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We use the Thomas—Fermi model of macroscopic nuclear properties de-
scribed in W.D. Myers and W.J. Swiatecki, Nucl. Phys. A601, 141 (1996),
to discuss two applications: a) the response of the nuclear energy to changes
of the neutron and proton diffusenesses, and b) the equation of state of cold
nuclear matter. Under a) formulae are provided which will make it pos-
sible to improve existing Microscopic—Macroscopic calculations of nuclear
properties by the inclusion of the two degrees of freedom associated with
the neutron and proton diffusenesses. The algebraic formulae presented
under b) may serve as a reliable baseline estimate of the equation of state.
It is argued that the value of the nuclear compressibility coefficient K as
well as its dependence on the relative neutron excess are now fairly well
determined.

PACS numbers: 21.60.-n, 21.65.+f

1. Introduction

Since the discovery of the nuclear independent-particle model in 1949
the starting point of most nuclear theories involves the solution of the wave
equation of non-interacting particles in a common potential. The potential
may be taken to have some reasonable-looking Woods—Saxon-like shape,
but today’s computers are sufficiently powerful so that the potential can
be generated self-consistently by the nucleons themselves, assumed to be
interacting by some effective force. Thus one achieves the solution, in the
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mean-field approximation, of an idealized many-body problem of interacting
nucleons. These are the Hartree—Fock theories, recently generalized into the
form of relativistic mean-field treatments.

If, following Thomas and Fermi, one makes the additional, standard
statistical approximation of averaging over shell effects (“two fermions per
h3 of phase space”) one arrives at the Thomas-Fermi self-consistent mean-
field solution of the nuclear many-body problem, Ref. [1].

In both the Hartree—Fock and Thomas—Fermi approximations a central
problem is to invent an appropriate effective interaction that will mock up
adequately the physics of the true, unapproximated many-body situation.
A more technical difficulty is to achieve a sufficiently precise adjustment of
the effective interaction’s half dozen parameters to the couple of thousand
measured binding energies and other relevant nuclear properties.

Table I, based on Ref. [2], compares the quality of the fits to nuclear
masses for 17 current models: ten Hartree-Fock calculations with various
Skyrme or Gogny forces, three relativistic models and four hybrid “Macro-
scopic-Microscopic” approaches. What is shown is the RMS deviation, in
MeV, between theory and measurement for a sample of 116 spherical even-
even nuclei from 90 to ??°Th. The Thomas-Fermi model, which is the
subject of this talk, is labeled MM(TF) in Table I. Its macroscopic part is
the shell-averaged, self-consistent mean-field solution of A nucleons interact-
ing by an effective velocity- and density-dependent Yukawa potential. The
interaction has 6 adjustable parameters, which were fitted to 1654 measured
masses of nuclei with N, Z > 8, as well as to the diffuseness of the nuclear
surface. The adjustment to masses was made after these were smoothed by
subtracting Strutinsky shell effects, an empirical even-odd correction and a
semi-empirical Congruence (Wigner) term. These corrections are beyond a
statistical treatment, and have to be addressed separately (hence the appel-
lation “Macro-Micro”). The RMS deviation for this hybrid Thomas-Fermi
model is 0.57 MeV for the 116 masses on which Table I is based, and 0.655
MeV for the full set of 1654 masses. Most of this 0.655 MeV is readily rec-
ognized as to due imperfections in the microscopic shell corrections. Thus,
recalling that for a medium mass nucleus the binding energy is some 1000
MeV, one is talking about a precision in the fit to the macroscopic part of
the energy of the order of 1 in 10%.

A feature that sets the Thomas—Fermi model apart from most of the
models in Table T is that, without any readjustment of the parameters,
it gave a good account (apart from indications of slight overestimates in
the mass range A = 75 to 98) of the 40 measured fission barriers of nuclei
throughout the periodic table. This is a severe test of a model’s deformability
properties, since saddle-point shapes defining the fission barriers are very
strongly deformed configurations.
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TABLE I
Mass rms deviations in MeV
SIII: 4.74 | SkP: 2.37 | SKM*: 6.32
SIII: 3.07 | SkPS: 2.53 | SKM*9: 5.36 | HARTREE-FOCK
SIII7: 2.26 | Skpér: 2.32 | SkM*9r: 4.74
Gogny: 2.07
RMF(NL1): 3.94 | RMF(NL2): 11.24 | RMF(NL3): 2.48 | RELATIVISTIC
ETFSI: 0.80
MM(FRDM):  0.65 | MM(FRLDM):  0.76 | MM(TF): 0.57 | MACRO-MICRO

The model passed three additional tests, again without the readjustment
of parameters: the masses of light nuclei with N, Z < 8, not included in the
fit, came out reasonably close to measurements, nuclear sizes were predicted
correctly, and the density dependence of the energy of neutron matter came
out close to the theoretical estimates of Ref. [3].

