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STOCHASTIC FLOWS DRIVEN BY NON-MARKOVIANDICHOTOMIC NOISE�A. Fuli«skiM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: fulinski�jetta.if.uj.edu.pl; http://zfs.if.uj.edu.pl(Reeived January 6, 1999)Master equations governing the probability densities of the stohastiproesses driven by expliitly non-Markovian dihotomi noise are derivedand disussed. Suh equations form the in�nite hierarhy of equations fordi�erent probability densities or orrelation funtions de�ned at more andmore time points. Approximations introduing deoupling of suh hier-arhies are onstruted. Appliations to speial ases: random telegraphproess and linear relaxation show that one lass of approximations leadsin these ases to orret (exat) results.PACS numbers: 05.40.+j, 02.50.Ey1. IntrodutionIn appliations of stohasti theory to various physial, hemial, biologi-al, et. problems, the driving noises are assumed, almost without exeption,to be Markovian stohasti proesses. However, in real systems where thenoise originates (at least partially) from the averaging out of very many fastvariables [1℄, we may expet that system variables form a kind of hierar-hies, in whih the �higher-level� variables are driven by �lower-level� ones,the latter ating as driving stohasti proesses. On the other hand, it iswell-known that (i) a stohasti �ow _X(t) driven by Markovian white noiseis a orrelated proess, whih may at as a olored noise, and that (ii) almostany stohasti �ow driven by a olored noise, even Markovian one, is a non-Markovian proess by itself. Therefore in many ases the Markovianity ofthe driving proess (e.g. of the internal �utuations) is but an idealization.On the other hand, non-Markovian stohasti proesses are more di�ultto deal with than Markovian ones. This seems to be one of the reasons� This work was partially supported by the Polish KBN grant No 2 P03B 209 08.(203)



204 A. Fuli«skiwhy in most of appliations so far it is the Markovian proesses whih havebeen used as the driving noises. Only very reently a few papers have beenpublished whih deal with non-Markovian driving, either expliitly [2-5℄ orimpliitly [6-8℄. Impliitly non-Markovian seem to be also harmoni or quasi-monohromati noises [9℄, interrupted Gaussian white noise [10℄, so-alledreal noise [11℄ and omposite noises [12℄ (at least for some realizations ofthese proesses). In the latter papers the non-Markovianity of the drivingnoise neither has been disussed, nor its impliations on the behavior ofdriven proesses worked out. Besides, spei� properties of non-Markovianproesses onstruted as stohasti �ows driven by Markovian noises [13℄,formal properties of stationary non-Markovian reversible measures [14℄, non-Markovian Brownian motion [15℄, and non-Markovian osillatory system [16℄were disussed. Again, these non-Markovian proesses have not been usedas driving noises for other stohasti �ows.In the preeding paper [17℄ the present author proposed a systematitheory of expliitly non-Markovian dihotomi noise (DN) with exponentialdamping of the memory, and of its �white� limits. In Ref. [17℄ the generalproperties of suh noises have been found, together with preliminary dis-ussion of the properties of proesses driven by suh non-Markovian noises.It was shown in the subsequent papers [18℄ that the behavior of the relax-ation proesses driven by this noise exhibits some unexpeted features andis distintly di�erent from that of the proess driven by Markovian DN.In this paper we are going to disuss in more detail the master equationsgoverning the behavior of the probability densities desribing the stohasti�ows driven by non-Markovian DN. This investigation is motivated by theobvious observation that the non-Markovian (and in fat Markovian, too)stohasti proess an be used as a working model of the noise driving somephysial (hemial, biologial, : : :) proess only when there is a workable �exat or approximate � sheme of alulation of quantities of interest, oneof the latter being the probability funtions desribing the proess underonsideration.The asymmetri dihotomi noise (DN) �(t), alled also the random tele-graph signal, is the random two-state proess with zero mean:�(t) 2 f�1;��2g ; �2(t) = �2 +�0 �(t) ; h�(t)i = 0 ; (1.1)where �2 = �1�2, �0 = �1 ��2.



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 205The spei�, non-Markovian dihotomi proess onsidered in Ref. [17℄is de�ned by the following non-Markovian master equation, ful�lled by ev-ery probability �(�; t) � �n+1(�; t; �1; t1; : : : ; �n; tn), n � 1, t � t0 �maxft1; : : : ; tng:_�(�1; t) = � _�(��2; t) = � tZt0 dt0K(t� t0)[�1�(�1; t0)� �2�(��2; t0)℄(1.2)(overdot denotes d=dt). �j are parameters haraterizing the proess �(t),whih in the Markovian limit gain the interpretation of swithing probabil-ities (per unit time) between states �1 = �1 and �2 = ��2.The noise �(t) will be fully de�ned when the initial onditions and thespei� form of the kernel K(�) are given. In preeding papers [12,17,18℄and in the following the initial ondition is the obvious relation (uniquenessondition):�n+1(�; t = t1; �1; t1; : : : ; �n; tn) = Æ�;�1�n(�1; t1; : : : ; �n; tn) ; (1.3)and the kernel is assumed to ontain both Markovian and non-Markovianontributions (the latter with exponentially damped memory):K(t� t0) = 0Æ(t� t0) + 1 e��(t�t0) : (1.4)However, part of the results obtained below remains valid for any form ofthe kernel K(�).In (1.4) the parameters 0 and 1 desribe the relative ontributionsof Markovian and non-Markovian parts, and � is the rate of damping ofthe non-Markovian memory. Two di�erent kinds of transition from non-Markovian proess �(t) to Markovian one are possible, viz. (i) non-saledtransition of weights of both omponents:0 ! 1 ; 1 ! 0 ; � = onst ; (1.5)and (ii) saled transition of the memory time:1 = (1� 0)� ; � !1 ; lim�!1K(t� t0) = Æ(t� t0) : (1.6)Both transitions are orret in the general ase. However, when some ap-proximations are being used, putting 0 = 1, 1 = 0 may lead to inorretMarkovian limit, whereas the proedure (1.6) will lead always to orretresults.



