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ON FRACTIONAL SPIN IN THE CP1 MODELCOUPLED TO THE HOPF TERMB. Chakraborty� and A.S. Majumdar��S.N.Bose National Centre for Basi
 S
ien
esBlo
k JD, Se
tor III, Salt Lake, Cal
utta 700091, India(Re
eived August 17, 1998; Revised version re
eived November 6, 1998)We 
arry out a gauge independent Hamiltonian analysis of the CP1model 
oupled to the Hopf term. We show that no fra
tional spin is revealedat the 
lassi
al level � a result that is di�erent from the 
orresponding 
asefor the O(3) nonlinear sigma model. We next show that if the former modelis altered through an identity involving the time derivative, an expression offra
tional spin emerges at the 
lassi
al level itself, whi
h is given in terms ofthe soliton number of the model. This result mat
hes several other existingresults, both for the CP1 as well as the sigma model versions, obtainedthrough 
anoni
al or path integral quantization.PACS numbers: 11.15.Tk, 11.10.Ef, 11.10.LmSystems residing in 2 + 1 dimensional spa
etime dimensions have at-tra
ted mu
h attention in re
ent years. This has been in the hope of ob-taining 
riti
al insight into a large variety of phenomenologi
al problems indivergent areas ranging from 
ondensed matter physi
s to quantum grav-ity [1℄. A pe
uliar aspe
t whi
h has emerged from these investigations isthat there exist several �eld theoreti
al models in 2 + 1 dimensions whi
hadmit solitoni
 
on�gurations imparting fra
tional spin and statisti
s to the
oupled matter systems. It was �rst shown by Wil
zek and Zee [2℄ thatby performing a slow adiabati
 rotation of 2� the wave fun
tion a
quiresa nontrivial phase, thus signalling fra
tional spin. Later, using the 
anoni-
al Hamiltonian formalism, Bowi
k et al. [3℄ showed the existen
e of fra
-tional spin in the nonlinear sigma model 
oupled to the Hopf term. That apurely bosoni
 
lassi
al �eld theory admitting topologi
al solitons may have� e-mail: biswajit�bose.ernet.in�� e-mail: ar
han�bose.ernet.in (247)
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hara
teristi
s was noted long ago [4℄. For the 
ase of 3+1 dimen-sions, it was realized that the doubly 
onne
ted 
on�guration spa
e allowsfor only Bose�Einstein and Fermi�Dira
 statisti
s. In 
ontrast, in 2 + 1 di-mensions all sorts of statisti
s may be permitted be
ause of the possibility ofhaving an in�nitely 
onne
ted 
on�guration spa
e. For example, for the 
aseof the nonlinear sigma model, the 
on�guration spa
e C = ffg is the setof all maps f : S2 (
ompa
ti�ed spa
e of R2) ! S2 (�eld manifold) havingthe fundamental group �1 (C) = �3 �S2� = Z. The model admits solitons as�0 (C) = �2 �S2� = Z. These possibilities 
an be realized by introdu
ing aWess�Zumino term [5℄ in 3+1 dimensions whereby solitons get half-integralspin, whereas solitons in 2+1 dimensions 
an be imparted fra
tional spin byintrodu
ing a Chern�Simons or a Hopf term in the a
tion. These issues havebeen typi
ally exempli�ed by the detailed study of various models 
oupledto the Chern�Simons (CS) and Hopf terms in 2 + 1 dimensions [6℄.At the formal �eld theoreti
al level, the features of fra
tional spin andstatisti
s in various 2+1 dimensional models have been revealed using boththe path integral [2℄ as well as the 
anoni
al Hamiltonian formalism [3,6,7℄.In the latter s
heme the expli
it 
onstru
tion of the relevant angular mo-mentum operators has been 
arried out in several models involving theChern�Simons term in a gauge independent manner [6℄. In these modelsthe existen
e of fra
tional spin is usually revealed by 
omputing the di�er-en
e between the expression for the gauge invariant (physi
