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The parton content of the electron is analyzed within perturbative
QCD. It is shown that electron acquires an anomalous component from
QCD, analogously to photon. The evolution equations for the ‘exclusive’
and ‘inclusive’ electron structure function are constructed and solved nu-
merically in the asymptotic Q2 region.

PACS numbers: 13.60.—r, 14.60.—z

1. Introduction

The photon structure function describes the distribution of QCD partons
inside a photon. It is known for long [1] to have ‘anomalous’ component,
which is calculable within perturbative QCD and dominates at asymptoti-
cally large momentum scales. This asymptotic solution, as opposed to those
for hadrons, is independent of input data measured at lower momentum
scales. At finite scales the photon structure gets modified by both pertur-
bative and non-perturbative QCD contributions.

The QCD structure of the photon is revealed in interactions with a highly
virtual ‘probe’. To fix attention let us think of a virtual gluon G* with
momentum ¢, probing the photon which gets resolved into QCD partons.
Their density f](z,Q?) (k = ¢,q,G), depends on fractional momentum z
of the parton with respect to photon and on the gluon virtuality Q2 = |¢?|,
which must be large as compared to the QCD scale A(QgCD.

The photon structure is measured in experiments where the electron
serves as a target. The process is depicted in Fig. 1a, where also the notation
is given. The black blob denotes ‘resolved’ photon and sums up all collinear
QCD contributions. The full cross-section gets also a contribution from the
hard (“direct”) G*v scattering (see e.g. [2]), but we will not discuss it in this
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a) G*(q) b) G*(q)

Fig. 1. Deep inelastic scattering on a photon (a) and electron (b) target

paper. Actually the photons emitted by the electron are virtual and, from
the point of view of a physical process, G* measures the structure (parton
content) of the electron, as depicted in Fig. 1b.

The aim of this paper is to study the QCD predictions for the electron
structure function at large momentum scales. In particular we will discuss
the dependence on the maximal virtuality of intermediate photons emitted
by the electron, i.e. on the maximal momentum transfer between final and
initial electron. In the next section we present the problem in general and
discuss the relation to experimentally measured quantities. In Sec. 3 we
derive the QCD solution to the non-singlet electron structure function in
the moments space. A complete set of evolution equations is constructed
and solved in Sec. 4. In Sec. 5 we present the summary and outlook.

2. General framework

The space-like virtuality of the photon exchanged in the diagram in
Fig. 1a

(p—p')? =P} (1)

can be fixed by measuring the momentum p’ of the outgoing electron. Oth-
erwise it lies within kinematic limits

2
_ 9y z+y—2y
Prin(y) = mil — = Py < ng, (2)

where m, is the electron mass, y = gp,/gp and z = Q?/2pq (these are
approximate expressions valid at P,$ < Q? — the exact formulae can be

found in [6]). Usually the upper limit on P,$ is set by experimental conditions
(e.g. by anti-tagging)

P2 < P (3)
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The density of partons (k = ¢,q, G) with momentum pj = zp seen by our
probe in the electron reads

P2
Fi(e @4 PY) = [ dwdy(z—ay) [ AP £, PR, Q2P (42
Pl?)in(y)
1 J P2
Y e z
Z Pl?)in(y)

where

Oem
O -2y
’Y( ’Y) 2 P,% Yy P,?

1 [14(1-y)? 2

[ +(1-y) mg ] (5)
and f} (=, Q?, Pf) describes the G* interaction. In Eq. (5) only transverse
photons are taken into account which is correct within the leading order of
perturbative QCD. All QCD contributions are contained in fg(m,QQ,P,g),
which is discussed in the literature as the structure function of virtual photon
[2-4]. In the following we will assume that P? > m?2 which allows us to
neglect the second term in the square brackets of Eq. (5).

For Q% > P? fi(z, Q?, Pf) can be approximated by the structure func-
tion of real photon (P,? = 0) and upon integration over P72 we arrive at the
Weizsdcker—Williams [5] formulaz:

1
dy z p?
flg(za Q27P2) ~ ? s(y) g<§aQ2a0) log ma (6)

where

fe( ) = Oem 1+(1_y)2
YW= o0 y ’
Formula (6) has probabilistic interpretation in terms of the density of pho-
tons emitted by the electron and the density of QCD partons within the
photon. As discussed in [6], this partonic picture breaks down at very high
energies when Z and W bosons contribute.