206 A. Fuli«skiDihotomi noise desribed by Eqs. (1.2)�(1.4) is haraterized by thefollowing two-point orrelation funtion:h�(t1)�(t2)i = �2 (jt1 � t2j) ; (1.7)where  (t) = ��1[(�1 � �) e��1t�(�2 � �) e��2t℄ ;�1;2 = 12 (� + 0�� � ) ; � =p(0�� �)2 � 41� ; � = �1 + �2 : (1.8)Properties of the non-Markovian proess �(t) itself, and of related dis-tributions, averages, et. are given in detail in Refs. [12℄ and [17℄. Here weshall onsider the equations for probability densities desribing the stohas-ti �ows: _X = f(X) + g(X)�(t) ; (1.9)driven by the non-Markovian DN �(t). It is to be noted that exat masterequations desribing the time dependene of probability densities of pro-esses driven by dihotomi noises an be obtained only for the MarkovianDN's [19,20℄. In the non-Markovian ase one must resort to approxima-tions [12,17℄. This paper is devoted to the systemati disussion of suhapproximations.The rest of the paper is organized as follows: Setion 2 ontains generalformulation of the hierarhy of master equations, whereas in Setion 3 theapproximations deoupling this hierarhy are onsidered. One family ofthese approximations is heked in Setion 4 against the random telegraphproess and against linear stohasti �ows (relaxation proesses), and it isshown � by omparison with exat solutions � that these approximationslead in these speial ases to exat results either for the probability densityP (x; t), or at least for the �rst moments of P (x; t). In Setion 5 some �nalremarks are olleted. The appendies list some properties of the funtions ofthe dihotomi noise, de�nitions of several auxiliary funtions (probabilitydensities and orrelation funtions of higher order), the relations betweenthese funtions, and details of derivations of some formulas. Last Appendixis devoted to the detailed disussion of non-Markovianity of the dihotominoise disussed in this paper.2. Hierarhy of master equations2.1. General formulationWe shall onsider general one-dimensional stohasti �ows (1.9). Moregeneral forms of the type of _X = F (X; �(t)), ontaining �(t) in a nonlinearfashion, an be redued to (1.9) by the use of the property (1.1).



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 207We shall desribe the �ow (1.9) by the probability density P (x; t) thatat time interval (t; t + dt) the value of the proess X(t) lies in the interval(x; x+dx) and by the joint probability density p(x; ��; t) thatX(t)2(x; x+dx)and �(t) = ��, � = 1; 21:P (x; t) � hÆ(X(t; [�℄) � x)i ; (2.1)p�(t) � p(x; ��; t) � hÆ(X(t; [�℄) � x)Æ�(t);��i : (2.2)The (Dira) delta-funtion Æ(X(t; [�℄) � x) is the probability density fork-th realization2 of the stohasti proess �(t) that at time interval (t; t+dt)the value of the proessX(t) lies in the interval (x; x+dx), and the averagingis over all possible realizations of �(t). Similarly, the (Kroneker) delta-funtion Æ�(t);�� is the probability for k-th realization of the stohasti proess�(t) that this proess at time t is in the state ��.The standard method [19,20℄ leads to the following master equations forp�(t) [17℄:��tp�(t) = � ��x [f(x) + ��g(x)℄p�(t)� "�0[�1p1(t)� �2p2(t)℄�"�1 tZt0 dt0 e��(t�t0)[�1h1(t; t0)� �2h2(t; t0)℄ ; (2.3)where "1 = 1, "2 = �1, and the auxiliary funtion h�(t; t0), together withseveral other auxiliary probability densities and orrelation funtions whihwill be needed below, is de�ned in the Appendix A.In the same way we �nd that the funtion h�(t; t0) ful�ls the masterequation (f. (A5)):��th�(t; t0) = � ��xf(x)h�(t; t0)� ��xg(x)hÆ(X(t; [�℄) � x)�(t)Æ�(t0);��i= � ��x [f(x) + 12�0g(x)℄h�(t; t0)�D ��xg(x)[1k1�(t; t0)� 1k2�(t; t0)℄ ; (2.4)valid for t > t0 only. Here 2D = �1 +�2, and the funtion 1k��(t; t0) is de-�ned in the Appendix A. This funtion ful�ls the master equation ontainingnext higher-order auxiliary probability density, and so on. In general,��t mh�:::(t; tm; : : :)= � ��x [f(x) + 12�0g(x)℄mh�:::(t; tm; : : :)�D ��xg(x)hmk1�:::(t; tm; : : :)� mk2�:::(t; tm; : : :)i ; (2.5)1 To avoid onfusion, we assume here the following onvention: Greek subsripts willdenote states of a given realization of two-state proess, Roman subsripts � di�erentrealizations or di�erent time moments of the same realization of the two-state proess.2 i.e., given de�nite series of swithes between +�1 and ��2 at given spei� times0 < t1 < t2 < ::: < tj < ::: < t.



