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It is argued that the observed deficit of solar and atmospheric neutrinos
can be explained by neutrino oscillations v, — v, and v, — v/ involving
two hypothetic sterile neutrinos v and v, (blind to all Standard-Model
interactions). They are keen to mix nearly maximally with v, and v,
respectively, to form neutrino mass states v, vy and vs, v5. Our argument
is presented in the framework of a model of fermion “texture” formulated
previously, which implies the existence of two sterile neutrinos beside the
three conventional.

PACS numbers: 12.15.Ff, 12.90.+b, 14.60.Gh

1. Introduction

The recent findings [1| of Super-Kamiokande atmospheric-neutrino ex-
periment brought to us the important message that the observed deficit of
atmospheric v,’s seems to be really caused by neutrino oscillations, related
to nearly maximal mixing of v, with another neutrino. This may be v; or,
alternatively, a new sterile neutrino (blind to all Standard Model interac-
tions). The v, neutrino is here excluded from being a mixing partner of v,
by the negative result of CHOOZ long-baseline reactor experiment [2] which
found no evidence for the disappearance modes of 7., in particular 7, — 7y,
in a parameter region overlapping the range of sin? 20,y and Am2, ob-
served in the Super-Kamiokande experiment.

The survival probability for v,, when analized experimentally in two-
flavor form

P (v, — vy) = 1 — sin® 204, sin® (1.27Am2, L/E) , (1)

atm

leads to the parameters [1]

sin? 20,0m = O(1) ~ 0.82 to 1 (2)

(227)
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and
AmZy, ~ (0.5 to 6) x 107° eV? (3)
at the 90% confidence level (note that the value Am2,, ~ 5x 1072 eV? cor-
responds to the lower limit of the previous Kamiokande estimate of Am?2,
[3]). If vr is responsible for this nearly maximal mixing of v,, then the
disappearance probability for v, in the mode v, — v is
P (v, — v;) = sin® 204, sin® (1.27Am2, L/E) . (4)

In the present paper, we conjecture that it is rather a sterile neutrino
(denoted here by v.) which is responsible for such a nearly maximal mixing
of v, (whether it is not or is v, constitutes a crucial point of our conjecture
which, unfortunately, is not at the moment easy to decide experimentally
[1]). We conjecture moreover that another sterile neutrino (denoted by vy)
mixes nearly maximally with v, causing the observed deficit of solar v,’s.
In such a way, we introduce a unified picture of neutrino oscillations as
being related to nearly maximal mixing of two sterile neutrinos vy and v/,
with v, and v, respectively. Of course, this mixing of vy and v, is not
forbidden by the weak isospin I3 and weak hypercharge Y of v, and v, , as
the conservation of these weak charges is spontaneously broken, except for
their combination @ = I3 4+ Y/2 (equal to zero for v, and v,). We should
like also to remark that the sterile neutrinos vy and v, interacting only
gravitionally, would be responsible for the existence of a Standard Model-
inactive fraction of the dark matter.

Note that the existence of just two sterile neutrinos (blind to all Standard
Model interactions), beside three families of Standard Model-active leptons
and quarks, turns out to be natural in the model of lepton and quark “tex-
ture” we develop since some time [4,5] (¢f. Egs. (A.15) in Appendix). In
this model, all neutrinos are Dirac particles having both lefthanded and
righthanded parts.

For the Standard Model-active neutrinos v, , v, , v,, charged leptons
e, pu", 7 ,up quarks u, ¢, t and down quarks d, s, b we came to a pro-
posal [5] (¢f. Eq. (A.10) in Appendix) of unified algebraic structure of

their mass matrices (MZ(Jf)) (f =v, e, u,d) in the three-dimensional fam-
ily space (i, j = 1,2, 3). In the case of leptons (f = v, e), this proposal
reads

. pNel)2 20/ giv' 0
( Migﬁ) = o 20N e 4,0 (80 + £(N2) /9 8/3alDeir”
0 8v3alDe=" 24,1 (624 + £ 2)/25

(5)
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Here, u(f), eN2 o(f) and <p(f) denote real constants to be determined from
the present and future experimental data for lepton masses and mixing pa-
rameters (u(/) and a{/) are mass-dimensional).