al) de�nition ofthe angular momentum operator Js following from the symmetri
 energymomentum (EM) tensor, and that of the Noether angular momentum Jn.The latter expression Jn 
orresponds to only the orbital part of angular mo-mentum (for s
alar �elds as in [3℄), and turns out, in general, to be gaugeinvariant on the 
onstraint surfa
e only under those gauge transformationsthat redu
e to identity at in�nity [6℄.The expli
it 
onstru
tion of the angular momentum in the O(3) nonlinearsigma model 
oupled to a Hopf term was 
arried out by Bowi
k et al. [3℄ us-ing the 
anoni
al Hamiltonian formalism showing the existen
e of fra
tionalspin. In this model a gauge �xing had to be done right at the beginningin order to uniquely de�ne the �
titious gauge �eld A� in terms of the 
ur-rent j� thereby making the Hopf term nonlo
al. It is well known that atthe 
lassi
al level the nonlinear sigma model is 
ompletely equivalent to theCP1 model in 2 + 1 dimensions [8℄. It has been 
laimed re
ently, that thisequivalen
e 
an be established at the quantum level too [9℄. The CP1 modelextended by a Hopf term is des
ribed by a Lagrangian whi
h is lo
al in termsof the basi
 �elds, and gauge �xing is not required at the onset unlike as inthe 
ase of the nonlinear sigma model [3℄. The model is interesting as it de-s
ribes antiferromagnets [1℄. On the other hand, its nonrelativisti
 version,the CP1 model is intimately related to the Landau�Lifshitz model of ferro-



On Fra
tional Spin in the CP1 Model Coupled to the Hopf Term 249magnetism [10℄. The nonrelativisti
 CP1 model 
oupled to the Hopf termhas been analyzed in [11℄. A 
omprehensive Hamiltonian analysis in a gaugeindependent manner à la Dira
 [12℄ of the CP1 model with the Hopf term(this being a 
onstrained system) is therefore desirable, in order to 
omparewith the quantization 
arried out in the redu
ed phase spa
e s
heme usingsome gauge �xing 
ondition, in light of its (possible) phenomenologi
al rele-van
e as well as the above-mentioned intri
a
ies involved in the de�nition ofthe angular momentum in similar models. It is well established in literaturethat the s
hemes of Dira
 and redu
ed phase spa
e quantization might leadto entirely di�erent physi
al results [13℄.To this end, in this paper we perform a 
lassi
al Hamiltonian analysis ofthe lo
al CP1 version of the relativisti
 nonlinear sigma model in
luding aHopf term in a 
onsistent gauge independent manner [6,12℄. We 
arry outthe expli
it 
onstru
tion of the translation and rotation symmetry genera-tors using both the Noether pres
ription, as well as the symmetri
 energymomentum tensor. To begin with, let us brie�y re
all the essential 
hara
-teristi
s of the nonlinear sigma model des
ribed by the Lagrangian [3,9℄L = 14��Ma (x) ��Ma (x)� � (MaMa � 1) : (1)� is a Lagrange multiplier enfor
ing the 
onstraints MaMa = 1. The �eldmanifold is S2. For �nite energy stati
 solutions the �elds are requiredto tend to 
onstant 
on�gurations asymptoti
ally, so that the spa
e R2 isessentially 
ompa
ti�ed to S2. The 
on�guration spa
e splits into disjointunions of path 
onne
ted se
tors CN , with N spe
ifying the winding numberof the soliton given by N = Z d2xj0 (x) ; (2)where j� is the identi
ally 
onserved (��j� = 0) topologi
al 
urrentj� = 18�"���"ab
Ma��Mb��M
 : (3)The 
urrent j� 
an be expressed as the 
url of a ve
tor potential A� asj� = 12�"�����A� ; (4)where A� is obtained by pulling ba
k onto the spa
etime, the Dira
 monopole
onne
tion on CP1 � S2 [10℄.The CP1 version of the model (1) 
an be written asL0 = (D�Z)y (D�Z) ; (5)



250 B. Chakraborty, A.S. Majumdarwhere D� � �� � iA� : (6)Note that there is no dynami
