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SPECTRUM OF THE ODDERON CHARGE FORARBITRARY CONFORMAL WEIGHTSMihaª Praszaªowizy and Andrzej RostworowskiInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived November 11, 1998)The odderon equation is studied in terms of the variable suggestedby the modular invariane of the 3 Reggeon system. Odderon harge isidenti�ed with the ross-produt of three onformal spins. A ompleteset of ommuting operators: ĥ2 and q̂ is diagonalized and quantizationonditions for eigenvalues of the odderon harge q̂ are solved for arbitraryonformal weight h.PACS numbers: 12.38.Cy, 11.55.JyIn 1980, following Lipatov and ollaborators [1, 2℄, the integral equationfor the exhange of 3 or more reggeized gluons has been formulated [3�5℄.This equation desribes both the leading ontribution to the odderon (oddC parity) exhange, as well as the unitarity orretion to the Pomeron.Although originally the odderon equation has been written in the momentumspae, it turns out, that it is onvenient to rewrite it in the 2 dimensionalon�guration spae of the impat parameters bi = (xi; yi), where i = 1; 2 or 3(or n for amplitudes with more Reggeon exhange) [6℄. It has been observedthat the odderon problem is equivalent to the system of 3 onformal spins[7�9℄ assoiated with eah Reggeon i:S(i)+ = z2i �i ; S(i)3 = zi�i and S(i)� = ��i : (1)Here zi = xi + iyi. The odderon interept� = 1� N�s� E ; (2)y A.v. Humboldt fellow at the Institute for Theoretial Physis II, Ruhr-UniversityBohum, D�44780 Bohum, Germany.(349)



350 M. Praszaªowiz, A. Rostworowskiis related to the eigenvalue E of the interation Hamiltonian of the onformalspins [6, 9℄: H = onst: 3Xi>j (H(zi; zj) +H(zi; zj)) ; (3)where the expliit form of H an be found e.g. in Ref. [9℄. Equation (3)exhibits onformal separability into holomorphi and antiholomorphi parts,the latter depending only on zi = xi � iyi . Therefore E = " + " and thewave funtion is given as a bilinear form �(z; z) = 	(z) � 	(z). There aretwo onditions for the total wave funtion: 1) �(z; z) has to be single-valuedand 2) normalizable, whih determine the spetrum of E.There are two salars whih an be onstruted from three spins:ĥ2 = ��~S(1) + ~S(2) + ~S(3)�2 ;q̂ = � ~S(1) � �~S(2) � ~S(3)� : (4)It has been shown in Refs. [7�9℄ that the Casimir operator ĥ2 and the odderonharge q̂ (denoted often as q̂3) an be simultaneously diagonalized.There have been many attempts to �nd either diretly values of E [10�13℄or spetrum of q̂ [14,15℄. In the reent paper Janik andWosiek [16℄ alulatedthe spetrum of q̂ for onformal weight h = h = 1=2, whih orrespondsto the lowest representation of the SL(2,C) group, and found the odderoninterept with E = 0:24717.In the present paper we shall onentrate on alulating the spetrum ofthe odderon harge for arbitrary h. We shall �rst onsider the holomorphisetor only; however the same arguments apply to the antiholomorphi setoras well.Following Lipatov [6℄ we shall use onformal Ansatz for 	 :	(z1; z2; z3) = zh=3  (x); (5)wherez = (z1 � z2)(z1 � z3)(z2 � z3)(z1 � z0)2(z2 � z0)2(z3 � z0)2 ; x = (z1 � z3)(z3 � z0)(z1 � z0)(z3 � z2) (6)and z0 is a referene point. A remarkable feature of Ansatz (5) is, that ĥ2is automatially diagonal:ĥ2 	(z1; z2; z3) = �h(h� 1)	(z1; z2; z3) : (7)



