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It is shown that the recently established strong mass-dependence of
the radii of the hadron sources, as observed in HBT analyses of the ete™
annihilation, can be explained by assuming a generalized inside—outside
cascade, i.e. that (i) the four-momenta and the space-time position four-
vectors of the produced particles are approximately proportional to each
other and (i) the “freeze-out” times are distributed along the hyperbola

2_ 2 .2
t° -z =15.

PACS numbers: 13.60.Le, 13.60.Rj, 13.65.+i, 25.75.Gz

It has been found recently that the parameters describing the B—E inter-
ference in eTe~ annihilation depend strongly on the masses of the particles
used in the analysis [1,2]. One finds 7, between 0.7 and 1 fm; rx between
0.5 and 0.7 fm; r4 between 0.1 and 0.2 fm.

In the present note we suggest that this dependence can be understood
if the produced particles satisfy approximately the (generalized) Bjorken—
~Gottfried conditions [3,4]:

* This investigation was supported in part by the KBN Grant No 2 P03B 086 14.
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(i) The 4-momentum g, and the 4-vector z,, describing the space-time posi-
tion of the production (“freeze-out”) point of a particle are proportional

qu = AT (1)

The proportionality factor A is a scalar with respect to boosts in the
longitudinal direction.

(#1) Particles are produced at a fixed proper time 7y after the collision
o=, )
where t, z are time and longitudinal position of the production point.

From (1) and (2) we derive

A= (3)

70
where M2 = E? — qﬁ. Thus finally we have

M

G = - (4)
This picture is, of course, purely classical and can only be treated as a
heuristic guide-line when applied to actual production processes. A more
adequate formulation of these conditions can be achieved using the Wigner
representation W (P, z) of the (single-particle) density matrix which, as is
well known (see e.g. [5]), corresponds — as close as possible without contra-
dicting quantum mechanics — to the space-time and momentum distribution
of the produced particles. To implement the conditions (i), (ii) above, we

postulate W (P, z) in the form

2 PQ
W(P,) ~ 0(t2 — 22 — 12) exp [_I_L _ _L]

2R 247
M, 2 M, 2 M, 2
<P+ — ?.T}_F) + (P_ — Tiﬁ_> (PJ_ — Tiﬁj_)
X exp 552 — 552 ,(5)
I €L
where
ry =1t+2 Ppr=Py+P, (6)
so that

M?=P,P; 71¢=xz,3_. (7)
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The first exponential represents a standard cylindrically symmetric “longi-
tudinal” distribution in momentum and in configuration space!. The new
point is the second exponential which introduces correlation between the
momentum and the point of emission of the particle, as required by the gen-
eralized Bjorken-Gottfried condition (4). Such correlations are known to
influence strongly the HBT effect on particle spectra [6]. It is thus this fac-
tor which, we think, is responsible for the mass dependence of the observed
HBT radii?.

To derive HBT correlations we need to calculate from (5) the density
matrix in momentum space (see e.g. |[7-10]). This can be done using the
relation between W (P, z) and p(q,q’) which reads

p <q . %,q' _p- %) _ /d‘lxeinW(P,x). (8)
From (8) we see that now we have to take
a+dq
P="7= M{=PP; Q=q-d (9)

with the 4-momenta g and ¢’ on the mass-shell.
To continue, it is convenient, as usual, to introduce the rapidities

1 P_|_ 1 £E+
Y = —log—": 5n=_1log . 1
slog 5 1 =5log— (10)

The longitudinal integral

I = /dneXP (—% [(eY —en)? 4 (e - e—n)2]>

[
x exp (itg [m cosh(y — n) —m’ cosh(y’ —n)]) , (11)

where (m,y) and (m’ ,y) are transverse masses and rapidities correspond-
ing to momenta ¢ and ¢’, can be approximated by

I = /dnexp (-%(Y - n)2>
comp (im [ (14 052 o (14 O2))) g

! To simplify the argument, we ignore the longitudinal momentum and z dependence of
the single particle spectrum. This seems a reasonable approximation at high energy.

