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IMPROVED INTERMITTENCY ANALYSISOF SINGLE EVENT DATA�Romuald A. JanikInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Craow, Polande-mail: ufrjanik�jetta.if.uj.edu.pland Beata ZiajaDepartment of Theoretial Physis,Institute of Nulear Physis,Radzikowskiego 152, 31-142 Craow, Polande-mail: beataz�qd.ifj.edu.pl(Reeived September 23, 1998)The intermitteny analysis of single event data (partile moments) inmultipartile prodution is improved, taking into aount orretions dueto the reonstrution of history of a partile asade. This approah istested within the framework of the �-model.PACS numbers: 12.38.Mh 1. IntrodutionThe �rst data on possible intermittent behaviour in multipartile pro-dution [1℄ ame from the analysis of the single event of high multipliityreorded by the JACEE ollaboration [2℄. It was soon realized, however,that the idea may be applied to events of any multipliity provided thataveraging of the distributions is performed [3℄. This led to many suessfulexperimental studies of intermitteny [4℄, and allowed to express the e�etin terms of the multipartile orrelation funtions [5℄. It should be realized,however, that the averaging proedure, apart from lear advantages, bringsalso a danger of overlooking some interesting e�ets if they are present only� This work was supported by Polish Government Grant Projet (KBN) grants2P03B08614 and 2P03B04214. RAJ was supported by the Foundation for PolishSiene (FNP). (259)



260 R.A. Janik, B. Ziajain a part of events produed in high-energy ollisions. For example, theunique properties due to the presene of quark�gluon plasma in multipar-tile prodution would manifest only in some events, see e.g. [6℄. Takinginto aount the sample of events and averaging over them destroys suhan information. Therefore, as already disussed in [8, 9℄, there is a need forevent-by-event analysis of multipartile prodution proesses. In this waythe �utuations of the measured physial quantities (e.g. fatorial moments)from event to event an be observed and estimated, and any anomalous be-haviour of them has a hane to manifest very learly. Suh studies shouldneessarily be restrited to high-multipliity events beause only there onemay expet the statistial �utuations to be under ontrol.Suh an approah to the multipartile data analysis has been alreadyproposed in [7�9℄. In [8℄ a new quantity: erratiity has been introduedto investigate the event-by-event �utuations of fatorial moments, and tosearh for their properties. Erratiity denotes the normalized moment ofevent-by-event distribution of a horizontally averaged fatorial moment. Itprobes both types of �utuations: horizontal ones onneted with the spatialbin pattern and vertial ones i.e. event-by-event ones.In [9℄ the event-by-event �utuations of partile moments have been in-vestigated diretly for the one-dimensional ��model of random asading.Monte Carlo simulations of the model allowed one to obtain the histogramsof event-by-event distributions of horizontally averaged partile momentaand estimate the relation between the intermitteny parameters obtainedfrom suh a histogram, and the intermitteny parameters derived after usualproedure of averaging partile moments over all events. The results werepromising: the average value of the intermitteny exponent reprodued wellthe value obtained by averaging partile moments over events, however withthe tendeny to underestimate the theoretial value. Furthermore, the dis-persion of the moment distribution was inversely proportional to the lengthof a generated asade, and even for short asades substantially smallerthan the average value. The latter property was of a speial importane: itallowed one to distinguish between groups of events emerging from asadeswith di�erent harateristis.In this paper we would like to improve the analysis of single event datapresented in [9℄. Taking into aount orretions due to the method of reov-ering the history of the multipartile asade [1,2℄, we expet to redue thedisrepany between the theoretial value of intermitteny exponent and itsvalue estimated from the event-by-event histogram [9℄. Our disussion willproeed as follows. In Setion 2 we reall the de�nition of the intermittenyexponents and the tehnique used to alulate them [1, 2℄. In Setion 3 thede�nition of the � model will be brie�y presented, and applied in Setion 4to alulate orretions for extrating intermitteny exponents from single



