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HADRONS AND QCD INSTANTONS:A BOSONIZED VIEWM. Ka
ir, M. Prakash and I. ZahedDepartment of Physi
sState University of New York at Stony BrookStony Brook, New York 11794-3800, USA(Re
eived O
tober 13, 1998)In a dilute system of instantons and antiinstantons, the UA(1) and s
aleanomalies are shown to be dire
tly related to the bulk sus
eptibility and
ompressibility of the system. Using 1=N
 (where N
 is the number of
olors) as a book-keeping argument, mesoni
, baryoni
 and gluoni
 
orre-lators are worked out in p-spa
e and Fourier transformed to x-spa
e for a
omparison with re
ently simulated 
orrelators. The results are in over-all agreement with simulations and latti
e 
al
ulations, for distan
es upto 1.5 fm, despite the fa
t that some 
hannels la
k the ne
essary physi
alsingularities. We analyze various spa
e-like form fa
tors of the nu
leon andshow that they are amenable to 
onstituent quark form fa
tors to leadingorder in 1=N
. Issues related to the la
k of 
on�nement in the model andits 
onsequen
e on the various 
orrelation fun
tions and form fa
tors arealso dis
ussed.PACS numbers: 12.38.Lg 1. Introdu
tionAn outstanding problem in QCD is the understanding of the hadroni
spe
trum from �rst prin
iples. De
ades of dedi
ated latti
e simulations haveshown that the problem is di�
ult when all QCD degrees of freedom aretaken into a

ount. Through the years there have been numerous propos-als, both theoreti
al and numeri
al, whi
h suggest that only some relevantdegrees of freedom may be important for the bulk aspe
ts of the hadroni
spe
trum. The proposals range from latti
e 
ooling pro
edures [1℄ to semi-
lassi
al te
hniques [2℄.Re
ent latti
e simulations based on 
ooling pro
edures have suggestedthat instanton and antiinstanton 
on�gurations may a

ount for a large partof the hadroni
 
orrelations [3, 4℄, although the lo
al 
hara
ter of the 
ool-ing algorithms may not totally rule out persistent quantum e�e
ts at large(287)
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es [5℄. On a periodi
 latti
e (without twists), instanton or antiinstan-ton 
on�gurations are ne
essarily singular [6℄. Their 
ontinuum analogs arethe BPST instantons in singular gauge, a point of some re
ent 
on
ern [7℄.Notwithstanding su
h 
on
erns, an impressive amount of results, both from
ooled latti
e simulations [3, 4℄ and from random instanton simulations [8℄,seem to indi
ate that the basi
 features of the hadroni
 spe
trum may emergefrom a dilute ensemble of singular instantons and antiinstantons.Sometime ago, 't Hooft's suggested [9℄ that instantons provide the answerto the axial UA(1) problem. In the presen
e of instantons or antiinstantons,light quarks a
quire zero modes, whi
h bun
h into �avor-singlet 
on�gu-rations ('t Hooft's verti
es) thereby dynami
ally breaking the axial UA(1)symmetry. At low energy, 't Hooft's intera
tions provide interesting 
orrela-tions in various hadroni
 
hannels, as noted by Callan, Dashen and Gross [2℄,and analyzed using QCD sum rules [10℄, resummation pro
edures [12, 13℄,instanton simulations [14℄, and bosonisation te
hniques [15�18℄.In this paper, we will assume that the QCD partition fun
tion simpli�esinto a grand 
anoni
al ensemble 
omposed of 't Hooft's verti
es, with anapriorily unspe
i�ed measure for the instanton-antiinstanton intera
tions.We will further assume that the ensemble is dilute with a s
reened topolog-i
al 
harge, as dis
ussed in Refs. [18�20℄. The s
reening is expe
ted fromthe feedba
k of the light quarks on the instantons and antiinstantons inthe va
uum [21, 22℄. In this respe
t, problems related to the original 
hoi
eof the instanton-antiinstanton ansatz [23℄, as well as the limitations asso
i-ated with the streamline approa
h [24℄, are somehow irrelevant. Analyti
aland numeri
al 
al
ulations with su
h an ensemble have led to a satisfa
toryphenomenology [8, 13, 19℄.The purpose of this paper is to show that the analyti
ally derived resultsusing either resummation te
hniques [13℄ or bosonisation te
hniques [15,19℄for two and three �avors in momentum spa
e, are 
onsistent with the re
entfour-dimensional simulations [8℄ as well as with the 
ooled and quen
hed lat-ti
e simulations [4℄ up to a distan
e of 1.5 fm. At larger distan
es, the la
kof 
on�nement shows up in the form of spurious os
illations. The physi
s ofa s
reened gas of instantons and antiinstantons is well des
ribed by simplemean �eld arguments [15, 19℄. In Se
tion 2, we re
all the e�e
tive a
tionfor a random instanton gas using an approximate bosonisation s
heme. InSe
tion 3, we dis
uss the stru
ture of the massive quark propagator bothin momentum and 
oordinate spa
es, and 
omment on heavy�light 
orre-lators. We note that in the long wavelength limit, the quark propagatorbe
omes ta
hyoni
 for all 
urrent quark masses. In Se
tion 4, we outlinethe result for the quark 
ondensate in the random instanton gas. In Se
-tion 5, we give a brief a

ount of the various mesoni
 
orrelators, in
ludingthe s
alars. We dis
uss issues related to the mixing between the s
alars and
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tuations in the instanton s
alar density through the s
ale anomaly.The mixing between the pseudos
alar singlet and the �u
tuations in the in-stanton pseudos
alar density yields naturally to a resolution of the UA(1)problem. Issues related to the �� �0 mixing are also dis
ussed. The p-spa
eresults are dis
ussed in detail for s
alars, pseudos
alars and ve
tors, and
ompared with the x-spa
e simulations. While the analysis of the p-spa
epseudos
alar 
orrelator shows 
lear eviden
e of poles, the ve
tor 
orrelatorssimply exhibit two 
onstituent quarks. In Se
tion 6, we brie�y dis
uss non-strange baryons in x-spa
e. In Se
tion 7, s
alar and pseudos
alar gluoni

orrelation fun
tions are dis
ussed. In Se
tion 8, quark and gluon form fa
-tors of the 
onstituent quark are dis
ussed. To leading order in 1=N
, theysaturate the nu
leon form fa
tor following from the point-to-point 
orrela-tor in terms of Io�e's 
urrent. Our 
on
lusions and re
ommendations aresummarised in Se
tion 9.The details of the bosonisation te
hniques are given in Appendix A. InAppendix B, we provide a dire
t 
al
ulation of the quark 
ondensate. InAppendix C, the ne
essary elements for a Gaussian approximation are pre-sented. In Appendix D, the e�e
tive a
tion for the singlet and o
tet pseu-dos
alars is expli
itly worked out. In Appendix E, an extension bosonizations
heme is presented. In Appendix F, the various expressions entering theun
onne
ted parts of the mesoni
 
orrelators are summarized. Some of thedi�
ulties related with the expansion of the mesoni
 verti
es involving thestrange quark mass are dis
ussed in Appendix G. In Appendix H, we outlinethe essentials of our numeri
al pro
edures.2. Model� E�e
tive a
tion't Hooft has shown that at s
ales larger than a typi
al instanton size �(�xed throughout this paper), instantons indu
e �avor mixing between thelight u; d and s quarks in the form of determinantal intera
tions ('t Hooftdeterminants) [9℄det� = 1Nf !detfg �mfg�� �2i �Z  yfS�10 �� Z ��yS�10  g�� ; (1)where mfg = diag(m;m;ms) is the 
urrent mass matrix for (u; d; s) quarks,�� are the instanton�antinstanton zero modes,  is the fermion �eld in thelong wavelength limit, and S�10 = � (i�=+ im) is the free fermion propagator.The averaging implied by h� � �i is over the instanton and antiinstanton 
olororientations.



290 M. Ka
ir, M. Prakash, I. ZahedA random system of instantons and antiinstantons that is 
ompatiblewith the UA(1) and s
ale anomaly yields the generating fun
tional [9,17,20℄Z[�; �y℄ = Z dn+dn�D D y �(n+; n�) e� R d4zL[�;�y;n+;n�℄ ; (2)whereL[�; �y; n+; n�℄ =  yS�10  � n+ log det+ � n� log det� �  y� � �y (3)in (2) at the saddle points. Throughout this paper, the generating fun
tionalwill be used to 
arry 
al
ulations to leading order in 1=N
, where N
 
ountsthe number of 
olors. The 
ounting will be understood just as a 
onvenientway of organizing the 
al
ulation, withN
 = 3. In the presen
e of instantons,
onventional N
 arguments have to be amended [25℄ (see also below).We are using a 
oarse grained a
tion for the des
ription of the instantonsand antiinstantons, as dis
ussed in [20℄. The relation to the un
oarse-grainedapproa
h, follows from the identi�
ationn�(z) = � N�Xi=1 Æ4(z � zi) (4)at the saddle points (N
 = 3 � 1). The 
oarse grained version highlightsthe role of the s
alar and pseudos
alar glueball �elds, and their mixing tothe quark�antiquark ex
itations. The measure �(n+; n�) refers to the dis-tribution of instantons and antiinstantons in the va
uum without the quarks(quen
hed approximation). Its form is generi
, and follows solely from theUA(1) and s
ale anomalies [20℄�(n+; n�) = exp� � n�2� Z d4z(n+(z) + n�(z))�logn+(z) + n�(z)n � 1�� 12�� Z d4z (n+(z)� n�(z))2� ; (5)where n = N=V4 � N
 is the mean instanton and antiinstanton densityin the thermodynami
al limit, �� = n � N
 [23℄ the quen
hed topologi
alsus
eptibility �� = ��Z d4z(n+ � n�)(z)�2�Nf=0 (6)and �� the quen
hed 
ompressibility (a = 1; 2; : : :)��2�n �a�1 = 1N��Z d4z (n+ + n� � n)(z)�a�Nf=0 : (7)
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oarse grained e�e
tive a
tion (3) along with the measure (5) satis-�es both the axial U(1) and s
ale anomaly [20℄. Indeed, in the 
hiral limitthe determinants in (2) a
quire a phase under a U(1) axial rotation, hen
ea non-
onserved axial-singlet 
urrent,��j�5(z) = 2Nf (n+ � n�)(z) + 2i Trf m  y(z)
5 (z) : (8)Also, in the quen
hed approximation, the measure (5) is not s
ale invariant.As a result, the divergen
e of the dilatational 
urrent (tra
e of the energymomentum tensor ���), is not 
onserved,���(z) = 4n�2� (n+(z) + n�(z)) + 2�� (n+(z)� n�(z))2 +O(Nf ) : (9)Comparison with the QCD form of the tra
e anomaly [26℄ gives �2�=n �12=11N
 � 1=N
.In the fermioni
 part, we note that for n+ = n�, the generating fun
-tional (2) involves only the 
ombination (det+ det�) and is invariant underUL(3) � UR(3). The �u
tuations in (n+ + n�) involve mixing between theisosinglet s
alar and the s
alar �glueballs�, through�12 Z d4z(n+ + n�)(z) ln�det+ � det�� : (10)For n+ 6= n�, the 
ombination (det+=det�) is also allowed. The latterdynami
ally breaks the axial U(1) symmetry through�12 Z d4z(n+ + n�)(z) ln�det+det�� (11)as originally suggested by 't Hooft. The �u
tuations in (n+ � n�) will mixwith the isosinglet pseudos
alar, thereby resolving the UA(1) problem (seebelow).� BosonizationIn va
uum, the pa
king fra
tion is given by the dimensionless 
ombina-tion n��4 = n2N
�4 � 10�3 : (12)Sin
e the density n � N
, the pa
king fra
tion is of order N0
 . The value (12)is small, and an expansion in the density is justi�ed ex
ept in the presen
e of
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ir, M. Prakash, I. Zahedinfrared singularities, as we will spe
ify below. In this spirit, the generatingfun
tional (2) 
an be bosonized approximately by inserting the identity 11 = Z D��DP� exp�Trf Z dkdl P�(k; l)���(k; l)� ��(k; l)�� (13)in the partition fun
tion (2), where �� and P� are bilo
al auxiliary �eldsand Nf�Nf valued su
h that P�(k; l) = P�(k�l) and similarly for ��(k; l).Also (see Appendix A)��(k; l) = h y(k)S�10 ��(k)��y(l)S�10  (l)i : (14)The tra
e over �avor indi
es is understood in the exponent (13). The aux-iliary �elds �� 
an be eliminated by using the saddle point approximation.From Appendix A, we haveZ[�; �y℄ = Z DP� e��yS[P+;P�℄� e�Se�(P�) ; (15)where the e�e
tive a
tion is given bySe�(P�) = �N
Tr(logS�1[P+; P�℄)+n2 Z dz�Tr ln 4n�P+(z) + Tr ln 4n�P�(z)��2Z dzTrfm(P+(z) + P�(z)) : (16)The tra
e Tr is over �avor and Dira
 indi
es as well as four momenta, theTrf over �avor indi
es and the det is over �avor indi
es as well positionspa
e. We have expli
itly used 2 n+ = n� = n=2 and de�ned the operatormomentum dependent inverse propagatorS�1[P+; P�℄ = k̂=� im� ipMk� 1� imk̂=k2 !�P+
+5 + P�
�5 � 1� imk̂=k2 !pMk : (17)Here, k̂ refers to the momentum operator andMk is the indu
ed momentumdependent s
reening quark mass. The s
reening mass arises from averag-ing over the instanton zero modes [13℄. From Appendix C, we have after1 In what follows, we use the shorthand notation dk = d4k=(2�)4 and dz = d4z whenintegrating.2 This 
onstraint will be relaxed below to address the �0 mass and the gluon 
orrelators.
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alingMk =Mk(m) = �(m) nN
k2�02 = �(0) nN
 k2���2 dd� (I0K0 � I1K1)�2 ;(18)where � = k�=2 is the argument of the M
Donald fun
tions I and K. From(16) and (17) it follows that in the long wavelength limit quarks in theinstanton va
uum intera
t via the ex
hange of e�e
tive bosoni
 �elds P�.The latter are Nf �Nf valued and may be parametrized asP� = e� 12 i��e� 12 i� : (19)Other parametrizations are also possible [27℄. We note, however, that to theorder we will dis
uss the 
orrelation fun
tions below (Gaussian approxima-tion), the results are parametrization independent.� Gap equationThe matri
es � and � are Nf �Nf valued and hermitean. The � vari-ables 
an be identi�ed as the pseudos
alar Goldstone modes, ex
ept for �0.The matrix � 
ontains the massive s
alar�isos
alar and s
alar�isove
tor ex-
itations. The non zero value of � in the va
uum follows from the saddlepoint approximation to (16) by setting � = 0, and swit
hing o� the sour
es.The result is an integral equation for ea
h �avor1� 2m�(m) = 4N
n Z d4k(2�)4 (k2 +m2)M2k (m)�mMk(m)k2k4 � 2mMk(m)k2 + (k2 +m2)M2k (m) ; (20)