For charged leptons, when assuming that the off-diagonal elements of the

mass matrix (Ml-(je)> given in Eq. (5) can be treated as a small perturbation
of its diagonal terms, we calculate in the lowest (quadratic) perturbative
order in of® /() [5]:

6
m,r = m (351m“ - 136me)

2
+216M(e> 111550 487 ale)
3625 \ 31696 +29¢()2 320 —5e(0)2 ) \ ple) |
(or __B20me | (a@)
~ 9my, — dm, Mo ’

2
29 ole)
() — 27 _ (e)
we = 9m,, —4m.) + O e 6
o5 9 — 4mo) (M(e)) )

When the experimental m, and m, [6] are used as inputs, Egs. (6) give [5]

mr

a©\’
1776.80 + 10.2112 [ & — MeV
,U'(e)

2
(e)
e©2 — 0172329 + O (O‘—) :

=
—
)
N>

Il

NOME ©
859924 MeV + O W 1% . (7)

We can see that the predicted value of m, agrees very well with its experi-
mental figure m?® = 1777.007 030 MeV [6], even in the zero-order perturba-

tive calculation. To estimate (oz(e)/ u(e))g, we take this experimental figure
as another input. Then,

2
(e)
a
(W) = 0.0201005 , (8)

so it is not inconsistent with zero.
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(e)

The unitary matrix (Uij ), diagonalizing the mass matrix (M -(-e)> ac-

ij
cording to the relation U©1 M(€) U(e) = diag(m.., my, , my), assumes in the
lowest (quadratic) perturbative order in a(®)/u(¢) the form

1 2 (a@)? 2 a®) ig(©) 0
841 \ my 29 mﬂ
U©) = 2 a9 —ipl©) -2 a©\2 96 (a®)?  8/3a© £ ®
1) 29 my, 841 my, 841 mr 29 mr
0 _8v3al) —ipl® 96 (a®)?
29 m, 841 \ m,

where the small £(®)2 is neglected. Of course, in the limit of a(®) — 0, we

obtain (Uf?) — (dij).

For neutrinos, we will assume in this paper that ¢)? is very small and
o =0, (10)

in contrast to the possibility of a(®) # 0 for charged leptons [¢f. Eq. (8)].

Then, for conventional neutrinos (Ui(jy)) = (04;) and so, Ve, v, V7 can mix

only by means of the trivial lepton CKM matrix (V;;) = (Zk kz Ug; ) =

(Ui(je)>, what is a minor effect, vanishing in the limit of a(®) — 0. Instead,

allowing in this paper for the existence of two sterile neutrinos v and v},

ij
through Egs. (5) and (10), to a 5 x 5 neutrino mass matrix (M(V)> (I,J =

1,2,3,4,5) with Ml(f;) = M§I) Explicitly, we will assume that

we will extend the 3 x 3 neutrino mass matrix (M-('-/)) (1,7 =1,2,3), given

M o o MY o

M o o MY o

where M) = pue)2/29 MQ(;) ~ 320" /261, M ~ 14976, /725
due to Eq. (5), and M§4) ~ e 27, M N 48,) /7 in consequence
of Egs. (A.19) and (A.20) (cf. Appendlx) It w1ll turn out that the matrix
elements Ml(Z) =M ﬁ)* and Még) = Még)* lead to the mixing of neutrino
flavor states v, with vg and v, with V! within neutrino mass states vy, vy
and vo, s, respectively.
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2. Neutrino mass states

The eigenvalues of the extended mass matrix (M I(;)> given in Eq. (11)
are Dirac masses of five neutrino mass states v1, 1o, v3, 14, v5. They are

2
MY + My MY - p y
_ 11 a4 11 5 44 + |M1(4)|2 :

My,vy = 9

My, = M?Eg) )

M) + MY My -\ )
Ma,vs = D) + 5 - My 2 (12)

In Section 4, the masses m,, and m,, will turn out to be negative, what is
irrelevant in the case of Dirac particles for which only masses squared are
measurable (so, |m,,| and |m,,| will be the phenomenological masses of v
and vy).

