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QCD ANOMALOUS STRUCTURE OF ELECTRON�Wojieh Sªomi«skiInstitute of Computer Siene, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived January 22, 1999)The parton ontent of the eletron is analyzed within perturbativeQCD. It is shown that eletron aquires an anomalous omponent fromQCD, analogously to photon. The evolution equations for the `exlusive'and `inlusive' eletron struture funtion are onstruted and solved nu-merially in the asymptoti Q2 region.PACS numbers: 13.60.�r, 14.60.�z1. IntrodutionThe photon struture funtion desribes the distribution of QCD partonsinside a photon. It is known for long [1℄ to have `anomalous' omponent,whih is alulable within perturbative QCD and dominates at asymptoti-ally large momentum sales. This asymptoti solution, as opposed to thosefor hadrons, is independent of input data measured at lower momentumsales. At �nite sales the photon struture gets modi�ed by both pertur-bative and non-perturbative QCD ontributions.The QCD struture of the photon is revealed in interations with a highlyvirtual `probe'. To �x attention let us think of a virtual gluon G� withmomentum q, probing the photon whih gets resolved into QCD partons.Their density fk (x;Q2) (k = q; �q;G), depends on frational momentum xof the parton with respet to photon and on the gluon virtuality Q2 = jq2j,whih must be large as ompared to the QCD sale �2QCD.The photon struture is measured in experiments where the eletronserves as a target. The proess is depited in Fig. 1a, where also the notationis given. The blak blob denotes `resolved' photon and sums up all ollinearQCD ontributions. The full ross-setion gets also a ontribution from thehard (�diret�) G� sattering (see e.g. [2℄), but we will not disuss it in this� Work supported by the Polish State Committee for Sienti� Researh (grant No.2 P03B 081 09) and the Volkswagen Foundation.(369)
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Fig. 1. Deep inelasti sattering on a photon (a) and eletron (b) targetpaper. Atually the photons emitted by the eletron are virtual and, fromthe point of view of a physial proess, G� measures the struture (partonontent) of the eletron, as depited in Fig. 1b.The aim of this paper is to study the QCD preditions for the eletronstruture funtion at large momentum sales. In partiular we will disussthe dependene on the maximal virtuality of intermediate photons emittedby the eletron, i.e. on the maximal momentum transfer between �nal andinitial eletron. In the next setion we present the problem in general anddisuss the relation to experimentally measured quantities. In Se. 3 wederive the QCD solution to the non-singlet eletron struture funtion inthe moments spae. A omplete set of evolution equations is onstrutedand solved in Se. 4. In Se. 5 we present the summary and outlook.2. General frameworkThe spae-like virtuality of the photon exhanged in the diagram inFig. 1a (p� p0)2 � �P 2 (1)an be �xed by measuring the momentum p0 of the outgoing eletron. Oth-erwise it lies within kinemati limitsP 2min(y) � m2e y21� y � P 2 � Q2 z + y � zyz ; (2)where me is the eletron mass, y = qp=qp and z = Q2=2pq (these areapproximate expressions valid at P 2 � Q2 � the exat formulae an befound in [6℄). Usually the upper limit on P 2 is set by experimental onditions(e.g. by anti-tagging) P 2 � P 2: (3)