al term for A� in the Lagrangian. Z =  z1z2 !is a SU(2) doublet of 
omplex s
alar �elds z� (� = 1; 2). TheMa �elds in (1)are related to the z� �elds via the Hopf map Ma = Zy�aZ, with �a beingthe Pauli matri
es. A Hopf term of the form j�A� = 12�"���A���A� 
anbe added to L0, whi
h has the appearen
e of a Chern�Simons (CS) term.However, this resemblan
e with the CS term is super�
ial sin
e in this 
aseA� is not an independent degree of freedom, but rather is obtainable in termsof the Z �elds by inverting relation (4). In fa
t, up to a gauge transformation,A� is related to the Z �elds, dire
tly from geometri
al 
onsiderations [10℄,by A� = �iZy��Z : (7)This way of writing A� (7) and hen
e j� (4) in terms of the matter �eldsthrough lo
al expressions 
an be done only for the CP1 model with a topo-logi
al 
urrent. (We shall see below that the above relation is reprodu
edby the 
onstrained Hamiltonian analysis.) The CP1 Lagrangian extendedby the Hopf term is given byL = L0 + LH � ��ZyZ � 1� ; (8)where LH = �"��� hZy��Z��Zy��Z + ��ZyZ��Zy��Zi (9)with � being the Hopf parameter. Unlike the 
ase of the nonlinear sigmamodel, the Hopf term LH is lo
al in terms of the Z �elds here. The 
on�gura-tion spa
e variables are z�; z��; Ai; A0 and �. The 
orresponding momentumvariables are given by�� = ÆLÆ _z� = (D0z)�� +�"ijh�iZy�jZz�� + Zy�iZ�jz�� � �iZyZ�jz��i ;(10)��� = ÆLÆ _z�� = (D0z)�+�"ijh�Zy�iZ�jz�+�jZy�iZz�+�iZyZ�jz�i ; (11)�i = ÆLÆ _Ai = 0 ; (12)�0 = ÆLÆ _A0 = 0 ; (13)�� = ÆLÆ _� = 0 : (14)



On Fra
tional Spin in the CP1 Model Coupled to the Hopf Term 251The Eqs. (12)�(14) represent the primary 
onstraints of this model. TheHopf Lagrangian (9) 
ontains terms of the type _z� and _z�� whi
h are �rstorder in the time derivative. Hen
e, the 
anoni
al Hamiltonian in terms ofthe phase spa
e variables 
an be readily obtained asH
 = ����� � iA0����z�� � ��z� + z� ÆLHÆ _z� � z�� ÆLHÆ _z�� ����� ÆLHÆ _z�� + ��� ÆLHÆ _z� �+ ÆLHÆ _z� ÆLHÆ _z�� + jDiZj2 + �(ZyZ � 1) : (15)Preservation of the primary 
onstraints (12)�(14) in time yield the fol-lowing set of se
ondary 
onstraintsAi + i2(ZyZ)Zy $�i Z � 0 ; (16)���z�� � ��z� + z� ÆLHÆ _z� � z�� ÆLHÆ _z�� � 0 ; (17)ZyZ � 1 � 0 ; (18)respe
tively. From the 
onstraint (18), a new tertiary 
onstraint���z�� + ��z� � 0 (19)is obtained. The 
onstraint (17) 
an be simpli�ed further using (19) to yield���z�� � ��z� + 2�"ij�iZy�jZ � 0 : (20)Finally, by demanding the preservation of (20) in time, one more 
onstraint����� + (DiDiZ)y Z � �+� � dependent terms � 0 (21)is obtained, where the last � -dependent terms are independent of �. It 
anbe 
he
ked that there exist no further 
onstraints.At this stage it is ne
essarry to 
lassify the total set of 
onstraints(12)�(14), (16), (18)�(21) into �rst and se
ond 
lass ones [12℄. It 
an be
he
ked that the pairs (18), (19), (14), (21) and (12), (16) are the se
ond
lass 
onstraints. Only the 
onstraint (20) is �rst 
lass, leaving apart thetrivial 
onstraint (13). The above pair of the se
ond 
lass 
onstraints 
anbe `strongly' implemented by the Dira
 Bra
kets (DB)f�(x); ��(y)g = 0 ; (22)fAi(x); �j(y)g = 0 ; (23)fz� (x) ; z� (y)g = fz�� (x) ; z�� (y)g = fz�� (x) ; z� (y)g = 0 ; (24)



252 B. Chakraborty, A.S. Majumdarfz� (x) ; ��(y)g = [Æ�� � 12z�(x)z��(x)℄Æ(x � y) ; (25)fz�(x); ���(y)g = �12z�z�Æ(x� y) ; (26)f��(x); ��(y)g = 12[z���� � ��z��℄Æ(x� y) ; (27)f��(x); ���(y)g = 12[z��� � ���z��℄Æ(x� y) : (28)Further, it follows that the 
onstraint (20), (using the DB's (22)�(28))G(x) � i���(x)z�(x)� ���(x)z��(x)� 2�"ij�iZy(x)�jZ(x)� � 0 (29)generates a U(1) gauge transformationÆz�(x) = Z d2yf(y)fz�(x); G(y)g = if(x)z�(x) (30)and therefore 
an be identi�ed with the Gauss 