The corresponding 5 X 5 unitary matrix (UI(Z)), diagonalizing the mass
matrix (MI(;)) according to the equality UM T M®) UW) = diag(m,,, m,,,

Myg, My,, My ), takes the form

1 Y i)
1+Y?2 0 0 \/Wew ’ )
1 X ; v)!
) 0 viexee 00 Es oA
(1) = 0 0 10 0
__ Y e*’igo(”) 0 0 1 0
VI+Y? " T+ye?
0 —Fame 0 0 Eac
(13)
where My = |M{}|expip®), MY = | M| expip®) ' and
14 14 14 14 2
y o MY -mp (Mfl’ - iﬁ)
21Mm7) 27
_ Ml(llj) M AEZ) — My,
M| M|
14 14 14 14 2
v Mg [ ()
21M;5)| 2|M7)
M) MY~ (14)

M) M|
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. _ p :
The neutrino flavor states vy = ve, vy, V7, vs, v, (of which ve, v, , vr,

or rather their lefthanded parts, stand for the observed weak-interaction neu-
trino states and vy, v, denote their unobserved sterile partners) are related to
the neutrino mass states vy = vy, vy, 13, V4, V5 through a five-dimensional
unitary transformation

va= Vi,vs (15)
J
with (V;,) = (Vas)'. Here,

VJ—ZUKa KJ ZUM kJ+U4£a) 54]+UE§0¢) 057 5 (16)

where (Ui(j‘-e)> is the charged-lepton diagonalizing matrix given in Eq. (9)
and

U =0=u, U —0=vY ., v =1=0%. @)

The last equations follow from the fact that charged leptons get no sterile
partners. Thus, from Eq. (16)

0‘] - ZUka k] ) 044 Uﬁiz)*’ V045 = U5(Z)* : (18)

Of course, the 5x5 unitary matrix (V) is a five-dimensional lepton counter-
part of the familiar CKM matrix for quarks. The charged leptonse™, u=, 7~
are here counterparts of the up quarks u, ¢, ¢ (both with diagonalized mass
matrix).
From Eqs. (18), with the use of Eqs. (13) and (9), we can calculate
the matrix elements V,; in the lowest (quadratic) perturbative order in
(e)/u(e). Writing for convenience a =1 =1,2,3,4,5, we get

2 [l 1
Vit = |1 - — ,
841 \ my V14+Y?2
T I A T A
2 = 841 \ m, 841 \ m, Vit x2’
) 2
96 [ ol
= 1-
Vas 841 (mT> ’
2 ol®) 1

o€
Vig = co— ——=¢€"" ", Vo1 =—

29 my VvV1+Y?
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8\/504(6) 1 o) 8v/3 ole) 1 io®
V23 = e’ 7V32 = - e '’ )
29 mr V14 X? 29 m; /14 X2
Vis = 0, V31 =0 (19)
and
Y ) 2 al®) ? Y )

Vieg = ———e% V= |1—— e

RV e A st \m, ) | Vigveo

209 Y (o) —pl©)

\% = 0, Vi :——76_“@ - )’

24 42 29 my, m

1
‘/34:0a ‘/43:07 ‘/44:Wa
2 ol®) X o) T ()

V == 0, V :———76_“90 +o )’

15 51 Wm, VT

2
X s (v) 1 2 a(e)

Vor = ———— ¥ Voo = [1 — —

» Trxz 7 841 (mu

2
96 (ol X w
841 \ m, Tt X2 ’

8v3ald X mre

35 ; %= 00 AT ;
1
Vis = 0, V54=0,V55=W- (20)

In the limit of &{® — 0, the only nonzero matrix elements V,; are

1 1
Vii— —, Voo —,V33—>1 21
and
Y () . 1
Vig = —ﬁew y Vi = =Viy, V= W ;
X ()1
V25 = —762(‘0( ) , V52 — —V2*5 , V55 = (22)

1+ X2 1+ X2
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3. Neutrino oscillations

Having once found the elements (19) and (20) of the extended lepton
CKM matrix, we are able to calculate the probabilities of neutrino oscilla-
tions vo — v (in the vacuum), using the familiar formula:

2 2
P(vy — vg) = [{(valva(®)))? = ZVLgVEaV[’;ﬂVKanp (zw t) ;
P 1]

(23)
where 14(0) = vq, (v3] = (0lvg and (v3|va) = d3q. Here, as usual, t/|p] =
L/E (c=1=h), what is equal to 4 x 1.2663L/E if m2 —m__, Land E
are measured in eV2, m and MeV, respectively. Of course, L is the source-
detector distance (the baseline). In the following, it will be convenient to
denote

