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ON FRACTIONAL SPIN IN THE CP1 MODELCOUPLED TO THE HOPF TERMB. Chakraborty� and A.S. Majumdar��S.N.Bose National Centre for Basi SienesBlok JD, Setor III, Salt Lake, Calutta 700091, India(Reeived August 17, 1998; Revised version reeived November 6, 1998)We arry out a gauge independent Hamiltonian analysis of the CP1model oupled to the Hopf term. We show that no frational spin is revealedat the lassial level � a result that is di�erent from the orresponding asefor the O(3) nonlinear sigma model. We next show that if the former modelis altered through an identity involving the time derivative, an expression offrational spin emerges at the lassial level itself, whih is given in terms ofthe soliton number of the model. This result mathes several other existingresults, both for the CP1 as well as the sigma model versions, obtainedthrough anonial or path integral quantization.PACS numbers: 11.15.Tk, 11.10.Ef, 11.10.LmSystems residing in 2 + 1 dimensional spaetime dimensions have at-trated muh attention in reent years. This has been in the hope of ob-taining ritial insight into a large variety of phenomenologial problems indivergent areas ranging from ondensed matter physis to quantum grav-ity [1℄. A peuliar aspet whih has emerged from these investigations isthat there exist several �eld theoretial models in 2 + 1 dimensions whihadmit solitoni on�gurations imparting frational spin and statistis to theoupled matter systems. It was �rst shown by Wilzek and Zee [2℄ thatby performing a slow adiabati rotation of 2� the wave funtion aquiresa nontrivial phase, thus signalling frational spin. Later, using the anoni-al Hamiltonian formalism, Bowik et al. [3℄ showed the existene of fra-tional spin in the nonlinear sigma model oupled to the Hopf term. That apurely bosoni lassial �eld theory admitting topologial solitons may have� e-mail: biswajit�bose.ernet.in�� e-mail: arhan�bose.ernet.in (247)



248 B. Chakraborty, A.S. Majumdarfermioni harateristis was noted long ago [4℄. For the ase of 3+1 dimen-sions, it was realized that the doubly onneted on�guration spae allowsfor only Bose�Einstein and Fermi�Dira statistis. In ontrast, in 2 + 1 di-mensions all sorts of statistis may be permitted beause of the possibility ofhaving an in�nitely onneted on�guration spae. For example, for the aseof the nonlinear sigma model, the on�guration spae C = ffg is the setof all maps f : S2 (ompati�ed spae of R2) ! S2 (�eld manifold) havingthe fundamental group �1 (C) = �3 �S2� = Z. The model admits solitons as�0 (C) = �2 �S2� = Z. These possibilities an be realized by introduing aWess�Zumino term [5℄ in 3+1 dimensions whereby solitons get half-integralspin, whereas solitons in 2+1 dimensions an be imparted frational spin byintroduing a Chern�Simons or a Hopf term in the ation. These issues havebeen typially exempli�ed by the detailed study of various models oupledto the Chern�Simons (CS) and Hopf terms in 2 + 1 dimensions [6℄.At the formal �eld theoretial level, the features of frational spin andstatistis in various 2+1 dimensional models have been revealed using boththe path integral [2℄ as well as the anonial Hamiltonian formalism [3,6,7℄.In the latter sheme the expliit onstrution of the relevant angular mo-mentum operators has been arried out in several models involving theChern�Simons term in a gauge independent manner [6℄. In these modelsthe existene of frational spin is usually revealed by omputing the di�er-ene between the expression for the gauge invariant (physial) de�nition ofthe angular