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We study the question whether the pole-model VMD approach to weak
radiative hyperon decays can be made consistent with Hara’s theorem and
still yield the pattern of asymmetries characteristic of the quark model. It is
found that an essential ingredient which governs the pattern of asymmetries
is the assumed off-shell behaviour of the parity-conserving 1/27 —1/2% —~
amplitudes. It appears that this behaviour can be chosen in such a way
that the pattern characteristic of the quark model is obtained, and yet
Hara’s theorem satisfied. As a byproduct, however, all parity-violating
amplitudes in weak radiative and nonleptonic hyperon decays must then
vanish in the SU(3) limit. This is in conflict with the observed size of weak
meson—nucleon couplings.

PACS numbers: 11.30.Ly, 12.40.Vv, 13.30.—a

1. Introduction

Weak radiative hyperon decays (WRHD’s) present a challenge to our
theoretical understanding. Despite many years of theoretical studies, a sat-
isfactory description of these processes is still lacking. For a review see
Ref. [1] where current theoretical and experimental situation in the field is
presented.

The puzzle posed by WRHD’s manifests itself as a possible conflict be-
tween Hara’s theorem [2] and experiment. Hara’s theorem is formulated
in the language of local field theory at hadron level, and is based on CP-
and gauge- invariance. It states that the parity-violating amplitude of the
Y+t — py decay should vanish in the limit of SU(3) flavour symmetry.
For expected weak breaking of SU(3) symmetry the parity-violating ampli-
tude in question and, consequently, the X — py decay asymmetry should
be small. Experiment [3] shows, however, that the asymmetry is large:
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a(Xt = py) = —0.72 £ 0.086 £ 0.045. Explanation of such a large value of
this asymmetry is even more difficult when one demands a successful simul-
taneous description of the experimental values of the asymmetries of three

—

related WRHD’s, namely A — ny, 5 — Ay, and 59 — X04.

Theoretical calculations may be divided into those performed totally at
quark level (e.g. [5,6]) and those ultimately carried out at hadron level
(e.g. |4,7]). Hadron-level calculations are based on the pole model, with
Hara’s theorem usually satisfied by construction. The only exception is the
hadron-level vector-meson dominance (VMD) symmetry approach of Ref. [7]
which admits a pole-model interpretation and yet violates the theorem. On
the other hand, quark model calculation of Ref. [5] (and its phenomenolog-
ical applications [6]), in spite of being explicitly CP- and gauge- invariant,
directly violate the theorem. The problem is further confounded by the
fact that experiment seems to agree with the predictions of the quark (or
VMD) model, and not with those of the pole model satisfying Hara’s theo-
rem. Putting aside the approach of Ref. [7], for known pole and quark models
there exists an important difference between their predictions concerning the
pattern of the signs of asymmetries in the four WRHD’s mentioned above.
For the set of asymmetries (X1 — py, A — ny, 5% = Ay, 20 — X0) the
pole model [4] predicts the pattern (—, —, —, —), while the quark model [1,6]
gives (—,+,+, —). Experiment (and in particular the sign of the 5% — A~y
asymmetry [8]) hints [1] that it is the latter alternative that is realized in
Nature. Apart from the quark model, there are two other approaches that
yield the pattern (—,4+,+,—). The first one is the hadron-level SU(6)y x
VMD approach of Ref. [7] which so far gives the best description of data [1].
The other is a diquark approach of Ref. [10].

The VMD prescription seems to violate Hara’s theorem as well. Al-
though a connection between the quark model and VMD result has been
proposed [7], closer inspection [9] reveals that the origin of the violation
of Hara’s theorem is slightly different in the two models. In the quark
model, the violation of Hara’s theorem arises from bremsstrahlung diagrams
in which photon is emitted from one of the pair of quarks exchanging the
W-boson. The violation is connected with the intermediate quark entering
its mass-shell in the ¢, — 0 limit. The SU(6)y x VMD approach (related
by symmetry to the standard pole model of nonleptonic hyperon decays)
admits a pole-model interpretation. Then, the intermediate state is an ex-
cited 1/2~ state which is not degenerate with external ground state baryon.
Hence, the intermediate excited baryon state cannot be on its mass shell.