The good agreement with shell-corrected nuclear masses and the satisfac-
tory outcome of the above four tests makes us feel that the Thomas—Fermi
model provides not only an accurate representation of the macroscopic prop-
erties of known nuclei, but can also serve as the basis for extrapolating these
properties to unknown regions of the chart of nuclei, as well as to nuclear
matter.

We have already used our model in a number of applications (Refs. [1,4,5]),
and in what follows I will describe two recent examples.

2. The nuclear surface diffuseness as a degree of freedom

Estimating the dependence of the nuclear surface energy on surface
diffuseness may turn out to be important for locating more reliably the
magic numbers in the region of superheavy nuclei. Thus in macroscopic-
microscopic approaches to extrapolations into the superheavy regime, the
nuclear mean field is parameterized as a shape-dependent Woods—Saxon or
similar potential, in which the Strutinsky shell corrections are then evalu-
ated. In order to find the ground-state energy and shape of the nucleus, in
particular a super-heavy nucleus, the sum of the microscopic shell correc-
tion and a macroscopic energy is varied as a function of the shape degrees of
freedom. In such variations the surface diffuseness is usually kept constant,
but one may well ask how the results would change if, when locating the
energy minimum, the diffuseness were to be treated as an additional degree
of freedom, to be varied simultaneously with the shape degrees of freedom.
This question has, in fact, a long history going back at least to Refs. [6,7,8].
There have also been indications as long ago as 1966 (see Fig. 4 in [9]), that
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an increased surface diffuseness would begin to favour the magic proton
number Z = 126 over 114. This possibility has been examined in the recent
comprehensive study in [10], where macroscopic-microscopic extrapolations
were confronted with self-consistent Hartree—Fock calculations, in which the
mean field is not parameterized, but is allowed to seek out its optimum form,
including whatever changes in the surface diffuseness are called for.

The resulting possibility of a reappearance of the magic number Z = 126
would affect profoundly forthcoming searches for superheavy nuclei, and it
is important to throw further light on this question by performing up-to-
date macroscopic-microscopic calculations generalized to include the surface
degrees of freedom. In order to carry out such a calculation it is neces-
sary to investigate the response to diffuseness of both the macroscopic and
microscopic parts of the energy. The machinery for calculating the latter
is already in place: simply recalculate the Strutinsky shell correction for a
series of diffusenesses. As regards the former a new question arises: besides
the known response of the Coulomb energy to diffuseness, one needs the
response of the macroscopic surface-layer energy. Here is what the Thomas—
Fermi model has to say about this [11].

Consider a finite nucleus with mass number A (and N = Z), for which
the surface diffuseness for neutrons is A, times (and for protons A, times)
what it would be for standard, semi-infinite nuclear matter. A series of
numerical solutions of the Thomas—Fermi equations shows that the sum of
surface and curvature energies in their dependence on A, and A, can be
approximated by

E = S[1+3p100n —1)2 = do(An — Dy — 1) + 31Ny — 1)?]

+KM
2
+ cubic terms in (A, — 1), (A — 1), (1)
where
S =18.634%3MeV, K =12.114"%MeV (2)

are the Thomas—Fermi model’s standard surface and Coulomb energies for
An = A, = 1. For A > 40 the coefficients ¢ and ¢ are given approximately
by the following functions of A:

¢1 = 0.7388 + 1.1787a 4 12.592907 , (3)

b = 0.4836 + 0.4178c + 5.21800° , (4)

with a = A~1/3,
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For a spherical nucleus with atomic number Z the Coulomb energy may
be written as an expansion in the ratio of the diffuseness to the effective
sharp radius R and, using standard formulae [12], one finds

Ec =C — Co)) + C3A), (5)
where
C = 36;52 = 0217/9322 MeV, (6)
Cy — 362222;03 _ 1.45;922 MoV, )
oy 3e2§;1£8k3 _ 1.5337322 — -

Here e is the charge unit and k3 is a numerical coefficient which, for a Fermi
function charge distribution, has the value 3.0216. The quantity wg is a
measure of the diffuseness for standard semi-infinite nuclear matter and has
the approximate value wy = 1 fm. We also took R = 1.14A4'/3 fm.