2 2
g = 1.2663M (24)
E
and use the identity cos2xpx =1 — 2 sin’ 21 k.
From Egs. (23), (19) and (20) we derive by explicit calculations the
following neutrino-oscillation formulae valid in the lowest (quadratic) per-

turbative order in a(®) /pu(®):

16 [a®\?
P(Veﬁyu):&ﬂ< >

my
1 .
X {(1 X117 (sin2 x21 + XZsin® 251 4+ V2 sin® 249 + X2V 2 sin? m54)
- X72 sin® x5y — 7)/2 sin?
A+Xx2)2°0 7T @y M)
Py,—-v;)=0,
768 (N[ 1 ) X2
Pl =)= @(m—> {W(Sln2$32+X2Sln2w53)_msln2xsz :
4 a0\ v,
P(ve = vs) =4 ll—&ﬂ (m—u> msm T41
16 (a©\° vz
P (v, = vs) = ]41 <m—u> mSln T41 ,
16 (a\° X2
P(ve — V;) = 841 (m—u> mSln T52 ,
4 ale) 2 192 / af® 2 X2
P =g |l [ ) == =—— 12y | 25
(VM_>V5) l 841<my> 841<mr> (1+X2)2 SIN” Tyo ( )
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In the limit of (®) — 0, the only nonzero neutrino-oscillation probabilities
are

Y2
(1+Y?)?
X2
(1+ X2)2

Pve—vs) — 4 sin’ z4; |

Py, —vl) — 4 sin® z5o . (26)

The formulae (25) for the disappearance modes of v, and v, imply the
following survival probabilities for v, and v:

PWe—ve) = 1—=P(ve—v,)—P e —v;)— P Ve — vs) — P (ve — 1))

2
(o) >
—1-4 1—i<o‘ ) ( Y n?zg

841 \ m, 1+ Y?2)2

2
16 [ oo 1
841 \'m, | (I+X2)(1+72)
X (sin2 To1 + X2 sin® 251 + Y2 sin? 249 + X2V 2 sin? x54)
(27)
and
Pwv,—-wv,) =1-Pw,—>v.)—P(,—v,)— P, > vs)— P (v, > 1)
8 [a®\® 384 fa@©N\’] x2
- 1_4[1_@(%) ‘@(m) (T+x2)2 70 7
16 (a1
841 \'m, ) T+ x2)(1+7?)

X (sin2 2o1 + X2sin? 25 + YVZsin?zyo + X2V? sin2m54) .

(28)
In the limit of &(® — 0, we obtain
P (l/e — Ve) —1-— 4m sin 41 (29)
and
X2 .9
P(VM — VU) —1-— 4m S Iy9 . (30)

The last two formulae are to be compared with solar-neutrino and atmospheric-
neutrino experiments, respectively.
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4. Atmospheric and solar neutrinos

In the case of atmospheric neutrinos, we compare our formula (30) with
Eq. (1). Then, for instance,

4X?

— ~ 0.9 31
(14 X2)2 (1)

(more generally: ~ 0.82 to 1) and
m. —mp, ~5x107 eV? (32)

(more generally: ~ (0.5 to 6) x 1073 eV?).
From the input (31) we get

X ~0.721 (33)

and, through the second Eq. (14),

M - M 1-Xx2 1 34
Amy))
or
M) = g (M) - ME)) ~ D (MY M) )

On the other hand, the third mass formula (12) and the input (32) give

vs

2
(M) + M) \/(MQ(;) = MY) + AMP 2 = m2 —mZ, ~5x 107 eV?

(36)
or, with the use of Egs. (34) and (33),
V)2 V)2 1- X2 —
Mm% M2 = Tz (e = i) ~ 158 107 eV2 (37)

With the formulae MQ(;) ~ 3201(*) /261 and Még) ~ 484" /7 we have
Még)2 — MQ(;)2 ~ 45542 Hence, Eq. (37) leads to

1) ~5.90x 1073 eV. (38)

Then,
MY ~725 %107 &V, MY ~4.04x 1072 eV (39)
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and so, from Eq. (35)
M| ~ 4.97 x 1072 eV. (40)

Finally, with the values (39) and (40) the third mass formula (12) gives
—2.86 x 102 eV
Mva,vs { 7.62 % 1072 eV (41)

In this way, all parameters appearing in our model of neutrino “texture”,
needed to explain the observed deficit of atmospheric v,’s in terms of neu-
trino oscillations v, — v, are determined.