The diquark approach [10] contains a few free parameters, among them
the masses of spin 0 and spin 1 diquarks. In the limit when these masses are
equal to each other the approach yields the pattern (—,+,+,—). Further-
more, all parity violating amplitudes are then proportional to the mgs — my
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mass difference and, consequently, Hara’s theorem is satisfied. The pattern
(—,+, 4+, —) for the diquark approach looks a little bit like an accident since
it holds only when spin O-spin 1 symmetry is satisfied. Still, the result of
Ref. [10] poses the question if one can find other models which satisfy Hara’s
theorem and yet give the pattern (—,+, 4, —).

Specifically, the question that we put forward in this paper is: can the
phenomenological success of VMD [1] be consistent with Hara’s theorem?
We will show that the answer to this question is “yes”. However, consistency
of the phenomenological success of the SU(6)y x VMD approach with Hara’s
theorem implies that dominant parts of all parity violating WRHD’s ampli-
tudes (as well as those of nonleptonic hyperon decays) must vanish in the
SU(8) limit. This markedly differs from the way in which Hara’s theorem is
satisfied in the standard pole model of Ref. [4]. That is, in Ref. [4] it is only
the X+ — py parity violating amplitude that vanishes in the SU(3) limit,
while three remaining relevant WRHD parity-violating amplitudes remain
constant and nonzero. The difference between the pole model of Ref. [4]
and the pole model considered in this paper is connected to the off-shell
behaviour of the B* B~y couplings. Throughout this paper, all our formulas
will be consistent with Hara’s theorem: we will not refer to Ref. [5] otherwise
than in a discussion.

2. Photon—-baryon couplings

Let us consider parity-violating, CP-conserving interaction of a photon
with spin 1/2% baryons. The most general conserved electromagnetic axial
current of spin 1/2% baryons may be written in this case as

3 = gu(@®)Pr(@F" — @ d) s + G2, (@)Prio™ ys g (1)

where ¢ = p; — pr and we use conventions of Ref. [11] for vy matrices. Note
the factor of ¢2 in the first term of Eq. (1). Indices [, k label initial and final
baryons and may be different (e.g. (I,k) = (XT,p), etc.). Hermiticity and
CP invariance of j5 - A coupling require functions g1, go to be real (see e.g.
Ref. [12]). Furthermore, g; is symmetric and go antisymmetric in baryon
indices

g1kl = 91,k
92,k = —92,lk - (2)

For real photons (¢?> = 0, g- A = 0) the coupling to a photon of the first term
in Eq. (1) vanishes. Thus, the only contribution may come from the second
term. Hara’s theorem [2] states that in the SU(3) limit the function gy s+
must vanish. The reason is simple: in the SU(3) limit wave functions of ¥
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and p must be identical since they are obtained from each other by a simple
replacement s <+ d. Furthermore, photon is a U-spin singlet. Thus, function
2,5+, must be proportional to g, (apart from the Cabibbo factor, nothing
changes when we replace s by d in ¥'7). Because of its antisymmetry the
function g2 p, is, however, zero. This proof does not specify, however, in
what way the function g, 5+, vanishes. Furthermore, it says nothing about
functions go j; for the remaining three WRHD’s: A — ny, Z0 — Ay, and
50 5 304,

In the pole model of Ref. [4] WRHD'’s proceed in two stages: a virtual
decay of the initial ground-state baryon B; into a photon and an excited spin
1/27 B* baryon followed by a weak interaction transforming the latter into
a final ground-state baryon By (a reverse order of interactions is of course
also taken into account). To describe these processes one has to know in
particular the B* By couplings.

In Ref. [4] these couplings are given in the form of a parity-conserving
interaction of the photon with a current whose form (after setting ¢> =
q- A =0) is fully analogous to Eq. (1)

]é) (B*B) = f2,kl(q2)akiaﬂu75%/¢l 3 (3)

where a pair of indices k, [ denotes a pair of baryons B, B* under consider-
ation, i.e. (k,l) = (By, By) or (By, B}). Following Ref. [12] one can check
that hermiticity and CP invariance of j(y) - A coupling require function fo
to be purely imaginary and symmetric

fo i = fok - (4)

In Ref. [4] the corresponding function is stated to be real and antisymmet-
ric. This difference is inessential because one can always absorb our purely
imaginary phase of fs into the definition of the spinor of the intermediate
excited state. The relation valid for both our convention and that of Ref. [4]
is fi = —fa.