Fig. 1. The 
onstituent quark massMk(m) versus z = k�=2 (k being the momentumand � the average size of the pseudoparti
le) for 
urrent masses m = 0 (dashed
urve), m = 5MeV (dotted 
urve) and m=10MeV (solid 
urve), respe
tively.



294 M. Ka
ir, M. Prakash, I. Zahedwhere we have set Mk(m)=Mk(0) = �(m)=�(0). For an instanton densityn = 1 fm�4 and size � = 0:33 fm, the behaviour of the 
onstituent quark massMk(m) versus the dimensionless 
ombination z = k�=2 is shown in Fig. 1with 
urrent quark masses m = 0 (dashed), 5MeV (dotted) and 10MeV(solid), respe
tively. For k ! 0, M0(m) ! � (m) (n=N
)(2��)2,while fork � 1, Mk(m) falls o� like 1=k6. The width at half maximum is of order1=�. The result (20) was also obtained in [28℄ using di�erent arguments.3. Quark propagatorIn a random instanton gas, quarks are �s
reened�. The light fermionpropagator a
quires a momentum dependent mass 3. For one �avor, theresults of Appendix A give (unless spe
i�ed, we denote Mk(m) by Mk)S(k;m) = 1k=� im � 1k= � i(m� k2=Mk) : (21)In the massless 
ase [13℄ S(k; 0) = 1k=� iMk(0) : (22)We note, however, that at low momentum, Mk(m) a
quires a non-analyti
al
ontribution (k ! 0)Mk(m) �M0(m)�1 + 3z2 log z2e
+ 12�z=k�=2 ; (23)where 
 = 0:577 is Euler's 
onstant. The s
reening mass M0(m) does notshow up as a simple pole. What this means is that, as k ! 0, the s
reenedquarks be
ome ta
hyoni
. To the extent that long wavelength quarks areunphysi
al, this should be of no real 
on
ern. However, sin
e the instan-ton model does not provide for 
on�nement, these �unphysi
al� e�e
ts will
ontaminate all large distan
e behaviours. The instanton simulations [8℄, or
ooled latti
e 
al
ulations [4℄ have not probed large distan
es.With this in mind, we now pro
eed to x-spa
e with the de
ompositionS(x;m) = S0(x;m) + S1(x;m) ; (24)where S(x;m) is the Fourier transform of (21) andS0(x;m) = im24�2 � x=x2K2(mx) + 1xK1(mx)� (25)3 In general, the quark propagator is gauge dependent. Our 
ase is no ex
eption, andthe present dis
ussion should be understood as the evaluation of the quark propagatorin a random and 
lassi
al ba
kground of instantons and antiinstantons in a singulargauge.



Hadrons and QCD Instantons 295is the free propagator of quark of mass m. S1(x;m) follows from (24) andwill be understood asS1(x;m) = i�x=Sodd1 � Seven1 � (x;m) ; (26)whereSodd1 (x;m) = 1x ��x 0� 14�2x +1Z0 dk k2k2 + (m� k2=Mk)2J1(kx)1A (27)and Seven1 (x;m) = 14�2x +1Z0 dk k2(m� k2=Mk)k2 + (m� k2=Mk)2J1(kx) : (28)Figs 2(a) and 2(b) show the behaviour of mTrS(x;m)=TrS0(x;m = 0) (
hi-rality �ip) and Tr
4S(x;m)=Tr
4S0(x;m = 0) (
hirality non-�ip) versusx up to 2 fm, for quark masses of 5MeV (lower 
urve) and 10MeV (upper
urve), respe
tively. The squares refer to the results of simulations of Ref. [8℄using 128 instantons and 128 antiinstantons in a periodi
 Eu
lidean box of3:363 � 6:72 fm4. These simulations were 
arried out with equal u and dquark masses of m = 10MeV. The small dis
repan
y in the 
hirality �ippart of the propagator may be due to the fa
t that the instanton simula-tions make expli
it use of the single-instanton distorted propagator for thenonzero mode part, while the bosonized 
onstru
tions presented above makeuse of the undistorted light quark propagator for the nonzero mode part.Figs 2(
) and 2(d) show the 
hirality �ip and non-�ip part of the quarkpropagator for mu = 10MeV and ms = 140MeV over a wider range of x.The larger the quark mass, the larger the os
illation in the quark propagatorat large distan
es. These spurious os
illations are due to the appearan
e ofthe ta
hyoni
 mass (23) and the o

uren
e of the 
ombination (m� k2=Mk)in the quark propagator, and will 
ause most 
orrelators to la
k s
aling atlarge distan
es (typi
ally of the order of 2.5 fm and larger) as we will dis
ussbelow. We have 
he
ked that these os
illations persist in the massless 
ase.In fa
t for m = 0 Fig. 2(
) is almost un
hanged.At this stage, we should point out that our treatment of the 
urrentmasses is only approximate, given our de�nitions (1) and (2). We will 
he
kbelow that the linear e�e
ts in the 
urrent mass do reprodu
e known results,while the non-linear e�e
ts 
an
el out at large distan
es, leaving us with theexpe
ted masses for the strange pseudos
alars. Similar observations applyto the instanton simulations in [8℄, although the handling of the 
urrentmasses is not ne
essarily the same as the one dis
ussed here.
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(
) (d)
Fig. 2. The 
hirality �ip (a) and non-�ip (b) parts of the quark propagator (nor-malized to the free massless quark propagator) versus x (fm) for 
urrent massesof 5MeV (lower 
urve) and 10MeV (upper 
urve), respe
tively. The squares areresults of simulations 
arried out in [8℄ for 128 instantons and 128 antiinstantonsin a periodi
 box. The large distan
e behaviours are also shown for the 
hirality�ip (
) and 
hirality non-�iAp parts (d).Finally, we note that the naive interpretation that the x-spa
e versionof Tr(S(x;m)(1 � 
4)=2) as the 
orrelator of a light quark in the �eld of anin�nitely heavy quark [8, 29℄ overlooks the issue of binding. As it stands,the non-relativisti
 proje
tion of the heavy�light-propagator without theWilson line (Coulomb �eld) for the heavy parti
le re�e
ts solely on a s
reenedlight quark. In a heavy�light system like a D or B meson, the light quarkis expe
ted to bind to the heavy sour
e, 
ausing the spe
tral fun
tion todevelop a pole instead of a 
ut. A detailed analysis of systems with fewheavy and light quarks in a random instanton gas has been given in Ref. [30℄.



Hadrons and QCD Instantons 297In the Coulomb �eld of a heavy quark, the light quarks bind with a bindingenergy of the order of a quarter of the s
reening mass [30℄.4. Quark 
ondensateThe formation of a quark 
ondensate in the instanton va
uum followsfrom the random nature of the system. From our bosonized 
onstru
tion,the quark 
ondensate is obtained from the e�e
tive a
tion (16) through
  � = 1V4 �Se� [0; 0℄�m : (29)Sin
e the present treatment is semi-
lassi
al, all the ambiguities asso
iatedwith the 
urrent mass singularities are ignored. At the saddle point, astraightforward 
al
ulation in the m! 0 limit gives
  � = �4N
� n2N
�(0)� Z dk Mk(k2 +M2k )���0(0)�(0) �4N
 Z dk M2kk2 +M2k � n� : (30)Using the mass gap equation for zero 
urrent mass, the term in bra
ketsmultiplying �0(0) vanishes and we are left with
  � = �4N
� n2N
�(0)� Z d4k(2�)4 Mk(k2 +M2k )� : (31)As a 
he
k, we show in Appendix B how this result 
an be re
overed fromthe original de�nition in the saddle point approximation, prior to the boson-isation pro
edure. Numeri
ally4,n2N
�(0) = 2Z d4k(2�)4 Mk(k2 +M2k ) (32)so that 
  � = �4N
 Z d4k(2�)4 Mk(k2 +M2k ) = �hS(0;m! 0+)i (33)whi
h is the expe
ted result to leading order in 1=N
.4 With our 
hoi
e of parameters, the dis
repan
y is (10)MeV3.
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ir, M. Prakash, I. Zahed5. Mesoni
 
orrelatorsTo leading order in 1=N
, the mesoni
 
orrelation fun
tions follow from(16) by di�erentiation with respe
t to the external sour
es in the presen
eof the auxiliary bosoni
 �elds P�. Generi
ally,C
(x) = hT � +
 (x)  +
 (0)i (34)with 
 = (1; 
5; 
�; 
5
�; ��;�)
 (1; T a). From (16) we have C
 = C0
 + C1
 ,where the 
onne
ted part of the 
orrelator is given byC0
(x) = � 1Z[0; 0℄ Z DP�Tr (S[x; 0;P ℄
S[0; x;P ℄
) e�Se� [P�℄ (35)and the un
onne
ted part is given byC1
(x) = 1Z[0; 0℄ Z DP�Tr (S[x; x;P ℄
) Tr (S[0; 0;P ℄
) e�Se� [P�℄: (36)
(a) (b)
(
) (d)Fig. 3. The 
onne
ted (a) and un
onne
ted (b) parts of the 
orrelator with arbitraryquantum numbers. The insertions 
orrespond to the external ba
kground �eld P�as dis
ussed in the text. The resulting 
onne
ted (
) and un
onne
ted (d) parts toleading order in 1=N
 
ounting.Typi
al diagrams 
ontributing to (34) are shown in Figs 3(a) and 3(b).Only the diagrams in Figs 3(
) and 3(d) are dominant. They will be theonly ones dis
ussed here. In p-spa
e, the 
ontribution of Fig. 3(
) isC0
(p) = �N
 Z d4k(2�)4Tr (S(1)
S(2)
) ; (37)