QCD Anomalous Struture of Eletron 371The density of partons (k = q; �q;G) with momentum pk = zp seen by ourprobe in the eletron readsf ek(z;Q2; P 2) = Z dx dy Æ(z � xy) P 2ZP 2min(y)dP 2 f e(y; P 2 )fk (x;Q2; P 2 ) (4a)= 1Zz dyy P 2ZP 2min(y)dP 2 f e(y; P 2 )fk �zy ;Q2; P 2� ; (4b)where f e(y; P 2 ) = �em2� 1P 2 �1 + (1� y)2y � 2ym2eP 2 � (5)and fk (x;Q2; P 2 ) desribes the G� interation. In Eq. (5) only transversephotons are taken into aount whih is orret within the leading order ofperturbative QCD. All QCD ontributions are ontained in fk (x;Q2; P 2 ),whih is disussed in the literature as the struture funtion of virtual photon[2�4℄. In the following we will assume that P 2 � m2e whih allows us toneglet the seond term in the square brakets of Eq. (5).For Q2 � P 2 fk (x;Q2; P 2 ) an be approximated by the struture fun-tion of real photon (P 2 = 0) and upon integration over P 2 we arrive at theWeizsäker�Williams [5℄ formula:f ek(z;Q2; P 2) � 1Zz dyy f̂ e(y)fk �zy ;Q2; 0� log P 2P 2min(z) ; (6)where f̂ e(y) = �em2� 1 + (1� y)2y : (7)Formula (6) has probabilisti interpretation in terms of the density of pho-tons emitted by the eletron and the density of QCD partons within thephoton. As disussed in [6℄, this partoni piture breaks down at very highenergies when Z and W bosons ontribute.In general, the experimentally measured eletron struture funtion isalways integrated over a range of photon virtualities and summed over theontributions from all weak intermediate bosons. This struture funtiondesribes the QCD ontent of a real (on-shell) eletron and allows for proba-bilisti interpretation of the ross setions. Even when we neglet the ontri-butions from Z and W bosons the integration over P 2 disables the partoni



372 W. Sªomi«skiinterpretation [7℄. As ompared to the standard QCD struture funtionsthe eletron one has extra dependene on maximal photon virtuality P 2,whih means that we do not integrate over all �nal eletron states. In thissense we say that this eletron struture funtion is `exlusive'.Eq. (6) is an approximation to the eletron struture funtion forQ2 � P 2. The approah to this limit within QCD is disussed in the nextsetion.In the following we will assume that the Z and W bosons do not on-tribute but we will allow for arbitrary P 2 � Q2. For both Q2 and P 2 muhgreater than m2e we have (f. Eq. (4))f ek(Q2; P 2) = P 2ZP 2min dP 2P 2 f̂ e 
 fk (Q2; P 2 ); (8)with expliit z dependene suppressed and 
 denoting onvolution(f 
 g)(z) � 1Z0 dx 1Z0 dy Æ(z � xy) f(x)g(y): (9)We know from experiment that a nearly real photon (P 2 � �2QCD) hasa hadroni omponent whih is often desribed phenomenologially in termsof the Vetor Meson Dominane model (VDM) (see e.g. [2,3℄ and referenestherein). This non-perturbative hadroni omponent beomes less importantat higher Q2. As will be shown in the next setion, any perturbative QCDpreditions for P 2 dependene require P 2 > �2QCD and this is the region wewill onsider in details. To this end we split the integral over P 2 in Eq. (8)into R P 20P 2min + R P 2P 20 with some P 20 > �2QCD. In the �rst integral we use theVDM-like photon struture funtion, while the whole dependene on P 2 isontained in the seond one:f ek(Q2; P 2) = f̂ e 
 P 20ZP 2min dP 2P 2 f (V)k (Q2; P 2 )+f̂ e 
 P 2ZP 20 dP 2P 2 fk (Q2; P 2 ): (10)



QCD Anomalous Struture of Eletron 3733. QCD alulation of eletron struture funtionFrom the theoretial point of view the QCD behavior of struture fun-tions is most easily analyzed in terms of their moments, de�ned asf(n) = 1Z0 dxxn�1f(x) (11)for any funtion f .The eletron struture funtion we are going to investigate has the formof the seond term of Eq. (10) and its moments readf ek(n; t; t1; t0) = f̂ e(n) t1Zt0 dtfk (n; t; t); (12)wheret = log Q2�2QCD ; t0 = log P 20�2QCD ; t1 = log P 2�2QCD ; t = log P 2�2QCD (13)and expliit t0 argument of f ek(n; t; t1; t0) is to remind on the dependene on`auxiliary' sale P 20 .Our task will be to integrate fk (n; t; t) over t and to onstrut masterequations for the eletron struture funtion. In order to introdue notationand get some understanding of the energy sales involved, let us �rst brie�yremind the derivation of the virtual photon struture funtion.The master (DGLAP) equations [8℄ readdfq=�q(n; t; t)dt = �em2� e2qP̂q(n)+ �2�Pqq(n)fq=�q(n; t; t) + �2�PqG(n)fG(n; t; t); (14a)dfG(n; t; t)dt = �2�PGq(n) nfXq=1 �fq (n; t; t) + f�q (n; t; t)�+ �2�PGG(n)fG(n; t; t); (14b)where P̂q(x) = 3[x2 + (1� x)2℄ (15)is the photon-quark splitting funtion and Pik are the QCD (Altarelli�Parisi)splitting funtions. In these equations the photon virtuality (t) is �xed and