In general, the experimentally measured electron structure function is
always integrated over a range of photon virtualities and summed over the
contributions from all weak intermediate bosons. This structure function
describes the QCD content of a real (on-shell) electron and allows for proba-
bilistic interpretation of the cross sections. Even when we neglect the contri-
butions from Z and W bosons the integration over P,$ disables the partonic
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interpretation [7]. As compared to the standard QCD structure functions
the electron one has extra dependence on maximal photon virtuality P2,
which means that we do not integrate over all final electron states. In this
sense we say that this electron structure function is ‘exclusive’.

Eq. (6) is an approximation to the electron structure function for
Q? > P2. The approach to this limit within QCD is discussed in the next
section.

In the following we will assume that the Z and W bosons do not con-
tribute but we will allow for arbitrary P? < Q2. For both @2 and P? much
greater than m2 we have (cf. Eq. (4))

(@, P?) = / P; fo e Q% P2), Q
PZ

min

with explicit z dependence suppressed and ® denoting convolution
1 1
F99)@) = [ do [ dyic -z f@)go). )
0 0

We know from experiment that a nearly real photon (PAY2 < A(Qgc])) has
a hadronic component which is often described phenomenologically in terms
of the Vector Meson Dominance model (VDM) (see e.g. [2,3] and references
therein). This non-perturbative hadronic component becomes less important
at higher Q2. As will be shown in the next section, any perturbative QCD
predictions for PA? dependence require P,$ > AéCD and this is the region we

will consider in details. To this end we split the integral over P,? in Eq. (8)
into pr —i—fpz with some P§ > A3cp. In the first integral we use the

min

VDM-like photon structure function, while the whole dependence on P? is
contained in the second one:

f@.P) = fo / TS

P2,

min

A P2
+ie / T (10)
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3. QCD calculation of electron structure function

From the theoretical point of view the QCD behavior of structure func-
tions is most easily analyzed in terms of their moments, defined as

1
/dmxn Lf(x) (11)
0

for any function f.
The electron structure function we are going to investigate has the form
of the second term of Eq. (10) and its moments read

t1
fitntt0) = Fi() [ty 1.1, (12)
to
where
t=log —— i , to =log —— iy , t1 =log —— i , ty = log P$ (13)
A?QCD A(QQCD /%CD ’ /%CD

and explicit g argument of f7(n,%,1,%0) is to remind on the dependence on
‘auxiliary’ scale Pg.

Our task will be to integrate f)(n,t,t,) over ¢, and to construct master
equations for the electron structure function. In order to introduce notation
and get some understanding of the energy scales involved, let us first briefly
remind the derivation of the virtual photon structure function.

The master (DGLAP) equations [8] read

df;//q(na ta tw)

_ CGem 2
dt N 277 P ( )
5Pt 1) + 5 -Pag ()[4 (st ), (14)
df)(n,t,t a o
% = % Gq(n);[f(?(natat’y)—i_fg(natat’y)]
+ 5-Pac(m)fEn.t.1,), (14b)
where A
Py (z) = 3[z% + (1 — z)?] (15)

is the photon-quark splitting function and P;; are the QCD (Altarelli-Parisi)
splitting functions. In these equations the photon virtuality (¢,) is fixed and
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can be thought of as an “external” parameter describing the state, QCD
content of which depends on ¢ and n. The inhomogenous term in Eq. (14a)
makes the difference with QCD equations for hadrons.

The standard method of solving the evolution equations is to decompose
first the structure functions into singlet and non-singlet components. To
simplify the discussion we will present formulae for the non-singlet part
only. Defining the non-singlet part of a structure function as

~ 1 &
fq/q:fq/q—Q—mZ(fq’+fq') (16)
ql
we obtain
af’, (n,t,t,) ~
q/g\ " Qem 9 o\\ B a y
T = S G2 () Py () + o Pag(n) [y (1), (17)
where
1 &
l] = 2— qz:le (].8)
In the leading log order of QCD
a(t) 2
— = 1
2 [30t ( 9)
with By = 11 — 2n¢/3 for ns flavors, and Eq. (17) becomes
df)ia(nitity) dgq(n) -
S = ()~ St ), (20)
where
- Qem A
dgy(n) = 2e7r (63 - <€3>)Pq7(n) (21)
and
Pyq(n)
dgq(n) = —2—— Bo (22)

The general solution to this differential equation reads

_ d (n)t " 14dgq(n)
Y - il (=
fq/q(n,t,t,y) 1+ dgq(n) [1 <t>

t/ dgq(n)
+f a1 1) <?> . (23)
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Fig. 2. Ladder expansion for the photon (a) and the electron structure function (b)

As shown for the first time by Witten [1], the first term is characteristic fea-
ture of the photon structure function and for large ¢ it dominates, resulting
in linear growth with ¢. The second term in this solution depends on the ‘in-
put’ measured at some ¢’ and is analogous to the leading-log QCD evolution
of hadronic structure functions. For low ' and ¢, the measured structure

function f;/q(n, t',t,) can be identified with the VDM-like fq%,) (n,t',ty) dis-
cussed in the previous section. -