Hadrons and QCD Instantons 299where S(1; 2) = S(k�p=2;m1;2) for two arbitrary �avors. This 
ontributionin the long wavelength limit re�e
ts on the la
k of 
on�nement in the model.The 
ontribution of Fig. 3(d) isC1
(p) = N
2 X� �R�
 (p)�R�
 (p)� �R�
 (�p)�R�
 (�p)���(p) : (38)The extra
tion of �� and R� from (16) is performed in Appendi
es B andC, respe
tively. With the above approximation in mind, the total 
orrelationfun
tion redu
es to the sum of (37) and (38), i:e: C
 = C0
+C1
 . The results(37)�(38) were �rst derived by Dyakonov and Petrov for two massless �avorsusing detailed resummation pro
edures [13℄.At this stage, it is interesting to 
ompare the expression we have for themesoni
 
orrelator in the instanton model with the one derived in planarQCD2. In the large N
 limit, the two-fermion 
ut in QCD2 is infrared sen-sitive and 
an
els exa
tly against the infrared sensitive one-gluon ex
hangegraph [31℄. This 
an
ellation makes expli
it use of Ward identities in Feyn-man graphs. It is essentially quantum and thus absent from the presentsemi
lassi
al argument. The la
k of 
on�nement in our 
ase will have dra-mati
 
onsequen
es on the large distan
e behavior of the various 
orrelationfun
tions as we will dis
uss below.The expressions used to generate the various 
orrelators in p-spa
e aretabulated in Appendix D. In Figs 4, we show the behaviour of the 
onne
ted(minus the va
uum) 
orrelators in the various 
hannels versus the momen-(a) (b)
Fig. 4. The 
onne
ted part C0
(p) of the 
orrelator (normalized to the free andmassless 
orrelator). (a) for the up (down) quark (mu = md = 10MeV), and (b) forthe strange quark (ms=140MeV) versus p (fm�1). The 
hannels shown are s
alar(S), pseudos
alar (P), ve
tor (V), tensor (T) and axial-ve
tor (A), respe
tively.
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tor- (V), Pseudos
alar- (P), S
alar- (S) andTensor-
hannel (T), without strangeness (Fig. 4(a)) and with strangeness(Fig. 4(b)). Similar 
orrelators are shown in Figs 5 for the un
onne
tedpart. By about p � 10 fm�1 the 
orrelations are totally washed out. Theplots are for u and d quark masses of 10MeV and a strange quark mass of140MeV. Although un
onventional, this 
hoi
e of the 
urrent masses allowfor a 
omparison with the numeri
al simulations of Ref. [8℄.(a) (b)
Fig. 5. The same as in Figs 4 but for the un
onne
ted part C1
(p) of the 
orrelator.The tensor 
hannel vanishes identi
ally for the up and strange quarks as does theve
tor 
hannel for the up quark.5.1. Gell-Mann�Oakes�Renner relationIn the pion 
hannel, a pole is produ
ed by the un
onne
ted part of the
orrelator that lies well below the two-
onstituent quark 
ut. This is a goodexample of an infrared sensitive 
hannel, where a simple expansion in theinstanton density fails. The presen
e of small denominators through zeromodes for
es the resummation of an in�nite string of terms of in
reasingpowers in the instanton density, 
ausing the 
orrelation fun
tion to developa pole. Using the small momentum expansion (see Appendix F), we have inthe pseudos
alar 
hannel��(p) = f24N
 �M2� + p2 +O(m2; p2)� (39)to leading order in the 
urrent quark mass m. Above, the de
ay 
onstant fsatis�es f2 = 4N
 Z d4k(2�)4 M2k � k2M 0k + k24 M 02k(k2 +M2k )2 (40)
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alar mass M� is given byf24N
M2� = 2m� n2N
� (m)� Z d4k(2�)4 Mkk2 +M2k � : (41)To this order, the quark 
ondensate is 
urrent mass independent and is givenby (31). Thus, f2�m2� = �2m 
  � (42)whi
h is the 
urrent algebra result derived by Gell-Mann, Oakes and Renner(GOR) [32℄. For equal u and d quark masses with m = 5MeV, we obtainm� = 158MeV, 
  � = �(249 MeV)3 and to leading order in the 
urrentmass f� = 88MeV. Similar results 
an be derived for K and �, althoughthe small momentum expansion is no longer valid for the un
onne
ted partof the 
orrelation fun
tion with a large strange quark mass. This point isfurther dis
ussed in Appendix F.In the expansion dis
ussed above, the 
onsisten
y of the GOR result 
anbe further 
he
ked by noting that the un
onne
ted part in the pion 
hannelreads C1�(p � 0) = 12 �4N
f� R
5� (0)�2 1p2 +m2� ; (43)where R
5� (0) = �2Z d4k(2�)4 Mkk2 +M2k : (44)The term in bra
kets in the expression for C1� 
an be identi�ed with the usualpseudos
alar strength g�. From (31)�(33), it follows that g� � 2 
  � =f�.5.2. Pseudos
alars� � and KFigs 6 and 7 show the behaviour of the pion and kaon 
orrelators versusx, respe
tively, as they follow from (37) and (38) by Fourier transforms.The upper 
urve is for m = 5MeV, while the lower 
urve is for m = 10MeV.The squares are the results of simulations using 128 instantons and 128antiinstantons in a (3:363 � 6:72) fm4 periodi
 box. The dotted 
ir
les arethe results from 
ooled and quen
hed latti
e gauge 
al
ulations on a 163�24latti
e with a physi
al latti
e spa
ing of 0:17 fm.
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Fig. 6. The pion-
orrelator (normalized to the free and massless 
orrelator) versusx (fm) for mu = md = 5MeV (upper 
urve) and mu = md = 10MeV (lower
urve). The squares are the results obtained in [36℄ using 128 instantons and 128antiinstantons in a periodi
 box. The 
ir
les are the results obtained in [4℄ from
ooled latti
e gauge 
al
ulations.

Fig. 7. The kaon-
orrelator (normalized to the free and massless 
orrelator) versusx (fm) for mu = md = 5MeV (upper 
urve) and for mu = md = 10MeV (lower
urve). The squares are the results obtained in [36℄ using 128 instantons and 128antiinstantons in a periodi
 box.The momentum dependent parts display a low-lying spurious 
ut atabout 627MeV, as well as a pole in the s
alar and pseudos
alar 
hannels. InFig. 8, we display these two separate 
ontributions to the pion 
hannel foran average quark mass of 10MeV.
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Fig. 8. In the pion 
hannel, the 
onne
ted C0(x;mu), un
onne
ted C1(x;mu) andfull 
orrelators for mu = 10MeV versus x (fm) are plotted in dashed, dotted andsolid lines, respe
tively.The asymptoti
 form of the 
orrelation fun
tion in x-spa
e is stronglyin�uen
ed by the position of the pole in most 
hannels. Indeed, the largedistan
e behaviour produ
ed by the pole is approximately of the formC1
(x!1) ' (gM�)24 e�M�x(2�M�x)3=2 (45)whi
h is to be 
ompared with the 
ontribution of two �regular� (not ta
hy-oni
) s
reened quarks:C0
(x!1) ' N
4 M60 e�2M0x(2�M0x)3 �Tr(

)� Tr(x=
x=
)x2 � (46)with M0 = M0(m). Beyond 2 fm, the running mass (m � k2=Mk) 
auses(46) to os
illate as shown in Figs 9 and 10. These os
illations, however,are overpowered in the pion 
hannel given the very large signal 
aused bythe pion pole 
ompared to the spurious 
ut (about 100 : 1). We note thatfor m = 10MeV, the s
reening mass for the two s
reened quarks is about627MeV. In (45), the pseudos
alar mass squared M2� follows from the GORrelation M2� = �(m1 +m2)
  � :f2 (47)In the 
ase of the pion, we plot in Fig. 11 the total 
orrelator timesx3=2 for quark masses of 5 and 10MeV, respe
tively. The pion mass sets
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Fig. 9. Large distan
e behaviour of the 
onne
ted and normalized 
orrelatorC0(x;m). (a) for up (down) and (b) for strange quarks.(a) (b)
Fig. 10. Large distan
e behaviour of the 
onne
ted 
orrelator times x3. (a) for up(down) quark, and (b) for strange quark, respe
tively.in at about 2.5 fm. From the asymptote, we read a slope of m� � 157 and215MeV, respe
tively. The agreement of the slopes with the GOR resultprovides 
onsisten
y 
he
ks on the various Fourier transforms performed. Westress that to read the masses through slopes requires a proper identi�
ationof the preexponent power (here x�3=2). A raw plot of the total 
orrelatorversus x does not show any s
aling up to 10 fm!A similar analysis for the kaon 
hannel is shown in Fig. 12, where only theres
aled and un
onne
ted part C1(x) is shown. The 
onne
ted part os
illatesat distan
es of the order of 2.5 fm and larger, as shown in Fig. 9(b), for twostrange quarks. In 
ontrast to the pion 
hannel, the ratio of the 
onne
ted
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Fig. 11. In the pion 
hannel, the total 
orrelator times x3=2 versus x (fm) is plottedfor mu=5MeV (upper 
urve) and mu=10MeV (lower 
urve), respe
tively.

Fig. 12. In the kaon 
hannel, the 
onne
ted 
orrelator times x3=2 versus x (fm) isplotted for ms=140MeV.to un
onne
ted parts in this 
ase is about 5:1. The linear fall o� in Fig. 12sets in between 2 and 3 fm. From the slope, we read mK = 490MeV, form = 5MeV and ms = 140MeV. We note that all the non-linearities in thestrange quark mass 
an
el out to give a kaon mass that is 
ompatible withthe mass obtained by a naive use of the GOR relation, as indi
ated above.
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hannels, the situation is a bit more subtle be
ause ofmixing and the anomaly. First, let us follow the nonet de
omposition usedin Appendix D, for the singlet (�0) and the o
tet (�8) ex
itations. The
onne
ted part of the 
orrelator in the (00,08,88) 
hannels readsC0(p) = �Z dkTr (
5��S(k1;m)
5��S(k2;m)) (48)with �� any of the singlet or o
tet U(3) generator. Spe
i�
ally,C00 (x) = 43C0(x;mu) + 23C0(x;ms) ;C08 (x) = 23C0(x;mu) + 43C0(x;ms) ;C008(x) = 2p23 �C0(x;mu)� C0(x;ms)� (49)with C0(x;mu) and C0(x;ms) the 
orrelators of two s
reened uu and ssquarks, with mu = md = 10MeV and ms = 140MeV. The behaviour of (49)is shown in Fig. 13 versus x. The os
illations seen in all 
hannels beyond2.5 fm are due to the spurious quark modes.

Fig. 13. The 
onne
ted 
orrelator (normalized to the free and massless 
orrelator)for the � (00,88,08) versus x (fm).The un
onne
ted part of the 
orrelators in the singlet, o
tet and mixed
hannels follow from the results of Appendix D. Sin
e the �0 and �8 �eldsare integrated over, we 
an desentangle them by a unitary rotation of angle� (� = ��(k;m;m), �s = ��(k;ms;ms) and z = ��Nf=N
)sin 2�(p) = 4p23 ���s�+(k)� ��(k) ; (50)



Hadrons and QCD Instantons 307where��(k) = �+�s + z2 ������s + z2�2 + 2z3 (�s ��)�1=2 ; (51)at the expense of rotating the verti
es (sour
es) as well. The result isC10 (p) = 2N
�(R0 
os � +R08 sin �)2�+(k) + (�R0 sin � +R08 
os �)2��(k) � ; (52)C18 (p) = 2N
�(R08 
os � +R8 sin �)2�+(k) + (�R08 sin � +R8 
os �)2��(k) � ; (53)C108(p) = 2N
 (R0 
os � +R08 sin �)(R08 
os � +R8 sin �)�+(k)+2N
 (�R0 sin � +R08 
os �)(�R08 sin � +R8 
os �)��(k) : (54)The poles in the un
onne
ted parts are just the � and �0 masses, sin
e wehave rewritten the singlet and o
tet 
orrelators in the � and �0 basis 5. At lowmomentum � � �13:1Æ, whi
h is to be 
ompared with � � �11:5Æ in [17℄.From the e�e
tive a
tion of Appendix D, we 
on
lude that to leading orderin the 
urrent masses��(k � 0) = �m+ms2N
 
  �+ z2��(ms �m2N
 
  �+ z2 )2 + 2z3 ms �m2N
 
  ��1=2: (55)Then, f2m2�0 = 2N
 �+(k � 0) (56)and f2m2� = 2N
 ��(k � 0) : (57)The above relations give m�0 = 1163MeV and m� = 557MeV. These valuesare to be 
ompared with m�0 = 1172MeV and m� = 527MeV for 
  � =(�255MeV)3 and f = 91MeV as used in Ref. [17℄. From (55), (56) and (57)we have f2(m2�0 +m2� � 2m2K) = 2Nf�� (58)whi
h is the Veneziano�Witten formula [25, 33℄.5 Sin
e the diagonalization is momentum dependent, it is not possible to devise a lo
alsour
e that would trigger pre
isely the � or �0 quantum numbers without mixing.
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Fig. 14. The un
onne
ted 
orrelator times x3=2 for the (00) 
hannel (a) and the(88) 
hannel (b) versus x (fm) is plotted with (upper 
urve) and without (lower
urve) a topologi
al sus
eptibility.Figs 14(a) and (b) show the behaviour of the res
aled and un
onne
tedparts of the 
orrelators versus x. At about 3 fm, the asymptoti
 slopes set in.The large distan
e behaviour being di
tated by the smaller pole, we obtaina slope of 220MeV (essentially the pion mass) when the term ��Nf=N
 isswit
hed o�, and a slope of 480MeV (essentially the � mass) when it is not.The 
ontribution due to the large �0 mass dies o� too rapidly, as seen fromthe asymptoti
 behavior. In this sense, it is very hard to measure the �0
hara
teristi
s from an x-spa
e analysis of the 
orrelation fun
tions. Thex-spa
e analysis of the topologi
al sus
eptibilities o�ers a better probe [21℄,although on the latti
e there may be subtleties related to the de�nition ofgluoni
 sour
es. Finally, we note that in the presen
e of the 
onne
ted partsof the 
orrelator, no asymptote sets in within 5 fm due again to the spuriousos
illations dis
ussed above.We note that sin
e �� = n � N
, the instanton-indu
ed shift in the �'mass 2��Nf=f2 � N0
 , at varian
e with Witten's argument [25℄. This is nottotally surprising, if we re
all that the original instanton gauge-
on�gurationA � 1=g � pN
. Also for n � N
, we have a �xed 
ompressibility �� � N0
 .However, when the density n grows, the instanton and antiinstanton systemis no longer dilute, and one would a priori expe
t a phase 
hange [23℄, when
ea breakdown of the 
onventional large N
 arguments. The a
ademi
 
ase ofn � N0
 yields zero 
ompressibility, with the quantum �u
tuations dwar�ngthe instanton e�e
ts.
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alarsIn Fig. 15 we plot the (normalized) 
onne
ted C0(x) and un
onne
tedC1(x) parts of the 
orrelator in short and long dashed lines respe
tively.The solid line represents the sum of these two. As seen from Fig. 3(d) the
ontribution from the �rst three diagrams is non vanishing in the s
alar
hannel. If we were to repeat the 
al
ulation leading to the un
onne
tedpart of the 
orrelator in x-spa
e we would obtain the additional termN
 Z Tr S(k;m)�N
 Z Tr S(k;m)�2Z Mk�+(k � l)Tr C2(k;m) (B(l;m)l= + iA(l;m))� : (59)