208 A. Fuli«ski��t mk��:::(t; tm; : : :) = � ��x [f(x) + ��g(x)℄mk��:::(t; tm; : : :)�"� tZtm dtm+1K(t� tm+1) h�1m+1h1�:::(t; tm+1; : : :)��2m+1h2�:::(t; tm+1; : : :)i ; (2.6)where the relations from Appendies A and B have been used, and wheret � tm � : : : :One may write down the above hierarhy of master equations in severaldi�erent equivalent forms. Most onvenient for our present purposes is thesymmetri parametrization by funtions Rm, Qm de�ned in the Appendix A.This parametrization inludes expliitly the master equation for the mainfuntion of interest, i.e. the probability density P (x; t). By the use of thede�nitions and of the relations (A5), (A6) we get (f. also Appendix B):��tP (x; t) = � ��x [f(x)P (x; t) + g(x)Q(x; t)℄ ; (2.7)��tQ(x; t)� ��x [f(x) +�0g(x)℄Q(x; t)��2 ��xg(x)P (x; t)= 0�Q(x; t)� 1� tZt0 dt0 e��(t�t0) R1(x; t; t0) ; (2.8)and, in general, ��tRm = � ��x [f(x)Rm + g(x)Qm℄ ; (2.9)��tQm = � ��x [f(x) +�0g(x)℄Qm ��2 ��xg(x)Rm � 0�Qm�1� tZtm dtm+1 e��(t�tm+1)Rm+1(t; tm+1; : : : ; t1) : (2.10)The solutions of the above equations will provide the probability densitiesmh, mk, Qm, Rm, as funtions of x and of their �rst time argument, i.e.,of the atual time t only, and for t � tm only, whereas the integrals inEqs. (2.3), (2.6), (2.8), and (2.10) (written for lower-order densities) requirethe knowledge of the densities mh, Rm, as funtions of their seond timeargument, tm, for tm�1 � tm � t. The master equations for tm-dependenean be obtained in the same way as Eqs. (2.3)�(2.10). However, the non-Markovianity of the noise �(t) implies that hanges in the tm-dependenein�uene t-dependene. This implies in turn that, when di�erentiating with



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 209respet to tm, the argument t is to be written as t = tm + � , with � insteadof t kept onstant. Otherwise (i.e., keeping t=onst) inorret results willbe obtained (f. Setion 3.3).Therefore we get:��tmRm(t; tm; tm�1; : : :) = � ��x [f(x)Rm(t; tm; tm�1; : : :)+g(x)Qm(t; tm; tm�1; : : :)℄� o�Rm(t; tm; tm�1; : : :)�1� tmZtm�1 dt0 e�(t�t0)Rm(t; t0; tm�1; : : :) ; (2.11)��tmQm(t; tm; tm�1; : : :) = � ��x [f(x) +�0g(x)℄Qm(t; tm; tm�1; : : :)��2 ��xg(x)Rm(t; tm; tm�1; : : :)� 20�Qm(t; tm; tm�1; : : :)�1� tZtm dtm+1 e��(t�tm+1)Rm+1(t; tm+1; : : :)�1� tmZtm�1 dt0 e��(t�t0)Qm(t; t0; tm�1; : : :) ; (2.12)and analogous equations for mh, mk. In the same way the dependene of allthese densities on tm�1; : : : t1 an be obtained.This means that for the non-Markovian ase the standard proedure doesnot lead to a losed set of equations desribing the probability densities ofinterest, but to an in�nite hierarhy of equations (stritly speaking, to abranhed set of suh hierarhies). To obtain a workable sheme of alula-tion, this hierarhy must be deoupled by some approximation. In Ref. [17℄we have proposed a simple approximation based on an ansatz. More sys-temati approximations will be disussed in the subsequent Setion.2.2. Di�erentiation theoremThe di�erentiation theorem for averages ontaining �(t) an be obtainedin the same way as Eqs. (2.8)�(2.10) (f. also Appendix B). It reads:��thF (X(t; [�℄); t)�(t)i = h�(t) ��tF (X(t; [�℄); t)i�� tZt0 dt0K(t� t0)hF (X(t; [�℄); t)�(t0)ih�(t) ��tF (X(t; [�℄); t)i : (2.13)



