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QCD ANOMALOUS STRUCTURE OF ELECTRON�Woj
ie
h Sªomi«skiInstitute of Computer S
ien
e, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived January 22, 1999)The parton 
ontent of the ele
tron is analyzed within perturbativeQCD. It is shown that ele
tron a
quires an anomalous 
omponent fromQCD, analogously to photon. The evolution equations for the `ex
lusive'and `in
lusive' ele
tron stru
ture fun
tion are 
onstru
ted and solved nu-meri
ally in the asymptoti
 Q2 region.PACS numbers: 13.60.�r, 14.60.�z1. Introdu
tionThe photon stru
ture fun
tion des
ribes the distribution of QCD partonsinside a photon. It is known for long [1℄ to have `anomalous' 
omponent,whi
h is 
al
ulable within perturbative QCD and dominates at asymptoti-
ally large momentum s
ales. This asymptoti
 solution, as opposed to thosefor hadrons, is independent of input data measured at lower momentums
ales. At �nite s
ales the photon stru
ture gets modi�ed by both pertur-bative and non-perturbative QCD 
ontributions.The QCD stru
ture of the photon is revealed in intera
tions with a highlyvirtual `probe'. To �x attention let us think of a virtual gluon G� withmomentum q, probing the photon whi
h gets resolved into QCD partons.Their density f
k (x;Q2) (k = q; �q;G), depends on fra
tional momentum xof the parton with respe
t to photon and on the gluon virtuality Q2 = jq2j,whi
h must be large as 
ompared to the QCD s
ale �2QCD.The photon stru
ture is measured in experiments where the ele
tronserves as a target. The pro
ess is depi
ted in Fig. 1a, where also the notationis given. The bla
k blob denotes `resolved' photon and sums up all 
ollinearQCD 
ontributions. The full 
ross-se
tion gets also a 
ontribution from thehard (�dire
t�) G�
 s
attering (see e.g. [2℄), but we will not dis
uss it in this� Work supported by the Polish State Committee for S
ienti�
 Resear
h (grant No.2 P03B 081 09) and the Volkswagen Foundation.(369)
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Fig. 1. Deep inelasti
 s
attering on a photon (a) and ele
tron (b) targetpaper. A
tually the photons emitted by the ele
tron are virtual and, fromthe point of view of a physi
al pro
ess, G� measures the stru
ture (parton
ontent) of the ele
tron, as depi
ted in Fig. 1b.The aim of this paper is to study the QCD predi
tions for the ele
tronstru
ture fun
tion at large momentum s
ales. In parti
ular we will dis
ussthe dependen
e on the maximal virtuality of intermediate photons emittedby the ele
tron, i.e. on the maximal momentum transfer between �nal andinitial ele
tron. In the next se
tion we present the problem in general anddis
uss the relation to experimentally measured quantities. In Se
. 3 wederive the QCD solution to the non-singlet ele
tron stru
ture fun
tion inthe moments spa
e. A 
omplete set of evolution equations is 
onstru
tedand solved in Se
. 4. In Se
. 5 we present the summary and outlook.2. General frameworkThe spa
e-like virtuality of the photon ex
hanged in the diagram inFig. 1a (p� p0)2 � �P 2
 (1)
an be �xed by measuring the momentum p0 of the outgoing ele
tron. Oth-erwise it lies within kinemati
 limitsP 2min(y) � m2e y21� y � P 2
 � Q2 z + y � zyz ; (2)where me is the ele
tron mass, y = qp
=qp and z = Q2=2pq (these areapproximate expressions valid at P 2
 � Q2 � the exa
t formulae 
an befound in [6℄). Usually the upper limit on P 2
 is set by experimental 
onditions(e.g. by anti-tagging) P 2
 � P 2: (3)
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ture of Ele
tron 371The density of partons (k = q; �q;G) with momentum pk = zp seen by ourprobe in the ele
tron readsf ek(z;Q2; P 2) = Z dx dy Æ(z � xy) P 2ZP 2min(y)dP 2
 f e
(y; P 2
 )f
k (x;Q2; P 2
 ) (4a)= 1Zz dyy P 2ZP 2min(y)dP 2
 f e
(y; P 2
 )f
k �zy ;Q2; P 2
� ; (4b)where f e
(y; P 2
 ) = �em2� 1P 2
 �1 + (1� y)2y � 2ym2eP 2
 � (5)and f
k (x;Q2; P 2
 ) des
ribes the G�
 intera
tion. In Eq. (5) only transversephotons are taken into a