Fig. 15. The s
alar 
onne
ted and un
onne
ted sigma meson-
orrelator (normalizedto the free and massless 
orrelator) versus x (fm) for mu = md = 10MeV arerespe
tively plotted in short dashed and long dashed lines. The solid line representstheir sum. The squares are the results obtained in [36℄ using 128 instantons and128 antiinstantons in a periodi
 box. The 
ir
les are the results obtained in [4℄from 
ooled latti
e gauge 
al
ulations.If we re
all the de�nition for the un
onne
ted 
orrelator we expe
t thisadditional term to be amenable to the square of the 
ondensate 
  �. Thede
ay 
onstant and the sigma meson mass follow from the last diagram ofFig. 3(d). They 
an be evaluated through the use of a similar expansion of�� to �+. Spe
i�
ally
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f2 = 4N
 Z d4k(2�)4 M2k4D2 ��M 0kk +M 00k��1� 2M2kD ��Mk2D  1 + M 02k4 � k22D �1 + MkM 0kk �2!! (60)and the s
alar mass M+ is given byf24N
M2+ = 2m� n2N
� (m)� Z d4k(2�)4 MkD ��1� 8M2kk2D �+Z 18�2 4MkK2D2 ; (61)where D = k2+M2k . Numeri
ally, we obtain m�=640MeV and f=109MeV.The s
alar mass is about twi
e the 
onstituent mass of 2� 310 = 620MeV.This is generi
 of all bosonized intera
tions at the mean-�eld level (e.g.Nambu�Jona-Lasinio model). The nearness of the quark�antiquark thresh-old is expe
ted to yield a large width for the s
alar�isos
alar.5.4. Ve
tors� �, K� and �To leading order in the instanton density, the ve
tor 
orrelation fun
tionsfor both the � and � do not a
quire any un
onne
ted part. (The ve
tor 
or-relation fun
tions are just the 
orrelation fun
tions of two s
reened quarks.)This is expe
ted, sin
e the instanton-antiinstanton intera
tion a
ts primar-ily in the spin-isospin zero 
hannel. Figs 16 and 17 show respe
tively, thebehaviour of the �- , and �-
orrelators versus x up to 2 fm, for a light quarkmass of 5 MeV and a strange quark mass of 140MeV. The squares in these�gures 
orrespond to the instanton simulations, while the �lled 
ir
les inFig. 15 
orrespond to the 
ooled and quen
hed latti
e simulations. Thefailure to produ
e 
orrelations in the ve
tor 
hannel, while obvious in thep-spa
e analysis, is implausible from the x-spa
e analysis. In general, simplespe
tral guesses as used in the instanton simulations or latti
e 
al
ulationsfor an x-spa
e analysis within 1 to 2 fms may be misleading. They 
annotdi�erentiate between 
uts and poles within 1.5 fm. At these distan
es it isdi�
ult to reliably di�erentiate between poles and 
uts (the pion-
hannelbeing an ex
eption). A resolution of the two requires a 
areful analysis ofthe preexponents and the asymptoti
s, as we have dis
ussed.In the 
ase of the K�, it is 
lear that a 
ontribution due to the mixingbetween the up (down) and strange se
tors o

urs in the un
onne
ted part
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Fig. 16. The total 
orrelator (normalized to the free and massless 
orrelator) inthe � meson 
hannel versus x (fm), for mu = md = 10MeV. The squares are theresults of [36℄ using 128 instantons and 128 antiinstantons in a periodi
 box.

Fig. 17. The total 
orrelator (normalized to the free and massless 
orrelator) inthe � meson 
hannel versus x (fm), for mu = md = 10MeV. The squares are theresults of [36℄ using 128 instantons and 128 antiinstantons in a periodi
 box.of the 
orrelator. This is evident from Appendix E, where we see thatthe 
oupling of the � and � to the quarks vanishes identi
ally, whereas inthe 
ase of the K� a 
ontribution in O(ms � mu) arises. The possibilityof the un
onne
ted part of the K�-
orrelator being 
ontaminated by theex
itations of its s
alar partner (in �avor spa
e) �Ks is allowed. Having saidthis we display in Fig. 18 the behaviour of the K�-
orrelator versus x up to
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urve) and 10MeV (lower
urve), and a strange quark mass of 140MeV. Again, the squares in this�gure 
orrespond to the instanton simulation.

Fig. 18. The total 
orrelator (normalized to the free and massless 
orrelator) inthe K� meson 
hannel versus x (fm), for mu = md = 5MeV (upper 
urve) andmu = md = 10MeV (lower 
urve). The squares are the results of [36℄ using 128instantons and 128 antiinstantons in a periodi
 box.� A1 and K1.Similar 
on
lusions apply to the axial-ve
tor 
orrelators, although thelatter are 
ontaminated by pion and kaon ex
itations through their longi-tudinal parts. Generi
ally, the nonstrange axial-ve
tor 
orrelator 
an bede
omposed along the tranverse and longitudinal dire
tions that 
onsist ofthe A1 and �, respe
tively:C��(p) = (Æ�� � p̂�p̂�)CT(p) + p̂�p̂�CL(p) : (62)From the p-spa
e analysis, ea
h 
ontribution is well separated. CT 
ontainssolely a 
ut, while CL displays only a pole. Similar remarks apply to thestrange axial-ve
tor 
orrelator K1. Figs 19 and 20 show the behaviour ofthe 
ombination 3CT+CL versus x in the A1 and K1 
hannel, respe
tively.The squares refer to the results of simulations using instantons.Sin
e the longitudinal pole re�e
ts on the pion pole, 
onsisten
y with thepseudos
alar 
orrelators requires that the pion properties (mass and de
ay
onstant) should be the same. The expli
it form of the longitudinal part of
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Fig. 19. The total 
orrelator (normalized to the free and massless 
orrelator) inthe A1 meson 
hannel versus x (fm), for mu = md = 10MeV. The squares are theresults of [36℄ using 128 instantons and 128 antiinstantons in a periodi
 box.

Fig. 20. The total 
orrelator (normalized to the free and massless 
orrelator) forthe K1 meson 
hannel versus x (fm) for mu = md=10MeV.the axial 
orrelator readsCL��(p) = p̂�p̂�2N
�R+
5
�(p)�2��(p) ; (63)where at zero momentumR+
5
�(p = 0) = 2Z d4k(2�)4 M2k � kMkM 0k=2(k2 +M2k )2 (64)
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h is just f2�=2N
. Numeri
ally, we obtain from the axial-
orrelatorf� = 76MeV, whi
h is about 10 % o� from the value of f� = 88MeVextra
ted from the pseudos
alar-
orrelator. This point illustrates some ofthe systemati
 un
ertainties introdu
ed by the use of undistorted s
atteringstates for the nonzero mode states around a single instanton or antiinstan-ton [13℄. 6. Baryon 
orrelatorsIn the large N
 limit, a baryon is made out of N
 quarks, and is believedto be a soliton [25℄. In our 
ase, we will think of a nu
leon as made ofN
 = 3� 1 quarks. To leading order in 1=N
, the nu
leon is just three freestreaming 
onstituent quarks. In 
ontrast to the meson 
ase, the indu
edinstanton (or gluon intera
tion) intera
tion between diquarks is subleadingin 1=N
. We note that the soliton 
ase in this model was 
onsidered in [23℄.Generi
ally, the baryoni
 
orrelators will be de�ned to beR(x) = i hT �JB(x) JB(0)i ; (65)where we use for the nu
leon and delta 
urrentsJN (x) = "ab
 �ua(x)C
�ub(x)� 
�
5d
(x) ;J�� (x) = "ab
 �ua(x)C
�ub(x)� u
(x) ; (66)respe
tively. Using Wi
k's theorem, we 
an redu
e the nu
leon and delta
orrelators into (Minkowski)RN (x) = 2"ab
"a0b0
0
�
5S

0(x)
�
5Tr�
�Sbb0(x)
�Saa0(�x)� ;R�(x) = 3"ab
"a0b0
0S

0(x)Tr�
�Sbb0(x)
�Saa0(�x)� : (67)In the free 
ase, (67) redu
es toi 24x=�6x10 and � i 18x=�6x10 ; (68)respe
tively.Fig. 21 shows the behaviour of three 
onstituent quarks versus x. Thetwo solid lines are for 5 and 10MeV, respe
tively, the open 
ir
les are theresults of instanton simulations and the full 
ir
les are those of quen
hed and
ooled latti
e simulations. Clearly, both simulations show attra
tion in thenu
leon 
hannel, whi
h is very likely due to the fa
t that in the instantonmodel, the instanton indu
ed intera
tion in a spin-zero isospin-zero diquark
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Fig. 21. The total 
orrelator (normalized to the free and massless 
orrelator) in thenu
leon 
hannel versus x (fm) is plotted for mu = md = 5MeV (upper 
urve) andfor mu = md = 10 MeV (lower 
urve), respe
tively. The squares are the resultsobtained in [36℄ using 128 instantons and 128 antiinstantons in a periodi
 box. The
ir
les are the results obtained in [4℄ from 
ooled latti
e gauge 
al
ulations.

Fig. 22. The total 
orrelator (normalized to the free and massless 
orrelator) in the� 
hannel versus x (fm) is plotted for mu = md = 5MeV (upper 
urve) and formu = md = 10 MeV (lower 
urve). The squares are the results obtained in [36℄using 128 instantons and 128 antiinstantons in a periodi
 box. The 
ir
les are theresults obtained in [4℄ from 
ooled latti
e gauge 
al
ulations.
on�guration (qq)J=0I=0 is attra
tive. This follows from the large attra
tionalready observed in the spin-zero isospin-zero quark�antiquark 
on�guration(qq)J=0I=0 by 
rossing. This attra
tion is, however, an order of magnitudesmaller than the attra
tion in the pion 
hannel. Whether these intera
tions
an result in a pole remains an open question and requires a more detailed
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ir, M. Prakash, I. Zahedanalysis. Indeed, the s
reened quarks amount to a mass of about 940MeV,whi
h is 
lose to the empiri
al value of the nu
leon mass.Fig. 22 shows the results in the delta 
hannel. From this, we 
on
ludethat the present simulations 
annot distinguish between a 
ut and a polein this 
hannel. In fa
t, it is very unlikely that a dilute instanton gas 
anyield binding in de
uplet 
hannels, sin
e the instanton indu
ed intera
tionis usually non-existent in these 
hannels.7. Gluoni
 
orrelatorsThe present 
onstru
tion allows for a 
onvenient analysis of 
orrelationfun
tions involving F �F and F � ~F re�e
ting on the s
alar and pseudos
alarglueballs in the model [17,21℄. In the quen
hed approximation, these 
orre-lators are ultralo
al and given by our 
hoi
e of the measure (5). Throughthe identi�
ation 132�2F � F (x) = (n+ + n�)(x) (69)the s
alar gluon 
orrelator readsCFF (x� y) = �T � 132�2F 2(x) 132�2F 2(y)�
onn:;Nf=0= �T ��(n+ + n�)(x)� n��(n+ + n�)(y)� n��Nf=0= �2� Æ4(x� y) : (70)Also, through the identi�
ation132�2F � ~F (x) = (n+ � n�)(x) (71)the pseudos
alar gluon 
orrelator readsCF ~F (x� y) = �T � 132�2F ~F (x) 132�2F ~F (y)�Nf=0= 
T �(n+ � n�)(x) (n+ � n�)(y)�Nf=0= �� Æ4(x� y) : (72)In (2), the glueballs in the quen
hed approximation 
arry in�nite mass andzero size. They a
t as heavy sour
es.