210 A. Fuli«skiNamely, the basi de�nition of averages gives:hF (X(t; [�℄); t)�(t)i =X� ZDx dx��F (x; t)hÆ(X(t; [�℄) � x)Æ�(t);��i= ZDx dxF (x; t)[�1p1(x; t) ��2p2(x; t)℄ = ZDx dxF (x; t)Q(x; t) ; (2.14)and in the same wayhF (X(t; [�℄); t)�(t0)i = ZDx dxF (x; t)R1(t; t0) : (2.15)In the above Dx denotes the domain of x, i.e. the domain of the stohastiproess X(t).Eq. (2.13) is now obtained by di�erentiating (2.14), and taking intoaount (2.10), (2.15) and the following property:F (x; t) ��xf[f(x) +�0g(x)℄Q(x; t) +�2g(x)P (x; t)g= F (x; t) ��x h�(t) _X(t)Æ(X(t; [�℄) � x)i= �h�(t) ��tÆ(X(t; [�℄) � x)F (X(t; [�℄); t)i +Q(x; t) ��tF (x; t) : (2.16)The theorem (2.13) is the generalization for the non-Markovian DN ofthe Shapiro�Loginov theorem [21℄ stating that for any (Markovian) expo-nentially orrelated noise �(t) of zero mean,��t hF (X(t; [�℄); t)�(t)i = h�(t) ��t hF (X(t; [�℄); t)i � �hF (X(t; [�℄); t)�(t)i :(2.17)The Shapiro�Loginov theorem proved to be very useful in treating linearstohasti problems [22-24℄, espeially the systems of several linear kinetiequations [22℄, and the linear stohasti equations with time-dependent oef-�ients [24℄. The appliation of di�erentiation theorem (2.13) will be demon-strated in the subsequent Setion.2.3. Hierarhy of telegrapher's equationsThe hierarhy simpli�es onsiderably for the random telegraph proess:_X(t) = �(t) ; (2.18)i.e. when f(x) = 0, g(x) = 1. In this ase the auxiliary funtions Qm anbe easily eliminated and the m-th order master equations beome the m-th



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 211order telegrapher's equation: �2�t2 + 0� ��t +�0 �2�t�x ��2 �2�x2!Rm(x; t)= 1� ��x tRtm dtm+1 e��(t�tm+1)Rm+1(x; t; tm+1; : : : ; t1) ; (2.19)with R0(x; t) = P (x; t). In a similar way the hierarhy an be written for alinear proess and for some other speial ases.3. Approximation shemesTo obtain a workable sheme of alulations, the hierarhy of masterequations (2.5)�(2.6) or (2.9)�(2.10) must be deoupled in some way. Thereare two obvious systemati approximations whih an be applied to ahievethis goal: weak noise and short-memory expansions.3.1. Weak-noise expansionThe ondition for weak noise reads:j�(t)j � 1 ; i.e., �2 � 1 : (3.1)Therefore, from Eqs. (A3), (A4):Qm � Rm ; Rm+1 � Rm ; (3.2)whih enables us to neglet the seond term of the r.h.s. of Eq. (2.9) atthe presribed level of the hierarhy (whih orresponds to the presribedapproximation order), so that we get in the m-th-order approximation:Rm(t; tm; : : :) � expn� ��xf(x)(t� tm)oQm�1(tm; tm�1; : : :) : (3.3)At the same level, we have, by virtue of Eqs. (A1), (A2), and (A5),equivalent approximations: mk� � Pst;�mh� ; (3.4)whih leads eventually to the m-th-order approximation:mh�:::(t; tm; : : :) � expf� ��xf(x)(t� tm)g m�1k�:::(tm; tm�1; : : :) : (3.5)



212 A. Fuli«skiZero-order approximation of this kind:��tP (x; t) = � ��xf(x)P (x; t) ; (3.6)or equivalently ��tp�(t) = � ��xf(x)p�(t) ; (3.7)is equivalent to the deterministi desription. First-order approximationgives: ��tp�(t) + ��x [f(x) + ��g(x)℄p�(t) = �"�0[�1p1(t)� �2p2(t)℄�"�1 tZt0 dt0 e��(t�t0) e� ��xf(x)(t�t0)[�1p1(t0)� �2p2(t0)℄ ; (3.8)��tQ(x; t) + ��x [f(x) +�0g(x)℄Q(x; t) +�2 ��xg(x)P (x; t)= ��0Q(x; t)� �1 tZt0 dt0e��(t�t0) e� ��xf(x)(t�t0)Q(x; t0) ; (3.9)i.e., after removing the integral:h� + ��t + ��xf(x)ih ��t + ��x�f(x) + ��g(x)�ip�(t)= �"�h0� + 1 + 0 ��xf(x) + 0 ��ti[�1p1(t)� �2p2(t)℄ ; (3.10)h� + ��t + ��xf(x)inh ��t + ��x�f(x) +�0g(x)� + 0�iQ(x; t)+�2 ��xg(x)P (x; t)o = �1�Q(x; t) : (3.11)The last of these equations is to be supplemented by Eq. (2.7). It will beshown below (Setion 4) that this �rst-order approximation leads to orret(exat) results for linear �ows. The same proedure an be applied at them-th hierarhy level. 3.2. Short-memory expansionDenoteW(x; t)� ��tQ(x; t)+ ��x [f(x)+�0g(x)℄Q(x; t)+�2 ��xg(x)P (x; t)+0�Q(x; t):(3.12)



