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TWO APPLICATIONS OF THE NUCLEARTHOMAS�FERMI MODEL� ��W.D. Myers and W.J. Swiate
kiNu
lear S
ien
e Division, Lawren
e Berkeley National LaboratoryUniversity of California, Berkeley, California 94720, USA(Re
eived February 1, 1999)We use the Thomas�Fermi model of ma
ros
opi
 nu
lear properties de-s
ribed in W.D. Myers and W.J. Swiate
ki, Nu
l. Phys. A601, 141 (1996),to dis
uss two appli
ations: a) the response of the nu
lear energy to 
hangesof the neutron and proton di�usenesses, and b) the equation of state of 
oldnu
lear matter. Under a) formulae are provided whi
h will make it pos-sible to improve existing Mi
ros
opi
�Ma
ros
opi
 
al
ulations of nu
learproperties by the in
lusion of the two degrees of freedom asso
iated withthe neutron and proton di�usenesses. The algebrai
 formulae presentedunder b) may serve as a reliable baseline estimate of the equation of state.It is argued that the value of the nu
lear 
ompressibility 
oe�
ient K aswell as its dependen
e on the relative neutron ex
ess are now fairly welldetermined.PACS numbers: 21.60.�n, 21.65.+f1. Introdu
tionSin
e the dis
overy of the nu
lear independent-parti
le model in 1949the starting point of most nu
lear theories involves the solution of the waveequation of non-intera
ting parti
les in a 
ommon potential. The potentialmay be taken to have some reasonable-looking Woods�Saxon-like shape,but today's 
omputers are su�
iently powerful so that the potential 
anbe generated self-
onsistently by the nu
leons themselves, assumed to beintera
ting by some e�e
tive for
e. Thus one a
hieves the solution, in the� Presented at the XXXIII Zakopane S
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kimean-�eld approximation, of an idealized many-body problem of intera
tingnu
leons. These are the Hartree�Fo
k theories, re
ently generalized into theform of relativisti
 mean-�eld treatments.If, following Thomas and Fermi, one makes the additional, standardstatisti
al approximation of averaging over shell e�e
ts (�two fermions perh3 of phase spa
e�) one arrives at the Thomas�Fermi self-
onsistent mean-�eld solution of the nu
lear many-body problem, Ref. [1℄.In both the Hartree�Fo
k and Thomas�Fermi approximations a 
entralproblem is to invent an appropriate e�e
tive intera
tion that will mo
k upadequately the physi
s of the true, unapproximated many-body situation.A more te
hni
al di�
ulty is to a
hieve a su�
iently pre
ise adjustment ofthe e�e
tive intera
tion's half dozen parameters to the 
ouple of thousandmeasured binding energies and other relevant nu
lear properties.Table I, based on Ref. [2℄, 
ompares the quality of the �ts to nu
learmasses for 17 
urrent models: ten Hartree�Fo
k 
al
ulations with variousSkyrme or Gogny for
es, three relativisti
 models and four hybrid �Ma
ro-s
opi
-Mi
ros
opi
� approa
hes. What is shown is the RMS deviation, inMeV, between theory and measurement for a sample of 116 spheri
al even-even nu
lei from 16O to 220Th. The Thomas�Fermi model, whi
h is thesubje
t of this talk, is labeled MM(TF) in Table I. Its ma
ros
opi
 part isthe shell-averaged, self-
onsistent mean-�eld solution of A nu
leons intera
t-ing by an e�e
tive velo
ity- and density-dependent Yukawa potential. Theintera
tion has 6 adjustable parameters, whi
h were �tted to 1654 measuredmasses of nu
lei with N;Z > 8, as well as to the di�useness of the nu
learsurfa
e. The adjustment to masses was made after these were smoothed bysubtra
ting Strutinsky shell e�e
ts, an empiri
al even-odd 
orre
tion and asemi-empiri
al Congruen
e (Wigner) term. These 
orre
tions are beyond astatisti
al treatment, and have to be addressed separately (hen
e the appel-lation �Ma
ro-Mi
ro�). The RMS deviation for this hybrid Thomas�Fermimodel is 0.57 MeV for the 116 masses on whi
h Table I is based, and 0.655MeV for the full set of 1654 masses. Most of this 0.655 MeV is readily re
-ognized as to due imperfe
tions in the mi
ros
opi
 shell 
orre
tions. Thus,re
alling that for a medium mass nu
leus the binding energy is some 1000MeV, one is talking about a pre
ision in the �t to the ma
ros
opi
 part ofthe energy of the order of 1 in 104.A feature that sets the Thomas�Fermi model apart from most of themodels in Table I is that, without any readjustment of the parameters,it gave a good a