In the case of solar neutrinos, we compare our formula (29) with the
survival probability for v,, usually analized experimentally in two-flavor form

P (Ve = 1) = 1 — sin? 20, sin? (1.27Am§01 L/E') . (42)

Taking into account the so-called vacuum fit [7]| (i.e., one that is not en-
hanced by the resonant MSW mechanism [8] in the Sun matter), we have
the parameters

sin? 20551 ~ 0.65 to 1, AmZ; ~ (5 to 8) x 10711 eV? | (43)

what shows a large mixing and a very small difference of masses squared.
Then, for instance,

4Y?
~0. 44
Atvee ~ 08 (44)
(more generally: ~ 0.65 to 1) and
m2, —m2 ~T7x10 1! eV? (45)

(more generally: ~ (5 to 8) x10~ eV?).
From the input (44) we obtain

Y ~ 0.618 (46)

and, due to the first Eq. (14),

M My 1-v? 1 )
My 2
or
M = o (M) - M)~ M M )
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On the other hand, the first mass formula (12) and the input (45) lead to

14 14 14 14 2 14 —
(M + M) \/<M1(1) = M)+ AMER = m —mE, ~ Tx107 eV

(49)
or, through Egs. (47) and (46), to
v)2 v)2 1— Y2 —

MU M2 = oy (me, = mi) ~ 313X 107 eVE L (50)
With the formulae Mg) = pMe)2/29 and M£4) ~ MM 2T we get
Mﬁﬂ - M( M2 0. 01924 2 )4 Hence, Eqgs. (50) and ( ) give

e™? L 6.85x 1077 . (51)
Then,
MY ~139x1075eV , MY ~5.77 x 1075 eV (52)
and thus, from Eq. (48)
IMY)| ~ 4.38 x 1075 eV . (53)

Eventually, with the values (52) and (53) the first mass formula (12) implies

(54)

—1.32 x 1076 eV
Mw1va 8.48 x 1076 eV

In such a way, all parameters contained in our model of neutrino “tex-
ture”, needed to describe the observed deficit of solar ,’s in terms of neutrino
oscillations v, — v, in the vacuum, are determined.

Our last item is concerned with the LSND accelerator experiment that
reported the detection of v, — 7, and v, — v, oscillations by observing
ve’s and 1.'s in a beam of 1,’s and v,’s produced in 7~ and 7" decays,
respectively [9]. The observed excess of v.’s and v,’s, analized in terms
of two-flavor neutrino-oscillation formula, implies a considerable amplitude
sin? 201sxD, too large to be explained by our formula (25) for Py, = ve) =

P(ve — v,), where the leading amplitude at sin? z,

16 (o 2 1 (55)
841 \'m, | (I+X2)1+Y2)"

is small:

2
(e)
0<£(o‘ > <62x107%, (56)
my
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as it follows from Eq. (8). Here, the central value is

2
16 [ al®) 4
— = 2. 107°.
Sl (mu ) 5x 10 (57)

If signs F in the mass formulae (12) are replaced by +, then in Egs.
(14) for Y and X we ought to interchange m,, + m,,, my,, < m,, and

Ml(lf) “ MAEZ), MQ(;) - Még) to keep Eq. (13) for (UI(Z)) unchanged. In the

new situation, we may try the assumption p(®) = 0 [instead of p) = ),
Egs. (20)], and then with the use of sin? 20, ~ 0.9 and Am2,,, ~5x 1073
eV2 we obtain m,, ~ 8.28 x 1072 ¢V and m,, ~ —4.30 x 1072 eV (and
p®) ~ 3.24%1072 eV). Similarly, with the use of sin? 265, ~ 0.8 and Amgol ~
7 x 107 eV? we get my, ~ 9.05 x 10°% eV and m,, ~ —3.46 x 10°° &V
(and e™)? ~ 5.00 x 1073).

I would like to thank Jan Kroélikowski for several helpful discussions.
Appendix

Unified “texture dynamics”

In this Appendix the idea of a model of fermion “texture” that we develop
since some time [4,5] is outlined. In particular, the existence of two sterile
neutrinos vs and v, turns out to follow naturally.