374 W. Sªomi«skian be thought of as an �external� parameter desribing the state, QCDontent of whih depends on t and n. The inhomogenous term in Eq. (14a)makes the di�erene with QCD equations for hadrons.The standard method of solving the evolution equations is to deompose�rst the struture funtions into singlet and non-singlet omponents. Tosimplify the disussion we will present formulae for the non-singlet partonly. De�ning the non-singlet part of a struture funtion as�fq=�q = fq=�q � 12nf nfXq0 (fq0 + f�q0) (16)we obtaind �fq=�q(n; t; t)dt = �em2� (e2q � he2qi)P̂q(n) + �2�Pqq(n) �fq=�q(n; t; t); (17)where he2qi = 12nf nfXq=1 e2q : (18)In the leading log order of QCD�(t)2� = 2�0t (19)with �0 = 11� 2nf=3 for nf �avors, and Eq. (17) beomesd �fq=�q(n; t; t)dt = �dq(n)� dqq(n)t �fq=�q(n; t; t); (20)where �dq(n) = �em2� (e2q � he2qi)P̂q(n) (21)and dqq(n) = �2Pqq(n)�0 : (22)The general solution to this di�erential equation reads�fq=�q(n; t; t) = �dq(n) t1 + dqq(n) "1�� t0t �1+dqq(n)#+ �fq=�q(n; t0; t) � t0t �dqq(n) : (23)
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b)Fig. 2. Ladder expansion for the photon (a) and the eletron struture funtion (b)As shown for the �rst time by Witten [1℄, the �rst term is harateristi fea-ture of the photon struture funtion and for large t it dominates, resultingin linear growth with t. The seond term in this solution depends on the `in-put' measured at some t0 and is analogous to the leading-log QCD evolutionof hadroni struture funtions. For low t0 and t the measured struturefuntion �fq=�q(n; t0; t) an be identi�ed with the VDM-like �f (V)q=�q (n; t0; t) dis-ussed in the previous setion.Eq. (23) gives no expliit predition on the t dependene of �fq=�q(n; t; t)exept for the fat that the asymptoti (t� t0) solution is independent of t�fq=�q(n; t; t) ' �dq(n)1 + dqq(n) t: (24)Another method of alulating QCD struture funtions is the ladderexpansion. The orresponding diagram for the photon struture funtion isshown in Fig. 2a. Atual alulations should be performed in the axial gaugebut here we will integrate only over the quark emitted by the photon, whihis as simple as �fq=�q(n; t; t) = �dq(n) Q2ZP 2 dk2k2 fqq(n;Q2; k2): (25)The QCD `struture funtion of a point-like virtual quark' fqq(n;Q2; k2)orresponds to the ladder diagram of Fig. 2a without the lowest quark rung.The latter is expliitly integrated in Eq. (25) with the eletromagneti -q



376 W. Sªomi«skioupling ontained in �dq(n) and 1=k2 oming from the quark propagator.The only di�erene with pure QCD is that here the oupling is eletro-magneti and does not depend on k2. Changing the integration variable to� = log(k2=�2QCD) and using the QCD formulafqq(n;Q2; k2) = ��t �dqq(n) (26)we arrive at [4℄�fq=�q(n; t; t) = �dq(n) tZt d� ��t �dqq(n) (27)= �dq(n) t1 + dqq(n) "1�� tt �1+dqq(n)# : (28)Formally this result equals to the solution of master equations Eq. (23) witht0 = t and �fq=�q(n; t ; t) = 0.Let us explain the impliit assumptions made in the derivation of Eq. (28).Thanks to the strong ordering of virtualities in the ladder expansionP 2 < k2 < : : : < Q2 (29)we ould integrate over the whole range of quark virtualities k2. WithinQCD, however, this an be done only if the photon virtuality P 2 > �2QCD.Moreover we have used the fat that in perturbative alulation suh photonhas a point-like oupling to quarks. In other words the photon of virtualityP 2 > �2QCD has no QCD struture at the sale Q2 = P 2 . We see, thus, thatEq. (23) is valid for any P 2 while Eq. (28) for P 2 > �2QCD only. This isexatly the reason for introduing the intermediate sale P 20 in Eq. (10).In the following we will assume that P 2 is large enough for Eq. (28)to hold. With this assumption the integration over P 2 , as in Eq. (12),is straightforward and results in the following expression for the eletronstruture funtion�f eq=�q(n; t; t1; t0) = f̂ e(n) t1Zt0 dt �fq=�q(n; t; t)= f̂ e(n) �dq(n) t1 + dqq(n) (t1 � t0� t2 + dqq(n) "� t1t �2+dqq(n) ��t0t �2+dqq(n)#): (30)