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 213Ating N times by the operator (� + �=�t) on Eq. (2.8) we get:�� + ��t�NW (x; t)= ��1"�� + ��t�N�1 + �� + ��t�N�2 ��t + : : : + �N�1�tN�1 #Q(x; t)�1� tZt0 dt0 e��(t�t0) �N�tNR1(x; t; t0) : (3.13)In the short-memory limit: � � 1=�m ! 1, and for N ! 1, we get theshort-memory expansion:W (x; t) = ��1 1Xn=0 �n+1m �n�tnQ(x; t) ; (3.14)or, with the saling (1.6),��tQ(x; t) + 1�m� 1Xn=1 �nm �n�tnQ(x; t)= ��Q(x; t)� ��x [f(x) +�0g(x)℄Q(x; t)��2 ��xg(x)P (x; t) :(3.15)However, the results obtained in Refs. [18℄ suggest that qualitativelythe in�uene of non-Markovian DN with short memory is similar to thatof Markovian DN. Therefore this expansion seems to be of little pratialvalue. 3.3. Other approximationsAnother type of seemingly obvious method of deoupling the hierarhyof master equations is to neglet the last (expressly non-Markovian) term inthe hierarhy equation Eq. (2.10) (this is equivalent to putting Rm+1 = 0 atthe m-th order approximation). However, this leads to manifestly inorretresults even for the random telegraph proess � we have heked this fatnumerially up to 4-th order, obtaining both P (x; t), and its seond andfourth moments diverging strongly from exat results.Another type of approximations, related to the ansatz approximation(4.17) of Ref. [17℄, an be obtained by negleting the non-Markovian har-ater of the proess �(t) in Eqs. (2.11)�(2.12). In this ase we get:��tmSm(t; tm; : : :) = �� tmRtm�1dt0K(t� t0)Sm(t; t0; : : :) (3.16)



214 A. Fuli«skiwith solution:Sm(t; tm; tm�1; : : :)=  (tm�tm�1)[�2Sm�2(t; tm�2; : : :)+�0Sm�1(t; tm�1; : : :)℄ ; (3.17)where Sm = Rm; Qm. Neither these approximations, nor more naive ansatzones of the type of Eq. (4.17) of Ref. [17℄:m+1h�:::(t; tm+1; tm; : : :) � �2 (t� tm+1)mh�:::(tm+1; tm; : : :) ; (3.18)Rm+1(t; tm+1; tm; : : :) � �2 (t� tm+1)Qm(tm+1; tm; : : :) ; (3.19)give orret or near-to-orret results for simple �ows onsidered in Se-tion 4, although the seond-order approximation (3.19) produes orret(up to numerial auray, at least) result for the seond moment hX2(t)i,and reasonable results for P (x; t), for the random telegraph proess.4. Speial asesIn a few simplest ases the probability density P (x; t), or at least its�rst moments, an be alulated diretly and exatly. In this Setion weshall disuss three suh ases, the sole purpose being the demonstrationthat the approximation (3.11) leads in these ases to orret (i.e. identialwith exat) results. For the sake of simpliity, only symmetri (�0 = 0) DNwill be onsidered. Note that the solutions for the �ows (4.3), (4.10), and(4.20) driven by Markovian DN, are well-known. The details of solutions forthese �ows driven by non-Markovian DN an be found in Refs. [17�18℄.In the following we shall make use of the general expression for theharateristi funtion T (k; t) of the stohasti proess (1.9):T (k; t) = ZDx dx eikx P (x; t) = D eikX(t) E ; (4.1)where Dx denotes the domain of x, equal to the domain of the physialproess X(t). The above expression is related diretly to the de�nition(2.1) of P (x; t) by the well-known Fourier representation of the Dira delta-funtion: P (x; t) = 12� +1Z�1 dk e�ikx heikX(t)i for x 2 Dx ;= 0 otherwise : (4.2)



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 2154.1. Random telegraph proessConsider the symmetri (�0 = 0) random telegraph proess:_X(t) = �(t) ; Dx = (�1;+1) ; (4.3)driven by non-Markovian DN �(t). It was shown in Ref. [17℄ that thebehavior of this proess di�ers from that driven by Markovian DN: amongothers, the transients osillate in wide range of noise parameters �, �.The average (4.1) for the proess (4.3) an be alulated in a straight-forward way [12℄ (f. also Appendix C):heikX(t)i = 3Xj=1 sj ezjt ; (4.4)s1 = (z1 + �1)(z1 + �2)=(z1 � z2)(z1 � z3) ; (4.5)et., and zj are the solutions of Eq. (C6) (with � = ik):z3 + (�1 + �2)z2 + (�1�2 + k2�2)z + �k2�2 = 0 : (4.6)On the other hand, Eqs. (2.7) and (3.11) redue in this ase (f = 0,g = 1) to an equation whih reads after Fourier transforming:� d3dt3 +A d2dt2 +B ddt + C�T (k; t) = 0 ; (4.7)A = �1 + �2 ; B = �1�2 + k2�2 ; C = ��2k2 ; (4.8)the solution of whih is just the exat result above for the following initialonditions:T (k; 0) = T0(k) ; _T (k; 0) = 0 ; �T (k; 0) = �k2�2T0(k) : (4.9)These onditions result from the obvious initial ondition Q(x; 0) = 0,from Eq. (2.8) di�erentiated with respet to t and from Eq. (2.9), and there-fore ontain no approximations.4.2. Multipliative linear relaxationConsider now the stohasti �ow_X(t) = �aX(t) + �(t)X(t); Dx = [0;1) ; (4.10)disussed in detail � in various ontexts � in Refs. [18℄. It was shownthere that the behavior of the proess (4.10) driven by non-Markovian DN