ount whi
h is 
orre
t within the leading order ofperturbative QCD. All QCD 
ontributions are 
ontained in f
k (x;Q2; P 2
 ),whi
h is dis
ussed in the literature as the stru
ture fun
tion of virtual photon[2�4℄. In the following we will assume that P 2 � m2e whi
h allows us tonegle
t the se
ond term in the square bra
kets of Eq. (5).For Q2 � P 2 f
k (x;Q2; P 2
 ) 
an be approximated by the stru
ture fun
-tion of real photon (P 2
 = 0) and upon integration over P 2
 we arrive at theWeizsä
ker�Williams [5℄ formula:f ek(z;Q2; P 2) � 1Zz dyy f̂ e
(y)f
k �zy ;Q2; 0� log P 2P 2min(z) ; (6)where f̂ e
(y) = �em2� 1 + (1� y)2y : (7)Formula (6) has probabilisti
 interpretation in terms of the density of pho-tons emitted by the ele
tron and the density of QCD partons within thephoton. As dis
ussed in [6℄, this partoni
 pi
ture breaks down at very highenergies when Z and W bosons 
ontribute.In general, the experimentally measured ele
tron stru
ture fun
tion isalways integrated over a range of photon virtualities and summed over the
ontributions from all weak intermediate bosons. This stru
ture fun
tiondes
ribes the QCD 
ontent of a real (on-shell) ele
tron and allows for proba-bilisti
 interpretation of the 
ross se
tions. Even when we negle
t the 
ontri-butions from Z and W bosons the integration over P 2
 disables the partoni




372 W. Sªomi«skiinterpretation [7℄. As 
ompared to the standard QCD stru
ture fun
tionsthe ele
tron one has extra dependen
e on maximal photon virtuality P 2,whi
h means that we do not integrate over all �nal ele
tron states. In thissense we say that this ele
tron stru
ture fun
tion is `ex
lusive'.Eq. (6) is an approximation to the ele
tron stru
ture fun
tion forQ2 � P 2. The approa
h to this limit within QCD is dis
ussed in the nextse
tion.In the following we will assume that the Z and W bosons do not 
on-tribute but we will allow for arbitrary P 2 � Q2. For both Q2 and P 2 mu
hgreater than m2e we have (
f. Eq. (4))f ek(Q2; P 2) = P 2ZP 2min dP 2
P 2
 f̂ e
 
 f
k (Q2; P 2
 ); (8)with expli
it z dependen
e suppressed and 
 denoting 
onvolution(f 
 g)(z) � 1Z0 dx 1Z0 dy Æ(z � xy) f(x)g(y): (9)We know from experiment that a nearly real photon (P 2
 � �2QCD) hasa hadroni
 
omponent whi
h is often des
ribed phenomenologi
ally in termsof the Ve
tor Meson Dominan
e model (VDM) (see e.g. [2,3℄ and referen
estherein). This non-perturbative hadroni
 
omponent be
omes less importantat higher Q2. As will be shown in the next se
tion, any perturbative QCDpredi
tions for P 2
 dependen
e require P 2
 > �2QCD and this is the region wewill 
onsider in details. To this end we split the integral over P 2
 in Eq. (8)into R P 20P 2min + R P 2P 20 with some P 20 > �2QCD. In the �rst integral we use theVDM-like photon stru
ture fun
tion, while the whole dependen
e on P 2 is
ontained in the se
ond one:f ek(Q2; P 2) = f̂ e
 