QCD Anomalous Struture of Eletron 377This result orresponds to the diagram depited in Fig. 2b, where the rangeof photon virtualities is ontrolled by imposing a limit on momentum transferto the outgoing eletron. Eq. (30) depends on three sales t > t1 > t0 witht0 kept �xed. In order to �nd formulae for large t (t� t0) we have to speifythe relation between t1 and t. Let us onsider two extreme ases: t1 � tand t1 = t.� `Exlusive' ase: t1 � t�f eq=�q(n; t; t1; t0) ' f̂ e(n) �dq(n)1 + dqq(n) t(t1 � t0): (31)� `Inlusive' ase: t1 = t�f eq=�q(n; t) � �f eq=�q(n; t; t; t0) ' f̂ e (n) �dq(n)2 + dqq(n) t2; (32)where we have dropped the last two arguments of the `inlusive' stru-ture funtion.To obtain the full result for �f eq=�q we still have to add the integral over thephoton virtualities below P 20 . To this end we use Eq. (23) with experimentalinput replaed by a VDM-like parametrization at t0 = t0:�fq=�q(n; t; t) � �dq(n) t1 + dqq(n) "1�� t0t �1+dqq(n)#+ �f (V)q=�q (n; t0; t) � t0t �dqq(n) : (33)As disussed earlier �f (V)q=�q (n; t0; t) should derease with inreasing t andvanish for t � t0 (see e.g. [3℄ for a phenomenologial parametrization).Thus for t � t0 we get the unique predition independent of the `input' atlow t0 f̂ e (n) t0Ztmin dtfk (n; t; t) ' f̂ e(n) �dq(n) t1 + dqq(n) (t0 � tmin); (34)where tmin = log(P 2min=�2QCD).For large t this low P 2 ontribution grows linearly with t and an benegleted in the `inlusive' ase. The `exlusive' ase Eq. (31) beomes now�f eq=�q(n; t; t1) ' f̂ e(n) �dq(n)1 + dqq(n) t(t1 � tmin) � f̂ e (n) �dq(n)1 + dqq(n) t log P 2P 2min : (35)



378 W. Sªomi«skiThis is exatly the Weizsäker�Williams formula Eq. (6) with asymptotisolution Eq. (24) used for the photon struture funtion.Muh more interesting is the `inlusive' ase Eq. (32). To understand thisQCD predition let us look �rst at the photon struture funtion. There thee�et of QCD evolution an be seen by omparing the full result Eq. (28)with the Quark Parton Model (QPM) limit. We reah this limit by taking�2QCD ! 0 (�(t)! 0) in Eq. (28), whih results in�fq=�q(n; t; t)jQPM = �dq(n) (t� t) = �dq(n) log Q2P 2 : (36)Thus we see that for large t the net e�et of the QCD evolution on thephoton struture funtion is to hange �dq(n) into �dq(n)=(1 + dqq(n)). Thedependene on t remains the same but the struture funtions (transformedbak to the x-spae) have di�erent dependene on x. As usually the QCDevolution `shifts' the distribution towards lower x values. Analogously, forthe eletron struture funtion the QPM limit of Eq. (30) reads�f eq=�q(n; t; t1; t0)jQPM ' f̂ e (n) �dq(n)2 (t1 � t0)(2t� t1 � t0)= f̂ e (n) �dq(n)2 log P 2P 20 �log Q2P 20 + log Q2P 2� : (37)The reader an easily hek that this result orresponds to the integral R t1t0 dtof the QPM formula for the photon struture funtion, Eq. (36).Comparing the QPM result with the QCD formulae Eq. (35) and Eq. (32)we see that the e�et of QCD evolution is to multiply the moments of theeletron struture funtion by 1=(1 + dqq(n)) in the `exlusive' ase and by2=(2 + dqq(n)) in the `inlusive' ase. After transforming bak to the x-spae, this means that QPM, `exlusive' and `inlusive' eletron struturefuntions all have di�erent dependene on x. In partiular the `inlusive'solution �f eq=�q(n; t), whih orresponds to a standard struture funtion, getsmodi�ed analogously to the photon ase but by another fator. In this sensethe eletron aquires an anomalous omponent from QCD.So far we have disussed the non-singlet solution. The singlet ase goesalong the same lines but will not be presented here. Instead, we onstrut inthe next setion the evolution equations whih an be solved in the x-spae.