onstraint. This is in 
on-formity with the fa
t that 
onstraint (29) is obtained by preserving (13) intime, just as in Maxwell ele
trodynami
s. It is easy to verify that the Gauss
onstraint has vanishing DB's with the two se
ond 
lass 
onstraints (18)and (19). It should be noted that from (10), (11) and (29) one 
an solve forA0 to get A0 = �iZy�0Z. The spatial 
omponents Ai are also given (using(16), (18)) as Ai = �iZy�iZ. Again, this is in 
onformity with the result (7)obtained from geometri
al 
onsiderations [10℄. As expe
ted, the Hopf termbeing a total derivative [2,8℄, does not enter expli
itly in the expressionsfor the DB's. However, the Gauss 
onstraint modi�ed by the presen
e of a�-dependent pie
e in (29), thereby distinguishing the present model fromthe 
ase of a pure CP1 model without any Hopf term.To 
onstru
t the various spa
etime symmetry generators, one 
an eitherfollow the Noether's pres
ription, or from the symmetri
 energy-momentum(EM) tensor obtained by fun
tional di�erentiation of the a
tion with respe
tto the metri
. Using the latter method �rst, we getT s�� = (D�Z)y(D�Z) + (D�Z)y(D�Z)� g��(D�Z)y(D�Z) (31)from whi
h it follows that the expression for linear momentum in terms ofthe phase spa
e variables is given byP sj � Z d2xT s0j = P nj+2i�"ikZ d2x(Ai�jZy�kZ�Aj�iZy�kZ�Ai�kZy�jZ)�Z d2xAj(x)G(x) ;(32)



On Fra
tional Spin in the CP1 Model Coupled to the Hopf Term 253where P nj � Z d2xpnj = Z d2x����jz� + ����jz��� (33)is the 
orresponding expression obtained from Noether's pres
ription.Now using the fa
t that in two spatial dimensions one 
an write �iAj ��jAi = "ijB (B being the magneti
 �eld), it 
an be shown that the integrandin the �-dependent term in (32) vanishes exa
tly. However, be
ause of thepresen
e of the last term involving the Gauss 
onstraint G(x) in (32), P sjfails to generate the appropriate translation be
ause fz�(x); P sj g = Djz� in
ontrast to P nj whi
h, by 
onstru
tion, generates the appropriate translation,i.e., fz�; P nj g = �jz�. However, on the Gauss 
onstraint surfa
e (29) P sj (32)gets simpli�ed to ~P sj � R d2xpsj and generates appropriate translations likeP nj . This is equivalent to modifying P sj by an appropriate linear 
ombinationof �rst 
lass 
onstraint(s) (here only G (29)) to get ~P sj . In fa
t, ~P sj isidenti
ally the same as P nj (33), also the same is holding for their respe
tivedensities i.e., psj = pnj : (34)The generator of rotational symmetry, namely the angular momentumoperator is given by Js = Z d2x"mjxmpsj ;Jn = Z d2x"mjxmpnj (35)obtained from the symmetri
 EM tensor (31), and from Noether's pres
rip-tion, respe
tively. It 
an be 
he
ked that Jn and Js generate the appropriaterotations fZ; Jg = "ijxi�jZ. By the adje
tive �appropriate� we mean thatthe bra
ket fZ(x); Jg is pre
isely the Lie derivative L��Z(x) = ��Z(x),where �� is the ve
tor �eld asso
iated with J (� being the angular vari-able in the polar 
oordinate system in the 2D plane), thus showing that noanomalous term is obtained in this bra
ket, as expe
ted. From (34) and (35)we have Js = Jn = J = Z d2x"mjxm [���jz� + ����jz��℄ : (36)By looking at the above expression it is 
lear that the angular momentum J(whi
h is of 
ourse gauge invariant) does not 
ontain any term other than the
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ontaining spin zero s
alar �elds. Al-though a quantum me
hani
al 
on
ept, fra
tional angular momentum maybe revealed at the 
lassi
al level itself through the di�eren
e (Js�Jn) 
om-puted after a proper Hamiltonian analysis [3,6℄. However, as we have seenabove (36), in this 
ase no fra
tional spin is exhibited by in
lusion of theHopf term at the 
lassi