216 A. Fuli«skidi�ers signi�antly from that driven by Markovian DN: new transient mostprobable states may appear, average values may beome non-monotonousfuntions of time, stohasti resonane may appear, et.In this ase Eqs. (2.7) and (3.11) read:� ��t � a ��xx�P (x; t) = � ��xxQ(x; t) ; (4.11)� ��t +��a ��xx�h� ��t +0��a ��xx�Q(x; t)+�2 ��xxP (x; t)i = �1�Q(x; t) :(4.12)Multiplying �rst of these equations by x, seond by x ��xx, and eliminat-ing the funtion Q(x; t), we get, after some rearrangements:nD̂3 + (�1 + �2)D̂2 + h�1�2 ��2�x ��x�2iD̂ � ��2�x ��x�2oxP (x; t) = 0 ;D̂ = ��t � ax ��x : (4.13)Assuming that P (x; t) together with its �rst three x-derivatives goes tozero for x!1 rapidly enough, i.e. thatlimx!1xmP (x; t) = 0 = limx!1xm �n�xnP (x; t) ; n = 1; 2; 3; m = 0; 1; 2; : : :(4.14)we gethxm(t)i = 1Z0 dxxm P (x; t) = (�1)n 1Z0 dxxm�1�x ��x�nxP (x; t) : (4.15)Therefore, multiplying Eq. (4.12) by xm�1 and integrating over x we getthe kineti equation for m-th moment of P (x; t):h� ddt +ma�3 + (�1 + �2)� ddt +ma�2+(�1�2 �m�2)� ddt +ma��m��2ihXm(t)i = 0 : (4.16)On the other hand, by diret integration of the stohasti equation (4.10)we obtain:hXm(t)i = e�mat xm0 D exphm tZ0 dt0�(t0)iE = e�mat xm0 3Xj=1 smj ezmj t ;(4.17)



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 217with smj given by Eq. (4.5), and zmj given by Eq. (C6) with � = m. It iseasy to hek that the above expression is the solution of Eq. (4.16) withinitial onditions equivalent to onditions (4.9):hXm(0)i = xm0 ; ddt hXm(t)i���t=0 = �maxm0 ;d2dt2 hXm(t)i���t=0 = �m(�2 + a2)xm0 : (4.18)Therefore Eq. (4.13) orretly reprodues all moments of P (x; t), i.e., repro-dues orretly P (x; t) for linear proess with multipliative noise. P (x; t)itself an be alulated diretly by noting that Eq. (4.10) an be transformedinto Eq. (4.3) by putting y = lnx+ at. Therefore P (x; t) for multipliativelinear proess, x 2 [0;1) is given by P (y; t), y 2 (�1;+1), i.e.,P (x; t) = 12� +1Z�1 dk e�ik(lnx+at) T (k; t) ; x � 0 ; (4.19)with T (k; t) given by Eq. (4.1)�(4.4).4.3. Additive linear relaxationConsider the linear relaxation driven by additive symmetri non-Marko-vian DN: _X(t) = �aX(t) + �(t) ; Dx = (�1;1) ; (4.20)disussed in Ref. [17℄. Again, properties of this �ow di�er signi�antly fromthose of suh proess driven by Markovian DN.In this ase the probability density annot be alulated diretly by theproedures of Appendix C. It is possible, however, to alulate �rst fewmoments of the proess (4.20). The �rst moment is justx(t) = hX(t)i = e�at x0 ; (4.21)the seond one:



218 A. Fuli«ski
x2(t) = hX2(t)i = x2(t) + tZ0 dt1 tZ0 dt2 e�a(2t�t1�t2)h�(t1)�(t2)i= x2(t) + 2�2 tZ0 dt1 t1Z0 dt2 e�a(2t�t1�t2)  (t1 � t2)= x2(t) + �2(a+ �)a(a+ �1)(a+ �2) + 2�2(a� �)a(a� �1)(a� �2) e�2at+2�2� " � � �1a2 � �21 e�(a+�1)t� � � �2a2 � �22 e�(a+�2)t# ; (4.22)et. On the other hand, suh quantities an be also alulated as follows.De�ne:x(t) = hX(t)i ; y(t) = hX(t)�(t)i ; z(t) = x2(t) = hX2(t)i : (4.23)This leads to the set of kineti equations (f. Appendix B):_x = �ax ; (4.24)_z = �2az + 2y ; (4.25)_y = h _X�+X _�i = �(a+0�)y+�2�1� tZ0 dt0 e��(t�t0)hX(t)�(t0)i : (4.26)The approximation (3.2) gives:hX(t)�(t0)i = 1Z0 dxxR1(x; t; t0)� 1Z0 dxx ea(t�t0) ��xxQ(x; t0) ; (4.27)= ea(t�t0) ��xxhX(t0)�(t0)i : (4.28)Note that the interpretation of the form (4.28) is given by (4.27). Assumingthat Q(x; t) together with all its logarithmi derivatives vanishes su�ientlyrapidly at x!1:limx!1�x ��x�mxQ(x; t) = 0; m = 0; 1; 2; : : : ; (4.29)



