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The odderon equation is studied in terms of the variable suggested
by the modular invariance of the 3 Reggeon system. Odderon charge is
identified with the cross-product of three conformal spins. A complete
set of commuting operators: h? and G is diagonalized and quantization
conditions for eigenvalues of the odderon charge ¢ are solved for arbitrary
conformal weight h.

PACS numbers: 12.38.Cy, 11.55.Jy

In 1980, following Lipatov and collaborators [1,2], the integral equation
for the exchange of 3 or more reggeized gluons has been formulated [3-5].
This equation describes both the leading contribution to the odderon (odd
C' parity) exchange, as well as the unitarity correction to the Pomeron.
Although originally the odderon equation has been written in the momentum
space, it turns out, that it is convenient to rewrite it in the 2 dimensional
configuration space of the impact parameters b; = (z;,y;), where 1 = 1,2 or 3
(or n for amplitudes with more Reggeon exchange) [6]. It has been observed
that the odderon problem is equivalent to the system of 3 conformal spins
[7-9] associated with each Reggeon i:

W =220, S{) =208 and SY=—-o. (1)
Here z; = z; + 1y;. The odderon intercept
N,
a=1-—"5p 2)
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is related to the eigenvalue F of the interaction Hamiltonian of the conformal
spins [6,9]:

‘H = const. Z (H(zi,25) + H(Zi,Z5)) » (3)

where the explicit form of H can be found e.g. in Ref. [9]. Equation (3)
exhibits conformal separability into holomorphic and antiholomorphic parts,
the latter depending only on z; = x; — iy; . Therefore F = € + € and the
wave function is given as a bilinear form &(z,%z) = ¥(z) x ¥(z). There are
two conditions for the total wave function: 1) &(z, %) has to be single-valued
and 2) normalizable, which determine the spectrum of E.

There are two scalars which can be constructed from three spins:

i = (50452 4 §0)",

i :__gm.<§@>xgw». (4)

It has been shown in Refs. [7-9] that the Casimir operator A2 and the odderon
charge ¢ (denoted often as §3) can be simultaneously diagonalized.

There have been many attempts to find either directly values of E [10-13]
or spectrum of ¢ [14,15]. In the recent paper Janik and Wosiek [16] calculated
the spectrum of ¢ for conformal weight h = h = 1/2, which corresponds
to the lowest representation of the SL(2,C) group, and found the odderon
intercept with £ = 0.24717.

In the present paper we shall concentrate on calculating the spectrum of
the odderon charge for arbitrary h. We shall first consider the holomorphic
sector only; however the same arguments apply to the antiholomorphic sector
as well.

Following Lipatov [6] we shall use conformal Ansatz for ¥:

l‘p(zla 22, 23) = Zh/3 'l/J(iE), (5)
where

(21 — 29) (21 — 23)(22 — 23) (21— 2z3)(23 — 20)
B T - 20) (2 — 22) (©)

(21 — 20)%(22 — 20)%(23 — 20)?

and z is a reference point. A remarkable feature of Ansatz (5) is, that h2
is automatically diagonal:

B2 W (2, 29, 23) = —h(h — 1) W (21, 29, 23) . (7)
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In the representation (5) the eigenvalue equation for g takes the following

form:
v = - (2) (b1 sz

- [Q:E(m —-1)— g(h —1)(z* —z+1)| ¢/ (2)
—2z(z —1)(2z = 1)¢"(z) —a*(z-1°¢"(2). (8

This equation has been recently studied by Janik and Wosiek in Ref. [16].
They have formulated quantization conditions for ¢ by imposing singleval-
uedness constraints on the whole wave function &(z,%z), and solved them
for h = h = 1/2. Discrete, symmetrically distributed values of ¢ have
been found on the imaginary, as well as on the real axis in the complex ¢
plane. However, only the imaginary values of ¢ are relevant for the odderon
problem; real ¢’s correspond to the wave function which is antisymmetric
if the two neighboring Reggeons are exchanged, whereas the odderon wave
function should be symmetric under such transformations [15,16].

It is convenient to rewrite the eigenequation for ¢ in terms of a new
variable:

1 (z-2)(z+1)(2z—1) (9)
3v3 z(z —1) ’

suggested in Ref. [17], where the modular invariance of the odderon equation
has been discussed. This mapping sends all singular points of the original
equation i.e. x = 0, 1 and oo to infinity. The advantage of using variable
¢ instead of z consists in the symmetry properties of £ under the cyclic
permutations of the three reggeized gluons, which correspond to:

£ =i

1 1
r—1——, or z— .
z 1—=z

(10)

Under transformations (10) ¢ remains unchanged.
In variable £ we have:

9 6
h2(h — 3)
27

3 2 _
R e e F-

e e
q _
s+3\/§] $(E) =0, (11)

where ¢ is an eigenvalue of g.
Our strategy consists in applying the method of Ref. [16] to Eq. (11). The
advantage of using (11) is twofold: 1) because of the symmetry properties
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(10) the quantization condition takes a simpler form than in the case of
Ref. [16], 2) since Eq. (11) is less singular than the one in Ref. [16], the
solutions of the indicial equation do not depend on h. Because of the latter
it is easy to find spectrum of § for an arbitrary h.