al level. This result should not be surprising sin
ethe Hopf term [8℄ is a total divergen
e, and thus should not alter any observ-able expression like angular momentum at the 
lassi
al level. Nevertheless,a 
omplete quantum me
hani
al analysis of this model is required to settlethis question fully. Su
h an analysis in the Dira
 s
heme is rather involveddue to operator ordering ambiguities, and as we argue below, a quantizationof the model in a straightforward manner 
annot be performed. This is be-
ause all the DB's (22-28) 
annot be elevated to their respe
tive quantum
ommutators, whi
h is required for the se
ond 
lass 
onstraints (18) and(19) to be
ome �strongly� valid operator equations.Note that this problem does not arise for the bra
kets (24)�(26), as theZ �elds 
an be taken as 
ommuting variables:[ẑ�(x); ẑ�(y)℄ = [ẑy�(x); ẑy�(y)℄ = [ẑy�(x); ẑ�(y)℄ = 0 : (37)With this, there is no operator ordering problem for (25) and (26):[ẑ�(x); �̂�(y)℄ = i~�Æ�� � 12 ẑ�(x)ẑy�(x)�Æ(x � y) ; (38)hẑ�(x); �̂y�(y)i = � i~2 ẑ�(x)ẑ�(x)Æ(x � y) : (39)The same, however, is not true for (27) and (28). Di�erent orderings of ẑ�and �̂� and their hermitian 
onjugates give di�erent quantum theory. Forthe quantum theory to be 
onsistent, the �strong� 
onstraints (18) and (19)should hold as operator identities, i.e., one must havehẑy�(x)ẑ�(x); ẑ�(y)i = 0 ; (40)hẑy�(x)ẑ�(x); �̂�(y)i = 0 ; (41)hẑy�(x)�̂y�(x) + �̂�(x)ẑ�(x); ẑ�(y)i = 0 ; (42)hẑy�(x)�̂y�(x) + �̂�(x)ẑ�(x); �̂�(y)i = 0 (43)and their hermitian 
onjugates. Note that we have taken the hermitianform of the 
onstraints (18) and (19) at the quantum level. It 
an be seenthat equations (40), (41) and (42) 
an be easily satis�ed for any operator
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tional Spin in the CP1 Model Coupled to the Hopf Term 255ordering. However, (43) is not satis�ed for any of the possible operatororderings. For example, with the following ordering for the operators in thequantum 
ommutators 
orresponding to (27) and (28):[�̂�(x); �̂�(y)℄ = i~2 (ẑy� �̂� � �̂� ẑy�)Æ(x � y) ; (44)h�̂�(x); �̂y�(y)i = i~2 (ẑ� �̂� � �̂y� ẑy�)Æ(x � y) (45)one gets for the left hand side of (43)~2 [ẑy�(x); G(y)℄Æ(x � y) (46)whi
h is a O(~2) term and is 
learly nonvanishing. It 
an be 
he
ked thatwith other orderings of the operators, the situation be
omes worse. Theseare typi
al problems one en
ounters while quantizing theories with se
ond
lass 
onstraints (see [14℄, for example).This shows that the DB's 
annot be elevated to quantum 
ommutatorsin a straightforward manner. Consequently, quantization of the model isa nontrivial job. However, it is hoped that quantization might be feasibleby extending the 
on�guration spa
e whereby the se
ond 
lass 
onstraintsbe
ome �rst 
lass, or by using BRST te
hniques. These options are presentlyunder investigation.After having analyzed in detail the CP1 model, let us 
onsider on
eagain the 
lassi
ally equivalent nonlinear sigma model (1) 
oupled to theHopf term. Note that in [3℄ this model was altered through simpli�
ation ofthe Hopf term (� A�j�) to (� Aiji) by making use of the identityZ d2xA0(x)j0(x) = �Z d2xAi(x)ji(x) (47a)valid in the radiation gauge. The same identity 
an also be used to alterthe Hopf term (9) in the present 
ase as well. We emphasize that the modelis altered as (47a) when rewritten entirely in terms of the Z variables (theonly independent 
on�guration spa
e variables) takes the formZ d2xZy _Z !r Zy� !r Z = Z d2xZy !r Z � �!r Zy _Z � _Zy !r Z� : (47b)Clearly, this is not a 
onstraint equation as it involves time derivatives, andtherefore 
hanges the dynami
al 
ontent of the model. This will be borneout by expli
it 
omputation now.