There is one problem with Eq. (3) that was not discussed in Ref. [4] at
all: the form of the right-hand side of Eq. (3) is not the most general form
for the situation under consideration. In fact, Eq. (3) is fully correct only
when particles B*, B are on their mass shells. In the pole model, however,
the intermediate excited states are certainly not on their mass shells. Thus,
the use of Eq. (3) is not fully justified.

To substantiate our claim we shall consider the current

Joy(B*B) = Frn(@®) (=1) (pr + pO)ague™ PPyt (5)

which is quadratic in external momenta. As before, (k,1) =(Bj,B;) or
(B, Bf). Hermiticity and CP invariance of the coupling of j(;) to a photon
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require fi to be purely imaginary and antisymmetric ( fIT = f1 in phase-
convention-independent form). We observe that a form totally analogous to
Eq. (5) might also be used as an axial current relevant for describing the
parity violating coupling of a photon to ground-state baryons

2 = (@) (=) (Pk + PG EN PPy, (6)

with initial and final spin 1/2% baryons k,[. Hermiticity and CP invariance
of j5 - A interaction require § to be real and symmetric

9kt = Jik - (7)
Using the identity

YOyPt = goBoh — gotaB 4GPl — Py, (8)

it is straightforward to show that

—i(pr + P)AQWEM PPy
= (@ — ¢ v + b (Bio™ v5q, — i vsqud) . (9)

Thus, for particles k, [ on their mass shell the current j5 of Eq. (6) reduces
to the current js of Eq. (1) with g1 = gm and gogr = (my — my) .
Interaction with real transverse photons of the first term on the rhs of Eq. (9)
vanishes. As to the second term, please note that the obtained function
g2,k is antisymmetric and that it vanishes for equal masses of baryons k, .
Although for the parity-conserving current jﬁ)(B*B) the identity of Eq. (9)
also holds, in the pole model of WRHD’s one cannot in general replace g,
and @, by the corresponding baryon masses: the intermediate baryons B*
are not on their mass shell. We shall see later what are the consequences of
this lack of sufficient generality of the current of Eq. (3).

3. Parity—violating amplitudes in pole model

The pole model is built from two basic building blocks. The first de-
scribes weak interaction, the second - electromagnetic emission of a photon.
Parity violation comes from weak interactions which transform ground-state
baryons into excited spin 1/2~ baryons and wvice versa.

The parity-violating weak transitions are described by

ar b (10)

where the pair of indices k, [ describes a pair of baryons (B,B*), i.e. (k,l) =
(B, By) or (By, Bf). Hermiticity and CP invariance require a to be purely
imaginary and antisymmetric

akl = —a - (11)
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(Again we differ in conventions with Ref. [4], where a is real and symmetric.
A convention-independent condition is a' = a.)

The electromagnetic emission is described by coupling the photon to the
sum j(B*B) of currents of Egs. (3),(5)

*(B*B) = f1u(q®)(—1)(pr + p)rawe ™ PPyt

+foni (4 ) Prio™ Vsqu i (12)
The calculation of Ref. [4] corresponds to fi = 0, fo # 0 and leads
to the pattern (—, —,—,—) (see e.g. Ref. [1]). Since this case was studied

elsewhere [1,4], we will consider it only in a discussion, a little later. The
really novel feature is the first term (f1) on the right hand side of Eq. (12).
We turn now to the evaluation of its effects. We will show that this term
generates asymmetry pattern (—, +,+, —).

There are two pole-model diagrams (Fig. 1(a),(b)) contributing to the
decay B; — Bjvy. The amplitude corresponding to these diagrams is built
from our basic blocks in a simple way. Weak interaction (symbolized by
blobs in Fig. 1) is described by Eq. (10) while the electromagnetic current by
Eq. (12). In addition, there must be a pole factor 1/(p? —m?2) corresponding
to the propagation of the off-shell excited baryon B*.

Fig. 1. Baryon-pole diagram for parity-violating WRHD amplitudes.