 P 20ZP 2min dP 2
P 2
 f (V)k (Q2; P 2
 )+f̂ e
 
 P 2ZP 20 dP 2
P 2
 f
k (Q2; P 2
 ): (10)
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ture of Ele
tron 3733. QCD 
al
ulation of ele
tron stru
ture fun
tionFrom the theoreti
al point of view the QCD behavior of stru
ture fun
-tions is most easily analyzed in terms of their moments, de�ned asf(n) = 1Z0 dxxn�1f(x) (11)for any fun
tion f .The ele
tron stru
ture fun
tion we are going to investigate has the formof the se
ond term of Eq. (10) and its moments readf ek(n; t; t1; t0) = f̂ e
(n) t1Zt0 dt
f
k (n; t; t
); (12)wheret = log Q2�2QCD ; t0 = log P 20�2QCD ; t1 = log P 2�2QCD ; t
 = log P 2
�2QCD (13)and expli
it t0 argument of f ek(n; t; t1; t0) is to remind on the dependen
e on`auxiliary' s
ale P 20 .Our task will be to integrate f
k (n; t; t
) over t
 and to 
onstru
t masterequations for the ele
tron stru
ture fun
tion. In order to introdu
e notationand get some understanding of the energy s
ales involved, let us �rst brie�yremind the derivation of the virtual photon stru
ture fun
tion.The master (DGLAP) equations [8℄ readdf
q=�q(n; t; t
)dt = �em2� e2qP̂q
(n)+ �2�Pqq(n)f
q=�q(n; t; t
) + �2�PqG(n)f
G(n; t; t
); (14a)df
G(n; t; t
)dt = �2�PGq(n) nfXq=1 �f
q (n; t; t
) + f
�q (n; t; t
)�+ �2�PGG(n)f
G(n; t; t
); (14b)where P̂q
(x) = 3[x2 + (1� x)2℄ (15)is the photon-quark splitting fun
tion and Pik are the QCD (Altarelli�Parisi)splitting fun
tions. In these equations the photon virtuality (t
) is �xed and
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an be thought of as an �external� parameter des
ribing the state, QCD
ontent of whi
h depends on t and n. The inhomogenous term in Eq. (14a)makes the di�eren
e with QCD equations for hadrons.The standard method of solving the evolution equations is to de
ompose�rst the stru
ture fun
tions into singlet and non-singlet 
omponents. Tosimplify the dis
ussion we will present formulae for the non-singlet partonly. De�ning the non-singlet part of a stru
ture fun
tion as�fq=�q = fq=�q � 12nf nfXq0 (fq0 + f�q0) (16)we obtaind �f
q=�q(n; t; t
)dt = �em2� (e2q � he2qi)P̂q
(n) + �2�Pqq(n) �f
q=�q(n; t; t
); (17)where he2qi = 12nf nfXq=1 e2q : (18)In the leading log order of QCD�(t)2� = 2�0t (19)with �0 = 11� 2nf=3 for nf �avors, and Eq. (17) be
omesd �f
q=�q(n; t; t
)dt = �dq
(n)� dqq(n)t �f
q=�q(n; t; t
); (20)where �dq
(n) = �em2� (e2q � he2qi)P̂q
(n) (21)and dqq(n) = �2Pqq(n)�0 : (22)The general solution to this di�erential equation reads�f
q=�q(n; t; t
) = �dq
(n) t1 + dqq(n) "1�� t0t �1+dqq(n)#+ �f
q=�q(n; t0; t
) � t0t �dqq(n) : (23)
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b)Fig. 2. Ladder expansion for the photon (a) and the ele
tron stru
ture fun
tion (b)As shown for the �rst time by Witten [1℄, the �rst term is 
hara
teristi
 fea-ture of the photon stru
ture fun
tion and for large t it dominates, resultingin linear growth with t. The se
ond term in this solution depends on the `in-put' measured at some t0 and is analogous to the leading-log QCD evolutionof hadroni
 stru
ture fun
tions. For low t0 and t
 the measured stru
turefun
tion �f
q=�q(n; t0; t
) 
an be identi�ed with the VDM-like �f (V)q=�q (n; t0; t
) dis-
ussed in the previous se
tion.Eq. (23) gives no expli
it predi
tion on the t
 dependen
e of �f
q=�q(n; t; t
)ex
ept for the fa
t that the asymptoti
 (t� t0) solution is independent of t
�f
q=�q(n; t; t
) ' �dq
(n)1 + dqq(n) t: (24)Another method of 
al
ulating QCD stru
ture fun
tions is the ladderexpansion. The 
orresponding diagram for the photon stru
ture fun
tion isshown in Fig. 2a. A
tual 
al
ulations should be performed in the axial gaugebut here we will integrate only over the quark emitted by the photon, whi
his as simple as �f
q=�q(n; t; t
) = �dq
(n) Q2ZP 2
 dk2k2 fqq(n;Q2; k2): (25)The QCD `stru
ture fun
tion of a point-like virtual quark' fqq(n;Q2; k2)
orresponds to the ladder diagram of Fig. 2a without the lowest quark rung.The latter is expli
itly integrated in Eq. (25) with the ele
tromagneti
 
