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We carry out a gauge independent Hamiltonian analysis of the CP!
model coupled to the Hopf term. We show that no fractional spin is revealed
at the classical level — a result that is different from the corresponding case
for the O(3) nonlinear sigma model. We next show that if the former model
is altered through an identity involving the time derivative, an expression of
fractional spin emerges at the classical level itself, which is given in terms of
the soliton number of the model. This result matches several other existing
results, both for the CP! as well as the sigma model versions, obtained
through canonical or path integral quantization.

PACS numbers: 11.15.Tk, 11.10.Ef, 11.10.Lm

Systems residing in 2 + 1 dimensional spacetime dimensions have at-
tracted much attention in recent years. This has been in the hope of ob-
taining critical insight into a large variety of phenomenological problems in
divergent areas ranging from condensed matter physics to quantum grav-
ity [1]. A peculiar aspect which has emerged from these investigations is
that there exist several field theoretical models in 2 4+ 1 dimensions which
admit solitonic configurations imparting fractional spin and statistics to the
coupled matter systems. It was first shown by Wilczek and Zee [2] that
by performing a slow adiabatic rotation of 2w the wave function acquires
a nontrivial phase, thus signalling fractional spin. Later, using the canoni-
cal Hamiltonian formalism, Bowick et al. [3] showed the existence of frac-
tional spin in the nonlinear sigma model coupled to the Hopf term. That a
purely bosonic classical field theory admitting topological solitons may have
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fermionic characteristics was noted long ago [4]. For the case of 3+ 1 dimen-
sions, it was realized that the doubly connected configuration space allows
for only Bose—Einstein and Fermi-Dirac statistics. In contrast, in 2 + 1 di-
mensions all sorts of statistics may be permitted because of the possibility of
having an infinitely connected configuration space. For example, for the case
of the nonlinear sigma model, the configuration space C = {f} is the set
of all maps f : S? (compactified space of R?) — S? (field manifold) having
the fundamental group w1 (C') = 73 (S?) = Z. The model admits solitons as
o (C) = m2 (5§?) = Z. These possibilities can be realized by introducing a
Wess—Zumino term [5] in 3+ 1 dimensions whereby solitons get half-integral
spin, whereas solitons in 2+ 1 dimensions can be imparted fractional spin by
introducing a Chern—Simons or a Hopf term in the action. These issues have
been typically exemplified by the detailed study of various models coupled
to the Chern—Simons (CS) and Hopf terms in 2 4+ 1 dimensions [6].

At the formal field theoretical level, the features of fractional spin and
statistics in various 2+ 1 dimensional models have been revealed using both
the path integral [2] as well as the canonical Hamiltonian formalism [3,6,7].
In the latter scheme the explicit construction of the relevant angular mo-
mentum operators has been carried out in several models involving the
Chern—Simons term in a gauge independent manner [6]. In these models
the existence of fractional spin is usually revealed by computing the differ-
ence between the expression for the gauge invariant (physical) definition of
the angular momentum operator J*® following from the symmetric energy
momentum (EM) tensor, and that of the Noether angular momentum J".
The latter expression J" corresponds to only the orbital part of angular mo-
mentum (for scalar fields as in [3]), and turns out, in general, to be gauge
invariant on the constraint surface only under those gauge transformations
that reduce to identity at infinity [6].

The explicit construction of the angular momentum in the O(3) nonlinear
sigma model coupled to a Hopf term was carried out by Bowick et al. [3] us-
ing the canonical Hamiltonian formalism showing the existence of fractional
spin. In this model a gauge fixing had to be done right at the beginning
in order to uniquely define the fictitious gauge field A, in terms of the cur-
rent j, thereby making the Hopf term nonlocal. It is well known that at
the classical level the nonlinear sigma model is completely equivalent to the
CP! model in 2 + 1 dimensions [8]. It has been claimed recently, that this
equivalence can be established at the quantum level too [9]. The CP! model
extended by a Hopf term is described by a Lagrangian which is local in terms
of the basic fields, and gauge fixing is not required at the onset unlike as in
the case of the nonlinear sigma model [3]. The model is interesting as it de-
scribes antiferromagnets [1]. On the other hand, its nonrelativistic version,
the CP! model is intimately related to the Landau-Lifshitz model of ferro-
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magnetism [10]. The nonrelativistic CP! model coupled to the Hopf term
has been analyzed in [11]. A comprehensive Hamiltonian analysis in a gauge
independent manner a la Dirac [12] of the CP! model with the Hopf term
(this being a constrained system) is therefore desirable, in order to compare
with the quantization carried out in the reduced phase space scheme using
some gauge fixing condition, in light of its (possible) phenomenological rele-
vance as well as the above-mentioned intricacies involved in the definition of
the angular momentum in similar models. It is well established in literature
that the schemes of Dirac and reduced phase space quantization might lead
to entirely different physical results [13].