Adding Eq. (5) to Eq. (1) and minimizing with respect to A, and A,
one finds for the optimum value of A, the relation

\/02 + 46002 — C1
Ap = (9)

262 ’
where
K 0.3250
Co—l—ﬁ—l—m, (10)
_ 20y 0.156522
Y L T (1
3C;  0.248977
= = 12
where 1 stands for(¢? — ¢2)/é1 and x stands for (¢1 — ¢2).
The optimum value of A, is related to A, by
—K ~1/3
SE+ (-1 —0.32504~1/ -1

b2 )

Figure 1 compares the predicted values of the relative diffuseness A,
with measured relative diffusenesses, obtained by taking the values of the
diffuseness parameter “z” for A > 40, listed in Ref [13] for “two-parameter
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Fig.1. The solid curve is the relative proton diffuseness A, as predicted by Eq. (9)
along the valley of stability. The long-dashed curve shows the result of disregard-
ing the curvature energy, the short-dashed curve the result of disregarding the
Coulomb energy. The squares refer to the relative proton diffuseness deduced from
measurements of charge distributions according to [13].

Fermi fits,” and dividing them by their average (equal to about 1.022 fm).
It will be seen that, along the valley of stability, theory predicts a slight
gradual increase of the diffuseness, the result of the competition of Coulomb
and curvature driving forces pushing against the surface-energy restoring
potential. For the super-heavy nucleus Z = 126, N = 184 (which is off the
valley of stability) Eq. (9) gives A, = 1.081 as the optimum diffuseness. The
cost of a further increase of A, from the optimum (assuming, for purposes of
illustration, that the changes in neutron and proton diffusenesses are locked
in step) is found by taking the second derivative of Eq. (1) with A, = A, = A:

_1d°E
©2d)\2

For example, an additional 10% increase of diffuseness would cost about
4 MeV. It remains to be seen whether the possible gain in shell-effect energy
associated with making the nuclear potential more oscillator-like (which is
estimated both in Ref. [8] and [10] as up to a dozen MeV) would be able
to stabilize the above super-heavy nucleus sufficiently to make it detectable.
The problem is under study, Ref. [14]. However this will turn out, it is
now possible to improve the conventional macroscopic-microscopic method
by including the degrees of freedom associated with the neutron and proton
diffusenesses. This may lead to a better description of nuclear masses and

AE (A =1)2 =411.5(\ — 1) MeV. (14)
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deformation energies throughout the periodic table, especially near the drip
lines. It may also be useful in macroscopic descriptions of the giant monopole
resonance.

3. The nuclear equation of state

There is currently considerable interest in the energy per particle of nu-
clear matter, e(p, d) considered as a function of the nuclear density p and the
relative neutron excess d, where p = pneutrons + Pprotons and & = (pn, — pp)/p.
This fundamental quantity, the equation of state of cold nuclear matter,
plays a key role in theories of neutron stars and supernova explosions, as
well as in the interpretation of nucleus-nucleus collisions at energies where
nuclear compressibility comes into play. (For a review and references see,
for example, Ref. [15].)

Direct information on e(p, d) is difficult to come by for values of p away
from those characterizing normal nuclei and for § beyond the relatively small
values characteristic of the most neutron-rich nuclei. One way to extrapo-
late beyond this limited regime is by using a nuclear model fitted to binding
energies of finite nuclei and extrapolating to nuclear matter. Having devel-
oped a reliable Thomas—Fermi model of finite nuclei we can readily make
this extrapolation, and this is what we find:

6(,0, 5) = TO"’(‘Q’ 5) )

where

n(02,0) = a? — b23 + c2°. (15)

Here 2 = (p/po)'/? and py = 0.16114fm 2 and Ty = 37.0206 MeV are the
saturation density and Fermi energy of standard nuclear matter as predicted
by the model. The coefficients a, b, ¢ are the following functions of 4:

0= 5[2(1—m><p5+q5>

20
B (5p%¢> — ¢°)  for pp > py
I { (5p%¢* = p°) for pn < pp |’ 16)
1
b= [ (p° + ¢°) + 2a,p’ g% (17)
3
¢ =15 [Bi(p® + ¢°) + Bup*a*(p* + ¢°)] (18)

where p = (14 6)'/3,q = (1 — 6)'/3. The quantities 7, Yu, o, tu, By, By, are
relative interaction strengths characterizing the effective nucleon—nucleon
force in the Thomas—Fermi model. They have the following values
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v = 025198, 7, = 0.88474,
ap = 0.70110, v, = 1.24574,
B, = 022791, B, = 080020. (19)

Figure 2 displays the dimensionless energy per particle n(£2, d) as a func-
tion of 2 for 6 = 0,0.2,0.3,0.4,...1.0. It will be seen that neutron matter
(6 = 1) is unbound in our model. A minimum in 7 appears below the critical
value §, = 0.8213, where 2 = 2. = 0.5735 and 7. = 0.02979. The satu-
ration energy per particle becomes negative for § < 0.7783 and attains the
value n = —0.43859 (i.e., e = —16.24 MeV) at 6 = 0. Figure 2 shows, as a
function of §, the density p, the energy per particle e, and the compressibility
Ky along the sequence of minima in Fig. 2.