Equation (11) has 3 regular singular points in £ = £1 and in infinity. In
what follows we shall consider only solutions around +1:

oo

uftV(&q) = 1 F &Y ul(EF1)" . (12)

n=0

The phases of the two solutions are chosen in such a way, that they are real
for real —1 < ¢ < 1 and real ¢q. The indicial equation for s has the following
solutions: s; =2/3, s9 =1/3 and s3 = 0. Introducing notation:

(h+2)(h — 3) h(h —1) h?*(h—=3) . ¢
Bh 6 s Yh 6 s Ph 27 y 4 3\/5 ( )
we can write the recurrence formula:
ugﬂ) =1,
LED 2867 1= B+ pntg
! 21+ ) [s(1+s) + 2]
) _ _2n+1+s)[(n+s)(n+2+s)—Bul+pntq (1)
Upto = F 2 Uy 1
2(n+2+3s)[(n+24s)(n+1+s)+ 2]
U ) (R R U R AR R PR

dn+2+s)[(n+2+s)(n+1+s)+ 2]

These series are convergent in circles of radius 2. Analogously to Eq. (12)
one can define solutions in the antiholomorphic sector which in the follow-
ing will be denoted as vgil)(g; G). The three solutions corresponding to 3
different s; values form a vector:

(il)(g.

i Gy
060 = | uiy(6a)
1
uiy (&)
The analytical continuation matrix I" is defined in the intersection of the
two convergence circles:

@& q) = I'(q) @ (& q) - (15)
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In order to calculate I" we construct a Wronskian:

e ue) Wl
w=| Ve wMe v |- (16)
W@ W@ v

Next we construct determinants W;;, which are obtained from W by replac-
ing j-th column by the i-th solution around —1. Then:

W
Matrix I'(q) does not depend on &, but only on ¢ and also on h. We

choose to calculate it at £ = 0. Repeating the same steps in the antiholo-
morphic sector one constructs I'(g) where:

7=-q". (18)

Here §q denotes the odderon charge in the antiholomorphic sector, whereas
the star over ¢ denotes complex conjugation. In principle two possible choices
for g , namely with + and — signs should be considered. This follows from
the fact that both ¢ and € are symmetric functions of g (or g) [9]. However,
only the choice of Eq. (18) leads to the non-zero solutions of the quantization
conditions’.

Function @ is single-valued if:

Ly = (17)

h=3u+m)+iv and h=3L(u-m)+iv, (19)

where 1 and v are real numbers where m is an integer multiple of 3. Further
constraint comes from normalizability, which requires that yu = 1 for the
physical odderon state [6,9].

The single-valued wave function can be constructed only if both sec-
tors, holomorphic and antiholomorphic, are considered. In the vicinity of &,
& = +1 the wave function of the whole system reads:

) (5,6,2,8) = PP FTEY A (g g d ) (Gq) . (20)

The requirement that the wave function @ should be single-valued, leads to
the observation that matrices A(*1) have to be diagonal: A~ =diag(e, 3,7)
and A1) =diag(c/, #',7'). However, because the two solutions (20) are re-
lated by Eq. (15), we get the following relation:

T @A) (G,q) I'(q) = AD(G.q). (21)

! Note, that because of the factor of 5 in the definition of ¢ (9), our sign for g is different
than the one in Ref. [16].
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Introducing @ = («, 8,7) and T = (o, ',7") we can conveniently rewrite
equations corresponding to the zeros of A®M in the matrix form:

Cip@=0 and Ciy @ =0, (22)

where matrix Cy,, corresponding to the 3 zeros above the diagonal of matrix
AW | takes the following form:

Tily Toily Taily
Cup=| I'mIng I'niIbs I'31133 (23)
IyoIvy I'polns  I'3pl33

and matrix Cjoy , corresponding to the zeros below the diagonal of AW g
obtained from Cl, by interchanging I" <+ I'.

Quantization conditions follow from the requirement that there exist
non-zero solutions of Eq. (22) for a, £ and 7:

Det Cyp =0 and DetCloy =0. (24)

Moreover the first two equations in (22) should be uniquely solvable for «,
B and v in function of one free parameter (which is not automatic even if
Eqgs. (24) are satisfied).