Spetrum of the Odderon Charge for Arbitrary Conformal Weights 351In the representation (5) the eigenvalue equation for q takes the followingform: iq̂  (x) = ��h3�2�h3 � 1� (x� 2)(x+ 1)(2x � 1)x(x� 1)  (x)� �2x(x� 1)� h3 (h� 1) �x2 � x+ 1��  0(x)�2x(x� 1)(2x � 1) 00(x) � x2(x� 1)2  000(x) : (8)This equation has been reently studied by Janik and Wosiek in Ref. [16℄.They have formulated quantization onditions for q by imposing singleval-uedness onstraints on the whole wave funtion �(z; z), and solved themfor h = h = 1=2. Disrete, symmetrially distributed values of q havebeen found on the imaginary, as well as on the real axis in the omplex qplane. However, only the imaginary values of q are relevant for the odderonproblem; real q's orrespond to the wave funtion whih is antisymmetriif the two neighboring Reggeons are exhanged, whereas the odderon wavefuntion should be symmetri under suh transformations [15, 16℄.It is onvenient to rewrite the eigenequation for q in terms of a newvariable: � = i 13p3 (x� 2)(x+ 1)(2x � 1)x(x� 1) ; (9)suggested in Ref. [17℄, where the modular invariane of the odderon equationhas been disussed. This mapping sends all singular points of the originalequation i.e. x = 0, 1 and 1 to in�nity. The advantage of using variable� instead of x onsists in the symmetry properties of � under the ylipermutations of the three reggeized gluons, whih orrespond to:x! 1� 1x ; or x! 11� x : (10)Under transformations (10) � remains unhanged.In variable � we have:�12(�2 � 1)2 d3d�3 + 2�(�2 � 1) d2d�2 + �49 � (h+ 2)(h � 3)6 (�2 � 1)� dd�+ h2(h� 3)27 � + q3p3� (�) = 0 ; (11)where q is an eigenvalue of q̂.Our strategy onsists in applying the method of Ref. [16℄ to Eq. (11). Theadvantage of using (11) is twofold: 1) beause of the symmetry properties



352 M. Praszaªowiz, A. Rostworowski(10) the quantization ondition takes a simpler form than in the ase ofRef. [16℄, 2) sine Eq. (11) is less singular than the one in Ref. [16℄, thesolutions of the indiial equation do not depend on h. Beause of the latterit is easy to �nd spetrum of q̂ for an arbitrary h.Equation (11) has 3 regular singular points in � = �1 and in in�nity. Inwhat follows we shall onsider only solutions around �1:u(�1)s (�; q) = (1� �)s 1Xn=0u(�1)n (� � 1)n : (12)The phases of the two solutions are hosen in suh a way, that they are realfor real �1 < � < 1 and real q. The indiial equation for s has the followingsolutions: s1 = 2=3, s2 = 1=3 and s3 = 0. Introduing notation:�h = (h+ 2)(h� 3)6 ; h = h(h� 1)6 ; �h = h2(h� 3)27 ; ~q = q3p3 (13)we an write the reurrene formula:u(�1)0 = 1 ;u(�1)1 = � 2s(s2 � 1� �h) + �h � ~q2(1 + s) �s(1 + s) + 29� ;u(�1)n+2 = � 2(n+ 1 + s) [(n+ s)(n+ 2 + s)� �h℄ + �h � ~q2(n+ 2 + s) �(n+ 2 + s)(n+ 1 + s) + 29� u(�1)n+1�(n+ s) [(n� 1 + s)(n+ 2 + s)� 2�h℄ + 2�h4(n+ 2 + s) �(n+ 2 + s)(n+ 1 + s) + 29� u(�1)n : (14)These series are onvergent in irles of radius 2. Analogously to Eq. (12)one an de�ne solutions in the antiholomorphi setor whih in the follow-ing will be denoted as v(�1)s (�; q). The three solutions orresponding to 3di�erent si values form a vetor:~u(�1)(�; q) = 264 u(�1)s1 (�; q)u(�1)s2 (�; q)u(�1)s3 (�; q) 375 :The analytial ontinuation matrix � is de�ned in the intersetion of thetwo onvergene irles:~u(�1)(�; q) = � (q) ~u(1)(�; q) : (15)



Spetrum of the Odderon Charge for Arbitrary Conformal Weights 353In order to alulate � we onstrut a Wro«skian:W = ������� u(1)1 (�) u(1)2 (�) u(1)3 (�)u0(1)1 (�) u0(1)2 (�) u0(1)3 (�)u00(1)1 (�) u00(1)2 (�) u00(1)3 (�) ������� : (16)Next we onstrut determinants Wij , whih are obtained from W by repla-ing j-th olumn by the i-th solution around �1. Then:�ij = WijW : (17)Matrix � (q) does not depend on �, but only on q and also on h. Wehoose to alulate it at � = 0. Repeating the same steps in the antiholo-morphi setor one onstruts � (q) where:q = �q? : (18)Here q denotes the odderon harge in the antiholomorphi setor, whereasthe star over q denotes omplex onjugation. In priniple two possible hoiesfor q , namely with + and � signs should be onsidered. This follows fromthe fat that both " and " are symmetri funtions of q (or q) [9℄. However,only the hoie of Eq. (18) leads to the non-zero solutions of the quantizationonditions1.Funtion � is single-valued if:h = 12(�+m) + i� and h = 12(��m) + i� ; (19)where � and � are real numbers where m is an integer multiple of 3. Furtheronstraint omes from normalizability, whih requires that � = 1 for thephysial odderon state [6, 9℄.The single-valued wave funtion an be onstruted only if both se-tors, holomorphi and antiholomorphi, are onsidered. In the viinity of �;� = �1 the wave funtion of the whole system reads:�(�1)hhqq(z; �; z; �) = zh=3 zh=3 ~v(�1) T(�; q)A(�1)(q; q) ~u(�1)(�; q) : (20)The requirement that the wave funtion � should be single-valued, leads tothe observation that matries A(�1) have to be diagonal: A(�1)=diag(�; �; )and A(1) =diag(�0; �0; 0). However, beause the two solutions (20) are re-lated by Eq. (15), we get the following relation:�T(q)A(�1)(q; q)� (q) = A(1)(q; q) : (21)1 Note, that beause of the fator of i in the de�nition of � (9), our sign for q is di�erentthan the one in Ref. [16℄.



354 M. Praszaªowiz, A. RostworowskiIntroduing �!a = (�; �; ) and �!b = (�0; �0; 0) we an onveniently rewriteequations orresponding to the zeros of A(1) in the matrix form:Cup�!a = 0 and Clow �!a = 0 ; (22)where matrix Cup, orresponding to the 3 zeros above the diagonal of matrixA(1), takes the following form:Cup = 24 � 11�12 � 21�22 � 31�32� 11�13 � 21�23 � 31�33� 12�13 � 22�23 � 32�33 35 (23)and matrix Clow , orresponding to the zeros below the diagonal of A(1), isobtained from Cup by interhanging � $ � .Quantization onditions follow from the requirement that there existnon-zero solutions of Eq. (22) for �, � and :DetCup = 0 and DetClow = 0 : (24)Moreover the �rst two equations in (22) should be uniquely solvable for �,� and  in funtion of one free parameter (whih is not automati even ifEqs. (24) are satis�ed).Let us now disuss numerial solutions of the quantization onditions (24).We have found that the zero eigenvalue of the odderon harge exists alwaysfor arbitrary onformal weight. Korhemsky [9℄ has argued that these statesshould be exluded from the spetrum of the odderon Hamiltonian (3), sineit is not lear if they are normalizable (see however Ref. [12℄). In what fol-lows we shall onentrate only on the imaginary solutions for q whih, asalready said, are relevant for the odderon system.We have �rst looked for the solutions of the quantization onditions (24)orresponding to m = 0 and � = 0, i.e. for h = h. Here solutions are foundfor arbitrary real �. With our hoie of phases in Eq. (12), both DetCupand DetClow are imaginary along the imaginary axis in the omplex q plane.Moreover, for imaginary q: DetCup=DetClow � DetC. In Fig. 1 we plotIm DetC as a funtion of Im q for h = 1=2, or equivalently � = 1 (solid line)and for � = 2 or 0 (long dash line). We see that Im DetC is an antisymmet-ri, osillating funtion of Im q, with amplitude growing with jIm qj. Zerosof the funtions in Fig. 1 orrespond to the quantized values of q. For �=1two non-zero eigenvalues are visible: q=�0:2052575�i and q=�2:34392�i.We have found two more eigenvalues of Im q: �8:326346 and �20:080497.For higher q's are must be taken in order not to loose numerial stability.These eigenvalues have been found previously in Ref. [16℄.