Using the first term (jj(1)) of the current of Eq. (12) the following expres-
sion corresponds then to Fig. 1(a):

. _ 1 _
Fi e (=9) (P + P )AGE P T pypuls - ———5 QT U (13)
Dy = M
where k* labels intermediate excited states (summation over admissible k*
is implied). The contribution corresponding to Fig. 1(b) is

_ 1 . _
LT L . Fi(=8) (ke + PiAGEN PTpypu;  (14)

f k>

with appropriate my-, different from that in Eq. (13). However, since we
are mainly concerned with the limit mgs — mg — 0, for our purposes it is
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sufficient to consider 1/27 — 1/27 mass splitting to be much larger than
ms — mg. Thus, we may put the same my+ everywhere. Upon summing the
above two contributions and replacing the factor ug-ug~ by #p« + mp~, we
act with g, on u; (@y) for the contributions of Fig 1(a), 1(b), respectively.
This yields m; (my). Using p? = m? and p?c = mfc we obtain the total
pole-model contribution from f; terms

S, fhe Qi N apps f1 g
my; — Mgx mf — My* )

—i(pi + pr)aave ™ Py u; - { (15)
Now, for real photons and external baryons on their mass shell the factor
in front of the braces in Eq. (15) can be reduced using Eq. (9). In this
way, Eq. (15) is brought into our final form and the parity-violating WRHD
amplitude is obtained from

N ek apefieei 1 _
(my =mi) {mz — M + my — mk} u ot qysui Ay (16)
As Eq. (16) shows, all parity-violating WRHD amplitudes vanish now in
the limit m; — my. Furthermore, this vanishing does not come about as
a result of the cancellation between the contributions from the s- and u-
channel poles as in Ref. [4]. In fact, for f =i the denominators of the two
terms in braces are identical and the same can be shown to hold for the
numerators since: 1) fi fp= = frier = —fi g+ and 2) appe = Qg = —ag+;
leads to fi fr<ag< = (—fix#i)(—ask). One can also easily see that under
i <> f interchange the expression in braces in Eq. (16) is symmetric, i.e.
{...}if = +{...}i, and therefore the whole expression (m; — m;){...} is
antisymmetric , in agreement with the second of Eqs. (2).
Let us now try to use the current ji;y while putting intermediate baryons
B* on their mass shell. For real transverse photons the current j(;) of Eq. (5)
may be then reexpressed using the simplified version of Eq. (9)

—i(pr + p)AGE Uy = (my — my)Ukio™ g, y5u (17)
for (k,1) = (B}, B;) or (B, B}). The electromagnetic currents in Eqs. (13),
(14) are then replaced by
Jig=i(mpgs — m;)ug-io™” g, ys5u; (18)
for Fig. 1(a) (Eq. (13)) and
J1, ke (myp — my= ) pio™ gy ysuges (19)

for Fig. 1(b) (Eq. (14)). Please note that now the factors fi = (my — myy)
multiplying spinorial expressions in Egs. (18), (19) have symmetry proper-
ties of the fo factors, i.e. they are symmetric under k£ < [* interchange,
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as in Eq. (4). We might write fNQ,fk* = fi,fk(ms — my+) and ka*i =
J1,ki(mp=—m;) with fo symmetric, and thus fully analogous to fo in Eqs. (3),
(12). Consequently, results of Ref. [4] should follow. Indeed, applying the
procedure described above for the true current j(;) we obtain now the coun-
terpart of Eq. (16) for the current of Egs. (18), (19)

{f tphe (g = M Jaei  aghe fieime: ml)} Tpio™ g ysui. (20)
My — M* mye — My

Now, for f = i the denominators of the two terms in Eq. (20) are identical
but the numerators differ in sign since: fi pp+ = frix = —fi iy Qg =
ik = —ap+; and (my —my+) = —(my= —m;). Thus, for f = ¢ the two terms
in Eq. (20) cancel. This is precisely the case considered in Ref. [4] where
only the current jo) was considered and the cancellation between the two
diagrams of Fig. 1 was invoked as a way in which Hara’s theorem is satisfied.
In Ref. [4] such a cancellation does not occur, however, for the remaining

—

three relevant WRHD’s, namely A — ny, 5% — Ay, and 50 — X04.