Eq. (23) gives no explicit prediction on the ¢, dependence of fg/q(n, t,ty)
except for the fact that the asymptotic (¢ > t') solution is independent of ¢,

fg/q(n,t,m) ~ Mt. (24)

Another method of calculating QCD structure functions is the ladder
expansion. The corresponding diagram for the photon structure function is
shown in Fig. 2a. Actual calculations should be performed in the axial gauge
but here we will integrate only over the quark emitted by the photon, which
is as simple as

; 2
f;//q(’n,t,t,y) = JQV(n)/%qu(naQ2ak2)- (25)

2
P"/

The QCD ‘structure function of a point-like virtual quark’ fg,(n, Q% k?)
corresponds to the ladder diagram of Fig. 2a without the lowest quark rung.
The latter is explicitly integrated in Eq. (25) with the electromagnetic v-gq
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coupling contained in dy,(n) and 1/k? coming from the quark propagator.
The only difference with pure QCD is that here the coupling is electro-
magnetic and does not depend on k?. Changing the integration variable to
T = log(kQ/AQCD) and using the QCD formula

T)dqq(") (26)

qu(na Q27 kg) = (?

we arrive at [4]

t
- dqq
T (nitit) = /de (27)

2%

B (n)t + 14+dgq(n)
- T [“(7”) e

Formally this result equals to the solution of master equations Eq. (23) with
t' =ty and fq/q(n,tw,tw) =0.

Let us explain the implicit assumptions made in the derivation of Eq. (28).
Thanks to the strong ordering of virtualities in the ladder expansion

PI<k<...<@ (29)

we could integrate over the whole range of quark virtualities k2. Within
QCD, however, this can be done only if the photon virtuality P2 > AQCD
Moreover we have used the fact that in perturbative calculation such photon
has a point-like coupling to quarks. In other words the photon of virtuality
PA? > AéCD has no QCD structure at the scale Q? = PVQ. We see, thus, that
Eq. (23) is valid for any P? while Eq. (28) for P; > Agqp, only. This is
exactly the reason for introducing the intermediate scale PZ in Eq. (10).

In the following we will assume that PA? is large enough for Eq. (28)
to hold. With this assumption the integration over P727 as in Eq. (12),
is straightforward and results in the following expression for the electron
structure function

t1

Folnstotisto) = Fitn) [atn 7 (nitit,)

to

f5(n)dgy(n) t
- 1+£Lﬁ{“_“

S [(t?)“ _ (g)”] } (30)
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This result corresponds to the diagram depicted in Fig. 2b, where the range
of photon virtualities is controlled by imposing a limit on momentum transfer
to the outgoing electron. Eq. (30) depends on three scales t > t; > ty with
to kept fixed. In order to find formulae for large ¢ (£ > () we have to specify
the relation between ¢; and ¢. Let us consider two extreme cases: t1 < ¢
and t; = t.

e ‘Exclusive’ case: t1 <€ ¢t

_ Fe(n)dy (n
fqe/q(natatlat()) = %t(tl - to) (3]‘)

e ‘Inclusive’ case: t1 =t

f £ fe n J n
Fata(nt) = fojq(nt,t,t0) =~ %#’ (32)

where we have dropped the last two arguments of the ‘inclusive’ struc-
ture function.

To obtain the full result for fqe g e still have to add the integral over the

photon virtualities below PZ. To this end we use Eq. (23) with experimental
input replaced by a VDM-like parametrization at ¢ = #:

- dgy(n)t to\ o)
y ~ oy (b
Tarat00) % ) [1 <t)

to

_ dgq(n)

V)

As discussed earlier f; /q (n,t0,ty) should decrease with increasing ¢, and

vanish for t, > ¢y (see e.g. [3] for a phenomenological parametrization).
Thus for ¢ > ty we get the unique prediction independent of the ‘input’ at

low t()
to

fe(n) / dt [ (m 1) =

tmin

fs(n)czw(n) t

T dyg(m) (10 tmin); (34)

where tpin = log(PnQnin/AéCD).
For large t this low PA? contribution grows linearly with ¢ and can be
neglected in the ‘inclusive’ case. The ‘exclusive’ case Eq. (31) becomes now

e N fe('”)‘zq'y(”) N fe(”)czq'y(") P2
sa(ntt) = mt(tl — tmin) = 17+dqq(n) t log 7 (35)
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This is exactly the Weizsdcker—Williams formula Eq. (6) with asymptotic
solution Eq. (24) used for the photon structure function.