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 219we get (� = t� t0):ea� ��xxhX(t0)�(t0)i = 1Z0 dxx ea� ��xxQ(x; t0)= 1Xn=0 (a�)nn! 1Z0 dx�x ��x�nxQ(x; t0)= 1Xn=0 (a�)nn! (�1)n 1Z0 dxxQ(x; t0)= e�a� hX(t0)�(t0)i : (4.30)Therefore,_y = �(a+ 0�)y +�2 � 1� tZ0 dt0 e�(�+a)(t�t0) y(t0) ; (4.31)with the solution: y(t) = C0 + C1 e��1t+C2 e��2t ; (4.32)�j = a+ �j ; C0 = �2(� + a)(a+ �1)(a+ �2) ;C1 = ��2� �1 � �a+ �1 ; C2 = �2� �2 � �a+ �2 : (4.33)This result substituted into Eq. (4.25) for z leads to the orret expressionfor the seond moment, Eq. (4.22), whih proves that the approximation(3.2) leads to the orret results for the linear relaxation driven by non-Markovian additive DN, at least up to seond moment of the probabilitydensity. 5. Final remarksAs we have mentioned in Setion 1, part of the results obtained in thispaper do not depend on the detailed form of the kernel K(�) in the generalnon-Markovian master equations. These are, espeially: the general form ofthe di�erentiation theorem, Eq. (2.13), and general forms of the hierarhyof master equations, Eqs. (2.5)�(2.6). Other forms � viz. Eqs. (2.3), (2.10),



220 A. Fuli«ski(2.12), (2.19), the approximations (3.12), and like, an be easily ast into theform ontaining general kernel K(�). On the other hand, the spei� resultsare true only for the kernel (1.4) � esp. Setion 3.2, the equations withremoved time integral, e.g. Eqs. (3.10)�(3.11), (4.7) (4.12), (4.13), (4.16),et., the averages (4.4), (4.17), (4.22), and like.For the derivation of formulas (4.4)�(4.6) (and the formulas of Appen-dix C) ruial is the formula (C2) (Eq. (3.11) of Ref. [17℄). Assumptionsabout initial onditions and about behavior of P (x; t), Q(x; t) for x ! 1seem to be justi�ed by the fat that they lead to orret (i.e. idential withexat) results. The same an be said about the radius of onvergene of theweak noise expansion, whih is di�ult to estimate otherwise.Minimal requirements for the approximate equations seem to be: (i) theyshould be simple enough to enable pratial appliations (alulations);(ii) they should lead to orret or almost-orret results in simpler asesand/or in well-de�ned limits. These requirements seem to be satis�ed byapproximation (3.10)�(3.11), or its higher-order generalizations (3.3),(3.5).All m = 1 approximations of this type lead to orret (exat) results for therandom telegraph proess and for linear stohasti proesses. As we havementioned above, other types of approximations, although similar at �rstsight to those generated by (3.3)�(3.5), lead to manifestly inorret results.The approximations (3.10)�(3.11) have been heked against simpleststohasti �ows only. For nonlinear kineti equations these approximationsmay turn out to be not so satisfying. Nevertheless, the dihotomi noisesare powerful tools mainly for linear systems [22�24℄. Therefore the approx-imations proposed in this paper seem to be of pratial signi�ane.Appendix ADe�nitions of and relations between auxiliary funtionsWe introdue the following auxiliary and higher-order distributions (den-sities), whih will be of use below, for hierarhy of master equations desrib-ing the non-Markovian ase3:mh�:::�(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)Æ�(tm);�� : : : Æ�(t1);��i ; (A.1)mk�:::�(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)Æ�(t);� Æ�(tm);�� : : : Æ�(t1);��i; (A.2)Rm(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)�(tm) : : : �(t1)i ; (A.3)Qm(t; tm; : : : t1) = hÆ(X(t; [�℄) � x)�(t)�(tm) : : : �(t1)i ; (A.4)t � tm � � � � � t1, and R0 = P (t) = 0h, Q0 = Q(t), 1h� = h�.3 To keep the notation short, the expliit indiation of the dependene of these funtionson x, �� : : :, et., is omitted.