2 Admittedly, the form (5) is rather schematic. In particular, gaussians are taken for
simplicity and can be replaced if necessary. We also did not include fluctuations of
70. These simplifications are not essential for our argument, however.
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Ignoring normalization and phase factors, inessential for our argument, we
thus obtain

72
exp (—fm i (v /) (13
where )
M .To

The transverse integral can be evaluated exactly. Ignoring again the nor-
malization and phase factors we have

S \2
P2 , 2 (P - T—jf) .
I, = exp| —% /d rexp | — — —1QT
2A% 2R? 202
— —\ 2 e 2R2
~ exp _(Q+2q) o (q Q) eff , (15)
8AL g 2
where all vectors are two-dimensional (transverse) and
1 ; 1 R3 7363
A M2 270 252 +A—23 R = 2 éTO L252 : (16)
off 1RT + 7501 1 1Ry 47507

From (15) we find the single particle transverse momentum distribution:

2

o QiTo qi
e d =) = exn [ - . (17
1(§=q =4qL) =exp < 2(m? + 2 )RZ + 21262 Mi) (17)

do
d%q,

One sees that the average transverse momentum is largely determined by the
value of A which thus cannot be too large if one wants to insure average
transverse momentum smaller than, say, 500 MeV.

Let us also note at this point that consistency with uncertainty principle
implies the inequality [10]

1
ReffAeff > 5 . (18)

As seen from (16), at large transverse mass M, this inequality can only
be satisfied if §, is significantly larger than A (and thus than the average
transverse momentum).
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To proceed, we shall assume that all correlations between particles which
are not caused by Bose—Einstein interference can be neglected. Using the
formulation of [10] we thus write the two-particle density matrix as a product

p(q1, 42; 41, 65) = p(a1,q1)p(q2, 43) - (19)

It then follows from the general theory of HBT effect (see, e.g. [9]) that the
observed two-particle distribution is given by

2(q1,92) = pa1, q1)p(q2; g2) +p(q1,92)p(q2, ¢1) = 2(q1)2(q2) (1£C(q1, g2))

(20)
where
Clq1,02) = C)(q1,92)C1L(q1,62)
_ I Tylgna) P | 11 (g1, q2) | 21)
I(q1,q1) 1) (92, g2) 11 (q1,q1)11 (g2, q2)
describes the HBT correlations.
Using (15) we find

C = e_(‘Tl_‘E)QR%{BT = e_QiRiHBT , (22)

where

1 T2 1 1
R? = R%. — = 0 R26%2 — 2 ) — ——. 23
LHBT = el 4 A2~ M2 R? + 1202 < L5y 4A% (23)

Since

2
M2 = <7mu ;rm“> +my my, sinh’ <L . yg) , (24)

we conclude that indeed R2 gy falls with increasing (transverse) mass of
the particle.
For C)| we have

Ci/(q1,92) = exp (—RﬁHBT(muyl —ma1ys + (miL — mu)Y)2> , (25)

where S
R2 _ M1
[[HBT — 2|B2|5ﬁ :

From (14), one sees that also RﬁHBT falls with increasing M?.

(26)
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If, as is customary (see e.g. [1]), one works in the frame where ¥ = 0,
(25) can be written as

Cy(q1,q2) = e Fiunr(@1:-02:)" _ o~ RiuprQjf | (27)

This completes the qualitative discussion of the mass effect in our ap-
proach. It remains to be seen if the values of the HBT radii given by (23)
and (26) can be adjusted to be close to the ones obtained from the LEP
data [1,2].

T,=R,=12fm
RHBT [fm] A= 360 Mev
§, = 700 Mev
5, = 350 Mev
1 —_——— — — (Imy; -m2, 1> =150MeV

=—

AA{E NI

I 1 l 1 1 I 1 l 1 1 I
150 300 500 800 1000 1300

M, [MeV]

Fig.1. Riupr and Rjupr plotted versus M. The parameters are shown in the
figure. The data from 7w, KK and AA correlations are also indicated.