Hadrons and QCD Instantons 317In the presen
e of quarks, the glueball sour
es mix. The mixing is oforder 1=N
. In the s
alar 
hannel,CFF (x� y) = �T ��(n+ + n�)(x) � n��(n+ + n�)(y)� n��= �2�� Æ4(x� y) + 2Nf�2� hT ��0(x)�0(y)i� ; (73)where the un
onne
ted 
orrelator in the �0 s
alar 
hannel ish�0(x)�0(y)i = 12N
 Z dk eik(x�y)� 2=32�+(k;m;m) + 1=32�+(k;ms;ms)� :(74)The large separation behaviour of the above result follows from Se
tion 5with the pole m0 = 640MeV as the mass of the s
alar�isos
alar. Be
auseof the mixing, the fall-o� is di
tated by the s
alar�isos
alar masses. Fig. 23shows the plot of the s
alar 
orrelator CFF (x) (minus the ultralo
al term).From (73) and (74), the 
ompressibility takes the form�2 = 1V4 *�Z d4z(n+ + n� � n)(z)�2+ ' 4nb ; (75)where b is given by b = 11N
3 � 2Nf3 �+ (76)with �+ = nN
Xf 1�+(k = 0;mf ;mf ) : (77)Numeri
ally we �nd �+ = 1:22, whi
h is to be 
ompared with �+ = 1 inthe QCD tra
e anomaly. This is only suggestive, however, sin
e the two
al
ulations are totally di�erent in spirit. Ours is 
lassi
al, while in QCD itis quantum. In a similar way, we have in the pseudos
alar 
hannelCF ~F (x� y) = 
T �(n+ � n�)(x) (n+ � n�)(y)�= ��� Æ4(x� y)� 2Nf�� hT ��0(x)�0(y)i� ; (78)where the un
onne
ted 
orrelator in the �0 pseudos
alar 
hannel ish�0(x)�0(y)i = 12N
 Z dk eik(x�y)�
os2 �(k)�+(k) + sin2 �(k)��(k) � (79)
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Fig. 23. The 
oe�
ient A(k;m) versus z = k�=2 for up (a) and for strange (b)quarks. The solid line is the unexpanded result and the dotted line is the expandedresult. (a) (b)
Fig. 24. The 
oe�
ient B(k;m) versus z = k�=2 for up (a) and for strange (b)quarks. The solid line is the unexpanded result and the dotted line is the expandedresult.The rotation angle �(k) along with �� are de�ned in (50) and (51), respe
-tively. The �u
tuations in the pseudos
alar gluoni
 sour
e fall o� with arate that is given by the lightest mass (the � in our 
ase) m� = 557MeV.Fig. 26(b) shows the plot of the s
alar 
orrelator CF ~F (x) (minus the ul-tralo
al term). Let us now evaluate CF ~F (x� y) using the pseudos
alar �eldde
omposition, in whi
h the quadrati
 part of the a
tion is diagonal. We
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Fig. 25. The s
alar (pseudos
alar) gluoni
 
orrelator is plotted in this �gure. Thepoints are results from simulations in [34℄.obtainCF ~F (x� y) = Z dk eik(x�y)� 1�� + 12N
 NfXi=1 1��(k;mi;mi)��1: (80)One should not be alarmed by the two di�erent expressions for the pseu-dos
alar gluoni
 
orrelators (78) and (80). Using the two relations (denoting� = ��(k;m;m) and �s = ��(k;ms;ms) )�+(k)��(k) = 4��s + 23 ��NfN
 (�+ 2�s) (81)and �+(k) sin2 �(k) + ��(k) 
os2 �(k) = 23(�+ 2�s) (82)we 
an easily rewrite (80) to (78). The mixing 
auses the topologi
al sus-
eptibility to de
rease. From (80) we have� = 1V4 *�Z d4z(n+ � n�)(z)�2+ = ��1�PNfi=1 ��mih  i (83)and vanishes for any quark mass going to zero. The topologi
al 
harge istotally s
reened in the 
hiral limit.
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leon form fa
torAll hadrons are 
hara
terized by various form fa
tors, ea
h of whi
h
arry information on the various 
harge and 
urrent distributions. In thispart, we show how various nu
leon form fa
tors 
an be analyzed in 1=N
,thinking of N
 = 3� 1. In this Se
tion, we will distinguish between purelygluoni
 form fa
tors G(x) � F 2(x) ; F ~F (x); ���F �F � ; : : : and fermioni
form fa
tors F (x) =  y� , where � = 
 
 T is a spin-�avor matrix.Mixed form fa
tors M(x) =  y���F�� ; : : : 
an be obtained in a similarway, although they will not be dis
ussed here.� Gluoni
 form fa
tor of a 
onstituent quarkSin
e the model la
ks 
on�nement, the nu
leon form fa
tor re
eives 
on-tribution from the un
on�ned 
onstituent quark states. This is representedin Figs 26(a) and (b) as P� insertions. To leading order in 1=N
, these
ontributions are either dire
t as shown in Fig. 26(a), or meson mediated(Figs 26(
) and (d)). The 
onstituent quark gluoni
 form fa
tor is de�ned(when x!1) asFG(k2) DT � �x2� y ��x2�E = DT � �x2�G(k) y ��x2�E
on: (84)with G(k) = Z dy eik�yG(y) : (85)Throughout, we will think of FG as matrix valued (here in spin spa
e),so that various 
omponents of the form fa
tor 
an be extra
ted by proper
p p+k(a) (
)

+ + ...
p p+k

k(b) (d)Fig. 26. In (a) and (b), we display the insertion me
hanism involved in evaluatingthe gluoni
 form fa
tor of a 
onstituent quark. Figures (
) and (d) show the mixingthat enters in the 
onne
ted part.
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ing. To leading order in 1=N
, the form 
an be readily evaluated usingthe bosonization results developed in Appendi
es C and D. The result is(x! 1)F FF (k2)S(x;m) = iZ dpeip�xpMp�Mp+C(p�)32�2h�s(�k)�(k)iC(p+)(86)for a s
alar gluon insertion, andF F ~F (k2)S(x;m) =iZ dpeip�xpMp�Mp+ C(p�) i32�2
5h�ps(�k)�(k)iC(p+) (87)for a pseudos
alar gluon insertion. Here p� = p�k=2. The mixed spin-gluonmatrix element 
an be dis
ussed using similar arguments. The expe
tationsin (86)�(87) involve a Gaussian integral over the e�e
tive bosoni
 �elds, withquadrati
 a
tions as dis
ussed in Appendix C. After integration, the resultsare (x! 1)F FF (k2) S(x;m) = +i Z dpeip�xpMp�Mp+ C(p�)C(p+)� 32�22N
�+(k;m;m)� nn��2� + 12N
Xf 1�+(k;mf ;mf )��1 (88)and F F ~F (k2) S(x;m) = +iZ dpeip�xpMp�Mp+ C(p�) 
5 C(p+)� 32�22N
��(k;m;m)� 1�� + 12N
Xf 1��(k;mf ;mf )��1: (89)From our numeri
al analysis of Se
tion 3, the 
onstituent quark prop-agator S(x;m) shows a rough s
aling in the window 0 < x < 2:5 fm, withM0 � 300 � 400MeV, but then os
illates for x > 2:5 fm, due to non-analyti
ities. In the window 0� 2:5 fm,S(x;m) � iM204�2xr �2M0xe�M0x(/̂x+ 1) : (90)It would be interesting to see how the present form fa
tors (88)�(89) with(90) 
ompare with simulations in the range 0 < x < 2:5 fm. This is only
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ative, sin
e the 
hannel is 
ontaminated by spurious os
illations forx > 2:5 fm.The large x separation provides for a way to sele
t the 
onstituent quarkon its �mass-shell� 6, hen
e the analogy with the Minkowski de�nition of theform fa
tor. We 
an also de�ne a totally �o�-shell� form fa
tor by 
onsidering(88)�(89) for �nite x and integrating x over V4. In this way, one obtains o�-mass shell form fa
tors with zero-momentum 
onstituent quarks. For k = 0,the results areF �FF (0) = 12N
��(0;m;m) � nn��2� + 12N
Xf 1�+(0;mf ;mf )��1 (91)and F �F ~F (0) = 12N
��(0;m;m) � 1�� + 12N
Xf 1��(0;mf ;mf )��1: (92)To leading order in 1=N
, the �o�-shell� s
alar form fa
tor redu
es toF �FF (0) = 311N
� ; (93)where � = 2�+ � 2:45. We note that (93) di�ers by almost a fa
tor of 2from its �on-shell� analogue with � = 1, as argued from a QCD low-energytheorem based on the tra
e anomaly [26, 37℄. For the pseudos
alar formfa
tor (92) the result is F �F ~F (0)=0.44, whi
h is to be 
ompared with thegluoni
 part of the �on-shell� value of the axial-singlet form fa
tor g0A, asdetermined from the U(1) anomaly (8) in the 
onstituent quark stateg0A(0)DT � y �x2� 
5 ��x2�E =*T � y �x2��Z dz F ~F (z)32�2 + iNf Z dzTrfm y
5 (z)� ��x2�+
onn:(94)The mass term in (94) involves the UA(1) form fa
tor in the 
onstituentquark state. In the last few years, e�orts have been made to understandthe data from the European Muon Collaboration (EMC) [38�46℄. One of itsremarkable results has been to yield a small value for the singlet axial 
ou-pling 
onstant g0A = 0:13 � 0:24. The result obtained above �o�-mass shell�seems to be 
lose to this value. The approa
h des
ribed here, provides someinsights from a instanton va
uum model, to the e�e
tive approa
h dis
ussed6 This is, of 
ourse, suggestive in Eu
lidean spa
e.
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t, the modi�ed bosonisation s
heme dis
ussedin Appendix E, is very 
lose in spirit to these models. A 
omprehensivedis
ussion of all these issues goes beyond the s
ope of this work.� Fermioni
 form fa
tor of a 
onstituent quarkThe fermioni
 form fa
tors 
an be analyzed in the same way as the gluoni
form fa
tors. The me
hanism 
onsisting of P� insertion is shown in Fig. 27.In Fig. 28, we show the leading 
ontributions to the mesoni
 form fa
tor toorder 1=N
. Fig. 28(a) 
ounts the bare 
harge, while Fig. 28(b) involves atypi
al meson-ex
hange with non-lo
al form fa
tors. Generi
ally (x! 1),F�(k2) DT � �x2� y ��x2�E = DT � �x2�  y� (k)  y ��x2�E
onn :(95)Parametrizing all meson �elds by �A = 
A�A, where 
A = (1; 
5)
T , yieldsto leading order in 1=N
F�(k2)S(x;mf ) = �Z dp dq ei(p+k=2)�xpMpC(p;mf )
C(q + k;mg)pMq+k��pMqC(q;mg)
C(k � p;mf )pMk�ph�fg(p� q � k)�gf (q + k � p)i+Z dp ei(p�k=2)�xpMpC(p;mf )
C(p� k;mg)pMp�kh�fg(k)�gf (�k)i�Tr��pMqC(q;mg)
C(q + k;mf )pMq+k� ; (96)
+ + + ... + + ...(a) (b)Fig. 27. The insertion me
hanism for the fermioni
 form fa
tor of a 
onstituentquark.

+
p p+k p p p+k + + ...(a) (b)Fig. 28. The leading 
ontributions to the fermioni
 form fa
tor.
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ir, M. Prakash, I. Zahedwhere summation over �avor g is understood and f is the �avor of the quarkbeing probed. 
 is 1 (
5) for the s
alar (pseudos
alar) se
tor. The �rst andse
ond terms of (96) are displayed in Fig. 28(a) and 28(b), respe
tively. Theexpe
tation value involves a Gaussian integration over the measure derivedin Appendix C and 
an be evaluated for arbitrary momentum q. In thes
alar se
torh�fgs (q)�gfs (�q)i = 12N
�+(q;mf ;mf ) �1 + 12N
�+(q;mf ;mf )��� nn��2� +Xg 12N
�+(q;mg;mg)��1: (97)For the pseudos
alar 
ase, we repla
e �+ by �� and n=(n��2�) by 1=�. The
ase where 
 = 
� (ve
tor form fa
tors) and 
 = ��� (tensor form fa
tors)
an be analyzed similarly.It is interesting to note at this stage that most of these form fa
tors maybe used to assess the strength of the meson-
onstituent quark intera
tionin some 
onstituent quark models, as re
ently dis
ussed by Glozman andRiska [49℄. When 
ou
hed in the 1=N
 framework, the present analysisprovides some rationale for their su