momentum operator Js following from the symmetri energymomentum (EM) tensor, and that of the Noether angular momentum Jn.The latter expression Jn orresponds to only the orbital part of angular mo-mentum (for salar �elds as in [3℄), and turns out, in general, to be gaugeinvariant on the onstraint surfae only under those gauge transformationsthat redue to identity at in�nity [6℄.The expliit onstrution of the angular momentum in the O(3) nonlinearsigma model oupled to a Hopf term was arried out by Bowik et al. [3℄ us-ing the anonial Hamiltonian formalism showing the existene of frationalspin. In this model a gauge �xing had to be done right at the beginningin order to uniquely de�ne the �titious gauge �eld A� in terms of the ur-rent j� thereby making the Hopf term nonloal. It is well known that atthe lassial level the nonlinear sigma model is ompletely equivalent to theCP1 model in 2 + 1 dimensions [8℄. It has been laimed reently, that thisequivalene an be established at the quantum level too [9℄. The CP1 modelextended by a Hopf term is desribed by a Lagrangian whih is loal in termsof the basi �elds, and gauge �xing is not required at the onset unlike as inthe ase of the nonlinear sigma model [3℄. The model is interesting as it de-sribes antiferromagnets [1℄. On the other hand, its nonrelativisti version,the CP1 model is intimately related to the Landau�Lifshitz model of ferro-



On Frational Spin in the CP1 Model Coupled to the Hopf Term 249magnetism [10℄. The nonrelativisti CP1 model oupled to the Hopf termhas been analyzed in [11℄. A omprehensive Hamiltonian analysis in a gaugeindependent manner à la Dira [12℄ of the CP1 model with the Hopf term(this being a onstrained system) is therefore desirable, in order to omparewith the quantization arried out in the redued phase spae sheme usingsome gauge �xing ondition, in light of its (possible) phenomenologial rele-vane as well as the above-mentioned intriaies involved in the de�nition ofthe angular momentum in similar models. It is well established in literaturethat the shemes of Dira and redued phase spae quantization might leadto entirely di�erent physial results [13℄.To this end, in this paper we perform a lassial Hamiltonian analysis ofthe loal CP1 version of the relativisti nonlinear sigma model inluding aHopf term in a onsistent gauge independent manner [6,12℄. We arry outthe expliit onstrution of the translation and rotation symmetry genera-tors using both the Noether presription, as well as the symmetri energymomentum tensor. To begin with, let us brie�y reall the essential hara-teristis of the nonlinear sigma model desribed by the Lagrangian [3,9℄L = 14��Ma (x) ��Ma (x)� � (MaMa � 1) : (1)� is a Lagrange multiplier enforing the onstraints MaMa = 1. The �eldmanifold is S2. For �nite energy stati solutions the �elds are requiredto tend to onstant on�gurations asymptotially, so that the spae R2 isessentially ompati�ed to S2. The on�guration spae splits into disjointunions of path onneted setors CN , with N speifying the winding numberof the soliton given by N = Z d2xj0 (x) ; (2)where j� is the identially onserved (��j� = 0) topologial urrentj� = 18�"���"abMa��Mb��M : (3)The urrent j� an be expressed as the url of a vetor potential A� asj� = 12�"�����A� ; (4)where A� is obtained by pulling bak onto the spaetime, the Dira monopoleonnetion on CP1 � S2 [10℄.The CP1 version of the model (1) an be written asL0 = (D�Z)y (D�Z) ; (5)