In Fig. 1 Rgpr and R upr are plotted versus M, the transverse mass
of the two-particle system. The values of other parameters were taken as
follows : A} = 360 MeV, 79 = Ry = 1.2 fm, §, = 700 MeV, 4 = 350 MeV,
|my —ma | = 150 MeV. One sees a rather strong mass dependence of both
longitudinal and transverse radii. We did not try to fit the obtained val-
ues to the data as this would require working directly with data themselves
and thus goes beyond the scope of the present investigation. It is neverthe-
less recomforting to observe that the HBT radii, obtained with “reasonable”
values of the model parameters, are not far from the ones found in LEP
experiments.
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We thus conclude that the existing data on HBT radii are consistent with
the hypothesis that — in eTe~ annihilation at high energy — 4-momentum
of a produced particle is approximately proportional to its space time posi-
tion 4-vector at the freeze-out time3.

This proportionality is of course well-known for the longitudinal compo-
nents [3,4], and is exhibited explicitly in numerous models [11]. At this point
our approach is similar to the one proposed for a longitudinally expanding
fireball [9, 13|, although the mass dependence following from our Eq. (5)
seems somewhat stronger. On the other hand, a rather novel feature follow-
ing from our analysis is that the original Gottfried-Bjorken proportionality
relation should be extended to include also the transverse components of the
4-vectors, as explicitly expressed in (4).

Several comments are in order.

(i) It should be emphasized that our argument is only semi-quantitative
and can be improved in many details when applied to real data. In
particular, the gaussians in the Wigner function (5) can be replaced
by more realistic functions for numerical analysis. Also, the Fourier
transform (11) can be calculated numerically without approximations
shown in (12), which were introduced simply to obtain an analytic re-
sult. Finally, including a distribution of 7 is probably needed to obtain
a good description of data. We feel, however, that all this necessary
fine tuning does not invalidate our main conclusion, summarized in

Eq. (4).

(7i) As we already mentioned, the results shown in Fig. 1 do not represent
a fit to experimental data which we think would be premature at the
present stage. Therefore, the values of the parameters used to produce
this figure are by no means final. Some of them seem rather stable,
however. In particular, A, is closely related to the average transverse
momentum and thus cannot be arbitrarily changed. Also a rather large
value of J, seems necessary to satisfy the consistency condition (18).
This means that the correlation between the transverse momentum
and transverse position of a particle at freeze-out is fairly weak. It is
remarkable that such a weak correlation is sufficient to create a strong
variation of R gpT with the transverse mass of the investigated two-
particle system.

(#i) From the point of view of data analysis, our argument emphasizes the
importance of the investigation of the HBT correlations as function of
the transverse mass of the pion pair.

3 Recently an alternative interpretation has been proposed in [12].
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(iv) Relation (4), when applied to transverse directions, implies the ex-
istence of an important “collective transverse flow” in the system of
particles produced in ete™ annihilation?. It would be interesting to
search for other evidence of such a “flow” in the data.

(v) A natural modification of the relation (2) is to consider freeze-out times
given by the fully Lorentz-invariant formula

22— 22—y -2t =12, (28)

which leads to qualitatively similar results as those discussed in the
present paper. It is not clear if the present data can distinguish be-
tween (2) and (28) but investigation of this question is certainly a
challenging issue for future work.

(vi) The recent data of L3 coll. [15] show a strong dependence of the
transverse 7 HBT radius (and a somewhat weaker dependence of the
longitudinal radius) on the average transverse mass of the two pions
m, = %(ml 1 + mg). This seems not inconsistent with our results,
although more work is needed to establish a closer connection between
M and the average transverse mass m | which is used to parametrize
the data. Thus before more detailed calculations (including a realistic
single particle distribution) are performed, it is not clear to what ex-
tent the results shown in Fig. 1 are related to the observations of [15].

We would like to thank G. Alexander for calling our attention to this
problem and for informing us about his recent results. The help of H. Palka
in interpretation of data is also highly appreciated.

Note added in proof: After this paper has been sent to printers, we have
learned that the consequences of Eq. (1) for HBT correlations were discussed
earlier [16]. We would like to thank T. Csorgo for calling our attention to
this reference.
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