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CLASSICAL DISSIPATIVE FUNCTION AT FINITE
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The dissipative function of slow collective motion in hot nuclei of arbi-
trary shape is presented in terms of nucleonic trajectories. The expression
accounts for finiteness of nucleon mean free path A. The derivation starts
from quantum formula for the dissipation rate of collective energy via the
dressed particle-hole propagator. The extreme cases of A = oo and A — 0
are studied. As an example, explicit formulas are given for friction coeffi-
cients of multipole surface vibrations in spherical leptodermous nuclei.

PACS numbers: 25.70.Lm, 24.10.Cn

1. Introduction

As a starting point for the rate of dissipation () we use the Linear Re-
sponse Theory expression in terms of the dressed particle-hole propagator [1]
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n, —n ,
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(1)

where

0o dt ’ (2)

V(r) is the mean field depending on the nuclear shape in terms of the col-
lective parameters o, V, w are the matrix elements of V(r) on the single-
particle states ¢, (r), E are the single-particle energies, n, are the Fermi
gas temperature—dependent occupation numbers, and A = 1.
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In the above expression the quantity responsible for the residual interac-
tions is I, the spreading width of single-particle states. It can be calculated

from

I, = _Q/dwg(r)vv(r),

(3)

where W(r) is the imaginary part of the single-particle optical potential.
It is available in infinite systems [2] and in finite systems [3] (with sim-
plest versions of Skyrme forces) as a function of particle energy and nuclear

temperature T'.

2. Quantum expressions for Q

On introducing the ’soft’ J-function

using the identity
52p(a} — E“ + EV) = /5F(E - E“ + a})ép(E - E,,)dE,

and making the substitution

L (B
’n,“ ny 8E

(Ey — Ey)
justified with the quasiclassical accuracy [4], we find
Q=Qut 120
- a d1—1 a

where

_ —wZ/dE ‘Vuu

The dissipative function defined in [5-7] can be written as

Q[O} = Qa - Qdiag 3

where

2 0n(Ey)
oE,

. 1 .
Qdiag = _F Z ‘V;u/
—=B,)

p(Ey=

5r(E, — E)or(E, — E).



Classical Dissipative Function at Finite Mean Free Path 463

This Q[O] becomes identical to Q in the limit I" — 0. At finite I" the
relation between @ and Q% reads

Q=0 + FdiFQ[O] . (10)

Using the finiteness of Q% at I" — 0 one can find from (8) and (9) the
expression

. 1 . .

Qdiag = — lim [FIQa(FI)} (11)

I' r'=o

which presents Qdiag in terms of Qa.

3. Classical approximation for Q

The Qa can be rewritten in the form

Qu=—n [arar vV [an® D 2 erim), )
where )
p(r,r’; E) = —;ImG(r, r’; E) (13)

is the single-particle spectral density, G(r,r’; E) being the 1-particle Green
function:

. E)
Gr,r"s ZE E +1F/2

Employing the quasiclassical Van Fleck expression for the time depen-
dent 1-particle Green function we obtain the classical approximation for the
spectral density

p2(r, v E) dte T [ dpé [r rp()] 6 (B — Hpp). (14)

The phase space trajectory Ry, ,(t), Py p(t) obeys the Hamilton’s equa-

tions with the Hamiltonian
2
H D

o +V(r)

subject to the initial conditions

R, ,(t=0)=r, P,,(t=0)=p. (15)
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Inserting (14) into (12) and integrating over E leads to

/w—”/”@ mWHW)%;p) (16)

The phase space integral in (16) is the autocorrelation function for V(r).
Hence the subscript ‘a’ in Q5.
Inserting (16) into (6) we find

= —/dt(l —Ft)e—“/ ér:)’; V[RT,p(t)]V(r)ag(TI{:”). (17)
/ ;

This expression can be used for practical calculations of dissipation rates in
hot nuclei of arbitrary shape. It is seen from (17) that the ratio A = vg /I,
where vr is the Fermi velocity, plays the role of a mean free path.

