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TWO APPLICATIONS OF THE NUCLEARTHOMAS�FERMI MODEL� ��W.D. Myers and W.J. SwiatekiNulear Siene Division, Lawrene Berkeley National LaboratoryUniversity of California, Berkeley, California 94720, USA(Reeived February 1, 1999)We use the Thomas�Fermi model of marosopi nulear properties de-sribed in W.D. Myers and W.J. Swiateki, Nul. Phys. A601, 141 (1996),to disuss two appliations: a) the response of the nulear energy to hangesof the neutron and proton di�usenesses, and b) the equation of state of oldnulear matter. Under a) formulae are provided whih will make it pos-sible to improve existing Mirosopi�Marosopi alulations of nulearproperties by the inlusion of the two degrees of freedom assoiated withthe neutron and proton di�usenesses. The algebrai formulae presentedunder b) may serve as a reliable baseline estimate of the equation of state.It is argued that the value of the nulear ompressibility oe�ient K aswell as its dependene on the relative neutron exess are now fairly welldetermined.PACS numbers: 21.60.�n, 21.65.+f1. IntrodutionSine the disovery of the nulear independent-partile model in 1949the starting point of most nulear theories involves the solution of the waveequation of non-interating partiles in a ommon potential. The potentialmay be taken to have some reasonable-looking Woods�Saxon-like shape,but today's omputers are su�iently powerful so that the potential anbe generated self-onsistently by the nuleons themselves, assumed to beinterating by some e�etive fore. Thus one ahieves the solution, in the� Presented at the XXXIII Zakopane Shool of Physis, Zakopane, Poland, September1�9, 1998.�� This work was supported by the Diretor, O�e of Energy Researh, O�e of HighEnergy and Nulear Physis, Nulear Physis Division, of the U.S. Department ofEnergy under Contrat No. DE-AC03-76SF00098, and by the U.S.-Poland MariaSklodowska-Curie Joint Fund II. (647)



648 W.D. Myers, W.J. Swiatekimean-�eld approximation, of an idealized many-body problem of interatingnuleons. These are the Hartree�Fok theories, reently generalized into theform of relativisti mean-�eld treatments.If, following Thomas and Fermi, one makes the additional, standardstatistial approximation of averaging over shell e�ets (�two fermions perh3 of phase spae�) one arrives at the Thomas�Fermi self-onsistent mean-�eld solution of the nulear many-body problem, Ref. [1℄.In both the Hartree�Fok and Thomas�Fermi approximations a entralproblem is to invent an appropriate e�etive interation that will mok upadequately the physis of the true, unapproximated many-body situation.A more tehnial di�ulty is to ahieve a su�iently preise adjustment ofthe e�etive interation's half dozen parameters to the ouple of thousandmeasured binding energies and other relevant nulear properties.Table I, based on Ref. [2℄, ompares the quality of the �ts to nulearmasses for 17 urrent models: ten Hartree�Fok alulations with variousSkyrme or Gogny fores, three relativisti models and four hybrid �Maro-sopi-Mirosopi� approahes. What is shown is the RMS deviation, inMeV, between theory and measurement for a sample of 116 spherial even-even nulei from 16O to 220Th. The Thomas�Fermi model, whih is thesubjet of this talk, is labeled MM(TF) in Table I. Its marosopi part isthe shell-averaged, self-onsistent mean-�eld solution of A nuleons interat-ing by an e�etive veloity- and density-dependent Yukawa potential. Theinteration has 6 adjustable parameters, whih were �tted to 1654 measuredmasses of nulei with N;Z > 8, as well as to the di�useness of the nulearsurfae. The adjustment to masses was made after these were smoothed bysubtrating Strutinsky shell e�ets, an empirial even-odd orretion and asemi-empirial Congruene (Wigner) term. These orretions are beyond astatistial treatment, and have to be addressed separately (hene the appel-lation �Maro-Miro�). The RMS deviation for this hybrid Thomas�Fermimodel is 0.57 MeV for the 116 masses on whih Table I is based, and 0.655MeV for the full set of 1654 masses. Most of this 0.655 MeV is readily re-ognized as to due imperfetions in the mirosopi shell orretions. Thus,realling that for a medium mass nuleus the binding energy is some 1000MeV, one is talking about a preision in the �t to the marosopi part ofthe energy of the order of 1 in 104.A feature that sets the Thomas�Fermi model apart from most of themodels in Table I is that, without any readjustment of the parameters,it gave a good aount (apart from indiations of slight overestimates inthe mass range A = 75 to 98) of the 40 measured �ssion barriers of nuleithroughout the periodi table. This is a severe test of a model's deformabilityproperties, sine saddle-point shapes de�ning the �ssion barriers are verystrongly deformed on�gurations.