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Fig. 1. Im Det C as funtion of Im q for h = h = 1=2 � solid line, for h = h = 0and 1 � long dash line and for (h; h) = (2;�1) or (�1; 2) � short dash line.It is interesting to follow the �ow of q in funtion of � (still for m = 0and � = 0). As soon as we move h away from 1/2 the little wiggle, seenfor h = 1=2 (or equivalently � = 1), straightens up and the two eigenvaluessymmetrially drift towards zero. Eventually, for h = 0 and for h = 1,they reah zero value. This is depited in Fig. 2 where the drift of the�rst 2 positive eigenvalues of q̂ is plotted in dependene on h = h. Seondeigenvalue reahes zero for h = 3 and h = �2. This kind of behavior isobserved for all imaginary eigenvalues, for whih our numerial proeduresare stable.
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Fig. 2. Positive part of Im q of two �rst eigenvalues as funtions of (real) h = h.



356 M. Praszaªowiz, A. RostworowskiPhysial odderon state, however, orresponds to �xed � = 1. Thereforewe have looked for the solutions of (24) for � = 1 and � = 0. Here solutionsexist only for disrete values of m. The two lowest values of m for whihnon-zero, imaginary solutions for q exist are equal m = 0 and jmj = 3.There also exist solutions for higher j m j, whih will not be disussed inthis note. In Fig. 1 the short dash line orresponds to Im DetC for jmj = 3.Here only one non-zero eigenvalue of q is visible, namely �1:176667� i. Wehave also found two next eigenvalues orresponding to Im q = �6:35591 and�17:69346.It is also interesting to onsider omplex h = 1=2 � i �. As soon as onevaries �, Im q grows as � inreases [18℄. Our results agree with the ones ofRef. [18℄.As a ross-hek on our method we have also solved quantization on-ditions for h = 3, 4, 5 and 6. For these values of h Korhemsky in Ref. [9℄found real spetrum of q̂ for the polynomial solutions of the pertinent Baxterequations. Our quantization onditions are more general, so we �nd moreeigenvelues for integer h, among them the ones reported in Ref. [9℄.To summarize: in this short note we have solved quantization onditionsfor the odderon harge q̂ whih has been identi�ed with the ross-produt ofthree onformal spins. We have proposed to study the odderon equation interms of a new variable alled �, whih was earlier disussed by Janik in theontext of the modular invariane of the odderon system [17℄. We have solvedquantization onditions for the odderon harge using the method reentlyproposed by Janik and Wosiek [16℄. Our approah an be straightforwardlyapplied for any onformal weight h. For h = 1=2 we have reprodued eigen-values found in Ref. [16℄. For integer h � 3 we have reprodued eigenvaluesof q̂ found by Korhemsky in Ref. [9℄. To illustrate the possibility of solvingthe quantization onditions for arbitrary h we have studied the drift of thelowest eigenvalues of q̂ for real h. For the physial odderon state: � = 1,� = 0 in Eq. (19) the lowest values of h for whih Eq. (24) ould have beenfound orrespond to m = 0 and �3. For the unphysial ondition h = hi.e. m = 0 ontinuous sets of solutions exist for real (� = 0) h. Furtherresults, also for omplex h and for real values of q, will be disussed in theforthoming paper [19℄.We thank R. Janik and J. Wosiek for disussions. Speial thanks for hos-pitality are due to K. Goeke and the Institute of Theoretial Physis II of theRuhr-University in Bohum, Germany, where most of this work was done.Partial support of Polish KBN Grant PB 2 PO3B 044 12 is aknowledged.M.P. aknowledges support of Alexander von Humboldt Stiftung.
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