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 221The de�nition (1.1) of DN implies thatÆ�(t);�� = Pst;� + "�2D�(t) ; Pst;� = P1(��) = 1� ��2D ; (A.5)�(t) = 2DhÆ�(t);�1 � �22D i = �2DhÆ�(t);��2 � �12D i= 12�0 +DhÆ�(t);�1 � Æ�(t);��2i ; (A.6)where "1 = 1, "2 = �1, D = (�1 + �2)=2. This leads to the followingrelations (sum rules) between these various probability densities:p1(t) + p2(t) = h1(t; t0) + h2(t; t0) = P (t) ; (A.7)1k1;�(t; t0)+ 1k2;�(t; t0) = h�(t; t0) ; 1k�;1(t; t0)+ 1k�;2(t; t0) = p�(t) ; (A.8)mh1�:::�(t; tm; : : : t1)+mh2�:::�(t; tm; : : : t1)=m�1h�:::�(t; tm�1; : : : t1) ; (A.9)mk1�:::�(t; tm; : : : t1) + mk2�:::�(t; tm; : : : t1) = mh�:::�(t; tm; : : : t1) ; (A.10)0k� = p�(t) ; 0h = P (t) ; (A.11)�1p1(t)��2p2(t) = Q(t) ; (A.12)�1h1(t; t0)��2h2(t; t0) = R1(t; t0) ; (A.13)�11k1�(t; t0)��21k2�(t; t0) = Pst;�Q(t) + "�2DQ1(t; t0) ; (A.14)�11k�1(t; t0)��21k�2(t; t0) = Pst;�R1(t; t0) + "�2DQ1(t; t0) ; (A.15)p�(t) = Pst;�P (t) + "�2DQ(t) ; (A.16)h�(t; t0) = Pst;�P (t) + "�2D R1(t; t0) : (A.17)We have also the following boundary onditions:1h�(t0; t0) = p�(t0) ; 1k��(t0; t0) = Æ��p�(t0) ; (A.18)R1(t0; t0) = Q(t0) ; Q1(t0; t0) = �2P (t0) +�0Q(t0) ; (A.19)Rm(t; t; tm�1 : : : t1) = Qm�1(t; tm�1 : : : t1) ; (A.20)Qm(t; t; tm�1 : : : t1) = �2Rm�1(t; tm�1 : : : t1) +�0Qm�1(t; tm�1 : : : t1) :(A.21)These funtions may serve for alulation of various averages �f. (2.14), (2.15).



222 A. Fuli«skiAppendix BDerivation of master equationsMaster equations of Setion 2 an be also derived by the method due toHaken [25℄:��tP (x; t) = ��thÆ(X(t; [�℄) � x)i = D ��X(t) Æ(X(t; [�℄) � x) _X(t)E= � ��xDÆ(X(t; [�℄) � x) _X(t)E ; (B.1)��tp1(x; t) = D ��X(t) Æ(X(t; [�℄)�x) _X (t)Æ�(t);�1E+DÆ(X(t; [�℄)�x) ddt Æ�(t);�1E= � ��x DÆ(X(t; [�℄) � x) _X(t)Æ�(t);�1E� tZt0 dt0K(t�t0) 
Æ(X(t; [�℄)�x)��1Æ�(t0);�1��2Æ�(t0);��2�� ;(B.2)whih leads diretly to Eqs. (2.3) and (2.7). Here use has been made ofthe well-known properties of the Dira delta-funtions. In partiular, thedistribution ��xÆ(X(t) � x)f(x) is equivalent to the distribution f(X(t)) ��xÆ(X(t)�x): multiply both distributions by a trial funtion q(x) and integrate(by parts) over a small interval around x = X(t); in both ases the result is�f(X)[dq(X)=dX℄, whih proves the equivalene.Besides, in the same manner we have:��t hÆ(X(t; [�℄)�x)�(t)i=� ��x hÆ(X(t; [�℄)�x) _X (t)�(t)i+hÆ(X(t; [�℄)�x) _�(t)i;(B.3)whih, ompared with Eqs. (2.8), (2.3), (B10), (A4) and (A5) giveshÆ(X(t; [�℄) � x) _�(t)i = �� tZt0 dt0K(t� t0)hÆ(X(t; [�℄) � x)�(t0)i : (B.4)The above relation an be generalized to averages ontaining arbitraryfuntion of time (f. also Eq. (2.13)):��thF (t)�(t)i = h _F (t)�(t)i � � tRt0 dt0K(t� t0)hF (t)�(t0)i : (B.5)



Stohasti Flows Driven by Non-Markovian Dihotomi Noise 223Appendix CDerivation of the formula (4.4)For the sake of ompleteness, we present here the derivation of the aver-ages of the type of (4.4), given in Ref. [12℄.For symmetri DN (�0 = 0):A(t; t0;�) = *exp"� tZt0 dt0�(t0)#+=*exp"� �Z0 dt0�(t0 + t0)#+= 1+ 1Xn=2 �nn! �Z0 dt1 : : : �Z0 dtnh�(t1 + t0) : : : �(tn + t0)i= 1+ 1Xn=2�n �Z0 dt1 t1Z0 dt2 : : :tn�1Z0 dtnh�(t1 + t0)�(t2 + t0): : :�(tn + t0)i= 1+ 1Xm=1�2m�2m �Z0 ds1 s1Z0 dt1 (s1�t1) : : :tm�1Z0 dsm smZt0 dtm (sm�tm):(C.1)In the above, the following property (Eq. (3.11) of Ref. [17℄) of averagesof the produts of symmetri DN's (both non-Markovian and Markovian4has been used:h�(t1) : : : �(tn)i = �2 (t1 � t2)h�(t3) : : : �(tn)i ; t1 � t2 � : : : � tn : (C.2)Using the Laplae transform and its well-known properties [26℄ we get,subsequently:�̂1(z) = 1Z0 d� e�z� �Z0 dt1 t1Z0 dt2  (t1 � t2) = 1z2  ̂(z)= z + �z2(z + �1)(z + �2) ; (C.3)4 This property, and some other, resemble those of Markovian DN. This is the resultof the initial onditions (1.3) used in Ref. [17℄. Other properties � e.g. the form oftwo-point orrelation funtion, Eq. (1.7) � are distintly non-Markovian. Espeially,the onditional probabilities do not satisfy the Smoluhowski�Chapman�Kolmogorovfuntional equation [20,27,28℄.
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