essful phenomenology.As in the gluoni
 
ase, we 
an investigate the �o�-shell� limit of theform fa
tor at k = 0. Using (96) for �xed x, integrating numerator anddenominator over the entire V4, and taking the k = 0 limit, yieldsF�(0)S(0;m) = �M20 C(0;m)
 Z dq Mq��C(q;m)�C(q;m)
 � Tr (�C(q;m)
 C(q;m))�C(0;m) ; (98)where all momenta are taken to be zero. Numeri
ally, the meson-meson ex-pe
tation value h�s(0)�s(0)i in the s
alar se
tor is 0.69 fm�4 and 0.92 fm�4,for the up (down) and strange quark, respe
tively. The same applies for thepseudos
alar se
tor, where h�ps(0)�ps(0)i is 4.68 fm�4 and 6.69 fm�4, forthe up (down) and strange quark, respe
tively. In short, formula (98) alongwith the numeri
al values for the meson�meson expe
tation value, will serveus as a 
he
k point when numeri
ally generating the values of F�(k2) using(96).� Form fa
tors from Io�e's 
urrentsIf we were to think about the nu
leon as made out of three 
onstituentquarks, then the nu
leon form fa
tor follows from the additive 
onstituentquark pi
ture. When simulations are performed, however, it is 
ustomary
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urrents (66) for the nu
leon. This results in some non-trivial
ombinatori
s and folding of the single 
onstituent quark propagators, aswe now explain. Let J�N (x) be Io�e's 
urrent (66). Then, the nu
leon formfa
tor reads (x!1)FN (k2) DT �J�N �x2� J�N ��x2�E = DT �J�N �x2�O(k)J�N ��x2�E ; (99)where O = G;F , whi
h are short for the gluoni
 and mesoni
 insertionsdis
ussed above. Typi
al diagrams for mesoni
 insertions are displayed inFig. 29. The term (L.H.S.) multiplying FN (k2) in the left-hand side of (99)
an be readily redu
ed to give (67). The right-hand side (R.H.S.) takes theformR:H:S: = +6 (
�
5OS(x; k;m)
�
5)�� Trs (
�S(x;m)
�S(�x;m))+6 (
�
5S(x;m)
�
5)�� Trs (
�OS(x; k;m)
�S(�x;m))+6 (
�
5S(x;m)
�
5)�� Trs (
�S(x;m)
�OS(�x; k;m)) ; (100)where OS(x; k;m) follows from the right-hand side of (86) and (87) for thegluoni
 insertions, and, (96) for the mesoni
 insertions.
+ + ... + + ...(a) (b)Fig. 29. The form fa
tor in terms of Io�e's 
urrentIt would be interesting to see how (100) 
ompares to a
tual simulations.As noted above, the a
tual 
onstituent quark propagator os
illates at dis-tan
es larger than 2.5 fm. Hen
e, a true asymptoti
 form fa
tor may not berea
hed in this model for the nu
leon. In the region 0 < x < 2:5 fm, the
onstituent quark propagator seems to be damped following the behaviourdes
ribed in (90). Using this behaviour, the left-hand side term in (99)redu
es toL:H:S: = � iM204�2xr �2M0xe�M0x�3�6�
�
5OS(/̂x+ 1)
�
5��� Trs �
�(/̂x+ 1)
�(�/̂x+ 1)� (101)
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ir, M. Prakash, I. Zahedwhile the right-hand side redu
es toR:H:S: = 6� iM204�2xr �2M0xe�M0x�2�� (
�
5OS(x; k;m)
�
5)�� Trs �
�(/̂x+ 1)
�(�/̂x+ 1)�+�
�
5(/̂x+ 1)
�
5��� Trs �
�OS(x; k;m)
�(�/̂x+ 1)�+�
�
5(/̂x+ 1)
�
5��� Trs �
�(/̂x+ 1)
�OS(�x; k;m)��:(102)Numeri
al results for the resulting form fa
tors will be given elsewhere.9. Dis
ussionWe have analysed the mesoni
 
orrelators in a random instanton gas inmomentum spa
e using bosonization te
hniques, and, in 
oordinate spa
eby performing dire
t Fourier transforms. Our starting point was a grand-
anoni
al ensemble of instantons and antiinstantons, where the 't Hooftverti
es play the role of �fuga
ities�. The momentum spa
e results are inagreement with the original analysis in both the massless [13℄ and massive
ases [19℄. Following 't Hooft's suggestion, the resolution of the �0 problemfollows by assuming that the topologi
al 
harge is s
reened [19, 21℄, witha �nite s
reening length (non-zero topologi
al sus
eptibity). This e�e
t isleading in 1=N
 
ounting and results in a 
ontribution of order N0
 to the �0mass. Without this e�e
t, the �0 would be degenerate with the �.We remark that a non-vanishing topologi
al sus
eptibility should not betaken for granted [7℄. In the present 
ase, it follows dire
tly from the useof instantons and antiinstantons in a singular gauge. A 
he
k would be torepeat the analysis using instantons and antiinstantons in a regular (non-singular) gauge, or, 
arry out 
ooled latti
e simulations with free boundary
onditions.Our x-spa
e translation of the p-spa
e 
orrelators shows that the resultsof simulations using either a large sample of instantons and antiinstantonsin four dimensions, or quen
hed and 
ooled latti
e gauge 
on�gurations, arein agreement with the Fourier transformed analyti
al 
al
ulations within thereported range of (0�1.5) fm. The re
ent analysis 
arried out in Ref. [35℄ fortwo �avors di�ers from the bosonized results [19℄ 7, hen
e our analysis.We have shown that the running quark mass 
auses the quark propagatorto os
illate at large x. The os
illations are larger for larger quark masses7 Eq. (58) in Ref. [35℄ relies on a resummation of the quark propagator Eq. (57) whi
his valid only for zero quark mass.
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t most of the 
orrelation fun
tions at large distan
es. These e�e
tsare spurious and re�e
t on the la
k of 
on�nement in the model. They areeasily subtra
table in a p-spa
e analysis. They are harder to tra
k down inan x-spa
e formulation. The extent to whi
h these spurious modes impa
ton the subtra
ted results is presently un
lear.We have shown that, while the asymptoti
s of suitably subtra
ted 
orre-lators yield pseudos
alar masses that are a

urate to within a few per 
ent,the non-asymptoti
 readings 
ould be as ina

urate as 100 %. From our
al
ulations, the subtra
ted and res
aled 
orrelators show good asymptoti
sbetween 2 and 3 fm. The non-res
aled 
orrelators do not show any reason-able asymptoti
s even up to 10 fm. This point merits further s
rutiny inlatti
e 
al
ulations.The bosonized results show that while it is possible to infer the existen
eof light pseudos
alars in a dilute instanton gas, they do not seem to supportthe appearan
e of bound ve
tors. We have expli
itly shown that the resultsof simulations are 
onsistent with the presen
e of just s
reened quarks inthese 
hannels. We have noted that the use of s
hemati
 poles and 
uts toanalyze the x-spa
e 
orrelators in these 
hannels would have implied other-wise. Due to mixing between the o
tet and singlet pseudos
alars, we havefound it di�
ult to extra
t the � and �0 masses from the x-spa
e analysis.The extra
tion is straightforward in the p-spa
e analysis.We have presented a simple analysis of the baryoni
 
orrelators in boththe nu
leon and the delta 
hannels. The attra
tion seen in the nu
leon 
han-nel is expe
ted from general arguments. In this 
hannel, however, it appearsto be di�
ult to identify a nu
leon mass without going to the asymptoti
s,sin
e three s
reened quarks already yield a mass of the order of 940MeV.This may 
ause the nu
leon to unbind, although soliton-inspired 
al
ulationswith 
onstituent quarks seem to suggest otherwise [48℄. In this respe
t, itwould be interesting to repeat our analysis by in
luding diquark �elds. Theresults of simulations in the delta 
hannel are also 
onsistent with three 
on-stituent quarks. A dilute instanton gas does not indu
e 
orrelations in thede
uplet 
hannels.Using Io�e's 
urrent for the nu
leon, we have worked out various glu-oni
 and mesoni
 form fa
tors �on- and o�-mass� shell, to leading order in1=N
. The form fa
tors are sensitive to the the three 
onstituent quark 
ut.Moreover, the appearan
e of spurious os
illations in the single 
onstituentquark propagators 
auses the form fa
tors to be ill-de�ned for point-to-pointseparations that are larger than 2.5 fm. In the region 0 < x < 2:5 fm, someestimations have been made that would be of some interest for future simu-lations. The analysis of the nu
leon form fa
tor presented in this work 
ouldalso be extended to other mesoni
 and baryoni
 
hannels. It also providesinsights in to some re
ently used 
onstituent quark models [49℄.
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tuations in the number sum and di�eren
e of the instantons andantiinstantons relate dire
tly to the s
alar and pseudos
alar glueball 
orre-lation fun
tions. In the quen
hed approximation, the glueballs are in�nitelyheavy and stable. In the unquen
hed approximation, they mix with theirs
alar and pseudos
alar 
ounterparts and de
ay. The mixing and de
ay areof order 1=N
.The overall agreement between the instanton simulations and the presentanalysis within 1.5 fm shows that a random set of instantons and antiinstan-tons that is suitably stabilized in the infrared is well des
ribed by gaussian�u
tuations over a mean �eld solution. The mean �eld solution follows froma simple bosonisation s
heme. It also shows that 
onstituent quark mod-els with dynami
ally generated masses, e.g. Nambu�Jona-Lasinio model,are also likely to give similar results provided that 
hiral symmetry is dy-nami
ally broken. In all these models, however, the subtle issue is that of
on�nement with its impa
t on large distan
e asymptoti
s and form fa
tors.This work was supported in part by the US Department of Energy underGrant No. DE-FG-88ER40388.Appendix AGenerating fun
tionalIn this Appendix, we provide the ne
essary details for the derivation of thegenerating fun
tional (15) dis
ussed in the text. Although these 
al
ulationswere extensively used in establishing the results of Refs [19℄, they were neverpublished. We start by evaluating the 
olor averages o

uring in the 't Hooftdeterminants (1) for Nf = 1. For 
onvenien
e, we will use the shorthandnotation d4k=(2�)4 ! dk and d4x! dx when integrating out. If we denoteby ��(z) = �Z dx yS�10 ��(x� z)Z dy��y(y � z)S�10  (y)�U� (103)then its Fourier transform reads��(z) = Z dk dl e�i(k�l)z ��(k; l) (104)with��(k; l) =  yi;�(k) (k=� im)ij h��j;�(k)��yk;�(l)iU� (l=� im)kl  l;�(l) : (105)
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olor group, we obtain [19, 20℄��(k; l) = k�0 (k) l�0 (l)N
  yi;�(k)��1� imk=k2 � 
�5 �1� iml=l2 ��ij  j;�(l) ;(106)where �0(k) is the Fourier transform of the fermion zero mode pro�le, andis given by �0(k) = ��2 ��z (I0(z)K0(z)� I1(z)K1(z))z=k�=2 : (107)With the use of (13), the partition fun
tion (2) takes the formZ[�; �y℄ = Z D yD DP�D�� (�2im)N e� R  yS�10  � y���y � exp n2 Z dz log�1� 12im��(z)�� exp iZ dk dl P�(k; l) ���(k; l) � ��(k; l)� ; (108)where the integral in the last exponent is performed in both variables k andl of the bilo
al auxiliary �elds. The �eld �� is eliminated using the mean�eld equation�iP�(k; l) = n2 Z dz 11� 12im��(z) e�i(k�l)z2im : (109)For Nf > 1, the auxillary �elds �� and P� are Nf � Nf valued alongwith the average �� (103) entering the 't Hooft determinants (1). As aresult, additional tra
es over �avor indi
es will be needed. With this inmind, the previous results 
an be generalized in a straightforward way. Form = diag(m1; : : : ;mNf ), the result is (after absorbing in the measure a termin the size � to have a dimensionless argument in the log)Z[�; �y℄ = Z D yD DP� e� R  yS�1[P+;P�℄ � y���y � e�n2 R dzTrf log� 4n�P+(z) 4n�P�(z)�e2 R dzTrfm(P+(z)+P�(z)) (110)where S�1[P+; P�℄ is given in the text (17). At the saddle point P� = P ,and S is the quark propagator in the external ba
kground P su
h that inmomentum spa
e S(k; l) = Æ4(k � l) S(k;m) (111)
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ir, M. Prakash, I. Zahedwith S(k;m) written down in (21). From (110), the partition fun
tion (15)follows after integration over the fermioni
 �elds.Appendix BQuark 
ondensateIn this Appendix, we will show that (31) follows from an exa
t derivationusing the standard de�nition prior to the bosonization pro
edure. Followingthe method used in Ref. [19℄, the partition fun
tion (2) 
an easily be writtenas (ignoring �u
tuations in the density and swit
hing o� the sour
es)Z = �Z D yD e� R  yS�1 � ; (112)where in the one �avor 
aseS�1 = S�10 + 12imS�10 �I�yIS�10 : (113)The (Eu
lidian) quark 
ondensate follows asD y E = 1V4Z �Z D yD Z  y e� R  yS�1 � ; (114)where averaging over all pseudoparti
les is understood. Spe
i�
ally,D y E = �hTrS(0;m) det(�S�1)ihdet(�S�1)i : (115)Introdu
ing a set of Grassman variables for the pseudoparti
le ensemble, thepartition fun
tion (112) reads (sum over I; J understood)Z = �Z D yD D�D�ye� R  yS�10  e�yI(T�im)IJ�J� : (116)Here, T is the kineti
 part of the overlap matrix [13,19℄ and the integrationis over fermioni
 �elds  ; y and Grassman variables �I ; �yI , where I is aninteger that runs over all the instantons and antiinstantons in the ensemble.Similarly, the 
ondensateh y i = 1V4Z �Z D yD D�D�y�Z  y � �yI�I��e� R  yS�10  e�yI (T�im)IJ�J� : (117)
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  � = �i D y E = � 1V4 � logZ�m : (118)We now shift the fermion �elds a