4. Discussion

Phenomenologically, the most successful model seems to be the VMD
model of Ref. [7] (and its update in Ref. [1]). In the VMD approach the cru-
cial assumption (apart from the VMD prescription) is the assumed SU(6)w
symmetry relating WRHD’s to the well measured experimentally nonlep-
tonic hyperon decays (NLHD’s). Thus, the size and the pattern of parity
violating WRHD amplitudes are determined by symmetry from NLHD’s.

The symmetry structure of the parity-violating WRHD and NLHD am-
plitudes of Refs. [7] may be understood in terms of the pole model. In view
of:

(1) considerations of the preceding section in which two different possible
patterns of WRHD asymmetries were obtained in the pole model, and

(2) the symmetry connection between WRHD’s and NLHD’s that forms
the basis of the successful approach of Refs. 7],

it is pertinent to discuss nonleptonic hyperon decays in the pole model along
the lines of the preceding section and to study the relation between the
symmetry structures of WRHD’s and NLHD’s. This is what we will turn to
now.

For the sake of further discussion let us assume that masses of octet
pseudoscalar mesons are negligible, m% ~ 0. Thus, we shall discuss the
parity-violating CP-conserving amplitudes for the B; — POBf couplings
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with PO a CP = —1 pseudoscalar meson (°

state baryons. Consider the following coupling

or 1g) and B; ; — ground-

b i PO+ 300 i PO+ 05T (i (pf + pi)q”Jui PO, (21)

where (by CP-invariance and hermiticity) all () are imaginary, with bgg),

(1)

bg?i) antisymmetric and b Fi symmetric under ¢ <> f interchange. For baryons

By, B; on mass shell the coupling of Eq. (21) may be rewritten (¢* = m%)

as

{bgg) + (mz - mf)b‘scl,i) + [(mz - mf)2 — m%]b%)}ﬂfuiPo , (22)

where we may put m% = 0. The a priori possible term bgcli’)ﬂf(]sz—i— #i)ui PP,
(

linear in external momenta, may be absorbed into the b fg) term.

In the pole model of NLHD’s the couplings of Eq. (22) arise from the
parity-violating weak transition of Eq. (10) followed by parity-conserving
70 (or mg) emission from the excited spin 1/2~ baryon (a reverse order
of interactions is also taken into account). Consider parity-conserving P°

emission couplings described by

f,ﬁ?)ﬂkuzPO + f;gll)ﬂk du, P° + f,ﬁf)ﬂk(—iaw(pk + p)*q" )u, P° (23)

with (k,1) = (B}, By) or (By, B}). Hermiticity and CP-invariance require all
f,g?) to be real with f,g?), f,g?) symmetric and f,gll) asymmetric under k < [
interchange. Since excited intermediate spin 1/27 baryon is not on its mass
shell we are not allowed to replace Eq. (23) by a momenta-independent form
analogous to Eq. (22). (In Eq. (23) we have neglected an a priori possible

term f,gll’)ﬂk( P+ #)u PY; calculation shows that its effect is fully analogous

to that of the (O term.) Working out the pole model contributions from
various terms of Eq. (23) we obtain (as in the previous section)
(1) from the f© term

(0) ) (0)
*(Z * * .
Ttk | apefis {g po (24)

my; — MM mf — My~

with the factor in braces antisymmetric under i <> f interchange (this is the
term usually considered in papers on nonleptonic hyperon decays),
(2) from the f() term

(1) 1
ffk*ak*i + afk*flg*z
my; — Mgx mf — My*

ﬂfuiPO (25)

(mi —my)
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with the factor in braces symmetric under 7 <+ f interchange,
(3) from the f term

f(i)*ak*i a k*f(g) _
(ms = ) e ¥ g = (" (20)

with the factor in braces antisymmetric under 7 <+ f interchange. Thus,
the pole model yields specific predictions for b( ) bgcz), and b( ) of Eq. (22),
which are given by factors in braces in Eqgs. (24 ) (25), (26).

Assuming now that one of the two patterns of parity-violating NLHD
amplitudes (corresponding to the symmetry or antisymmetry of the factor
in braces) is dominant, there appears the question which pattern is actually
realized in Nature.