250 B. Chakraborty, A.S. Majumdarwhere D� � �� � iA� : (6)Note that there is no dynamial term for A� in the Lagrangian. Z =  z1z2 !is a SU(2) doublet of omplex salar �elds z� (� = 1; 2). TheMa �elds in (1)are related to the z� �elds via the Hopf map Ma = Zy�aZ, with �a beingthe Pauli matries. A Hopf term of the form j�A� = 12�"���A���A� anbe added to L0, whih has the appearene of a Chern�Simons (CS) term.However, this resemblane with the CS term is super�ial sine in this aseA� is not an independent degree of freedom, but rather is obtainable in termsof the Z �elds by inverting relation (4). In fat, up to a gauge transformation,A� is related to the Z �elds, diretly from geometrial onsiderations [10℄,by A� = �iZy��Z : (7)This way of writing A� (7) and hene j� (4) in terms of the matter �eldsthrough loal expressions an be done only for the CP1 model with a topo-logial urrent. (We shall see below that the above relation is reproduedby the onstrained Hamiltonian analysis.) The CP1 Lagrangian extendedby the Hopf term is given byL = L0 + LH � ��ZyZ � 1� ; (8)where LH = �"��� hZy��Z��Zy��Z + ��ZyZ��Zy��Zi (9)with � being the Hopf parameter. Unlike the ase of the nonlinear sigmamodel, the Hopf term LH is loal in terms of the Z �elds here. The on�gura-tion spae variables are z�; z��; Ai; A0 and �. The orresponding momentumvariables are given by�� = ÆLÆ _z� = (D0z)�� +�"ijh�iZy�jZz�� + Zy�iZ�jz�� � �iZyZ�jz��i ;(10)��� = ÆLÆ _z�� = (D0z)�+�"ijh�Zy�iZ�jz�+�jZy�iZz�+�iZyZ�jz�i ; (11)�i = ÆLÆ _Ai = 0 ; (12)�0 = ÆLÆ _A0 = 0 ; (13)�� = ÆLÆ _� = 0 : (14)



On Frational Spin in the CP1 Model Coupled to the Hopf Term 251The Eqs. (12)�(14) represent the primary onstraints of this model. TheHopf Lagrangian (9) ontains terms of the type _z� and _z�� whih are �rstorder in the time derivative. Hene, the anonial Hamiltonian in terms ofthe phase spae variables an be readily obtained asH = ����� � iA0����z�� � ��z� + z� ÆLHÆ _z� � z�� ÆLHÆ _z�� ����� ÆLHÆ _z�� + ��� ÆLHÆ _z� �+ ÆLHÆ _z� ÆLHÆ _z�� + jDiZj2 + �(ZyZ � 1) : (15)Preservation of the primary onstraints (12)�(14) in time yield the fol-lowing set of seondary onstraintsAi + i2(ZyZ)Zy $�i Z � 0 ; (16)���z�� � ��z� + z� ÆLHÆ _z� � z�� ÆLHÆ _z�� � 0 ; (17)ZyZ � 1 � 0 ; (18)respetively. From the onstraint (18), a new tertiary onstraint���z�� + ��z� � 0 (19)is obtained. The onstraint (17) an be simpli�ed further using (19) to yield���z�� � ��z� + 2�"ij�iZy�jZ � 0 : (20)Finally, by demanding the preservation of (20) in time, one more onstraint����� + (DiDiZ)y Z � �+� � dependent terms � 0 (21)is obtained, where the last � -dependent terms are independent of �. It anbe heked that there exist no further onstraints.At this stage it is neessarry to lassify the total set of onstraints(12)�(14), (16), (18)�(21) into �rst and seond lass ones [12℄. It an beheked that the pairs (18), (19), (14), (21) and (12), (16) are the seondlass onstraints. Only the onstraint (20) is �rst lass, leaving apart thetrivial onstraint (13). The above pair of the seond lass onstraints anbe `strongly' implemented by the Dira Brakets (DB)f�(x); ��(y)g = 0 ; (22)fAi(x); �j(y)g = 0 ; (23)fz� (x) ; z� (y)g = fz�� (x) ; z�� (y)g = fz�� (x) ; z� (y)g = 0 ; (24)