ording to  !  + i�I�I and  y ! y + i�yI�yI (sum over I understood). We then expand � and �y around therespe
tive 
lassi
al solution of the shifted a
tion. The remaining integral(117) has now a Gaussian form in �y� and 
an be performed. We obtainD y E = 1V4Z*Z D yD (�2im)N e� R  yS�1 �  Z  y �1 + S0S�1 + S�1S0 + S�10 �I�yI2(im)2S�10 ! + Nim!+:Rewriting the pseudoparti
le sum in the exponent as a produ
t over I, andnoting that only the �rst two terms in the Taylor expansion 
ontribute, we
an easily perform the 
olor group average to yieldD y E = 1V4Z Z D yD (�2im)Ne� R  yS�10  � �Z  y + Nim � i ��m�YI Z dzI �1� 12im��(zI)� ; (119)where ��(z) is given in Appendix A. As in [16℄, we assume a su�
ientamount of 
oarse graining so as to rewrite the produ
t over I with the resultD y E = 1V4Z Z D yD (�2im)Ne� R  yS�10  � Z  y + n2im Z dz 1� _��(z)=2i1� ��(z)=2im! en2 R dz log(1� 12im ��(z)) ; (120)where the dot on ��(z) indi
ates the derivative with respe
t to m. Thefun
tional integral above 
an be evaluated exploiting the same bosonisations
heme used for the partition fun
tion ZD y E = 1V4Z Z D yD DP�(�2im)N e� R  yS�1[P+;P�℄ � e�n2 R dz log( 4mn P�(z))� e(�N+2mR dzP�(z))�Z  y + Z dz � _��(z)� 2i�P�(z)�;(121)
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ir, M. Prakash, I. Zahedwhere S�1[P+; P�℄ is given in the main text (17). At the saddle pointD y E = 1V4Z Z D yD � n2iP �N e� R  yS�1 e�N(�N+4mP )��Z  y ��1 + 2S0S�1� � 4iV P� ; (122)where (aside from res
alingMk(m)) the quark propagator S is written downin momentum spa
e (21). After performing the integral and properly res
al-ing P , we re
over the expression (31) quoted in the main text for the 
on-densate (in the 
hiral limit). This result is expe
ted, sin
e to leading orderin 1=N
, the determinants in (115) 
an
el out, after fa
torization (quen
hedapproximation). Appendix CGaussian approximationIn what follows, we give details leading to the Gaussian approximationin the partition fun
tion. We 
an repeat the steps performed in AppendixA with the 
onstraint n+ = n� = n=2 now relaxed and the parametrizationn�(z) = n�2 + �(z) � �(z)2 ;P�(z) = P + ~��(z) : (123)A few 
omments are in order. In the equations above, �(z) and �(z) respe
-tively represent the s
alar and pseudos
alar glueball sour
es. The �eld ~��
ontains pseudos
alar and s
alar ex
itations and will be dis
ussed furtherbelow. Following Appendix A, the auxilliary �eld �� is eliminated using themean �eld equation�iP�(k; l) = n�2 Z dz e�i(k�l)z2im 11� ��(z)=2im : (124)Along with the 
ontribution from the measure �(n+; n�) (5) the bosonizede�e
tive a
tion readsSe� = �N
Tr logS�1[P+; P�℄� 2Z dzTrfm �P+(z) + P�(z)�+Z dzn�(z) Trf log�4P�(z)n�� �+ Z dz n�(z) logNf ! + ~SG ; (125)



Hadrons and QCD Instantons 333where ~SG = + 12�� Z dz (n+(z)� n�(z))2+ n�2� Z dz (n+(z) + n�(z))� log n+(z) + n�(z)n � 1� : (126)The tra
e (Trf ) is in �avor spa
e and the tra
e (Tr) is over �avor and Dira
indi
es with an integration over momentum.� Gluoni
 
ontributionLet us �rst turn our attention to the last three terms of the e�e
tivea
tion (125).SG [P�; n�℄ = +Z dz n�(z) Trf log�4P�(z)n�� �+Z dz n�(z) logNf !+ 12�� Z dz(n+(z)� n�(z))2+ n�2� Z dz (n+(z) + n�(z))� log n+(z) + n�(z)n � 1�:(127)Using the saddle approximation in the s
alar glueball sour
e �(z) �u
tua-tions, we obtainn� = n exp�� �2�n�Nf=�2� logNf !Yf 4Pn�� : (128)As �rst dis
ussed in [23℄ and later in [16℄, the distribution of the �u
tuationsin the number densities n�(z) is Gaussian (exa
t) in �(z) with a widthgiven by (6). The distribution is logarithmi
 in the sum �(z) and Gaussian(approximate) in the large N
 limit with a dispersion relation given by (7).Along with the saddle point de
omposition of the bilo
al auxilliary �eldP� = P e�i�ps=2(1 + �s)e�i�ps=2, we obtain 8SG [P�; n�℄ = �Nn�2� + S(1)G [�s;ps℄ + S(2)G [�s;ps; �; �℄ : (129)8 This parametrization is reminis
ent of the a
tion being invariant (for massless quarks)under global axial transformation with the subs
ript s and ps respe
tively standingfor the s
alar and pseudos
alar mesoni
 ex
itations.
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ir, M. Prakash, I. ZahedAdopting the nonet de
ompositions �ps = �0�0+P �a�aps and �s = �0�s;0+P�a�as , the term S(1)G [�s;ps℄ 
ontains mesoni
 �u
tuations only and readsS(1)G [�s;ps℄ = �n�2 Z dz Trf��2s(z)� �2ps(z)�+Z dz Nf����20(z)� �2��2s;0(z)� : (130)We point out that the term S(1)G [�s;ps℄ should be put in 
on
ert with the �rsttwo terms of Se� [P�; n�℄ in order to obtain the total mesoni
 
ontributionto (125).The last term S(2)G [�s;ps; �; �℄ involves mixing on the one hand betweenthe isosinglet s
alar and the s
alar glueballs, and, between the isosingletpseudos
alar and the pseudos
alar glueballs, on the other hand.S(2)G [�s;ps; �; �℄ = +Z dz 12����(z) + i��p2Nf�0(z)�2+Z dz 12�2���(z) + �2�p2Nf�s;0(z)�2 : (131)� Mesoni
 
ontributionPerforming a Taylor expansion of P� around the saddle point P in the�rst two terms of Se� [P�; n�℄ (125) along with S(1)G [�s;ps℄ the total mesoni

ontribution reads 9Smeson [�s;ps℄ = �N
Tr log S�1(P )� 4V mfP (mf )�N
 Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N
 Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Z dk��0(k)��NfN
 �0(�k)� �s0(k)��NfN
 �s0(�k)�; (132)where the saddle point approximation leads to an integral (gap) equation inP (mf ) for ea
h �avor f4N
n Z dkA(k;MkP (mf );mf ) = 1� 2mf 2P (mf )n : (133)9 The sum over �avor indi
es f and g is understood.
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aling the 
onstituent mass a

ording toMkP !Mk with P (mf ) =n�(mf )=2, we obtain the gap equation (20) in the text. We de�ne belowthe various quantities introdu
ed in the mesoni
 a
tion (132). In momentumspa
e, we write the inverse quark propagator in the ba
kground of instantonsand antiinstantons ashkjS�1(P )jli = Æ(k � l)S�1 (k;m) (134)and S�1 (k;m) = �iMkPk2 (k= � im)�k= � i� k2MkP �m�� : (135)The 
oe�
ient A (k;Mk;m) appearing in the gap equation is given byA (k;Mk;m) = k2Mk Mk �m+ Mkm2k2k2 + �m� k2Mk�2 : (136)Ex
ept for the isosinglet s
alar and pseudos
alar, the inverse meson prop-agator in the ba
kground of instantons and antiinstantons, apart from thefa
tor f2=4N
, 
an be identi�ed with ��(k) appearing in the quadrati
 partof (132) and reads��(k;m1;m2) = n2N
 � 2Z dq (A1A2 � (q1:q2)B1B2) : (137)where we have set q1;2 = q � k=2, M1 = Mq1(m1), A1 = A (q1;M1;m1),B1 = B (q1;M1;m1), m1 being one of the quark masses in SU(3) �avorspa
e and B is given byB (k;Mk;m) = k2Mk 1k2 + �m� k2Mk�2 : (138)In what follows, we will always 
onsider the res
aled 
onstituent massMk(mf ).� Bosonized partition fun
tionTo be thorough, let us exhibit the bosonized partition fun
tion utilizedin evaluating the various (mesoni
, baryoni
 and gluoni
) 
orrelators. Tothis end, Z = Z D�s;ps D� D� e�Se� [�s;ps;�;�℄ ; (139)
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ir, M. Prakash, I. Zahedwhere the bosonized a
tion follows from regrouping terms in SG (129) andSmeson (132).Se� [�s;ps; �; �℄ = S(0)e� h0; n2 ; 0i+ Se� [�s;ps℄ + Se� [�; �℄ (140)withS(0)e� h0; n2 ; 0i = �N
Tr logS�1(P )� Nn�2� +NTrf log Pn� � 4V mfP (mf )(141)along with the mesoni
 part of the e�e
tive a
tionSe� [�s;ps℄ = �N
 Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N
 Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Z dk ��0(k)��NfN
 �0(�k)� �s0(k)��NfN
 �s0(�k)�(142)and the gluoni
 part of the e�e
tive a
tionSe� [�; �℄ = +Z dz 12����(z) + i��p2Nf�0(z)�2+Z dz 12�2���(z) + �2�p2Nf�s;0(z)�2: (143)We are now in a position to evaluate the 
orrelation fun
tions of interest.� Conne
ted meson 
orrelatorFrom the expression of C0
(x) (35) in the text along with the bosonizedpartition fun
tion (139), we easily �nd that to leading order in N
 (the tra
ebeing over �avor as well as Dira
 indi
es)C0
(x) = �N
Tr� S(x;m) 
 S(�x;m) 
 � (144)along with its p-spa
e version C0
(p) quoted in (37) of the main text.
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onne
ted meson 
orrelatorFrom the expression of C1
(x) (36) in the text, we need to examine theterm Tr 
S(x; x; P�) in the integrand (the tra
e being in �avor, 
olor andDira
 spa
e). With the shorthand notation~� = �s � �2ps2 + i
5��ps + 12�s�ps + 12�ps�s� (145)we 
an writeTr 
S(x; x; P�) = Z dk dl ei(k�l)x Tr 
S(k; l; P�) ; (146)where the relevant term in the large N
 limit is given a