Much more interesting is the ‘inclusive’ case Eq. (32). To understand this
QCD prediction let us look first at the photon structure function. There the
effect of QCD evolution can be seen by comparing the full result Eq. (28)
with the Quark Parton Model (QPM) limit. We reach this limit by taking
Agcp = 0 (a(t) = 0) in Eq. (28), which results in

2

ot (36)

£ 4t t)lqpat = dgy(n) (£ — t,) = dgy (n) Tog

Thus we see that for large ¢ the net effect of the QCD evolution on the
photon structure function is to change dg,(n) into dgy(n)/(1 +dgq(n)). The
dependence on ¢ remains the same but the structure functions (transformed
back to the z-space) have different dependence on z. As usually the QCD
evolution ‘shifts’ the distribution towards lower x values. Analogously, for
the electron structure function the QPM limit of Eq. (30) reads

7 fs(”)ng(”)
2

fqe/q(na t,tq, t0)|QPM =~ (tl — to)(zt —t1 — tO)

fe(n)dg,(n) P2 § §
% log P—OQ <log g—g + log %) . (37)

The reader can easily check that this result corresponds to the integral fttol dt,,
of the QPM formula for the photon structure function, Eq. (36).

Comparing the QPM result with the QCD formulae Eq. (35) and Eq. (32)
we see that the effect of QCD evolution is to multiply the moments of the
electron structure function by 1/(1 + dge(n)) in the ‘exclusive’ case and by
2/(2 + dgq(n)) in the ‘inclusive’ case. After transforming back to the z-
space, this means that QPM, ‘exclusive’ and ‘inclusive’ electron structure
functions all have different dependence on z. In particular the ‘inclusive’
solution fqe/ q(n, t), which corresponds to a standard structure function, gets
modified analogously to the photon case but by another factor. In this sense
the electron acquires an anomalous component from QCD.

So far we have discussed the non-singlet solution. The singlet case goes
along the same lines but will not be presented here. Instead, we construct in
the next section the evolution equations which can be solved in the z-space.
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4. Evolution equations

Let us first show that Eq. (30) is the general solution to the following
master equations

ofe _(n,t,tl,to) d -
- = dge(n)(t1 —to) — # ¢ (n,t,t, %), (38a)
afe —(n,t,tl,to) N _
YIS )yt
dgq(n)+1
1+ dgq(n) t

where dg(n) = fs(n)czq,y(n). Note that the second equation is just the
derivative of Eq. (10) with Eq. (28) inserted for the photon structure func-
tion. A general solution to Eq. (38a) can be written as

dqe(")

F€ (n.t.t1.19) = $1) ¢~ ag(n) ;. TaeN")
fq/q(na » U1, 0) C(’n’a 1) + 1+dqq(n)

(t — to)t. (39)

So far C(n,t;) is an arbitrary function of ¢;. Nb. if ¢; remains constant
when ¢ — oo the second term of Eq. (39) gives the asymptotic solution for
the ‘exclusive’ case.

From the second equation Eq. (38b) we obtain

dqe (n) tlliqq (n)+2

C ’n,t = C(O) n) — 10
" "o dgq(n)][2 + dgq(n)] (40)
with arbitrary C(©(n).
Now the general solution to Eq. (38) reads
,}qu/q(’n, t,t1, tO) = C(O) (n)t_dqq (n)
2+dqq(n) 7dqq(n)
o dual) 2+ dyg )

Upon imposing the boundary condition fg/q(n,t,to,tg) = 0 we recover the
formula Eq. (30) derived in the previous section.

The complete set of master equations in the z-space analogous to Eq. (38)
can be obtained by changing the products of moments into convolutions and
observing that there is no inhomogenous term for the gluonic component —
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cf. Eq. (14). Suppressing explicit ¢y dependence in the function arguments
we have

O gt 1)

o = O;e: Pyelt1 — to]
+%qu®f5/q_(t,t1) + %PqG@)fg‘(tatl)a (42a)
35/;—72?151) = fre ], (th), (42b)
% = %qu ® i [fg(t 1) + f7(t,t1)]
q=1
‘f‘%PGG ® f&(t, 1), (42¢)
Heh) — o o), (42d)

where Pqe = P,n ® f,“;