252 B. Chakraborty, A.S. Majumdarfz� (x) ; ��(y)g = [Æ�� � 12z�(x)z��(x)℄Æ(x � y) ; (25)fz�(x); ���(y)g = �12z�z�Æ(x� y) ; (26)f��(x); ��(y)g = 12[z���� � ��z��℄Æ(x� y) ; (27)f��(x); ���(y)g = 12[z��� � ���z��℄Æ(x� y) : (28)Further, it follows that the onstraint (20), (using the DB's (22)�(28))G(x) � i���(x)z�(x)� ���(x)z��(x)� 2�"ij�iZy(x)�jZ(x)� � 0 (29)generates a U(1) gauge transformationÆz�(x) = Z d2yf(y)fz�(x); G(y)g = if(x)z�(x) (30)and therefore an be identi�ed with the Gauss onstraint. This is in on-formity with the fat that onstraint (29) is obtained by preserving (13) intime, just as in Maxwell eletrodynamis. It is easy to verify that the Gaussonstraint has vanishing DB's with the two seond lass onstraints (18)and (19). It should be noted that from (10), (11) and (29) one an solve forA0 to get A0 = �iZy�0Z. The spatial omponents Ai are also given (using(16), (18)) as Ai = �iZy�iZ. Again, this is in onformity with the result (7)obtained from geometrial onsiderations [10℄. As expeted, the Hopf termbeing a total derivative [2,8℄, does not enter expliitly in the expressionsfor the DB's. However, the Gauss onstraint modi�ed by the presene of a�-dependent piee in (29), thereby distinguishing the present model fromthe ase of a pure CP1 model without any Hopf term.To onstrut the various spaetime symmetry generators, one an eitherfollow the Noether's presription, or from the symmetri energy-momentum(EM) tensor obtained by funtional di�erentiation of the ation with respetto the metri. Using the latter method �rst, we getT s�� = (D�Z)y(D�Z) + (D�Z)y(D�Z)� g��(D�Z)y(D�Z) (31)from whih it follows that the expression for linear momentum in terms ofthe phase spae variables is given byP sj � Z d2xT s0j = P nj+2i�"ikZ d2x(Ai�jZy�kZ�Aj�iZy�kZ�Ai�kZy�jZ)�Z d2xAj(x)G(x) ;(32)



On Frational Spin in the CP1 Model Coupled to the Hopf Term 253where P nj � Z d2xpnj = Z d2x����jz� + ����jz��� (33)is the orresponding expression obtained from Noether's presription.Now using the fat that in two spatial dimensions one an write �iAj ��jAi = "ijB (B being the magneti �eld), it an be shown that the integrandin the �-dependent term in (32) vanishes exatly. However, beause of thepresene of the last term involving the Gauss onstraint G(x) in (32), P sjfails to generate the appropriate translation beause fz�(x); P sj g = Djz� inontrast to P nj whih, by onstrution, generates the appropriate translation,i.e., fz�; P nj g = �jz�. However, on the Gauss onstraint surfae (29) P sj (32)gets simpli�ed to ~P sj � R d2xpsj and generates appropriate translations likeP nj . This is equivalent to modifying P sj by an appropriate linear ombinationof �rst lass onstraint(s) (here only G (29)) to get ~P sj . In fat, ~P sj isidentially the same as P nj (33), also the same is holding for their respetivedensities i.e., psj = pnj : (34)The generator of rotational symmetry, namely the angular momentumoperator is given by Js = Z d2x"mjxmpsj ;Jn = Z d2x"mjxmpnj (35)obtained from the symmetri EM tensor (31), and from Noether's presrip-tion, respetively. It an be heked that Jn and Js generate the appropriaterotations fZ; Jg = "ijxi�jZ. By the adjetive �appropriate� we mean thatthe braket fZ(x); Jg is preisely the Lie derivative L��Z(x) = ��Z(x),where �� is the vetor �eld assoiated with J (� being the angular vari-able in the polar oordinate system in the 2D plane), thus showing that noanomalous term is obtained in this braket, as expeted. From (34) and (35)we have Js = Jn = J = Z d2x"mjxm [���jz� + ����jz��℄ : (36)By looking at the above expression it is lear that the angular momentum J(whih is of ourse gauge invariant) does not ontain any term other than the