-q
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oupling 
ontained in �dq
(n) and 1=k2 
oming from the quark propagator.The only di�eren
e with pure QCD is that here the 
oupling is ele
tro-magneti
 and does not depend on k2. Changing the integration variable to� = log(k2=�2QCD) and using the QCD formulafqq(n;Q2; k2) = ��t �dqq(n) (26)we arrive at [4℄�f
q=�q(n; t; t
) = �dq
(n) tZt
 d� ��t �dqq(n) (27)= �dq
(n) t1 + dqq(n) "1�� t
t �1+dqq(n)# : (28)Formally this result equals to the solution of master equations Eq. (23) witht0 = t
 and �f
q=�q(n; t
 ; t
) = 0.Let us explain the impli
it assumptions made in the derivation of Eq. (28).Thanks to the strong ordering of virtualities in the ladder expansionP 2
 < k2 < : : : < Q2 (29)we 
ould integrate over the whole range of quark virtualities k2. WithinQCD, however, this 
an be done only if the photon virtuality P 2
 > �2QCD.Moreover we have used the fa
t that in perturbative 
al
ulation su
h photonhas a point-like 
oupling to quarks. In other words the photon of virtualityP 2
 > �2QCD has no QCD stru
ture at the s
ale Q2 = P 2
 . We see, thus, thatEq. (23) is valid for any P 2
 while Eq. (28) for P 2
 > �2QCD only. This isexa
tly the reason for introdu
ing the intermediate s
ale P 20 in Eq. (10).In the following we will assume that P 2
 is large enough for Eq. (28)to hold. With this assumption the integration over P 2
 , as in Eq. (12),is straightforward and results in the following expression for the ele
tronstru
ture fun
tion�f eq=�q(n; t; t1; t0) = f̂ e
(n) t1Zt0 dt
 �f
q=�q(n; t; t
)= f̂ e
(n) �dq
(n) t1 + dqq(n) (t1 � t0� t2 + dqq(n) "� t1t �2+dqq(n) ��t0t �2+dqq(n)#): (30)
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ture of Ele
tron 377This result 
orresponds to the diagram depi
ted in Fig. 2b, where the rangeof photon virtualities is 
ontrolled by imposing a limit on momentum transferto the outgoing ele
tron. Eq. (30) depends on three s
ales t > t1 > t0 witht0 kept �xed. In order to �nd formulae for large t (t� t0) we have to spe
ifythe relation between t1 and t. Let us 
onsider two extreme 
ases: t1 � tand t1 = t.� `Ex
lusive' 
ase: t1 � t�f eq=�q(n; t; t1; t0) ' f̂ e
(n) �dq
(n)1 + dqq(n) t(t1 � t0): (31)� `In
lusive' 
ase: t1 = t�f eq=�q(n; t) � �f eq=�q(n; t; t; t0) ' f̂ e
 (n) �dq
(n)2 + dqq(n) t2; (32)where we have dropped the last two arguments of the `in
lusive' stru
-ture fun
tion.To obtain the full result for �f eq=�q we still have to add the integral over thephoton virtualities below P 20 . To this end we use Eq. (23) with experimentalinput repla
ed by a VDM-like parametrization at t0 = t0:�f
q=�q(n; t; t
) � �dq
(n) t1 + dqq(n) "1�� t0t �1+dqq(n)#+ �f (V)q=�q (n; t0; t
) � t0t �dqq(n) : (33)As dis
ussed earlier �f (V)q=�q (n; t0; t
) should de
rease with in
reasing t
 andvanish for t
 � t0 (see e.g. [3℄ for a phenomenologi
al parametrization).Thus for t � t0 we get the unique predi
tion independent of the `input' atlow t0 f̂ e
 (n) t0Ztmin dt
f
k (n; t; t
) ' f̂ e
(n) �dq
(n) t1 + dqq(n) (t0 � tmin); (34)where tmin = log(P 2min=�2QCD).For large t this low P 2
 