ording toS(k; l; P�) = S(k;m) Æ(k � l) + ipMkC(k;m)~�(k � l)C(l;m)pMl�pMkC(k;m) �Z dq ~�(k � q)pMq�1� imq=q2 ��S(q;m)�1� imq=q2 �pMq~�(q � l)� C(l;m)pMl: (147)The 
oe�
ient C(k;m) is given further below. De�ningC1
(p; q) = Æ(p� q) � ~C1
(p) + C10
 (p)�; (148)where~C1
(p) = �Æ(p)Z Z D�s;ps D� D� exp (� Se� [�s;ps; �; �℄)�Tr 
S�Tr 
S � 2Tr 
pMkC ~� (Bk̂=+ iA) ~� C pMk�: (149)Here, the tra
e 
arries an integral over momentum. The meson �eld ~� is leftinside the tra
e so as to re�e
t its bilo
al 
hara
ter in the momentum. Itis 
lear that ~C1
(p) vanishes identi
ally ex
ept in the isos
alar singlet �s;0.From a diagram approa
h, it has two un
onne
ted 
losed fermion loopswith possibly the �s;0 being emitted within one loop (Fig. 3(
)). Furtherdis
ussion will be presented in the text regarding this term.We are therefore left with the se
ond term 
ontribution in C1
(p). Thisterm amounts to a propagating meson from one 
losed fermion loop to the
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ir, M. Prakash, I. Zahedother (Fig. 3(d)) and readsC1
(p) = �N
Z Z D�s;ps D� D� R
(p;mf ;mg) R
(�p;mf ;mg)� exp�� Se� [�s;ps; �; �℄�; (150)whereR
(p;mf ;mg) = Z dk pM1M2Tr�
C(k1;mf )~�(p) C(k2;mg)�(151)with k1;2 = k � p=2, M1 =Mk1(mf ) andC(k;m) = S(k;m)�1� imk=k2 �: (152)If we rede�ne R
 so as to extra
t the meson �eld, we haveR
(p;mf ;mg) = R�
 (p;mf ;mg)�R�
 (p;mf ;mg) (153)with R�
 (p;m1;2) = Z d4k(2�)4pM1M2Tr�
C1 1� 
52 C2� (154)and C1;2 = k=1;2k21;2 (1�A1;2) + iB1;2 : (155)Performing the fun
tional integral, we obtain (38). As an example, we ex-hibit the 
ase of the mixing singlet �0 and o
tet �8. The spe
i�
 �avor
hara
ter of R�
 follows from the e�e
tive a
tion (142) for the nonet de-
omposition. For instan
e, the pertinent terms R
5 (151) for the �0 and �8
orrelators are given byZ dkpM1M2Trf (
5�0;8C(k1;m)
5C(k2;m)�(p)) : (156)Expli
itly, for the un
onne
ted parts of the �0 and �8 
orrelators, we obtainC1�0;8(p) = �N
Z RD�0;8 ~R0;8(�p)�(�p)~�(p)R0;8(p)eN
 R ~�[�℄�; (157)
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tion Z in the denominator 
ontains only �0 and �8.For the �0 we have R0(p) =  43R(p) + 23Rs(p)2p23 (R(p)�Rs(p)) ! (158)and for the �8 R8(p) =  2p23 (R(p)�Rs(p))23R(p) + 43Rs(p) ! (159)with R(p) = R
5(p;m) and similarly Rs(p) = R
5(p;ms) where m and msare the up (down) and strange quark mass respe
tively (151).C1�0;8(p) = N
2 ~R0;8(�p)[�(p)℄�1R0;8(p) : (160)Appendix DNonet de
ompositionTaking the partition fun
tion (139) derived for Nf > 1 with the samede
omposition for the meson �elds �s;ps, we have as the mesoni
 e�e
tivea
tion (142)Se� [�s;ps℄ = �N
 Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N
 Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Z dk ��0(k)��NfN
 �0(�k)� �s0(k)��NfN
 �s0(�k)�; (161)where f and g are �avor labels (f is not to be 
onfused with the pseudos
alarde
ay 
onstant). Using the de
omposition �ps =P8k=0 �k �k, the �0 and �8ex
itations 
ontribute to Se� in the formSe� [�0; �8℄ = N
 Z dk ~�(k) [�(k)℄ �(�k) ; (162)
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ir, M. Prakash, I. Zahedwhere ~�(p) = (�0(p); �8(p)) = f(�0(p); �8(p)) and[�(k)℄ = 0� 23 (2�+�s) + ��NfN
 2p23 (���s)2p23 (���s) 23 (�+ 2�s) 1A (163)with the shorthand notation � = �(k;m;m) �s = �(k;ms;ms) with thestrange quark mass inserted. The 
ontribution ��Nf=N
 follows from thesinglet mixing with the topologi
al �u
tuations through the measure (5). Atlow energy, and to leading order in the 
urrent massSe� [�0; �8℄ = +Z dk 12f2k2(�20 + �28) + Z 12(2NF��) �20� Z dk12 h  i��20 �43m+ 23ms�+ �28 �23m+ 43ms��� Z dk12 h  i�0�8 4p23 (ms �m) : (164)Note that Se� [�0; �8℄ � N
. The above result yields the GOR relations forthe singlet and the o
tet, if we were to drop nNfN
 . As is well known, the GORresult is badly violated in the singlet 
hannel by the axial U(1) anomaly. Thelatter is 
arried over by lo
al �u
tuations in the topologi
al 
harge, whi
hresults in a mixing with the singlet quantum numbers as displayed in (164).Appendix EExtended bosonizationThe use of the mean-�eld equation (109) in Appendix A has allowed fora bosonization s
heme that is trouble free. Indeed, if we were to 
arry agaussian analysis around all the �elds in
luding the auxillary �eld ��, andhen
e expand (109), then instabilities show up along the s
alar (�s) andpseudos
alar (�ps) dire
tions. This, however, 
an be easily �xed through ageneralization of (13) to in
lude �u
tuations around the instanton densities.We start with a modi�
ation in (13)1 = Z D��DP� exp�Trf Z dz P�(z)���(z)� N�(z)n�=2 ��(z)�� (165)that is inserted in the partition fun
tion (2), where the term in the exponentN�(z)n�=2 = 1 + gs�(z) + gps�(z)n� (166)
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learly 
ouples s
alar (pseudos
alar) glueballs to the quarks with strengthgs (gps) (see (169) below).Following the steps of Appendix C, the mean �eld equation in �� reads�iP�(z) = n�4im n�(z)N�(z) 11� n���(z)=(4imN�(z)) : (167)Along with the 
ontribution from the measure �(n+; n�) (5) the bosonizede�e
tive a
tion readsSe� = �N
Tr logS�1[P�; �; �℄ � 2Z dz N�(z)n�=2 TrfmP�(z)+Z dz n�(z) log�Nf !Yf 4P�(z)n�� N�(z)n�(z) �+Nf Z dz �n+(z) + n�(z)� + ~SG ; (168)where ~SG is the gluoni
 
ontribution (126). The inverse quark propagatorS�1[P�; �; �℄ in (168) isS�1[P�; �; �℄ = +S�1[P+; P�℄�ipMk�1� imk̂=k2 � gs�(z) + gps�(z)n���1 + �s + i
5�ps��1� imk̂=k2 �pMk (169)and its se
ond term 
learly exhibits glueballs 
oupling to quarks. The �rstterm S�1[P+; P�℄ in (169) is given in (17). Following the saddle pointapproximation used in Appendix C, we obtain the e�e
tive a
tion as followsSe� [�s;ps; �; �℄ = �N
Tr logS�1(P ) + n�V�Nf � Trf 4mPn� � n����N
 Z dk �fgs (k)�+(k;mf ;mg)�gfs (�k)+N
 Z dk �fgps (k)��(k;mf ;mg)�gfps (�k)+Se� [�2; � �s℄+Se� [�2; � �ps℄ : (170)In the last two terms of (170), we have lumped terms in �2, ��s, �2 and��ps where �s (�ps) is de
omposed in the s
alar (pseudos
alar) unphysi
al
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ir, M. Prakash, I. Zahedbasis (in �avor spa
e) �fgs (�fgps ). Only diagonal terms �ffs (�ffps ) mix withs
alar (pseudos
alar) glueballs a

ording toSe� [�2; � �s℄ = +Z dk �(k) g�s (k) �(�k)+Z dk�(k)Xf �1� gs 2N
n� �+(k;mf ;mf )��ffs (�k);(171)whereg�s (k) = n2n��2� + g2s2n� Xf �1� 2N
n�Nf�+(k;mf ;mf )�� Nf2n� (gs � 1)2:(172)The point made at the start of this Appendix 
an now be appre
iated. Wesee that if we set gs = 0 the result di�ers from what we had in Appendix Cby the last term. The latter with its negative sign 
an 
ause an instabilityin the s
alar glueball �u
tuations. This is easily tamed by the use of thebosonization s
heme dis
ussed in Appendix C.For the pseudos
alar part, we haveSe� [�2; � �ps℄ = +Z dk �(k) g�ps(k)�(�k)+Z dk�(k)Xf �1� gps2N
n� ��(k;mf ;mf )�i�ffps (�k);(173)whereg�ps(k) = 12�� + g2ps2n� Xf �1� 2N
n�Nf��(k;mf ;mf )�� Nf2n� (gps � 1)2:(174)Again, if gps=0 the latter term may 
ause the �u
tuations in the pseu-dos
alar glueball dire
tion to be unstable. This is easily tamed by thebosonization s
heme dis
ussed in Appendix C.As a 
he
k, we 
learly see that in the absen
e of fermion we re
over thes
alar (pseudos
alar) gluoni
 
ontribution ~SG for n� = (n+ � � �)=2. Theexpression (171) in terms of physi
al s
alar meson �eld in �0 and �8 
hannels(�avor spa
e) readsSe� [�2; � �s℄ = + Z dk �(k) g�s (k)�(�k)+ Z dk �(k)p2Nf�g0s(k)�s0(�k) + g8s(k)�s8(�k)� (175)



Hadrons and QCD Instantons 343and similarly (173) for the pseudos
alar se
tor readsSe� [�2; � �ps℄ = +Z dk �(k) g�ps(k) �(�k)+ Z dk �(k) ip2Nf�g0ps(k) �0(�k) + g8ps(k) �8(�k)�:(176)We have de�ned above for the s
alar (pseudos
alar) part of the a
tiong0s;ps(k) = 1� gs;ps 2N
n�Nf �2��(k;m;m) +��(k;ms;ms)�; (177)g8s;ps(k) = gs;ps 2N
n�Nfp2���(k;ms;ms)���(k;m;m)�: (178)The expression of n� and the mass gap equation of Appendix C remain un-
hanged.� S
alar gluoni
 
orrelator CFF (x; y)The form of the s
alar gluoni
 
orrelator is un
hanged up to a 
onstanttermCFF (x� y) =Z dkeik(x�y)� nn��2� + 12N
 NfXf=1� 1�+(k;mf ;mf ) � 2N
n� ���1:(179)� Pseudos
alar gluoni
 
orrelator CFF (x; y)Similarly, for the pseudos
alar gluoni
 
orrelatorCF ~F (x� y) =Z dk eik(x�y) � 1�� + 12N
 NfXf=1� 1��(k;mf ;mf ) � 2N
n� ���1:(180)� Pseudos
alar form fa
torFor the pseudos
alar 
ase, we haveFp(0) = 32�22N
��(0;m;m)� 1�� + 12N
 Xf � 1��(0;mf ;mf ) � 2N
n� ���1(181)as indi
ated in Se
tion 8.



344 M. Ka
ir, M. Prakash, I. Zahed� S
alar form fa
torFor the s
alar 
ase, we haveFs(0) = 32�22N
�+(0;m;m)� nn��2� + 12N
Xf � 1�+(0;mf ;mf ) � 2N
n� ���1(182)as indi
ated in Se
tion 8.� Pseudos
alar 
oupling 
onstant gpsIn order to determine the strength gps(k = 0) of the pseudos
alar glue-balls 
oupling 
onstant to the quarks, we �t the experimental value of themixing angle � = �20Æ when diagonalizing. The result gives an estimate forgps (k = 0 is understood) a

ording to2 
ot 2� �2p23 g�ps(� ��s) + Nf2 g0ps g8ps�= 23g�ps(���s) + Nf2 �g0 2ps � g8 2ps � : (183)We obtain gps = �7:025. Appendix FUn
onne
ted 
orrelatorsWe tabulate below the expressions for the un
onne
ted 
orrelator C1
(p)in the various 
hannels
 Tr�
C1 1+
52 C2� C1
 (p) =2N 
1 2�(1�A1) (1�A2) k1k2k21k22 �B1B2� (R+1 (p))2�+(p)
5 �2�(1�A1) (1�A2) k1k2k21k22 +B1B2� (R+
5 (p))2��(p)
� 2�kx+p=2k21 (1�A1)B2 + kx�p=2k22 (1�A2)B1� (R+
� (p))2�+(p)
5
� 2�kx+p=2k21 (1�A1)B2 � kx�p=2k22 (1�A2)B1� (R+
5
� (p))2��(p)��� R��� (p) = 0 0



Hadrons and QCD Instantons 345Appendix Gms expansionIn this Appendix, we give the details leading to (39). Inserting themass gap equation for small quark masses m1 and m2 in the �rst term of��(p;m;m) with the following approximationsA ' M2 �mMk2 +M2 � 2mM ; B ' Mk2 +M2 � 2mM (184)we obtain (denoting ��(p) = ��(p;m;m))��(p) = n2N
 (m1�1 +m2�2) + Z d4k(2�)4 (k1M2 � k2M1)�k21 +M21 � �k22 +M22 ��(m1 +m2)Z d4k(2�)4 M4k + k4 � 2M2kk2 � 4M2kk2�k2 +M2k �3 : (185)At small momentum, and using(k1M2 � k2M1)2 = p2M2k + (k:p)2 �M 02k � 2MkM 0k=k� ;we obtain��(p) = p2 Z d4k(2�)4 �M2k � kMkM 0k=2 + k2M 02k =4��k2 +M2k�2+ n2N
 (m1�1 +m2�2)� (m1 +m2)Z d4k(2�)4 Mkk2 +M2k ;(186)To illustrate the fa
t that the approximations used for A and B fail in the
ase of a strange quark mass, we show the plots of A (Fig. 23) and B (Fig. 24)for both the up (a) and strange quark (b). The solid line is the unexpandedresult, while the dotted line is the expanded one.Appendix HOutline of the numeri
sIn this Appendix, we sket
h how the numeri
al 
al
ulations were per-formed. First, we solve the integral equation (20) for �(m). With the
onstituent mass Mk(m) fully known (41), the propagator S(x;m) follows.



346 M. Ka
ir, M. Prakash, I. ZahedThe de
omposition (24) of S(x;m) lends itself to a straightforward numer-i
al integration of S1(x;m) (27), (28). The singular behavior at x = 0 is
ontained in S0(x;m). In p-spa
e, ea
h 
orrelator is the sum of an 
onne
tedpart (37) and a un
onne
ted part (38). To speed up the 
onvergen
e of thenumeri
al integration of (37), the free bubble diagram is removed by handand later added. The evaluation of (38) is a
hieved in stages (numeratorand denominator). Be
ause we will later on numeri
ally Fourier transformthe p-spa
e version of (38), great 
are is taken at low momenta sin
e thereading of a meson mass is done at large distan
e. In x-spa
e, the 
onne
tedpart of ea
h 
orrelator is dire
tly evaluated from the x-spa
e version of thepropagator S(x;m) asC0
(x) = �N
Tr(S(x;m)
S(�x;m)
) : (187)For the un
onne
ted 
orrelator, we numeri
ally Fourier transform its p-spa
eversion. In the pion 
ase, we sum the two parts of the 
orrelator and readthe pion mass from the large distan
e behavior of x3=2 times the 
orrelator.The kaon un
onne
ted 
orrelator is exponentially damped by a fa
tor ofm� �mK with its pion analog and turns out to be of about the same orderas its 
onne
ted part. Therefore, we single out the un
onne
ted part to readthe kaon mass. REFERENCES[1℄ A. Di Gia
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