254 B. Chakraborty, A.S. Majumdarorbital part usually present in a model ontaining spin zero salar �elds. Al-though a quantum mehanial onept, frational angular momentum maybe revealed at the lassial level itself through the di�erene (Js�Jn) om-puted after a proper Hamiltonian analysis [3,6℄. However, as we have seenabove (36), in this ase no frational spin is exhibited by inlusion of theHopf term at the lassial level. This result should not be surprising sinethe Hopf term [8℄ is a total divergene, and thus should not alter any observ-able expression like angular momentum at the lassial level. Nevertheless,a omplete quantum mehanial analysis of this model is required to settlethis question fully. Suh an analysis in the Dira sheme is rather involveddue to operator ordering ambiguities, and as we argue below, a quantizationof the model in a straightforward manner annot be performed. This is be-ause all the DB's (22-28) annot be elevated to their respetive quantumommutators, whih is required for the seond lass onstraints (18) and(19) to beome �strongly� valid operator equations.Note that this problem does not arise for the brakets (24)�(26), as theZ �elds an be taken as ommuting variables:[ẑ�(x); ẑ�(y)℄ = [ẑy�(x); ẑy�(y)℄ = [ẑy�(x); ẑ�(y)℄ = 0 : (37)With this, there is no operator ordering problem for (25) and (26):[ẑ�(x); �̂�(y)℄ = i~�Æ�� � 12 ẑ�(x)ẑy�(x)�Æ(x � y) ; (38)hẑ�(x); �̂y�(y)i = � i~2 ẑ�(x)ẑ�(x)Æ(x � y) : (39)The same, however, is not true for (27) and (28). Di�erent orderings of ẑ�and �̂� and their hermitian onjugates give di�erent quantum theory. Forthe quantum theory to be onsistent, the �strong� onstraints (18) and (19)should hold as operator identities, i.e., one must havehẑy�(x)ẑ�(x); ẑ�(y)i = 0 ; (40)hẑy�(x)ẑ�(x); �̂�(y)i = 0 ; (41)hẑy�(x)�̂y�(x) + �̂�(x)ẑ�(x); ẑ�(y)i = 0 ; (42)hẑy�(x)�̂y�(x) + �̂�(x)ẑ�(x); �̂�(y)i = 0 (43)and their hermitian onjugates. Note that we have taken the hermitianform of the onstraints (18) and (19) at the quantum level. It an be seenthat equations (40), (41) and (42) an be easily satis�ed for any operator



On Frational Spin in the CP1 Model Coupled to the Hopf Term 255ordering. However, (43) is not satis�ed for any of the possible operatororderings. For example, with the following ordering for the operators in thequantum ommutators orresponding to (27) and (28):[�̂�(x); �̂�(y)℄ = i~2 (ẑy� �̂� � �̂� ẑy�)Æ(x � y) ; (44)h�̂�(x); �̂y�(y)i = i~2 (ẑ� �̂� � �̂y� ẑy�)Æ(x � y) (45)one gets for the left hand side of (43)~2 [ẑy�(x); G(y)℄Æ(x � y) (46)whih is a O(~2) term and is learly nonvanishing. It an be heked thatwith other orderings of the operators, the situation beomes worse. Theseare typial problems one enounters while quantizing theories with seondlass onstraints (see [14℄, for example).This shows that the DB's annot be elevated to quantum ommutatorsin a straightforward manner. Consequently, quantization of the model isa nontrivial job. However, it is hoped that quantization might be feasibleby extending the on�guration spae whereby the seond lass onstraintsbeome �rst lass, or by using BRST tehniques. These options are presentlyunder investigation.After having analyzed in detail the CP1 model, let us onsider oneagain the lassially equivalent nonlinear sigma model (1) oupled to theHopf term. Note that in [3℄ this model was altered through simpli�ation ofthe Hopf term (� A�j�) to (� Aiji) by making use of the identityZ d2xA0(x)j0(x) = �Z d2xAi(x)ji(x) (47a)valid in the radiation gauge. The same identity an also be used to alterthe Hopf term (9) in the present ase as well. We emphasize that the modelis altered as (47a) when rewritten entirely in terms of the Z variables (theonly independent on�guration spae variables) takes the formZ d2xZy _Z !r Zy� !r Z = Z d2xZy !r Z � �!r Zy _Z � _Zy !r Z� : (47b)Clearly, this is not a onstraint equation as it involves time derivatives, andtherefore hanges the dynamial ontent of the model. This will be borneout by expliit omputation now.