To this end, in this paper we perform a classical Hamiltonian analysis of
the local CP! version of the relativistic nonlinear sigma model including a
Hopf term in a consistent gauge independent manner [6,12]. We carry out
the explicit construction of the translation and rotation symmetry genera-
tors using both the Noether prescription, as well as the symmetric energy
momentum tensor. To begin with, let us briefly recall the essential charac-
teristics of the nonlinear sigma model described by the Lagrangian [3,9]

L=10,M,(z)0"M, (z) — X (MM, —1) . (1)

A is a Lagrange multiplier enforcing the constraints M, M, = 1. The field
manifold is S?. For finite energy static solutions the fields are required
to tend to constant configurations asymptotically, so that the space R? is
essentially compactified to S?. The configuration space splits into disjoint
unions of path connected sectors C, with N specifying the winding number
of the soliton given by

N= [ @), @)
where j# is the identically conserved (9,j* = 0) topological current
jH = éau”AsabcMaauMba,\Mc. (3)
The current j# can be expressed as the curl of a vector potential Ay as

1
j* = 5=, Ay, (4)
2
where A is obtained by pulling back onto the spacetime, the Dirac monopole
connection on CP! ~ §2 [10].
The CP! version of the model (1) can be written as

Lo = (D,2)" (D*Z) (5)
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where
D, =0,—-1iA,. (6)

21

Note that there is no dynamical term for A, in the Lagrangian. Z = .
2

is a SU(2) doublet of complex scalar fields z, (o = 1,2). The M, fieldsin (1)
are related to the z, fields via the Hopf map M, = Z'0,Z, with o, being
the Pauli matrices. A Hopf term of the form j#A, = %5“”)‘14“8”14)\ can
be added to Ly, which has the appearence of a Chern—Simons (CS) term.
However, this resemblance with the CS term is superficial since in this case
A, is not an independent degree of freedom, but rather is obtainable in terms
of the Z fields by inverting relation (4). In fact, up to a gauge transformation,
A, is related to the Z fields, directly from geometrical considerations [10],
by

A, =—-iZ10,7. (7)

This way of writing A, (7) and hence j, (4) in terms of the matter fields
through local expressions can be done only for the CP' model with a topo-
logical current. (We shall see below that the above relation is reproduced
by the constrained Hamiltonian analysis.) The CP'! Lagrangian extended
by the Hopf term is given by

£=£0+LH—A(ZTZ—1), 8)

where

Ly = 0 [210,20,2'0,2 + 9,71 20,219, 2 9)

with @ being the Hopf parameter. Unlike the case of the nonlinear sigma
model, the Hopf term Ly is local in terms of the Z fields here. The configura-
tion space variables are z,, 2}, A;, Agp and A. The corresponding momentum
variables are given by

o = g = (Do), + 010,210, 22 + 710,20, — 0,71 20,2} (10)
«

= 55: = (Doz),+Oc" [—ZTaizajza+ajzfaiZza+aiszajza] ,(11)
«
oL

T = A 0, (12)
oL

T — @ = 0, (13)

S — (14)

5
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The Egs. (12)—(14) represent the primary constraints of this model. The
Hopf Lagrangian (9) contains terms of the type 2, and 2} which are first
order in the time derivative. Hence, the canonical Hamiltonian in terms of
the phase space variables can be readily obtained as

He = mama — i Ag| Thzh — TaZa + Za —M%H -z M%H
0Za 0z}
Ly 0Ly Ly 6Ly 2 "
— D;Z zZ'Z—-1).(1
(raSt 4 m52t) + GBI, 4 X212 - 1). (19