ontribution grows linearly with t and 
an benegle
ted in the `in
lusive' 
ase. The `ex
lusive' 
ase Eq. (31) be
omes now�f eq=�q(n; t; t1) ' f̂ e
(n) �dq
(n)1 + dqq(n) t(t1 � tmin) � f̂ e
 (n) �dq
(n)1 + dqq(n) t log P 2P 2min : (35)



378 W. Sªomi«skiThis is exa
tly the Weizsä
ker�Williams formula Eq. (6) with asymptoti
solution Eq. (24) used for the photon stru
ture fun
tion.Mu
h more interesting is the `in
lusive' 
ase Eq. (32). To understand thisQCD predi
tion let us look �rst at the photon stru
ture fun
tion. There thee�e
t of QCD evolution 
an be seen by 
omparing the full result Eq. (28)with the Quark Parton Model (QPM) limit. We rea
h this limit by taking�2QCD ! 0 (�(t)! 0) in Eq. (28), whi
h results in�f
q=�q(n; t; t
)jQPM = �dq
(n) (t� t
) = �dq
(n) log Q2P 2
 : (36)Thus we see that for large t the net e�e
t of the QCD evolution on thephoton stru
ture fun
tion is to 
hange �dq
(n) into �dq
(n)=(1 + dqq(n)). Thedependen
e on t remains the same but the stru
ture fun
tions (transformedba
k to the x-spa
e) have di�erent dependen
e on x. As usually the QCDevolution `shifts' the distribution towards lower x values. Analogously, forthe ele
tron stru
ture fun
tion the QPM limit of Eq. (30) reads�f eq=�q(n; t; t1; t0)jQPM ' f̂ e
 (n) �dq
(n)2 (t1 � t0)(2t� t1 � t0)= f̂ e
 (n) �dq
(n)2 log P 2P 20 �log Q2P 20 + log Q2P 2� : (37)The reader 
an easily 
he
k that this result 
orresponds to the integral R t1t0 dt
of the QPM formula for the photon stru
ture fun
tion, Eq. (36).Comparing the QPM result with the QCD formulae Eq. (35) and Eq. (32)we see that the e�e
t of QCD evolution is to multiply the moments of theele
tron stru
ture fun
tion by 1=(1 + dqq(n)) in the `ex
lusive' 
ase and by2=(2 + dqq(n)) in the `in
lusive' 
ase. After transforming ba
k to the x-spa
e, this means that QPM, `ex
lusive' and `in
lusive' ele
tron stru
turefun
tions all have di�erent dependen
e on x. In parti
ular the `in
lusive'solution �f eq=�q(n; t), whi
h 
orresponds to a standard stru
ture fun
tion, getsmodi�ed analogously to the photon 
ase but by another fa
tor. In this sensethe ele
tron a
quires an anomalous 
omponent from QCD.So far we have dis
ussed the non-singlet solution. The singlet 
ase goesalong the same lines but will not be presented here. Instead, we 
onstru
t inthe next se
tion the evolution equations whi
h 
an be solved in the x-spa
e.