Let us introduce the following 3 x 3 matrices in the space of three fermion
families:

0 1 0 0 0 0
a=10 0 v2 | ,a'=[1 0 o0]. (A1)
00 0 0 V2 0
With the matrix
0 0 O
n=daa=(0 1 0 |, (A.2)
0 0 2
they satisfy the commutation relations
@, 7] =a, [@, ] = —a' (A3)

characteristic for annihilation and creation matrices, while 7 plays the role
of an occupation-number matrix. However, in addition, they obey the “trun-

cation” identities
@ =0,a%=0. (A.4)
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Note that due to Egs. (A.4) the bosonic canonical commutation relation
[@,a'] =1 does not hold, being replaced by the relation [a,af]=diag (1,1, -2).

In consequence of Egs. (A.1), (A.2) and (A.3), we get n|n) = n|n) as
well as @n) = v/njn — 1) and @f|n) = vn + 1jn +1) (n =0,1,2), however,
a'2) = 0 (i.e., [3) = 0) in addition to a@f|0) =0 (i.e., | — 1) = 0). Evidently,
n = 0,1,2 may play the role of a vector index in our three-dimensional
matrix calculus.

It is natural to expect that the Gell-Mann matrices (generating the hor-
izontal SU(3) algebra) can be built up from @ and a'. In fact,

~ 01 0 .
=110 0 :§<a2aT+aaT2),
0 0 0
~ 0 —i 0 .
N =1 i 00 :5@2?—&&*2),
0 0 0 t
~ 10 0 .
M= 0 -1 0 :5(828“ aa”a),
0 0 0
~ 00 1 X
=100 o0 :—(a%ra“),
10 0 V2
R 0O 0 —2 1
=1 0 0 - (aQ—a“),
i i 0 0 iV2
~ 0 0 0 .
=10 0 1 :—<aTa2+aT2a)
01 0 V2
~ 00 0 .
M= 0 0 —i :,—(aTaQ—aTQa),
0 1 W2
10 0
~ 1 1
=— 01 o0 :—(&&T—afa),
YUV o 0 -2 V3
10 0
=~ L fonto | ~nfon | ~t2-2
1 = 0 1 0 :§<aa +aa'“a+a a). (A.5)
00 1

Inversely, @ = (A +iA2)/24+v2(Ng+iA7)/2 and @ = (N —iXa) /24 V2(Ne —
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137) /2. A message we get from these relationships is that a horizontal field
formalism, always simple (linear) in terms of A (A=1,2,...,8) and 1,
is generally not simple in terms of @ and af. In particular, a nontrivial
SU(3)-symmetric horizontal formalism is not simple in @ and @'. Inversely,
a nontrivial horizontal field formalism, if simple (linear and/or quadratic
and/or cubic) in terms of @ and @', cannot be SU(3)-symmetric.

Now, let us consider the following ansatz [5]:

M) = U252 (F=v, e, u,d), (A.6)
where
. 1 0 0
~1/2 _ ~_
pfi=——1 0 V4 0], Trp=1 (A7)
v29.\ o o v
and

with 7 = afa and
R 1 0 R 0 0 0
1+2a=N=| 0 0o],c¥=100 0 . (A9)
0 5 00 ¢

It is the matter of an easy calculation to show that the matrices (A.6) get
explicitly the form [5]:

. u(Helh)2 20N eieth) 0
M) = + 2aNe=iv") 4N (8045 2) /9 8v/3(alN—g)eiv'!)
0 8v3(aN-gMe=ieT) 24, (N (62442501 45 2) /25

(A.10)

In this paper we write also MO = (MZ(]f)) (1,7 =1,2,3).
In a more detailed construction following from our idea about the ori-
gin of three fermion families [4], each eigenvalue N = 1, 3, 5 of the ma-

trix N corresponds (for any f = v, e, u, d) to a wave function carrying

N =1, 3, 5 Dirac bispinor indices: a1, as,...,an of which one, say «ay, is
coupled to the external Standard Model gauge fields, while the remaining
N-1=0,2,4: a,..., ay (that are not coupled to these fields) are

fully antisymmetric under permutations. So, the latter obey Fermi statistics
along with the Pauli principle implying that really N —1 < 4, because each
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a; = 1,2,3,4. Then, the three wave functions correspondingto N =1, 3, 5
can be reduced to three other wave functions carrying only one Dirac bispinor
index «; (and so, spin 1/2),

o, = v

1,
¢§Q1 = Z (C 175)0@043 Ql}g(]i)aﬂas = Ql}gc{)lQ = ¢£¢f1)34 ’