Calculations of Desplanques, Donoghue and Holstein (Ref. [13]) and
those of Ref. [7] correspond to the pattern obtained from terms f(®) or
@ which coincides with the predictions of current algebra. For the sake of
comparison with Egs. (24)—(26) in Table I we give a few selected amplitudes
corresponding to the symmetry pattern of these references. Table I explicitly
demonstrates the antisymmetry of the factor {...} under X% < p (p <> p)
interchange and the cancellation between the contributions from diagrams
1(a) and 1(b) for f = i: for ppr® case antisymmetry ensures vanishing of the
total contribution to the parity-violating ppm® coupling. This is also what
current algebra gives [13] since (pr®|Hyy,|p) o (p|[I3, Hyy]|lp) = 0. Such van-
ishing occurs also for X+ — pU® coupling where U = (v/37° + 13)/2, a
U-spin singlet.

TABLE 1

Contribution of diagrams 1(a) and 1(b) to selected parity-violating BB’ P° ampli-
tudes.

diagram 1(a) diagram1(b)
(pm°|Hyp | Z7) —ﬁc ﬁb
(50| Hy |p) -t e
(pm®| Hyy |p) ( be— V )cot&c ( b+ \[ )cot&c
GUUHIS) | b e b+ e

In Table I, the b-term originates from W-exchange diagrams, while the
c-term represents hadronic loop/quark-sea contribution [15]. Although
W-exchange seems to contribute to diagram 1(b) only, this does not mean
that individual contributions from W-exchange with nonstrange intermedi-
ate excited baryons are all zero. They do not vanish but they all cancel
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among themselves (cf. [14]). Experimental data on NLHD’s cannot de-
termine which of the two patterns (corresponding to f(©/f®2) or f(1) is
correct. This is so because in all 7° emission amplitudes the b-terms come
solely from diagrams 1(b) and the c-terms - solely from diagrams 1(a). Since
the size and sign of ¢ is a phenomenological parameter it is impossible to
differentiate between the two patterns. If ng (U°) emission were kinemat-
ically allowed, this would be possible: cancellation of two contributions to
the (pU°|H,;;| X) amplitude would be replaced by constructive interference
from diagrams 1(a) and 1(b).

Let us now go back to WRHD’s. The connection between NLHD’s and
WRHD’s is achieved in Ref. [7] by considering the combined flavour-spin
symmetry SU(6)y. This symmetry is suited for the description of two-body
decays because spin generators of SU(2)y commute with Lorentz boosts
along decay axis [16]. Consequently, if one wants to apply SU(2)w it is
appropriate to choose one of Lorentz frames obtained from the initial particle
rest frame by boosts along decay axis. Thus, we choose any frame in which
P, + Py = Aq with arbitrary A.

For further discussion let us recall the following identity:

Ui ysquu; = (myp — mg)u gy ysui — (pi + pp) apysu; - (27)

After fixing the gauge to be the Coulomb one (49 =0, A-q = 0), the
second term on the right hand side of Eq. (27) decouples from the photon.
Thus, in the SU(2)y-symmetric framework, the terms ﬂfz'ak”yg,quuiAk and
ﬂffykfyg)uiAk lead to amplitudes proportional to each other, the coefficient of
proportionality being m; —m . Consequently, the model of Ref. [4] (f1 =0,
fa # 0) generates the same amplitudes as

(m; — mf)BZ(}) Ay s Ay (28)

where BZ.(}) denotes the term (asymmetric under i <+ f interchange) in braces

in Eq. (20) with fa replaced by fo. For the present paper (f1 #0, fo =0),
Eq. (16) corresponds to

(m; — mf)2B§;) -y ysui Ay (29)

where Bg;) denotes the term (symmetric under 7 <> f) in braces in Eq. (16).

The result of Kamal-Riazuddin [5] corresponds to the expression

(m; — mf)OBZ.(})) -ﬂffykfyg)uiAk with some symmetric Bg})).

(k)
if
properties of factors B(®) and B® are identical and, consequently, they

In general, the factors B;;’ do not vanish for m; = my;. Symmetry
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lead to the same pattern of asymmetries: (—,+,+, —). On the other hand,
dominance of the B(!) term would lead to the pattern (—, —, —, —).