256 B. Chakraborty, A.S. MajumdarTo begin with, note that one the identity (47) is used, the Hopf term (9)is hanged to (�� "i����Zy��ZZy�iZ). Correspondingly, the model (8) ishanged to L = jD�Zj2 + �� "i����Zy��ZZy�iZ � �(ZyZ � 1) : (48)This just the CP1 version of the model L = 14 (��Ma)2 + 2�JiAi onsideredin [3℄. The anonially onjugate momenta orresponding to z� and z�� aregiven by �� = (D0z)�� + �� "ijZy�iZ�jz�� ;��� = (D0z)� � �� "ijZy�iZ�jz� : (49)A rerun of the onstraint analysis shows that ertain di�erenes rop up inthe onstraint stuture from that of the model (8). For example the Gaussonstraint, the ounterpart of (29), beomes���z�� � ��z� � 0 (50)just as in ase of a pure CP1 model. Furthermore, in this model (48) theexpressions for the various symmetry generators obtained from the symmet-ri EM tensor T s�� di�er from the expressions obtained through the Noetherpresription. In partiular, the symmetri angular momentum Js is givenby Js = Z d2x"mjxm����jz� + ����jz���� 2� Z d2x"ijxiAjj0 : (51)The �rst term is just Jn. The seond �-dependent term in (51) an besimpli�ed on lines of the proedure used in [3℄ to get �N2 (where N is thesoliton number given by (2)), and interpreted to signify frational spinJf = Js � Jn = �N2 (52)in this model. This analysis learly brings out the point that the model (48)is basially inequivalent to the model (8).To onlude, we make the following observations. First, the absene offrational spin (although a quantum mehanial onept, we use the de�-nition Jf = Js � Jn at the lassial level) in (8) and its presene in (48)are in onformity with the fat that the Hopf term in (8) is a total diver-gene, whereas in (48) it is not. Seondly, we want to emphasize that use



On Frational Spin in the CP1 Model Coupled to the Hopf Term 257of just the radiation gauge without making use of (47) will not yield anyanomalous term in the algebra fZ(x); Jg, and the di�erene (Js � Jn) willpersist to be zero. If the radiation gauge ondition is imposed, the orre-sponding sympleti struture of the redued phase spae will undergo mod-i�ation, but the braket fZ(x); Jg = "ijxi�jZ will remain unhanged asfG(x); Jg = 0 = f�i(�iZy�iZ); Jg (note that J is gauge invariant by on-strution), thus generating no anomalous transformation. The model (8)has to be altered to (48) by using the identity (47) (whih is valid in theradiation gauge) in order to reveal frational spin. Thirdly, the frationalspin (52) an be obtained at the lassial level itself, as we have derivedit. Although in [3℄, a result of frational spin valid at the quantum levelwas laimed (although none of the operator ordering problems mentionedearlier were disussed there), it survives the lassial limit (~ ! 0) as �has the dimensions of ~ itself. Finally, if Dira quantization of the model(8) is eventually arried out, frational spin may or may not appear at thequantum level. In ase it does, it must ontain a fator of ~, so that in thelassial limit, Jf = (Js�JN ) = 0 (36) is reprodued. Hene, the expressionof Jf will be di�erent from (52). Finally, we end by noting that the issueof frational spin in the nonlinear sigma model and the CP1 model oupledto the Hopf term is not yet ompletely settled at the quantum level. Forinstane, it has been observed reently [15℄, using the method of adjointorbit parametrization, that the standard formula for frational spin holdsonly for ertain restrited on�gurations.A.S.M. would like to aknowledge the �nanial support provided as apart of a projet funded by the Department of Siene and Tehnology,Government of India. REFERENCES[1℄ J.F. Shonfeld, Nul. Phys. B185, 157 (1981); S. Deser, R. Jakiw, S. Tem-pleton, Phys. Rev. Lett. 48, 975 ( 1982); Ann. Phys. (N.Y.) 140, 372 (1982);S. Deser, R. Jakiw, Phys. Lett.B139, 371 (1984); D. Boyanovsky, R. Blanken-beker, R. Yabalin, Nul. Phys. B270, 483 (1986); R. Jakiw, Nul. Phys. BPro. Suppl. 18, 107 (1991); E. Fradkin, Field Theories in Condensed MatterSystems, Addison Wesley, 1991; S. Forte, Rev. Mod. Phys. 64, 193 (1992);W. Apel, Yu A. Byhkov, Phys. Rev. Lett. 78, 2188 (1997); G.E. Vloviv,V.M. Yakovenko, Phys. Rev. Lett. 79, 3791 (1997).[2℄ F. Wilzek, A. Zee, Phys. Rev. Lett. 51, 2250 (1983).[3℄ M. Bowik, D. Karabali, L.C.R. Wijewardhana, Nul. Phys. B271, 417 (1986).[4℄ D. Finkelstein, J. Math. Phys. 7, 1218 (1966); D. Finkelstein, R. Rubinstein,J. Math. Phys. 9, 1762 (1968).
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