Let us now discuss numerical solutions of the quantization conditions (24).
We have found that the zero eigenvalue of the odderon charge exists always
for arbitrary conformal weight. Korchemsky [9] has argued that these states
should be excluded from the spectrum of the odderon Hamiltonian (3), since
it is not clear if they are normalizable (see however Ref. [12]). In what fol-
lows we shall concentrate only on the imaginary solutions for ¢ which, as
already said, are relevant for the odderon system.

We have first looked for the solutions of the quantization conditions (24)
corresponding to m = 0 and v = 0, i.e. for h = h. Here solutions are found
for arbitrary real p. With our choice of phases in Eq. (12), both Det Cy,
and Det (o are imaginary along the imaginary axis in the complex ¢ plane.
Moreover, for imaginary ¢: Det Cyp,=Det Cioy = Det C. In Fig. 1 we plot
Im Det C as a function of Im ¢ for h = 1/2, or equivalently p = 1 (solid line)
and for ;4 = 2 or 0 (long dash line). We see that Im Det C' is an antisymmet-
ric, oscillating function of Im ¢, with amplitude growing with [Im ¢|. Zeros
of the functions in Fig. 1 correspond to the quantized values of ¢q. For =1
two non-zero eigenvalues are visible: ¢==+0.2052575 %1 and g=12.34392x3.
We have found two more eigenvalues of Im ¢: +8.326346 and +20.080497.
For higher ¢’s care must be taken in order not to loose numerical stability.
These eigenvalues have been found previously in Ref. [16].
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Im Det C
o

Fig.1. Im Det C as function of Im ¢ for h = h = 1/2 — solid line, for h = h = 0
and 1 — long dash line and for (h,h) = (2,—1) or (—1,2) — short dash line.

It is interesting to follow the flow of ¢ in function of y (still for m = 0
and v = 0). As soon as we move h away from 1/2 the little wiggle, seen
for h = 1/2 (or equivalently p = 1), straightens up and the two eigenvalues
symmetrically drift towards zero. Eventually, for h = 0 and for h = 1,
they reach zero value. This is depicted in Fig. 2 where the drift of the
first 2 positive eigenvalues of ¢ is plotted in dependence on h = h. Second
eigenvalue reaches zero for h = 3 and h = —2. This kind of behavior is
observed for all imaginary eigenvalues, for which our numerical procedures

are stable.
2 /\

Imq

0 R N
-0.5 0.0 05 1.0 15
h

Fig. 2. Positive part of Im q of two first eigenvalues as functions of (real) h = h.
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Physical odderon state, however, corresponds to fixed y = 1. Therefore
we have looked for the solutions of (24) for u = 1 and v = 0. Here solutions
exist only for discrete values of m. The two lowest values of m for which
non-zero, imaginary solutions for ¢ exist are equal m = 0 and |m| = 3.
There also exist solutions for higher | m |, which will not be discussed in
this note. In Fig. 1 the short dash line corresponds to Im Det C for |m| = 3.
Here only one non-zero eigenvalue of ¢ is visible, namely £1.176667 x 1. We
have also found two next eigenvalues corresponding to Im ¢ = £6.35591 and
+17.69346.

It is also interesting to consider complex h = 1/2 £ iv. As soon as one
varies v, Im ¢ grows as v increases [18]. Our results agree with the ones of
Ref. [18].

As a cross-check on our method we have also solved quantization con-
ditions for h = 3, 4, 5 and 6. For these values of h Korchemsky in Ref. [9]
found real spectrum of ¢ for the polynomial solutions of the pertinent Baxter
equations. Our quantization conditions are more general, so we find more
eigenvelues for integer h, among them the ones reported in Ref. [9].

To summarize: in this short note we have solved quantization conditions
for the odderon charge ¢ which has been identified with the cross-product of
three conformal spins. We have proposed to study the odderon equation in
terms of a new variable called &, which was earlier discussed by Janik in the
context of the modular invariance of the odderon system [17]. We have solved
quantization conditions for the odderon charge using the method recently
proposed by Janik and Wosiek [16]. Our approach can be straightforwardly
applied for any conformal weight h. For h = 1/2 we have reproduced eigen-
values found in Ref. [16]. For integer A > 3 we have reproduced eigenvalues
of ¢ found by Korchemsky in Ref. [9]. To illustrate the possibility of solving
the quantization conditions for arbitrary h we have studied the drift of the
lowest eigenvalues of ¢ for real h. For the physical odderon state: p =1,
v =0 in Eq. (19) the lowest values of h for which Eq. (24) could have been
found correspond to m = 0 and +3. For the unphysical condition h = h
i.e. m = 0 continuous sets of solutions exist for real (v = 0) h. Further
results, also for complex h and for real values of ¢, will be discussed in the
forthcoming paper [19].
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pitality are due to K. Goeke and the Institute of Theoretical Physics IT of the
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