Improved Intermitteny Analysis of Single Event Data 261event data. Setion 5 is devoted to the omparison of theoretial resultswith numerial simulations. Finally in Setion 6 we present our onlusions.2. Intermitteny exponentsConsider a multipartile prodution asade distributed into M bins. Atthe nth stage of the asade we measure the distribution of a partile densityinto M bins. Assume for simpliity that M = 2n. We thus have 2n numbers(quantities) denoting the ontent of eah bin:x(n)i ; i = 0; 1; : : : ; 2n � 1 : (1)To perform the event-by-event analysis one is interested in the behaviour ofpartile moments with the stage of the asade:z(n)q = 12n 2n�1Xi=0 �x(n)i �q : (2)The saling behaviour of these moments is parametrized by intermittenyexponents �q [1℄: z(n)q � 2n��q : (3)The task is to estimate the value of an intermitteny exponent. There aretwo di�erent ways of doing it. The �rst one is to alulate the averagemoment z(n)q for the whole ensemble of individual events, and from this toreonstrut the intermitteny exponent. The seond one is to alulate theexponent �q for eah event separately, and then to reover the average �q.The latter approah has the advantage of being able to distinguish betweentwo independent asading proesses eah with di�erent �q. This ould bedone by looking at the distribution of individual �q's. In the former methodboth of these possibly independent proesses would be arti�ially fored tobe desribed by a single `e�etive' �q.In the following we would like to address the question of reliably reon-struting the orret value of �q from single event data. Numerial sim-ulations in [9℄ showed that there is an inherent disrepany between thetheoretial value and the distributions of event-by-event �q (see Tables I,II). The aim of this letter is to analyze this result and introdue a orretionwhih improves the estimation.A onvenient way of alulating �q is to make a linear �t to the points(n; log z(n)q ) ( all logarithms are taken to be alulated in base 2, i.e. log x �lnx=ln2): log z(n)q = n � �q + b : (4)



262 R.A. Janik, B. Ziaja TABLE IStandard and orreted intermitteny exponents (determined from the position ofthe maximum of the histograms) and their dispersions (errors) for a = 0:8; b = 1:1and n = 5; : : : ; 10 asade steps. Theoretial values for intermitteny exponentsare '2;theor = 2:85� 10�2 and '3;theor = 8:13� 10�2.'i = 10�2'ii 5 6 7 8 9 10'2 1:90 � 0:89 2:00� 0:82 2:26� 0:75 2:49� 0:66 2:52� 0:59 2:46 � 0:52'2;orr 2:66 � 0:75 2:79� 0:66 2:66� 0:56 2:85� 0:46 2:85� 0:43 2:85 � 0:36'3 5:66 � 2:46 5:66� 2:46 6:48� 2:05 6:64� 1:72 6:81� 1:72 6:72 � 1:49'3;orr 7:79 � 2:13 7:63� 1:81 7:62� 1:64 8:00� 1:40 8:12� 1:15 8:12 � 0:98TABLE IIIntermitteny exponents (determined from the position of the maximum of the his-tograms) and their dispersions (errors) for a = 0:5; b = 1:5 and n = 5; : : : ; 10asade steps. Theoretial values for intermitteny exponents are '2;theor =3:22� 10�1 and '3;theor = 8:07� 10�1.'i = 10�1'ii 5 6 7 8 9 10'2 2:00� 1:00 2:09 � 0:92 2:43� 0:74 2::61� 0:70 2:44 � 0:74 2:26� 0:70'2;orr 3:13� 0:79 3:13 � 0:74 2:96� 0:61 2:87� 0:57 3:05 � 0:52 3:00� 0:48'3 4:52� 2:23 5:31 � 2:23 5:83� 2:02 5:90� 1:83 6:03 � 1:83 5:70� 1:70'3;orr 7:53� 1:90 7:93 � 1:83 7:66� 1:57 7:53� 1:31 7:66 � 1:31 7:66� 1:18This proedure has the advantage of anelling out the major part of theorretion oming from the fat that we are e�etively reonstruting theexponents from hlog z(n)q i while the true value is de�ned in terms of loghz(n)q i.However there is still one aveat to (4). Sine we annot in generalseparate out the various stages of the asade, one reonstruts the previousstages from the last one by summing the x(n)i 's in adjaent bins using thetehnique desribed in [1℄ ( and applied there to JACEE event [2℄ ). Namelyone approximates the true value of x(n�k)i by:x(n�k)i �! y(n�k)i = 12k 2k�1Xj=0 x(n)2k�i+j : (5)