If new experiments confirm the pattern (—,+,+, —) which seems to be
favoured by the older data (Refs. [1]), it will mean that the dominant parts
of all parity violating WRHD amplitudes are proportional to an even power
of m; —my. Thus, one of two possibilities below must hold. Either

(1) Hara’s theorem is violated as in the quark model calculations of Ref. [5]
with BJp) #0, or

(2) Hara’s theorem is satisfied as a byproduct of vanishing (in the limit
m; — my) of all parity-violating WRHD amplitudes. (This vanishing
may be approximate for those decays where a nonzero B of Eq. (28)
may contribute). This corresponds to B®) =0, (my — my)B® >
BW 2~ 0. In this case, the observed large asymmetry of X — py de-
cay should not surprise us too much. To say that the size of the relevant
parity-violating amplitude is “large” means that we have to compare
it with some standard size. Thus, we should compare the X+ — py
amplitude with other parity-violating amplitudes of WRHD’s. How-
ever, since they all vanish in the SU(3) limit in the same way as the
Y1t — py amplitude does, the relative size of the latter amplitude is
large indeed.

Within the SU(6) x VMD approach one expects that in NLHD’s and
WRHD’s the terms of the same order in m; — mjy are symmetry-related.
Thus, if SU(6)y x VMD predictions for the WRHD asymmetries are borne
out by the data and one insists that Hara’s theorem is to be satisfied, this
would mean that only the contributions from f® terms should be present
in NLHD’s and that, consequently, the parity-violating NLHD amplitudes
should vanish in the SU(3) limit.

However, since the mass of the decaying particle is not a free parameter,
one cannot differentiate between contributions of type £ and f( using
data on hyperon nonleptonic decays alone. Nonetheless, instead of consid-
ering AS = 1 decays, one may study AS = 0 parity-violating NNM cou-
plings, and try to see if mass-dependence characteristic of f ©) (or perhaps
f (1)) terms is present in these couplings. In theoretical calculations mass-
dependence characteristic of the f(!) term was obtained in the past [17],
leading to A(n%) of order (m, —myp)/(mx — m,) &~ 1072 times the “best
values” of Ref. [13]. If the NLHD and WRHD amplitudes are indeed propor-
tional to (m;—my)? as the signature (—, +, +, —) and insistence on satisfying
Hara’s theorem would demand, then one would expect totally negligible weak
parity-violating NNz and NNV couplings. At present, data seem to indi-
cate that these couplings, although somewhat smaller than the “best value”
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prediction of Ref. [13|, are nonetheless of the same order [18,19]|. Totally
negligible value of weak N N7 coupling is also possible [20]. However, the
general order of magnitude of NN M couplings is consistent with the lack
of the (m; — my)? factor [18,19]. Hence, although in principle it is possi-
ble that the signature (—, +, 4+, —) for the WRHD asymmetries is consistent
with Hara’s theorem, the underlying approach leads then to negligible weak
NNM couplings in disagreement with experiment.

5. Conclusions

We have studied parity-violating WRHD amplitudes in the pole model.
In this model the properties of these amplitudes depend on the properties
of the parity-conserving 1/2~ —1/2% — v couplings. Two different conserved
electromagnetic local baryonic currents have been used for the description
of the transition of an on-shell ground-state baryon into an off-shell excited
baryon (or vice versa). Although the two currents become indistinguish-
able for a transition between on-shell baryons, they are inequivalent when
baryons are off-shell. As a result, the two currents lead to different pat-
terns of asymmetries in weak radiative hyperon decays. We have shown
that in the pole model with Hara’s theorem explicitly satisfied it is still
possible to obtain the asymmetry pattern (—, 4+, +, —) that is characteristic
of the quark model. Thus, the pattern (—,+,+, —) is not an unmistakable
sign of the violation of Hara’s theorem. Phenomenological success of the
SU(6)w x VMD approach to WRHD’s may be understood as being consis-
tent with Hara’s theorem if the dominant parts of all WRHD and NLHD
parity-violating amplitudes vanish in the SU(3) limit. Although the success
of the SU(6)y x VMD approach does not necessarily demand violation of
Hara’s theorem, it requires totally negligible weak NN M couplings if Hara’s
theorem is to be satisfied. Data on hadronic parity violation indicate that
no such suppression of NN M couplings occurs in reality, however. Thus, if
the pattern (—,4+,+,—) of WRHD asymmetries (i.e., especially, the posi-
tive sign of the 5% — A~y asymmetry) is confirmed, then, together with the
non-negligible size of weak NN M couplings this would indicate violation of
Hara’s theorem.