QCD Anomalous Stru
ture of Ele
tron 3794. Evolution equationsLet us �rst show that Eq. (30) is the general solution to the followingmaster equations� �f eq=�q(n; t; t1; t0)�t = dqe(n)(t1 � t0)� dqq(n)t �f eq=�q(n; t; t1; t0); (38a)� �f eq=�q(n; t; t1; t0)�t1 = f̂ e
 (n) �f
q=�q(n; t; t1)= dqe(n) t1 + dqq(n) "1�� t1t �dqq(n)+1# ; (38b)where dqe(n) � f̂ e
(n) �dq
(n). Note that the se
ond equation is just thederivative of Eq. (10) with Eq. (28) inserted for the photon stru
ture fun
-tion. A general solution to Eq. (38a) 
an be written as�f eq=�q(n; t; t1; t0) = C(n; t1) t�dqq(n) + dqe(n)1 + dqq(n) (t1 � t0)t: (39)So far C(n; t1) is an arbitrary fun
tion of t1. Nb. if t1 remains 
onstantwhen t ! 1 the se
ond term of Eq. (39) gives the asymptoti
 solution forthe `ex
lusive' 
ase.From the se
ond equation Eq. (38b) we obtainC(n; t1) = C(0)(n)� dqe(n) tdqq(n)+21[1 + dqq(n)℄ [2 + dqq(n)℄ (40)with arbitrary C(0)(n).Now the general solution to Eq. (38) reads�f eq=�q(n; t; t1; t0) = C(0)(n)t�dqq(n)+ dqe(n)1 + dqq(n) "(t1 � t0)t� t2+dqq(n)1 t�dqq(n)2 + dqq(n) # : (41)Upon imposing the boundary 
ondition �f eq=�q(n; t; t0; t0) = 0 we re
over theformula Eq. (30) derived in the previous se
tion.The 
omplete set of master equations in the x-spa
e analogous to Eq. (38)
an be obtained by 
hanging the produ
ts of moments into 
onvolutions andobserving that there is no inhomogenous term for the gluoni
 
omponent �
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f. Eq. (14). Suppressing expli
it t0 dependen
e in the fun
tion argumentswe have �f eq=�q(t; t1)�t = �em2� P̂qe[t1 � t0℄+ �2�Pqq 
 f eq=�q(t; t1) + �2�PqG 
 f eG(t; t1); (42a)�f eq=�q(t; t1)�t1 = f̂ e
 
 f
q=�q(t; t1); (42b)�f eG(t; t1)�t = �2�PGq 
 nfXq=1 �f eq (t; t1) + f e�q (t; t1)�+ �2�PGG 
 f eG(t; t1); (42
)�f eG(t; t1)�t1 = f̂ e
 
 f
G(t; t1); (42d)where P̂qe = P̂q
 
 f̂ e
 .These equations, as they stand, are not very useful be
ause they 
ontainboth ele
tron and photon stru
ture fun
tions. We will present now how a
losed set of equations for the ele
tron stru
ture fun
tion is formed in thelarge t region. As already dis
ussed previously, the large t limit depends onadditional assumptions on t1 vs. t dependen
e. Quite generally one 
an taket1 to be some fun
tion of t de�ning a `path' in the t-t1 plane along whi
hthe large t limit is approa
hed. Denoting t1 = g(t) we havedf ek(t; t1)dt = �f ek(t; t1)�t + g0(t)�f ek(t; t1)�t1= �f ek(t; t1)�t + g0(t)f̂ e
 
 f
k (t; t1): (43)A simple 
hoi
e for g(t) isg(t) = (1� a)t̂1 + at ; (44)where t̂1 is 
onstant and 0 � a � 1. The two extreme 
ases 
onsidered inthe previous se
tion 
orrespond to following 
hoi
es for the parameter a.� `Ex
lusive' 
asea = 0, i.e. g(t) = t̂1. As g0(t) = 0 the se
ond term in Eq. (43) vanishes.The solution grows linearly with t (
f. Eq. (4)). The resulting masterequations have a 
onstant (t-independent) inhomogenous term
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ture of Ele
tron 381df eq=�q(t; t̂1)dt = �em2� P̂qe[t̂1 � t0℄+ �2�Pqq 
 f eq=�q(t; t̂1) + �2�PqG 
 f eG(t; t̂1); (45a)df eG(t; t̂1)dt = �2�PGq 
 nfXq=1 �f eq (t; t̂1) + f e�q (t; t̂1)�+ �2�PGG 
 f eG(t; t̂1) : (45b)� `In
lusive' 
ase.a = 1, i.e. g(t) = t and g0(t) = 1. Now the virtual photon stru
turefun
tion f
k (t; t) vanishes be
ause both arguments are equal. We arriveat the equations whi
h are formally the same as in the `ex
lusive' 
asebut with t̂1 set to t and t0 negle
ted. The master equations have nowthe inhomogenous term proportional to t, whi
h results in a di�erentx-dependen
e of the solutions.A