Preservation of the primary constraints (12)—(14) in time yield the fol-
lowing set of secondary constraints

i o
Ai+WZT 0 Z~0, (16)
Tz — TaZa + zaiﬁz—_: - ;(;S;? ~0, (17)
ZiZz-1=~0, (18)

respectively. From the constraint (18), a new tertiary constraint
TaZp + TaZa =0 (19)

is obtained. The constraint (17) can be simplified further using (19) to yield
Th2E — TaZa + 20698, 210,7Z = 0. (20)

Finally, by demanding the preservation of (20) in time, one more constraint
Tim + (DiD; Z)' Z — A 4+ 6 — dependent terms ~ 0 (21)

is obtained, where the last @ -dependent terms are independent of A. It can
be checked that there exist no further constraints.

At this stage it is necessarry to classify the total set of constraints
(12)-(14), (16), (18)—(21) into first and second class ones [12|. It can be
checked that the pairs (18), (19), (14), (21) and (12), (16) are the second
class constraints. Only the constraint (20) is first class, leaving apart the
trivial constraint (13). The above pair of the second class constraints can
be ‘strongly’ implemented by the Dirac Brackets (DB)

{A(z), mA(y)} = 0, (22)
{Ai(z), 7 (y)} =0, (23
{za (2), 25 (Y)} = {24 () s 25 (1)} = {25 (2) , 23 (¥)} = 0, (24)
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f2a (), M5} = [has ~ 32al)5()0@ — ), (25)
{zal@) m30)) = —57azsdla — ). (26)
(Tal@) ms®)} = glesma — mzali(e — 1), (1)
[Ta(@) 75®)} = gl — T2l — ) (28)

Further, it follows that the constraint (20), (using the DB’s (22)-(28))
G(z) = i<7ra(x)za(x) —7a(z)zh (z) — 2@6ij8iZT(x)8jZ(x)) ~0 (29)
generates a U(1) gauge transformation

02a(x) = /dgyf(y){za(m),G(y)} = if(%)za(2) (30)

and therefore can be identified with the Gauss constraint. This is in con-
formity with the fact that constraint (29) is obtained by preserving (13) in
time, just as in Maxwell electrodynamics. It is easy to verify that the Gauss
constraint has vanishing DB’s with the two second class constraints (18)
and (19). It should be noted that from (10), (11) and (29) one can solve for
Ag to get Ag = —iZ19yZ. The spatial components A; are also given (using
(16), (18)) as A; = —iZ19;Z. Again, this is in conformity with the result (7)
obtained from geometrical considerations [10]. As expected, the Hopf term
being a total derivative [2,8]|, does not enter explicitly in the expressions
for the DB’s. However, the Gauss constraint modified by the presence of a
©-dependent piece in (29), thereby distinguishing the present model from
the case of a pure CP! model without any Hopf term.

To construct the various spacetime symmetry generators, one can either
follow the Noether’s prescription, or from the symmetric energy-momentum
(EM) tensor obtained by functional differentiation of the action with respect
to the metric. Using the latter method first, we get

75, = (D,Z)(DyZ) + (D, 2) (DyZ) — g,(D,2) (D* Z) (31)

from which it follows that the expression for linear momentum in terms of
the phase space variables is given by

P = / d*2Tg; = P

+2i@* / A*x(A;0; 2107 — A;j0; 21O Z — Ao 210, Z) — / d*zA;(z)G(z),
(32)
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where

P = /dQIp? = /d2x <7ra(9jza +7r28jz;) (33)

is the corresponding expression obtained from Noether’s prescription.