A Hara’s-theorem-saving alternative to this conclusion is to accept non-
negligible NN M couplings but to relinquish the VMD assumption. That is,
one has to accept that although VMD works for WRHD’s (if it does indeed),
it cannot be used for the determination of parity-violating coupling of pho-
ton to proton. The success of VMD for WRHD’s looks then more like an
accident. Although such a standpoint is a logical possibility it leaves us in a
very bad situation because it means that our most cherished and successful
models of electromagnetic properties of hadrons (i.e. both the VMD and the
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quark model which violates Hara’s theorem explicitly) are useless when the
parity-violating coupling of photon to proton is to be described. Therefore,
rather than to disregard the predictions of both the quark model and the
VMD, I prefer to accept that Hara’s theorem is indeed violated and to study
the meaning and origin of this violation.

I would like to thank B. Desplanques for bringing the identity of Eq. (27)
to my attention a few years ago, and Ya. Azimov for discussions which
prompted this attempt to reconcile the SU(6)yx VMD approach with Hara’s
theorem.

REFERENCES

[1] J. Lach, P. Zenczykowski, Int. J. Mod. Phys. A10, 3817 (1995).
[2] Y. Hara, Phys. Rev. Lett. 12, 378 (1964).
[3] M. Foucher et al., Phys. Rev. Lett. 68, 3004 (1992).

[4] M.B. Gavela, A. Le Yaouanc, L. Oliver, O. Péne, J.C. Raynal, Phys. Lett.
101B, 417 (1981).

[5] A.N. Kamal, Riazuddin, Phys. Rev. D28, 2317 (1983).
[6] R.C. Verma, A. Sharma, Phys. Rev. D38, 1443 (1988).
[7] P. Zenczykowski, Phys. Rev. D40, 2290 (1989); D44, 1485 (1991).
[8] C. James et al., Phys. Rev. Lett. 64, 843 (1990).
[9] P. Zenczykowski, Acta Phys. Pol. B27, 3615 (1996).
[10] P. Zenczykowski, Phys. Rev. D57, 3163 (1998).

[11] J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New
York 1964.

[12] L.B. Okun, Weak Interactions of Elementary Particles, Pergamon, 1965,
Chapter 5.

[13] B. Desplanques, J.F. Donoghue, B. Holstein, Ann. Phys. (N.Y.) 124, 449
(1980).

[14] A. LeYaouanc et al., Nucl. Phys. B149, 321 (1979).
[15] J.F. Donoghue, E. Golowich, Phys. Lett. B69, 437 (1977).

[16] H.J. Lipkin, S. Meshkov, Phys. Rev. Lett. 14, 670 (1965); K.J. Barnes, P. Car-
ruthers, Frank von Hippel, Phys. Rev. Lett. 14, 82 (1965).

[17] M. Machacek, Y. Tomozawa, Phys. Rev. D12, 3711 (1975); B. Guberina, D.
Tadi¢, Phys. Rev. D18, 2522 (1978).

[18] E.G. Adelberger, W.C. Haxton, Annu. Rev. Nucl. Part. Sci. 35, 501 (1985);
W.C. Haxton, Science 2775, 1753 (1997).

[19] J.F. Donoghue, E. Golowich, B. Holstein, Phys. Rep. 131, 319 (1986).



On the Pattern of Asymmetries in the Pole Model of. .. 285

[20] E.G. Adelberger, Weak and electromagnetic interactions in nuclei, Proc.
Symp. Heidelberg (1986) 593, H.V. Klapdor (ed.), Berlin, Heidelberg, New
York, Springer 1986; C. Bouchiat, C.A. Piketty, Z. Phys. C49, 91 (1991).