Two Appliations of the Nulear Thomas�Fermi Model 649TABLE IMass rms deviations in MeVSIII: 4.74 SkP: 2.37 SkM�: 6.32SIIIÆ : 3.07 SkPÆ : 2.53 SkM�Æ : 5.36 HARTREE�FOCKSIIIÆ�: 2.26 SkPÆ�: 2.32 SkM�Æ�: 4.74Gogny: 2.07RMF(NL1): 3.94 RMF(NL2): 11.24 RMF(NL3): 2.48 RELATIVISTICETFSI: 0.80MM(FRDM): 0.65 MM(FRLDM): 0.76 MM(TF): 0.57 MACRO�MICROThe model passed three additional tests, again without the readjustmentof parameters: the masses of light nulei with N;Z < 8, not inluded in the�t, ame out reasonably lose to measurements, nulear sizes were preditedorretly, and the density dependene of the energy of neutron matter ameout lose to the theoretial estimates of Ref. [3℄.The good agreement with shell-orreted nulear masses and the satisfa-tory outome of the above four tests makes us feel that the Thomas�Fermimodel provides not only an aurate representation of the marosopi prop-erties of known nulei, but an also serve as the basis for extrapolating theseproperties to unknown regions of the hart of nulei, as well as to nulearmatter.We have already used our model in a number of appliations (Refs. [1,4,5℄),and in what follows I will desribe two reent examples.2. The nulear surfae di�useness as a degree of freedomEstimating the dependene of the nulear surfae energy on surfaedi�useness may turn out to be important for loating more reliably themagi numbers in the region of superheavy nulei. Thus in marosopi-mirosopi approahes to extrapolations into the superheavy regime, thenulear mean �eld is parameterized as a shape-dependent Woods�Saxon orsimilar potential, in whih the Strutinsky shell orretions are then evalu-ated. In order to �nd the ground-state energy and shape of the nuleus, inpartiular a super-heavy nuleus, the sum of the mirosopi shell orre-tion and a marosopi energy is varied as a funtion of the shape degrees offreedom. In suh variations the surfae di�useness is usually kept onstant,but one may well ask how the results would hange if, when loating theenergy minimum, the di�useness were to be treated as an additional degreeof freedom, to be varied simultaneously with the shape degrees of freedom.This question has, in fat, a long history going bak at least to Refs. [6,7,8℄.There have also been indiations as long ago as 1966 (see Fig. 4 in [9℄), that



650 W.D. Myers, W.J. Swiatekian inreased surfae di�useness would begin to favour the magi protonnumber Z = 126 over 114. This possibility has been examined in the reentomprehensive study in [10℄, where marosopi-mirosopi extrapolationswere onfronted with self-onsistent Hartree�Fok alulations, in whih themean �eld is not parameterized, but is allowed to seek out its optimum form,inluding whatever hanges in the surfae di�useness are alled for.The resulting possibility of a reappearane of the magi number Z = 126would a�et profoundly forthoming searhes for superheavy nulei, and itis important to throw further light on this question by performing up-to-date marosopi-mirosopi alulations generalized to inlude the surfaedegrees of freedom. In order to arry out suh a alulation it is nees-sary to investigate the response to di�useness of both the marosopi andmirosopi parts of the energy. The mahinery for alulating the latteris already in plae: simply realulate the Strutinsky shell orretion for aseries of di�usenesses. As regards the former a new question arises: besidesthe known response of the Coulomb energy to di�useness, one needs theresponse of the marosopi surfae-layer energy. Here is what the Thomas�Fermi model has to say about this [11℄.Consider a �nite nuleus with mass number A (and N = Z), for whihthe surfae di�useness for neutrons is �n times (and for protons �p times)what it would be for standard, semi-in�nite nulear matter. A series ofnumerial solutions of the Thomas�Fermi equations shows that the sum ofsurfae and urvature energies in their dependene on �n and �p an beapproximated byE = S �1 + 12�1(�n � 1)2 � �2(�n � 1)(�p � 1) + 12�1(�p � 1)2�+K�n + �p2+ ubi terms in (�n � 1); (�p � 1) ; (1)where S = 18:63A2=3 MeV; K = 12:11A1=3 MeV (2)are the Thomas�Fermi model's standard surfae and Coulomb energies for�n = �p = 1. For A > 40 the oe�ients �1 and �2 are given approximatelyby the following funtions of A:�1 = 0:7388 + 1:1787� + 12:5929�2 ; (3)�2 = 0:4836 + 0:4178� + 5:2180�2 ; (4)with � = A�1=3.