Improved Intermitteny Analysis of Single Event Data 263Therefore in (4) one really uses the reonstruted moments:z(k)q;reonstruted = 12k 2k�1Xj=0 �y(k)i �q : (6)We will now use the � model of random asading [1℄ to alulate ex-pliitly the di�erene between the true and reonstruted moments and theresulting shift of the �q distribution from the theoretial value.3. The � model of random asadingIn the � model of random asading [1℄ the root of the asade � x(0)0is taken to be a with probability pa and b otherwise (with probability pb =1 � pa). One generates the next stages of the asade reursively. The twobins x(n+1)2i and x(n+1)2i+1 are obtained from x(n)i by:x(n+1)2i �! a � x(n)i with probability pa ; (7)x(n+1)2i �! b � x(n)i with probability pb ; (8)and same for x(n+1)2i+1 . The parameters a and b are taken to satisfy:apa + bpb = 1 : (9)Partile moments ful�l the relation:z(n)q = 2(n+1)��q ; (10)where intermitteny exponents �q are equal to:�q = log(aqpa + bqpb) : (11)4. Reonstruted momentsThe reonstruted moments in the � model are related to the trueones by:z(n�k)q;reonstruted = 12n 2n�k�1Xi=0 *0�2k�1Xj=0 x(n)2ki+j1Aq+ � z(n�k)q � pq(k): (12)where the average h: : :i is taken over the random hoies made only abovethe (n � k)-th stage of the asade. The fator pq(k) an be alulated



264 R.A. Janik, B. Ziajaexatly (see below) and we propose to use it to ompensate for the errorsintrodued by the reonstrution proedure. In partiular the reonstrutedmoments entering (4) will be shifted by:log z(n�k)q;reonstruted �! log z(n�k)q;reonstruted � log(pq(k)): (13)We will now determine the expliit form of the orretion pq(k). By thede�nition of the � model, the orretion pq(k) an be alulated just byevaluating: pq(k) = *0� 12k 2k�1Xi=0 x(k)i 1Aq+ (14)in the � model modi�ed by taking the starting bin x(0)0 = 1.First it is easy to see that for q = 1 there is no orretion p1(k) = 1.This is due to (9). Also all orretions vanish for k = 0:pq(0) = 1 : (15)The appearane of a orretion for q > 1 omes from the fat that the`number' of partiles in this model has a nonzero dispersion.Consider �rst the ase of q = 2. We will now split the bins (xi's) ap-pearing in (14) into a left half (i < 2k�1) and a right half (i � 2k�1):p2(k) = * 12k Xi li + ri!2+ = 14* 12k�1 Xi li!2 + 12k�1 Xi ri!2+2 12k�1 Xi li! 12k�1 Xi ri!+: (16)Using the fat that the left and right bins are independent one gets thereurrene relation:p2(k) = 12 (paa2 + pbb2)| {z }d2 p2(k � 1) + 12 : (17)This an be solved together with the initial data (15), to yield a losed formsolution: p2(k) = �d22 �k 1� d22� d2 + 12� d2 : (18)