Now using the fact that in two spatial dimensions one can write 0;A; —
0;A; = €;;B (B being the magnetic field), it can be shown that the integrand
in the ©-dependent term in (32) vanishes exactly. However, because of the
presence of the last term involving the Gauss constraint G(z) in (32), P}
fails to generate the appropriate translation because {zy(z), Pjs} = Djz, in
contrast to P;* which, by construction, generates the appropriate translation,
i.e., {za, P}'} = 0jz4. However, on the Gauss constraint surface (29) P} (32)

gets simplified to ]5]-5 =/ dgmpj and generates appropriate translations like
Pj'. This is equivalent to modifying P} by an appropriate linear combination
of first class constraint(s) (here only G (29)) to get 15; . In fact, 15; is

identically the same as P}’ (33), also the same is holding for their respective
densities i.e.,

P =], (34)

The generator of rotational symmetry, namely the angular momentum
operator is given by

JS = /d%em]’mmpj,
Jr = /de&?mjxmp? (35)

obtained from the symmetric EM tensor (31), and from Noether’s prescrip-
tion, respectively. It can be checked that J” and J?® generate the appropriate
rotations {Z,J} = 6ijxiajZ. By the adjective “appropriate” we mean that
the bracket {Z(z),J} is precisely the Lie derivative Ly, Z(z) = 047 (z),
where 0y is the vector field associated with J (¢ being the angular vari-
able in the polar coordinate system in the 2D plane), thus showing that no
anomalous term is obtained in this bracket, as expected. From (34) and (35)
we have

Joogn— = / & vemjtm [Tadiza + 750;7%] . (36)

By looking at the above expression it is clear that the angular momentum .J
(which is of course gauge invariant) does not contain any term other than the
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orbital part usually present in a model containing spin zero scalar fields. Al-
though a quantum mechanical concept, fractional angular momentum may
be revealed at the classical level itself through the difference (J* — J") com-
puted after a proper Hamiltonian analysis [3,6]. However, as we have seen
above (36), in this case no fractional spin is exhibited by inclusion of the
Hopf term at the classical level. This result should not be surprising since
the Hopf term [8] is a total divergence, and thus should not alter any observ-
able expression like angular momentum at the classical level. Nevertheless,
a complete quantum mechanical analysis of this model is required to settle
this question fully. Such an analysis in the Dirac scheme is rather involved
due to operator ordering ambiguities, and as we argue below, a quantization
of the model in a straightforward manner cannot be performed. This is be-
cause all the DB’s (22-28) cannot be elevated to their respective quantum
commutators, which is required for the second class constraints (18) and
(19) to become “strongly” valid operator equations.

Note that this problem does not arise for the brackets (24)-(26), as the
7 fields can be taken as commuting variables:

[Za(2), 25(y)] = [2(2), 25 ()] = [£4(2), 2(»)] = 0. (37)

With this, there is no operator ordering problem for (25) and (26):

o) 0] = 10003 - 5200 )3l -), (39)
a7} w)] = ~Dal)2s(@)d(z — ). (39)

The same, however, is not true for (27) and (28). Different orderings of 2,
and 7g and their hermitian conjugates give different quantum theory. For
the quantum theory to be consistent, the “strong” constraints (18) and (19)
should hold as operator identities, i.e., one must have

A (@)2a(@),25(0)] = 0, (40)
2 @)2a(@), 75()| = o0, (41)
[2(@)71(2) + fal2)2a(2), 25(9)] = 0, (42)
AL @)7L (@) + Fal@)2a (), ()| = 0 (43)

and their hermitian conjugates. Note that we have taken the hermitian
form of the constraints (18) and (19) at the quantum level. It can be seen
that equations (40), (41) and (42) can be easily satisfied for any operator
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ordering. However, (43) is not satisfied for any of the possible operator
orderings. For example, with the following ordering for the operators in the
quantum commutators corresponding to (27) and (28):

(). A5(W)] = 5 (Ehte — 7523 — 1) (44)
[fale). 750)] = D(zsta — 20 ) (45)

one gets for the left hand side of (43)
L), Gw)loe — ) (46)

which is a O(h?) term and is clearly nonvanishing. It can be checked that
with other orderings of the operators, the situation becomes worse. These
are typical problems one encounters while quantizing theories with second
class constraints (see [14], for example).

This shows that the DB’s cannot be elevated to quantum commutators
in a straightforward manner. Consequently, quantization of the model is
a nontrivial job. However, it is hoped that quantization might be feasible
by extending the configuration space whereby the second class constraints
become first class, or by using BRST techniques. These options are presently
under investigation.