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e the identity (47) is used, the Hopf term (9)is 
hanged to (�� "i����Zy��ZZy�iZ). Correspondingly, the model (8) is
hanged to L = jD�Zj2 + �� "i����Zy��ZZy�iZ � �(ZyZ � 1) : (48)This just the CP1 version of the model L = 14 (��Ma)2 + 2�JiAi 
onsideredin [3℄. The 
anoni
ally 
onjugate momenta 
orresponding to z� and z�� aregiven by �� = (D0z)�� + �� "ijZy�iZ�jz�� ;��� = (D0z)� � �� "ijZy�iZ�jz� : (49)A rerun of the 
onstraint analysis shows that 
ertain di�eren
es 
rop up inthe 
onstraint stu
ture from that of the model (8). For example the Gauss
onstraint, the 
ounterpart of (29), be
omes���z�� � ��z� � 0 (50)just as in 
ase of a pure CP1 model. Furthermore, in this model (48) theexpressions for the various symmetry generators obtained from the symmet-ri
 EM tensor T s�� di�er from the expressions obtained through the Noetherpres
ription. In parti
ular, the symmetri
 angular momentum Js is givenby Js = Z d2x"mjxm����jz� + ����jz���� 2� Z d2x"ijxiAjj0 : (51)The �rst term is just Jn. The se
ond �-dependent term in (51) 
an besimpli�ed on lines of the pro
edure used in [3℄ to get �N2 (where N is thesoliton number given by (2)), and interpreted to signify fra
tional spinJf = Js � Jn = �N2 (52)in this model. This analysis 
learly brings out the point that the model (48)is basi
ally inequivalent to the model (8).To 
on
lude, we make the following observations. First, the absen
e offra
tional spin (although a quantum me
hani
al 
on
ept, we use the de�-nition Jf = Js � Jn at the 
lassi
al level) in (8) and its presen
e in (48)are in 
onformity with the fa
t that the Hopf term in (8) is a total diver-gen
e, whereas in (48) it is not. Se
ondly, we want to emphasize that use



On Fra
tional Spin in the CP1 Model Coupled to the Hopf Term 257of just the radiation gauge without making use of (47) will not yield anyanomalous term in the algebra fZ(x); Jg, and the di�eren
e (Js � Jn) willpersist to be zero. If the radiation gauge 
ondition is imposed, the 
orre-sponding symple
ti
 stru
ture of the redu
ed phase spa
e will undergo mod-i�
ation, but the bra
ket fZ(x); Jg = "ijxi�jZ will remain un
hanged asfG(x); Jg = 0 = f�i(�iZy�iZ); Jg (note that J is gauge invariant by 
on-stru
tion), thus generating no anomalous transformation. The model (8)has to be altered to (48) by using the identity (47) (whi
h is valid in theradiation gauge) in order to reveal fra
tional spin. Thirdly, the fra
tionalspin (52) 
an be obtained at the 
lassi
al level itself, as we have derivedit. Although in [3℄, a result of fra
tional spin valid at the quantum levelwas 
laimed (although none of the operator ordering problems mentionedearlier were dis
ussed there), it survives the 
lassi
al limit (~ ! 0) as �has the dimensions of ~ itself. Finally, if Dira
 quantization of the model(8) is eventually 
arried out, fra
tional spin may or may not appear at thequantum level. In 
ase it does, it must 
ontain a fa
tor of ~, so that in the
lassi
al limit, Jf = (Js�JN ) = 0 (36) is reprodu
ed. Hen
e, the expressionof Jf will be di�erent from (52). Finally, we end by noting that the issueof fra
tional spin in the nonlinear sigma model and the CP1 model 
oupledto the Hopf term is not yet 
ompletely settled at the quantum level. Forinstan
e, it has been observed re
ently [15℄, using the method of adjointorbit parametrization, that the standard formula for fra
tional spin holdsonly for 
ertain restri
ted 
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