These equations, as they stand, are not very useful because they contain
both electron and photon structure functions. We will present now how a
closed set of equations for the electron structure function is formed in the
large t region. As already discussed previously, the large ¢ limit depends on
additional assumptions on #; vs. ¢ dependence. Quite generally one can take
t1 to be some function of ¢ defining a ‘path’ in the ¢-t; plane along which
the large ¢ limit is approached. Denoting ¢; = g(¢) we have

dfﬁg;a h) _ 3f1§g;at1) +gl(t)%;ﬂfl)
= % +d (1) fE @ f(t, ). (43)
A simple choice for g(t) is
g(t) = (1 —a)ty +at, (44)

where #; is constant and 0 < a < 1. The two extreme cases considered in
the previous section correspond to following choices for the parameter a.

e ‘Exclusive’ case
a=0,ie g(t) =%;. As ¢'(t) = 0 the second term in Eq. (43) vanishes.
The solution grows linearly with ¢ (¢f. Eq. (4)). The resulting master
equations have a constant (¢-independent) inhomogenous term
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df;/q(t7 tAl) Oéemp ~

dt o welts = o]
(6 e ~ (0% e ~
+5Fag ® fo/q(t11) + 5 FPoc ® fG(E,11), (45a)
dfe(t, t -
% = _PGq ®Z fo@t, b)) + fot,t)]
q=1
+%PGG ® f&(t, 1) . (45b)

e ‘Inclusive’ case.
a=1,1e g(t) =t and ¢'(t) = 1. Now the virtual photon structure
function f](¢,t) vanishes because both arguments are equal. We arrive
at the equations which are formally the same as in the ‘exclusive’ case
but with #; set to ¢ and ¢y neglected. The master equations have now
the inhomogenous term proportional to ¢, which results in a different
z-dependence of the solutions.

According to Eq. (31) and Eq. (32) the asymptotic solutions to these
equations have the form

filent) = (52 e(e) (46)

with ¢; constant and ¢; = ¢ for the ‘exclusive’ and ‘inclusive’ case, respec-
tively. Here we have taken to = 0 (P? = A%CD). Substituting the leading-log
formula Eq. (19) for a(t) we end up with ¢-independent integral equations

1
PFale) = Pule) + / L [P fga(2) + Pratria ()] (a7

pele) = o / TS A (D), (47b)

k=q,4,G

where p =1 or p = 2 for the ‘exclusive’ or ‘inclusive’ case, respectively.

We solve these equations numerically using the method described in [9].
In Fig. 3 we show the ‘exclusive’ and ‘inclusive’ solutions for the distribution
of v quarks in the electron at Q% = 100 GeV2. There is still the contribution
from the photons of low virtuality (P72 < /%CD) which should be added, as
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Fig. 3. Asymptotic u-quark ‘exclusive’ and ‘inclusive’ distributions z f¢(z, Q%) /a2,
for Q2 = 100 GeV? and P2 = 1GeV? for ‘exclusive’ case. Calculations have been
done for 5 flavors, Aqen = 0.2GeV and P§ = A qp-

it has been done in Eq. (35). At asymptotically large t = log(QQ/AéCD) it
modifies the ‘exclusive’ solution only, by changing the #; = log(P? /AéCD)

factor in Eq. (46) into log(P2/P2, ). At finite Q?, however, this contribution
is non-negligible for ‘inclusive’ case and should also be added. As can be seen
from Eq. (30) taking the intermediate scale P§ = AéCD (to = 0) sets the

proper normalization for this correction' at finite . Thus the both curves
in Fig. 3 get shifted by the same amount.

5. Summary

In this paper we have analyzed the parton content of the electron within
perturbative QCD. We have shown that electron acquires an anomalous com-
ponent from QCD, analogously to photon. We have constructed the evolu-
tion equations for the ‘exclusive’ and ‘inclusive’ electron structure function.
These two cases correspond to ‘anti-tagging’ and ‘no-tagging’ experimental
conditions, respectively. The evolution equations can be solved numerically
in the z-space in the asymptotic Q? region. As an example we have shown
the v quark distribution inside the electron.

The results presented here are leading-log QCD solutions valid at asymp-
totically large Q2. At finite Q? the next-to-leading corrections, as well as

L At @? value considered here the low P,f contribution is of the same order of magnitude
as the QCD results in Fig. 3.
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non-perturbative contributions including hadronic component of the real
photon will modify the results. Despite these inaccuracies it would be in-
teresting to compare these predictions with experiment. On one hand, the
data for the electron structure function should be much more precise than
the ones used for the photon structure function. On the other hand, the
improvements on the theoretical side can be done in a similar way as for
the photon structure function — higher order perturbative QCD effects, as
well as phenomenological parametrizations can be plugged into the evolution
equations Eq. (45).

The author would like to thank Jerzy Szwed for numerous discussions
and for critical reading of the manuscript. The hospitality of DESY Theory
group, where part of this work was done, is also acknowledged.
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