Two Appliations of the Nulear Thomas�Fermi Model 651For a spherial nuleus with atomi number Z the Coulomb energy maybe written as an expansion in the ratio of the di�useness to the e�etivesharp radius R and, using standard formulae [12℄, one �ndsEC = C � C2�2p + C3�3p ; (5)where C = 3e2Z25R = 0:7579Z2A1=3 MeV ; (6)C2 = 3e2Z2w202R3 = 1:4579Z2A MeV ; (7)C3 = 3e2Z2w30k35R4 = 1:5457Z2A4=3 MeV : (8)Here e is the harge unit and k3 is a numerial oe�ient whih, for a Fermifuntion harge distribution, has the value 3.0216. The quantity w0 is ameasure of the di�useness for standard semi-in�nite nulear matter and hasthe approximate value w0 = 1 fm. We also took R = 1:14A1=3 fm.Adding Eq. (5) to Eq. (1) and minimizing with respet to �n and �pone �nds for the optimum value of �p the relation�p = p21 + 402 � 122 ; (9)where 0 = 1� K2S� = 1� 0:3250A1=3� ; (10)1 = 1� 2C2S = 1� 0:1565Z2A5=3 ; (11)2 = 3C3S = 0:2489Z2A2 ; (12)where  stands for(�21 � �22)=�1 and � stands for (�1 � �2).The optimum value of �n is related to �p by�n � 1 = �K2S + (�p � 1)�1�2 = �0:3250A�1=3 + (�p � 1)�1�2 : (13)Figure 1 ompares the predited values of the relative di�useness �pwith measured relative di�usenesses, obtained by taking the values of thedi�useness parameter �z� for A � 40, listed in Ref [13℄ for �two-parameter
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Fig. 1. The solid urve is the relative proton di�useness �p as predited by Eq. (9)along the valley of stability. The long-dashed urve shows the result of disregard-ing the urvature energy, the short-dashed urve the result of disregarding theCoulomb energy. The squares refer to the relative proton di�useness dedued frommeasurements of harge distributions aording to [13℄.Fermi �ts,� and dividing them by their average (equal to about 1.022 fm).It will be seen that, along the valley of stability, theory predits a slightgradual inrease of the di�useness, the result of the ompetition of Coulomband urvature driving fores pushing against the surfae-energy restoringpotential. For the super-heavy nuleus Z = 126, N = 184 (whih is o� thevalley of stability) Eq. (9) gives �p = 1:081 as the optimum di�useness. Theost of a further inrease of �p from the optimum (assuming, for purposes ofillustration, that the hanges in neutron and proton di�usenesses are lokedin step) is found by taking the seond derivative of Eq. (1) with �n = �p = �:�E = 12 d2Ed�2 (�� 1)2 = 411:5(� � 1)2MeV : (14)For example, an additional 10% inrease of di�useness would ost about4 MeV. It remains to be seen whether the possible gain in shell-e�et energyassoiated with making the nulear potential more osillator-like (whih isestimated both in Ref. [8℄ and [10℄ as up to a dozen MeV) would be ableto stabilize the above super-heavy nuleus su�iently to make it detetable.The problem is under study, Ref. [14℄. However this will turn out, it isnow possible to improve the onventional marosopi-mirosopi methodby inluding the degrees of freedom assoiated with the neutron and protondi�usenesses. This may lead to a better desription of nulear masses and