Consider the I"' = 0 (A — o0) limit of Eq. (17). On using the identity

?dte_”f(t) = 7dt —”5 /tdt ft ):Ffdte_”/tdt’f(t')
0 0 0 0 0

in the first term of (17) and taking into account the relation

Jim £(0) =t 1 [ dte 5 (0), (18)
0

one obtains

t

lim Q) = — lim / drdp / GV R (1) =tV (R p (1)) | V() L2 Er0)
0

OHy,p
(19)
This expression is equivalent to the Koonin—Randrup formula for classical

dissipation rate in the long mean-free-path regime [8].
Using (11), (16) and (18), we find that in the classical approximation

r—0 t—oo | (27)3

. drdp - - On(Hpp)
Qdiag = thoo/ (2n)? V[Rr,p(t)]v(r)aTr’p- (20)
Since V[Ryp(t)] is finite at large ¢ whereas limy ,oo t = + (see (18)), we

conclude that the so-called convergence term of Koonin and Randrup (the
second term in (19)) is nothing else but a classical counterpart of Qgiag-
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In the opposite extreme I' — oo (A — 0), Eq. (17) is conveniently to
study using the leptodermous approximation. Then followmg [8], one can
decompose Q into a sum of the wall formula dissipation rate Quwan [9] and a
multireflection series. In the latter, the contribution of a path of length s is
weighted with exp[—s/A].

When I' — oo, the Q Qwau decreases exponentially while Q Qwau
tends to zero as 1/ F , except for non compressing systems with nondegenerate
1-particle spectrum, when Qdiag = 0 [8]. One should remember that the
condition I' < T for Eq. (1) to be valid, does not allow for too small \.

4. Illustrative example

For multipole surface vibrations in spherical leptodermous nuclei, Q[O]
becomes

QU = poR' Y, (21)
LM

where &r s are the collective velocities, R the radius of the nucleus, p is the
matter density, 7 = (3/4)vr,

w/2
L
167 T T\ |2 .
W =aryg o v (33) /d¢sm3¢cos¢ Wiz, g)  (22)
N=—L 0
with
1
0] B cothﬁ—g, N =0
v d) = ) 23
(@, ¢) {(1—2e_25cos2N¢+e_4B) 1(1—9_4/3)7 N #0 )

and f = zsing, = R/
Friction coefficients 'Yvaall associated with Qa1 are equal to 1 while fric-
tion coefficients vy, associated with @) can be found from the relation

0 d 1o
S

which follows from (10).
As seen from Fig. 1, v7, and fy[L] tend to 'y . at A — 0 with 7, achieving
this limit much faster. At A > R, 'y[L] strongly differ from 7. It is only at

very large X that qu)] ~ «vr, and both are close to the values 0, 0.85 and 0.45
predicted in [8] for L = 2, 3,4, respectively. The corresponding I" however
are so small that quantum calculations would lead to vanishing friction [5].
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Fig. 1. Friction coefficients v%,;, (---), v, ( + + +), and 'y[LO] (—) for L=2 (left),

3 (middle), and 4 (right) as functions of the ratio R/A.

Figure 2 shows the imaginary parts of the optical potentials and the cor-
responding spreading widths in 2°Pb at E equal to the chemical potential.
To take into account in (23) the dependence of I' on the nucleon angular
momentum [, we used the substitution [ = [ cos ¢, where Il = mvpR.
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Fig.2. The imaginary part of the nucleon-nucleus potential (left) and the single-
particle spreading width (right) in 2°8Pb at T = 1,2, 3,4,5 MeV. The dashed lines

represent the infinite matter results.

Figure 3 demonstrates the temperature dependence of the friction coeffi-
cients found with I" shown in Fig. 2. One concludes that friction coefficients
v, corresponding to the dressed particle-hole propagator achieve the wall

formula limit at the temperatures about 3-4 MeV.
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Fig.3. Temperature dependence of friction coefficients L, (---), v (+ + +),
and Y (—) for L = 2 (left), L = 3 (middle), L = 4 (right) in 205Pb.
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