ording to Eq. (31) and Eq. (32) the asymptoti
 solutions to theseequations have the formf ek(z; t) = ��em2� �2 ~f ek(z) tt1 (46)with t1 
onstant and t1 = t for the `ex
lusive' and `in
lusive' 
ase, respe
-tively. Here we have taken t0 = 0 (P 20 = �2QCD). Substituting the leading-logformula Eq. (19) for �(t) we end up with t-independent integral equationsp ~f eq=�q(z) = P̂qe(z) + 2�0 1Zz dxx hPqq(x) ~f eq=�q� zx�+ PqG(x) ~f eG� zx�i; (47a)p ~f eG(z) = 2�0 1Zz dxx Xk=q;�q;GPkq(x) ~f ek � zx� ; (47b)where p = 1 or p = 2 for the `ex
lusive' or `in
lusive' 
ase, respe
tively.We solve these equations numeri
ally using the method des
ribed in [9℄.In Fig. 3 we show the `ex
lusive' and `in
lusive' solutions for the distributionof u quarks in the ele
tron at Q2 = 100GeV2. There is still the 
ontributionfrom the photons of low virtuality (P 2
 < �2QCD) whi
h should be added, as
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Fig. 3. Asymptoti
 u-quark `ex
lusive' and `in
lusive' distributions zfeu(z;Q2)=�2emfor Q2 = 100GeV2 and P 2 = 1GeV2 for `ex
lusive' 
ase. Cal
ulations have beendone for 5 �avors, �QCD = 0:2GeV and P 20 = �2QCD.it has been done in Eq. (35). At asymptoti
ally large t = log(Q2=�2QCD) itmodi�es the `ex
lusive' solution only, by 
hanging the t1 = log(P 2=�2QCD)fa
tor in Eq. (46) into log(P 2=P 2min). At �nite Q2, however, this 
ontributionis non-negligible for `in
lusive' 
ase and should also be added. As 
an be seenfrom Eq. (30) taking the intermediate s
ale P 20 = �2QCD (t0 = 0) sets theproper normalization for this 
orre
tion1 at �nite t. Thus the both 
urvesin Fig. 3 get shifted by the same amount.5. SummaryIn this paper we have analyzed the parton 
ontent of the ele
tron withinperturbative QCD. We have shown that ele
tron a
quires an anomalous 
om-ponent from QCD, analogously to photon. We have 
onstru
ted the evolu-tion equations for the `ex
lusive' and `in
lusive' ele
tron stru
ture fun
tion.These two 
ases 
orrespond to `anti-tagging' and `no-tagging' experimental
onditions, respe
tively. The evolution equations 
an be solved numeri
allyin the x-spa
e in the asymptoti
 Q2 region. As an example we have shownthe u quark distribution inside the ele
tron.The results presented here are leading-log QCD solutions valid at asymp-toti
ally large Q2. At �nite Q2 the next-to-leading 
orre
tions, as well as1 AtQ2 value 
onsidered here the low P 2
 
ontribution is of the same order of magnitudeas the QCD results in Fig. 3.
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tron 383non-perturbative 
ontributions in
luding hadroni
 
omponent of the realphoton will modify the results. Despite these ina

ura
ies it would be in-teresting to 
ompare these predi
tions with experiment. On one hand, thedata for the ele
tron stru
ture fun
tion should be mu
h more pre
ise thanthe ones used for the photon stru
ture fun
tion. On the other hand, theimprovements on the theoreti
al side 
an be done in a similar way as forthe photon stru
ture fun
tion � higher order perturbative QCD e�e
ts, aswell as phenomenologi
al parametrizations 
an be plugged into the evolutionequations Eq. (45).The author would like to thank Jerzy Szwed for numerous dis
ussionsand for 
riti
al reading of the manus
ript. The hospitality of DESY Theorygroup, where part of this work was done, is also a
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