QCD Anomalous Struture of Eletron 3794. Evolution equationsLet us �rst show that Eq. (30) is the general solution to the followingmaster equations� �f eq=�q(n; t; t1; t0)�t = dqe(n)(t1 � t0)� dqq(n)t �f eq=�q(n; t; t1; t0); (38a)� �f eq=�q(n; t; t1; t0)�t1 = f̂ e (n) �fq=�q(n; t; t1)= dqe(n) t1 + dqq(n) "1�� t1t �dqq(n)+1# ; (38b)where dqe(n) � f̂ e(n) �dq(n). Note that the seond equation is just thederivative of Eq. (10) with Eq. (28) inserted for the photon struture fun-tion. A general solution to Eq. (38a) an be written as�f eq=�q(n; t; t1; t0) = C(n; t1) t�dqq(n) + dqe(n)1 + dqq(n) (t1 � t0)t: (39)So far C(n; t1) is an arbitrary funtion of t1. Nb. if t1 remains onstantwhen t ! 1 the seond term of Eq. (39) gives the asymptoti solution forthe `exlusive' ase.From the seond equation Eq. (38b) we obtainC(n; t1) = C(0)(n)� dqe(n) tdqq(n)+21[1 + dqq(n)℄ [2 + dqq(n)℄ (40)with arbitrary C(0)(n).Now the general solution to Eq. (38) reads�f eq=�q(n; t; t1; t0) = C(0)(n)t�dqq(n)+ dqe(n)1 + dqq(n) "(t1 � t0)t� t2+dqq(n)1 t�dqq(n)2 + dqq(n) # : (41)Upon imposing the boundary ondition �f eq=�q(n; t; t0; t0) = 0 we reover theformula Eq. (30) derived in the previous setion.The omplete set of master equations in the x-spae analogous to Eq. (38)an be obtained by hanging the produts of moments into onvolutions andobserving that there is no inhomogenous term for the gluoni omponent �



380 W. Sªomi«skif. Eq. (14). Suppressing expliit t0 dependene in the funtion argumentswe have �f eq=�q(t; t1)�t = �em2� P̂qe[t1 � t0℄+ �2�Pqq 
 f eq=�q(t; t1) + �2�PqG 
 f eG(t; t1); (42a)�f eq=�q(t; t1)�t1 = f̂ e 
 fq=�q(t; t1); (42b)�f eG(t; t1)�t = �2�PGq 
 nfXq=1 �f eq (t; t1) + f e�q (t; t1)�+ �2�PGG 
 f eG(t; t1); (42)�f eG(t; t1)�t1 = f̂ e 
 fG(t; t1); (42d)where P̂qe = P̂q 
 f̂ e .These equations, as they stand, are not very useful beause they ontainboth eletron and photon struture funtions. We will present now how alosed set of equations for the eletron struture funtion is formed in thelarge t region. As already disussed previously, the large t limit depends onadditional assumptions on t1 vs. t dependene. Quite generally one an taket1 to be some funtion of t de�ning a `path' in the t-t1 plane along whihthe large t limit is approahed. Denoting t1 = g(t) we havedf ek(t; t1)dt = �f ek(t; t1)�t + g0(t)�f ek(t; t1)�t1= �f ek(t; t1)�t + g0(t)f̂ e 
 fk (t; t1): (43)A simple hoie for g(t) isg(t) = (1� a)t̂1 + at ; (44)where t̂1 is onstant and 0 � a � 1. The two extreme ases onsidered inthe previous setion orrespond to following hoies for the parameter a.� `Exlusive' asea = 0, i.e. g(t) = t̂1. As g0(t) = 0 the seond term in Eq. (43) vanishes.The solution grows linearly with t (f. Eq. (4)). The resulting masterequations have a onstant (t-independent) inhomogenous term



QCD Anomalous Struture of Eletron 381df eq=�q(t; t̂1)dt = �em2� P̂qe[t̂1 � t0℄+ �2�Pqq 
 f eq=�q(t; t̂1) + �2�PqG 
 f eG(t; t̂1); (45a)df eG(t; t̂1)dt = �2�PGq 