Two Appliations of the Nulear Thomas�Fermi Model 653deformation energies throughout the periodi table, espeially near the driplines. It may also be useful in marosopi desriptions of the giant monopoleresonane. 3. The nulear equation of stateThere is urrently onsiderable interest in the energy per partile of nu-lear matter, e(�; Æ) onsidered as a funtion of the nulear density � and therelative neutron exess Æ, where � = �neutrons+�protons and Æ = (�n��p)=�.This fundamental quantity, the equation of state of old nulear matter,plays a key role in theories of neutron stars and supernova explosions, aswell as in the interpretation of nuleus-nuleus ollisions at energies wherenulear ompressibility omes into play. (For a review and referenes see,for example, Ref. [15℄.)Diret information on e(�; Æ) is di�ult to ome by for values of � awayfrom those haraterizing normal nulei and for Æ beyond the relatively smallvalues harateristi of the most neutron-rih nulei. One way to extrapo-late beyond this limited regime is by using a nulear model �tted to bindingenergies of �nite nulei and extrapolating to nulear matter. Having devel-oped a reliable Thomas�Fermi model of �nite nulei we an readily makethis extrapolation, and this is what we �nd:e(�; Æ) = T0�(
; Æ) ;where �(
; Æ) = a
2 � b
3 + 
5 : (15)Here 
 � (�=�0)1=3 and �0 = 0:16114 fm�3 and T0 = 37:0206 MeV are thesaturation density and Fermi energy of standard nulear matter as preditedby the model. The oe�ients a; b;  are the following funtions of Æ:a = 320�2(1 � l)(p5 + q5)�u � (5p2q3 � q5) for �n � �p(5p3q2 � p5) for �n � �p� ; (16)b = 14 ��l(p6 + q6) + 2�up3q3� (17) = 310 �Bl(p8 + q8) +Bup3q3(p2 + q2)� ; (18)where p = (1 + Æ)1=3; q = (1� Æ)1=3. The quantities l; u; �l; �u; Bl; Bu arerelative interation strengths haraterizing the e�etive nuleon�nuleonfore in the Thomas�Fermi model. They have the following values
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l = 0:25198 ; u = 0:88474 ;�l = 0:70110 ; �u = 1:24574 ;Bl = 0:22791 ; Bu = 080020 : (19)Figure 2 displays the dimensionless energy per partile �(
; Æ) as a fun-tion of 
 for Æ = 0; 0:2; 0:3; 0:4; : : : 1:0. It will be seen that neutron matter(Æ = 1) is unbound in our model. A minimum in � appears below the ritialvalue Æ = 0:8213, where 
 = 
 = 0:5735 and � = 0:02979. The satu-ration energy per partile beomes negative for Æ < 0:7783 and attains thevalue � = �0:43859 (i.e., e = �16:24 MeV) at Æ = 0. Figure 2 shows, as afuntion of Æ, the density �, the energy per partile e, and the ompressibilityK0 along the sequene of minima in Fig. 2.The equilibrium value of 
 is obtained by solving the ubi resultingfrom equating to zero the derivative ��=�
 whih leads to 
 = 0 or2a� 3b
 + 5
3 = 0 : (20)

Fig. 2. The dimensionless energy per partile �(
; Æ) plotted as funtion of 
, theube root of the relative density �=�0, for ten values of the relative neutron exessÆ = 0; 0:2; 0:3; 0:4; : : : ; 1:0. The dashed urve follows the loi of the energy minimaup to the ritial point marked by a ross.