After having analyzed in detail the CP! model, let us consider once
again the classically equivalent nonlinear sigma model (1) coupled to the
Hopf term. Note that in [3] this model was altered through simplification of
the Hopf term (~ A*j,) to (~ A'j;) by making use of the identity

/ @ Ag(2)jolz) = - / @22 4;(2)ji(2) (47a)

valid in the radiation gauge. The same identity can also be used to alter
the Hopf term (9) in the present case as well. We emphasize that the model
is altered as (47a) when rewritten entirely in terms of the Z variables (the
only independent configuration space variables) takes the form

Ad°xZ'Z NV Z'xVZ=[|dxZ"'NVNZx|NZ'Z-Z"V Z|. (47b)

Clearly, this is not a constraint equation as it involves time derivatives, and
therefore changes the dynamical content of the model. This will be borne
out by explicit computation now.
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To begin with, note that once the identity (47) is used, the Hopf term (9)
is changed to (%EZ”A(?VZT(%\ZZT@-Z). Correspondingly, the model (8) is
changed to

L=|D,Z|* + ggmaszaAzzfaiz -\NZ'Z-1). (48)

This just the CP! version of the model £ = %(BHMQ)2 + 26J; A; considered
in [3]. The canonically conjugate momenta corresponding to z, and z}, are
given by

o .
o = (Do2)h + —5”ZT8Z~Z8jz:; ,
T

o ..
T = (Dyz)a — geUZTaizajza. (49)
A rerun of the constraint analysis shows that certain differences crop up in
the constraint stucture from that of the model (8). For example the Gauss
constraint, the counterpart of (29), becomes

Tz — TaZa &0 (50)

just as in case of a pure CP! model. Furthermore, in this model (48) the
expressions for the various symmetry generators obtained from the symmet-
ric EM tensor 7};, differ from the expressions obtained through the Noether
prescription. In particular, the symmetric angular momentum J* is given

by
JS = /dgxsmjxm [waajza + W;;ajzj;] — 2@/d2$6ij$iz4jj0. (51)

The first term is just J™. The second @-dependent term in (51) can be
simplified on lines of the procedure used in [3] to get @ N? (where N is the
soliton number given by (2)), and interpreted to signify fractional spin

JI=J5 —J" = ON? (52)

in this model. This analysis clearly brings out the point that the model (48)
is basically inequivalent to the model (8).

To conclude, we make the following observations. First, the absence of
fractional spin (although a quantum mechanical concept, we use the defi-
nition J/ = J° — J" at the classical level) in (8) and its presence in (48)
are in conformity with the fact that the Hopf term in (8) is a total diver-
gence, whereas in (48) it is not. Secondly, we want to emphasize that use
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of just the radiation gauge without making use of (47) will not yield any
anomalous term in the algebra {Z(z), J}, and the difference (J* — J") will
persist to be zero. If the radiation gauge condition is imposed, the corre-
sponding symplectic structure of the reduced phase space will undergo mod-
ification, but the bracket {Z(z),J} = £Yx;0;Z will remain unchanged as
{G(z),J} =0 ={0;(—=iZ%0;Z), J} (note that .J is gauge invariant by con-
struction), thus generating no anomalous transformation. The model (8)
has to be altered to (48) by using the identity (47) (which is valid in the
radiation gauge) in order to reveal fractional spin. Thirdly, the fractional
spin (52) can be obtained at the classical level itself, as we have derived
it. Although in [3|, a result of fractional spin valid at the quantum level
was claimed (although none of the operator ordering problems mentioned
earlier were discussed there), it survives the classical limit (A — 0) as ©
has the dimensions of A itself. Finally, if Dirac quantization of the model
(8) is eventually carried out, fractional spin may or may not appear at the
quantum level. In case it does, it must contain a factor of &, so that in the
classical limit, J; = (J°—JY) = 0 (36) is reproduced. Hence, the expression
of J/ will be different from (52). Finally, we end by noting that the issue
of fractional spin in the nonlinear sigma model and the CP' model coupled
to the Hopf term is not yet completely settled at the quantum level. For
instance, it has been observed recently [15], using the method of adjoint
orbit parametrization, that the standard formula for fractional spin holds
only for certain restricted configurations.
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