+= 1+ 1Xn=2 �nn! �Z0 dt1 : : : �Z0 dtnh�(t1 + t0) : : : �(tn + t0)i= 1+ 1Xn=2�n �Z0 dt1 t1Z0 dt2 : : :tn�1Z0 dtnh�(t1 + t0)�(t2 + t0): : :�(tn + t0)i= 1+ 1Xm=1�2m�2m �Z0 ds1 s1Z0 dt1 (s1�t1) : : :tm�1Z0 dsm smZt0 dtm (sm�tm):(C.1)In the above, the following property (Eq. (3.11) of Ref. [17℄) of averagesof the produ
ts of symmetri
 DN's (both non-Markovian and Markovian4has been used:h�(t1) : : : �(tn)i = �2 (t1 � t2)h�(t3) : : : �(tn)i ; t1 � t2 � : : : � tn : (C.2)Using the Lapla
e transform and its well-known properties [26℄ we get,subsequently:�̂1(z) = 1Z0 d� e�z� �Z0 dt1 t1Z0 dt2  (t1 � t2) = 1z2  ̂(z)= z + �z2(z + �1)(z + �2) ; (C.3)4 This property, and some other, resemble those of Markovian DN. This is the resultof the initial 
onditions (1.3) used in Ref. [17℄. Other properties � e.g. the form oftwo-point 
orrelation fun
tion, Eq. (1.7) � are distin
tly non-Markovian. Espe
ially,the 
onditional probabilities do not satisfy the Smolu
howski�Chapman�Kolmogorovfun
tional equation [20,27,28℄.



224 A. Fuli«ski1Z0 d� e�z� �Z0 ds1 s1Z0 dt1  (s1 � t1) t1Z0 ds2 s2Z0 dt2  (s2 � t2)= 1Z0 d� e�z� 1z �Z0 dt1  (� � t1)�1(t1) = 1z3 [ ̂(z)℄2 (C.4)et
., whi
h leads eventually to:Â(z) = 1z + 1z 1Xm=1h�2�2 ̂(z)=zim = 1z � �2�2 ̂(z)= (z + �1)(z + �2)(z � z1)(z � z2)(z � z3) ; (C.5)where zj are the solutions of the 
ubi
 equation:z3 + (�1 + �2)z2 + (�1�2 � �2�2)z � ��2�2 = 0 : (C.6)The inverse Lapla
e transform of the above gives the formula (4.4)�(4.5).REFERENCES[1℄ N.G. Van Kampen, How Do Sto
hasti
s Pro
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