Two Appliations of the Nulear Thomas�Fermi Model 655The relevant solution is
 =r b5 �os �3 +p3 sin �3� ; (21)where � = os�1 abr5b ! : (22)The ompressibility oe�ient at the minimum, K0, is given byK0(Æ) = 9 ��2 �2e��2 ��=�min = T0(2a
2 � 6b
3 + 20
5) ; (23)with 
 given by Eq. (21).As an be seen from Fig. 3, K0 starts at 234 MeV at Æ = 0 and dereasesto zero at the ritial point Æ. Figure 3 shows also that the behaviour ofK0(Æ) parallels the behaviour of the depth of the binding energy minimumtaken with respet to the energy e at Æ. This is an extension to large valuesof Æ of the parallelism between K(N;Z) and e(N;Z) for �nite nulei, dis-overed in Refs. [16,17℄. This near onstany of the ratio of ompressibilityto binding energy is illustrated by the fat that this ratio hanged by only7.5% between Æ = 0 and Æ = 0:52, where e was halved from �16:24 MeV to�8:12 MeV.In some appliations the ompressibility of nonequilibrium nulear mat-ter is of interest. De�ning K(�; Æ) in the usual way asK(�; Æ) = 9�P�� ; (24)where P is the pressure given by P = �2(�e=��), we �ndK(�; Æ) = T0(10a
2 � 18b
3 + 40
5) : (25)This is again readily evaluated for a given Æ by alulating the oe�ientsa; b; ; using Eqs. (16)�(18).Equation (15) represents the extrapolated equation of state as preditedby a model that gives the urrently most aurate representation of measuredbinding energies and �ssion barriers [1,2,4℄. For relatively modest deviationsfrom standard density, the key quantity is the ompressibility K0(Æ), whosevalue at Æ = 0 we estimate as about 234 MeV. Other reent estimates ofthis quantity [18,19℄, based on the interpretation of the giant monopole res-onane, suggest values near 215 MeV. At the present time there is enough
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Fig. 3. The saturation density �, the energy per partile e and the ompressibilityK0(Æ) at saturation, plotted as funtion of the relative neutron exess Æ. Theompressibility vanishes at the ritial point de�ned by Æ = 0:8213, where � =0:03039 fm3 and e = 1:1029 MeV. Note the similarity of the Æ dependenes of K0and e � e. (The dashed line orresponds to e = e.)



Two Appliations of the Nulear Thomas�Fermi Model 657unertainty all around so that we do not regard this 8% di�erene as nees-sarily signi�ant. But the relative reliability of estimates of K0 derived froma very preise �t of a nulear model to binding energies and the surfae dif-fuseness does not appear to be su�iently appreiated. Thus one still �ndsstatements to the e�et that the saturation energy and density are the onlywell determined harateristis of the equation of state, and ompressibilityoe�ients di�ering by a fator of two are quoted in the literature. We be-lieve that the Thomas�Fermi model has redued the unertainty onerningthe value of K being around 230 MeV, and that the value derived from giantmonopole resonanes is in substantial agreement with this onlusion. Wealso believe that the dependene of the ompressibility on neutron exesspredited by Eq. (23) is fairly reliable.For very large extrapolations (several times the standard density) oursimple expression for e(�; Æ) will have to be judged by whatever experimentalinformation beomes available, and by omparisons with theories that areonsidered to be intrinsially more reliable. (In this onnetion see Ref. [20℄,where our e(�; Æ) was inorporated in neutron star studies and the resultsompared with those based on other theoretial equations of state.) Inthe meantime, beause of its simpliity and �rm ontat with measuredproperties of �nite nulei, our algebrai expression for e(�; Æ) ould be usedas a onvenient baseline formula for the equation of state of old nulearmatter. REFERENCES[1℄ W.D. Myers, W.J. Swiateki, Nul. Phys. A601, 141 (1996).[2℄ Z. Patyk, A. Baran, J.F. Berger, J. Deharge, J. Dobazewski, P. Ring, A. So-bizewski, Masses and radii of spherial nulei alulated in various maro-sopi approahes, GSI Report No. 97-40,1997, submitted to Phys. Rev. C.[3℄ B. Friedman, V.R. Pandharipande, Nul. Phys. 361, 502 (1981).[4℄ W.D. Myers, W.J. Swiateki, Nul. Phys. A612, 249 (1997); Ata Phys. Pol.B27, 99 (1996); B28, 9 (1997); B29, 313 (1998).[5℄ W.D. Myers, W.J. Swiateki, Phys. Rev. C57, 3020 (1998).[6℄ H.H. von Grote, W.D. Myers, P. Moller, S.G. Nilsson, J.R. Nix, J. Randrup,W.J. Swiateki, C.F. Tsang, Nul. Chem. Ann. Report 1972, Lawrene Berke-ley Laboratory preprint LBL-1666, 1973.[7℄ S.G. Nilsson, Suola Internationale di Fisia �Enrio Fermi� 1974, North-Holland, Amsterdam 1976, p.240.[8℄ G. Andersson, S.E. Larsson, G. Leander, S.G. Nilsson, I. Ragnarsson,S. Aberg, Phys. Lett. 65B, 209 (1976).[9℄ H. Meldner, Arkiv for Fysik 36, 593 (1967).
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