Improved Intermitteny Analysis of Single Event Data 265In general one an obtain the reurrene relation for general q in exatlythe same way:pq(k) = 12q qXi=0 � qi � didq�i � pi(k � 1)pq�i(k � 1) ; (19)where di = paai + pbbi : (20)A similar reurrene relation has been obtained in a di�erent ontextin [10℄. 5. DisussionWe have performed numerial simulations of the �-model in order totest the improved single data analysis in pratie. In Fig. 1 and Fig. 2 thehistograms of the orreted (with the shift (19) taken into aount) andstandard (without the orretion (19)) values of intermitteny exponents'2; '3 are plotted for 90000 generated asades of 5 and 10 steps. The peakswith the orretion inluded are signi�antly loser to the theoretial value.The dispersion of the distribution estimated diretly from the observed peak,for the �orreted� histogram is smaller than the dispersion of the �standard�one. It dereases with the number of asade steps. The numerial valuesof �orreted� and �standard� dispersion as a funtion of the asade lengthare presented in Tables I, II for 2 di�erent sets of asade parameters. Theorreted dispersion is relatively small, and it allows to distinguish betweenthe asades with di�erent parameters (Figs 1, 2).The in�uene of the orretion (19) on the value of the intermittenyexponents obtained from averaging over the ensemble of events (`enter ofmass' of the histogram) was also investigated. The results are presented inTables III, IV for 2 di�erent sets of asade parameters. The estimation ofintermitteny exponents for the orreted ase is muh better than for thestandard one.In the preeding, the formula for the orretion (see e.g. (18)) dependson the values of the parameters a, b of the �-model. In pratie, however,one would like to implement some sort of model independent orretion. Apossible way of doing this is to use the fat that the orretions log p2(i)and log p3(i) seem to hange most dramatially in the �rst few steps of thereonstrution proedure (near the `end' of the asade). After that theyseem to stabilize at some onstant value. This would suggest using just thereonstruted moments near the beginning of the asade in the �t (4). Inpratie, however, this might perhaps su�er from low statistis and large�utuations.
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Fig. 1. a-b Histograms of the intermitteny exponents a) �2 and b) �3 simulated forthe set of parameters a = 0:8, b = 1:1 in 90000 events for 5 and 10 asade steps.The wider urves orrespond to 5 stages of the asade. `Solid' urves representthe histograms with the orretion pq(k) taken into aount.
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Fig. 2. a-b Histograms of the intermitteny exponents a) �2 and b) �3 simulated forthe set of parameters a = 0:5, b = 1:5 in 90000 events for 5 and 10 asade steps.The wider urves orrespond to 5 stages of the asade. `Solid' urves representthe histograms with the orretion pq(k) taken into aount.



268 R.A. Janik, B. Ziaja TABLE IIIStandard and orreted intermitteny exponents and their dispersions (errors) fora = 0:8; b = 1:1 and n = 5; : : : ; 10 asade steps obtained after averaging overthe sample of 90000 events.Theoretial values for intermitteny exponents are'2;theor = 2:85� 10�2 and '3;theor = 8:13� 10�2.'i = 10�2'ii 5 6 7 8 9 10'2 2:16 � 4:34 2:45� 1:51 2:57� 0:74 2:63� 0:66 2:68� 0:60 2:72 � 0:54'2;orr 2:90 � 0:70 2:89� 0:58 2:88� 0:49 2:88� 0:42 2:87� 0:36 2:87 � 0:31'3 6:54 � 4:80 7:03� 2:62 7:33� 2:11 7:53� 1:90 7:68� 1:73 7:77 � 1:58'3;orr 8:32 � 2:00 8:29� 1:67 8:25� 1:40 8:23� 1:18 8:22� 1:02 8:20 � 0:89TABLE IVIntermitteny exponents and their dispersions (errors) for a = 0:5; b = 1:5 andn = 5; : : : ; 10 asade steps obtained after averaging over the sample of 90000events. Theoretial values for intermitteny exponents are '2;theor = 3:22� 10�1and '3;theor = 8:07� 10�1. 'i = 10�1'ii 5 6 7 8 9 10'2 2:33� 1:2 2:50� 0:95 2:62� 0:82 2:69� 0:76 2:77� 0:74 2:81 � 0:72'2;orr 3:20 � 0:70 3:17� 0:63 3:15� 0:57 3:15� 0:52 3:14� 0:47 3:14 � 0:43'3 5:78 � 2:36 6:13� 2:06 6:38� 1:90 6:55� 1:81 6:71� 1:78 6:81 � 1:75'3;orr 8:16 � 1:71 8:05� 1:51 7:96� 1:36 7:90� 1:24 7:86� 1:13 7:84 � 1:06An alternative proedure would be to �rst determine the parameters aand b using the standard (unorreted) method, and then substitute thoseparameters into (19) and use the improved analysis to obtain a better ap-proximation of the exponents. One ould repeat this until the result nolonger hanged. 6. ConlusionsOur onlusions an be summarized as follows:(a) the value of intermitteny exponent estimated from the maximum of�orreted� histogram moves loser to the theoretial value,(b) the dispersion of the distribution estimated diretly from the observedpeak for the �orreted� histogram is smaller than the dispersion of the
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