 nfXq=1 �f eq (t; t̂1) + f e�q (t; t̂1)�+ �2�PGG 
 f eG(t; t̂1) : (45b)� `Inlusive' ase.a = 1, i.e. g(t) = t and g0(t) = 1. Now the virtual photon struturefuntion fk (t; t) vanishes beause both arguments are equal. We arriveat the equations whih are formally the same as in the `exlusive' asebut with t̂1 set to t and t0 negleted. The master equations have nowthe inhomogenous term proportional to t, whih results in a di�erentx-dependene of the solutions.Aording to Eq. (31) and Eq. (32) the asymptoti solutions to theseequations have the formf ek(z; t) = ��em2� �2 ~f ek(z) tt1 (46)with t1 onstant and t1 = t for the `exlusive' and `inlusive' ase, respe-tively. Here we have taken t0 = 0 (P 20 = �2QCD). Substituting the leading-logformula Eq. (19) for �(t) we end up with t-independent integral equationsp ~f eq=�q(z) = P̂qe(z) + 2�0 1Zz dxx hPqq(x) ~f eq=�q� zx�+ PqG(x) ~f eG� zx�i; (47a)p ~f eG(z) = 2�0 1Zz dxx Xk=q;�q;GPkq(x) ~f ek � zx� ; (47b)where p = 1 or p = 2 for the `exlusive' or `inlusive' ase, respetively.We solve these equations numerially using the method desribed in [9℄.In Fig. 3 we show the `exlusive' and `inlusive' solutions for the distributionof u quarks in the eletron at Q2 = 100GeV2. There is still the ontributionfrom the photons of low virtuality (P 2 < �2QCD) whih should be added, as
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Fig. 3. Asymptoti u-quark `exlusive' and `inlusive' distributions zfeu(z;Q2)=�2emfor Q2 = 100GeV2 and P 2 = 1GeV2 for `exlusive' ase. Calulations have beendone for 5 �avors, �QCD = 0:2GeV and P 20 = �2QCD.it has been done in Eq. (35). At asymptotially large t = log(Q2=�2QCD) itmodi�es the `exlusive' solution only, by hanging the t1 = log(P 2=�2QCD)fator in Eq. (46) into log(P 2=P 2min). At �nite Q2, however, this ontributionis non-negligible for `inlusive' ase and should also be added. As an be seenfrom Eq. (30) taking the intermediate sale P 20 = �2QCD (t0 = 0) sets theproper normalization for this orretion1 at �nite t. Thus the both urvesin Fig. 3 get shifted by the same amount.5. SummaryIn this paper we have analyzed the parton ontent of the eletron withinperturbative QCD. We have shown that eletron aquires an anomalous om-ponent from QCD, analogously to photon. We have onstruted the evolu-tion equations for the `exlusive' and `inlusive' eletron struture funtion.These two ases orrespond to `anti-tagging' and `no-tagging' experimentalonditions, respetively. The evolution equations an be solved numeriallyin the x-spae in the asymptoti Q2 region. As an example we have shownthe u quark distribution inside the eletron.The results presented here are leading-log QCD solutions valid at asymp-totially large Q2. At �nite Q2 the next-to-leading orretions, as well as1 AtQ2 value onsidered here the low P 2 ontribution is of the same order of magnitudeas the QCD results in Fig. 3.
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