1
1/%}21 = ﬂ5a2a3a4a5q/}&{)a2a3a4a5 = 1/}((1{)1234 s (A'll)

and appearing (up to the sign) with the multiplicities 1, 4 and 24, respec-
tively. In this argument, for N = 3 the requirement of relativistic covariance
of the wave function (and the related probability current) is applied explicitly
[4]. The weighting matrix p'/? as given in Eq. (A.7) gets as its elements the
square roots of these multiplicities, normalized in such a way that Trp = 1.

In Egs. (A.11), the indices «; (i = 1,2,...,N) are of Jacobi type:
a1 is a “centre-of-mass” Dirac bispinor index, while asg,..., ay are “rel-
ative” Dirac bispinor indices. In fact, o; (i = 1,2,...,N) are defined by
chiral representations of T'¥ matrices (i = 1,2,...,N) being the (prop-
erly normalized) Jacobi combinations of some individual v/ matrices (i =
(1/VN) Ly vt [4]. For them

{I‘f,FJV} = 20;;9" (i,j = 1,2,...,N), in consequence of the anticom-

1,2,...,N), where, in particular, I'}

mutation relations {fyz“ Yy } = 20;jg" valid for any ~}' and . Then, the
Dirac-type equations {I'; - [p — gA(z)] — M} ¢(z) =0 (N =1,2,3,...) [4],
independent of I'y,..., T, hold for the fundamental-particle wave func-
tions ¥ () = (Yayas...ay (), where N = 1,3, 5 in the case of fermion wave
functions (A.11). Here, gI'; - A(x) symbolizes the Standard Model coupling.

Note that all four matrices M) (f = v,e,u,d) defined by Egs.
(A.6)—(A.9) and (A.1) have a common structure, differing from each other
only by the values of their parameters plf), (N2 o) U ) and o),
We proposed the fermion mass matrices to be of this unified form [5]. Then,
Egs. (A.6) and (A.8) define a quantum-mechanical model for the “texture”
of fermion mass matrices M) (f=v,e,u,d). Such an approach may be
called “texture dynamics”.

The fermion mass matrix Z/\/[\(f)7 containing the kernel B given in Eq.
(A.8), consists of a diagonal part proportional to p) | and of an off-diagonal
part involving linearly o{f) and 8/). The off-diagonal part of 1) describes
the mixing of three eigenvalues

u [N2 + <e<f)2 - 1) N724 5N5C(f)] (N =1,3,5) (A.12)
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of its diagonal part. Beside the term ,u(f)C(f) that appears only for N =5,
each of these eigenvalues is the sum of two terms containing N2. They are:
(i) a term p/) N? that may be interpreted as an “interaction” of N elements
(“intrinsic partons”) treated on the same footing, and (4i) another term

mes (g(fﬂ - 1) P2 with Py = [NI/(N —1)]7" = N1 (A.13)

that may describe an additional “interaction” with itself of one element
arbitrarily chosen among N elements of which the remaining N — 1 are
undistinguishable. Therefore, the total “interaction” with itself of this (ar-
bitrarily) distinguished “parton” is p()[1+ ()2 — 1)N~2], so it becomes
p el 2 in the first fermion family.

The form (A.11) of three fermion wave functions shows that each “intrin-
sic parton” carries a Dirac bispinor index (of the Jacobi type). For the (arbi-
trarily) distinguished “parton”; this index, considered in the framework of a
fermion wave equation, is coupled to the external gauge fields of the Standard
Model. Thus, this “parton” carries the total spin 1/2 of the fermion as well
as a set of its Standard Model charges corresponding to f = v, e, u, d. For
the N — 1 undistinguishable “partons”, obeying Fermi statistics along with
the Pauli principle, their Dirac bispinor indices are mutually coupled, re-
sulting into Lorentz scalars, while their number N —1 = 0, 2, 4 differentiates
between three fermion families (for each f = v, e, u, d). These “partons”
are free of Standard Model charges.