The equilibrium value of {2 is obtained by solving the cubic resulting
from equating to zero the derivative dn/df2 which leads to £2 =0 or

2a — 3602 + 5¢02° = 0. (20)

Energy per particle, 1

0.0 0.5 1.0 1.5
Density parameter, Q
Fig. 2. The dimensionless energy per particle n({2, ) plotted as function of 2, the
cube root of the relative density p/po, for ten values of the relative neutron excess
4 =0,0.2,0.3,0.4,...,1.0. The dashed curve follows the loci of the energy minima
up to the critical point marked by a cross.
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The relevant solution is

b 0 .0
2= a[cosg—i—\/gsmg], (21)

6 = cos ! (ab\/%) . (22)

The compressibility coefficient at the minimum, Kj, is given by

where

82
Ko(a)zg[fa—pi] = Ty(2002* — 602> +20c2°), (23
P=Pmin

with §2 given by Eq. (21).

As can be seen from Fig. 3, K| starts at 234 MeV at 6 = 0 and decreases
to zero at the critical point §.. Figure 3 shows also that the behaviour of
K (0) parallels the behaviour of the depth of the binding energy minimum
taken with respect to the energy e. at §.. This is an extension to large values
of ¢ of the parallelism between K(N,Z) and e(N, Z) for finite nuclei, dis-
covered in Refs. [16,17]. This near constancy of the ratio of compressibility
to binding energy is illustrated by the fact that this ratio changed by only
7.5% between § = 0 and § = 0.52, where e was halved from —16.24 MeV to
—8.12 MeV.

In some applications the compressibility of nonequilibrium nuclear mat-
ter is of interest. Defining K(p,d) in the usual way as

oP
K =9 24
(:) =95 (24)

where P is the pressure given by P = p?(de/dp), we find
K(p,0) = To(10a02? — 186023 + 40¢£2°) . (25)

This is again readily evaluated for a given § by calculating the coefficients
a,b, c, using Eqs. (16)—(18).

Equation (15) represents the extrapolated equation of state as predicted
by a model that gives the currently most accurate representation of measured
binding energies and fission barriers [1,2,4]. For relatively modest deviations
from standard density, the key quantity is the compressibility Ky(d), whose
value at § = 0 we estimate as about 234 MeV. Other recent estimates of
this quantity [18,19], based on the interpretation of the giant monopole res-
onance, suggest values near 215 MeV. At the present time there is enough
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Fig.3. The saturation density p, the energy per particle e and the compressibility
Ky(0) at saturation, plotted as function of the relative neutron excess §. The
compressibility vanishes at the critical point defined by §. = 0.8213, where p. =
0.03039 fm® and e, = 1.1029 MeV. Note the similarity of the § dependences of K
and e. — e. (The dashed line corresponds to e = e..)
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uncertainty all around so that we do not regard this 8% difference as neces-
sarily significant. But the relative reliability of estimates of Ky derived from
a very precise fit of a nuclear model to binding energies and the surface dif-
fuseness does not appear to be sufficiently appreciated. Thus one still finds
statements to the effect that the saturation energy and density are the only
well determined characteristics of the equation of state, and compressibility
coefficients differing by a factor of two are quoted in the literature. We be-
lieve that the Thomas—Fermi model has reduced the uncertainty concerning
the value of K being around 230 MeV, and that the value derived from giant
monopole resonances is in substantial agreement with this conclusion. We
also believe that the dependence of the compressibility on neutron excess
predicted by Eq. (23) is fairly reliable.

For very large extrapolations (several times the standard density) our
simple expression for e(p, §) will have to be judged by whatever experimental
information becomes available, and by comparisons with theories that are
considered to be intrinsically more reliable. (In this connection see Ref. [20],
where our e(p,d) was incorporated in neutron star studies and the results
compared with those based on other theoretical equations of state.) In
the meantime, because of its simplicity and firm contact with measured
properties of finite nuclei, our algebraic expression for e(p, ) could be used
as a convenient baseline formula for the equation of state of cold nuclear
matter.
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