Evidently, the intriguing question arises, how to interpret two possible
boson families corresponding to the number N—1 = 1, 3 of undistinguishable
“partons” [10]. In the present paper this problem is not discussed. Here, we
would like only to point out that three fermion families N = 1, 3, 5 differ from
these two hypothetic boson families N = 2,4 by the full pairing of their N —
1 =0, 2,4 undistinguishable “partons”. So, the boson families, containing an
odd number N — 1 = 1,3 of such “partons”, might be considerably heavier.
Note that the wave functions corresponding to N = 2,4 can be reduced
(under some relativistic requirements) to two other wave functions carrying
only spin 0,

1 _ 1 1
) = 55 (O o W8 = 5 (918 — i) = 5 (04— 0id))

1 1
¢z(1f) 6\/15111&2&3&47/]&{)(12&3&4 = \/Z (1/1%?34 - "/Jéjl?ﬂ + '1/)&912 - 1/}4(&;%2) )
(A.14)

and appearing (up to the sign) with the multiplicities 2 and 6, respectively.

Another important question also appears, namely, what is the interpre-
tation of two fermions corresponding to the number N = 1, 3 of undistin-
guishable “partons” only. Such fermions can carry exclusively spin 1/2 (for
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N = 3: under some relativistic requirements). Of course, they are free of
Standard Model charges and so, can be considered as two sterile neutrinos
with the wave functions

Vsay = ")blal = ")boq s
134 for ag =1
—1)a3y for oy =2
312 for ap =3
—1/)412 fOI‘ a1 = 4

(A.15)

— — -1.5 —
Vsay = 1/}3041 = (C Y )a1 s 502&3041151/}043044045 -

S| =

appearing (up to the sign) with the multiplicities 1 and 6, respectively.
For these sterile neutrinos one may introduce the 2 x 2 mass matrix
M) = ﬁ(5)1/2/]{(5)ﬁ(5) 12 where

aip 1 (1 0 .
wmzﬁ<0ﬁ>,ﬁwzh (A.16)

while the diagonal part of 1) is conjectured to have the eigenvalues
p [N2 4 (92 = 1) P}] with Py = NYN!=1 (N =1,3). (A17)

Now, one “intrinsic parton” is arbitrarily chosen (to carry the total spin 1/2
of the fermion) among N “intrinsic partons” that all are undistinguishable

[in contrast to Eqs. (A.12) and (A.13)]. This gives the diagonal part of M®)
equal to

1 [ po)els)2 0

= . Al

7 ( 0 6uO(8 402 (4.18)

Thus, the diagonal matrix elements Mﬂ) and Még) of the 5 x 5 neutrino
mass matrix (M}Z)) (I, J = 1,2,3,4,5) introduced in Eq. (11) get the

forms

y (s) o 6u® 481,(9)
MY B @2 M) = “7 (8 +g(s)2> ~ % (A.19)

with £(8)2 expected to be very small. In the present paper we will assume
that
M(s) ~ M(V) , e®2 02 (A.20)

in Egs. (A.19).
The possibility of existence of two bosons corresponding to the number
N = 2,4 of undistinguishable “partons” only ought to be also considered.
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Such bosons can carry exclusively spin 0 (for N = 2: under some relativistic

requirements). Obviously, they are free of Standard Model charges and so,

may be considered as two “sterile scalars” with the wave functions

¢2 E% (0_1’75) Q/}alag = ¢12 = ¢34 3 ¢4 = i5a1a2a3a4¢a1a2a3a4 :¢1234
(A.21)

appearing (up to the sign) with the multiplicities 4 and 24, respectively.

A priori, the “intrinsic partons” may be either strictly algebraic objects
providing fundamental fermions (leptons and quarks) with new family de-
grees of freedom, or may give us a signal of a new spatial substructure of
fundamental fermions (built up of spatial “intrinsic partons” = preons, re-
lated to the individual /" as well as 2! and p' (i = 1,2,..., N); note that
here v/ ’s anticommute for different i !). Our idea about the origin of three
fermion families [4] chooses the first option. The difficult problem of new
non-Standard Model forces, responsible for the binding of N preons within
fundamental fermions, does not arise in this option.

However, if the second option is true, then this irksome (though certainly
profound) problem does arise and must be solved.
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