ount (apart from indi
ations of slight overestimates inthe mass range A = 75 to 98) of the 40 measured �ssion barriers of nu
leithroughout the periodi
 table. This is a severe test of a model's deformabilityproperties, sin
e saddle-point shapes de�ning the �ssion barriers are verystrongly deformed 
on�gurations.
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lear Thomas�Fermi Model 649TABLE IMass rms deviations in MeVSIII: 4.74 SkP: 2.37 SkM�: 6.32SIIIÆ : 3.07 SkPÆ : 2.53 SkM�Æ : 5.36 HARTREE�FOCKSIIIÆ�: 2.26 SkPÆ�: 2.32 SkM�Æ�: 4.74Gogny: 2.07RMF(NL1): 3.94 RMF(NL2): 11.24 RMF(NL3): 2.48 RELATIVISTICETFSI: 0.80MM(FRDM): 0.65 MM(FRLDM): 0.76 MM(TF): 0.57 MACRO�MICROThe model passed three additional tests, again without the readjustmentof parameters: the masses of light nu
lei with N;Z < 8, not in
luded in the�t, 
ame out reasonably 
lose to measurements, nu
lear sizes were predi
ted
orre
tly, and the density dependen
e of the energy of neutron matter 
ameout 
lose to the theoreti
al estimates of Ref. [3℄.The good agreement with shell-
orre
ted nu
lear masses and the satisfa
-tory out
ome of the above four tests makes us feel that the Thomas�Fermimodel provides not only an a

urate representation of the ma
ros
opi
 prop-erties of known nu
lei, but 
an also serve as the basis for extrapolating theseproperties to unknown regions of the 
hart of nu
lei, as well as to nu
learmatter.We have already used our model in a number of appli
ations (Refs. [1,4,5℄),and in what follows I will des
ribe two re
ent examples.2. The nu
lear surfa
e di�useness as a degree of freedomEstimating the dependen
e of the nu
lear surfa
e energy on surfa
edi�useness may turn out to be important for lo
ating more reliably themagi
 numbers in the region of superheavy nu
lei. Thus in ma
ros
opi
-mi
ros
opi
 approa
hes to extrapolations into the superheavy regime, thenu
lear mean �eld is parameterized as a shape-dependent Woods�Saxon orsimilar potential, in whi
h the Strutinsky shell 
orre
tions are then evalu-ated. In order to �nd the ground-state energy and shape of the nu
leus, inparti
ular a super-heavy nu
leus, the sum of the mi
ros
opi
 shell 
orre
-tion and a ma
ros
opi
 energy is varied as a fun
tion of the shape degrees offreedom. In su
h variations the surfa
e di�useness is usually kept 
onstant,but one may well ask how the results would 
hange if, when lo
ating theenergy minimum, the di�useness were to be treated as an additional degreeof freedom, to be varied simultaneously with the shape degrees of freedom.This question has, in fa
t, a long history going ba
k at least to Refs. [6,7,8℄.There have also been indi
ations as long ago as 1966 (see Fig. 4 in [9℄), that
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kian in
reased surfa
e di�useness would begin to favour the magi
 protonnumber Z = 126 over 114. This possibility has been examined in the re
ent
omprehensive study in [10℄, where ma
ros
opi
-mi
ros
opi
 extrapolationswere 
onfronted with self-
onsistent Hartree�Fo
k 
al
ulations, in whi
h themean �eld is not parameterized, but is allowed to seek out its optimum form,in
luding whatever 
hanges in the surfa
e di�useness are 
alled for.The resulting possibility of a reappearan
e of the magi
 number Z = 126would a�e
t profoundly forth
oming sear
hes for superheavy nu
lei, and itis important to throw further light on this question by performing up-to-date ma
ros
opi
-mi
ros
opi
 
al
ulations generalized to in
lude the surfa
edegrees of freedom. In order to 
arry out su
h a 
al
ulation it is ne
es-sary to investigate the response to di�useness of both the ma
ros
opi
 andmi
ros
opi
 parts of the energy. The ma
hinery for 
al
ulating the latteris already in pla
e: simply re
al
ulate the Strutinsky shell 
orre
tion for aseries of di�usenesses. As regards the former a new question arises: besidesthe known response of the Coulomb energy to di�useness, one needs theresponse of the ma
ros
opi
 surfa
e-layer energy. Here is what the Thomas�Fermi model has to say about this [11℄.Consider a �nite nu
leus with mass number A (and N = Z), for whi
hthe surfa
e di�useness for neutrons is �n times (and for protons �p times)what it would be for standard, semi-in�nite nu
lear matter. A series ofnumeri
al solutions of the Thomas�Fermi equations shows that the sum ofsurfa
e and 
urvature energies in their dependen
e on �n and �p 
an beapproximated byE = S �1 + 12�1(�n � 1)2 � �2(�n � 1)(�p � 1) + 12�1(�p � 1)2�+K�n + �p2+ 
ubi
 terms in (�n � 1); (�p � 1) ; (1)where S = 18:63A2=3 MeV; K = 12:11A1=3 MeV (2)are the Thomas�Fermi model's standard surfa
e and Coulomb energies for�n = �p = 1. For A > 40 the 
oe�
ients �1 and �2 are given approximatelyby the following fun
tions of A:�1 = 0:7388 + 1:1787� + 12:5929�2 ; (3)�2 = 0:4836 + 0:4178� + 5:2180�2 ; (4)with � = A�1=3.
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lear Thomas�Fermi Model 651For a spheri
al nu
leus with atomi
 number Z the Coulomb energy maybe written as an expansion in the ratio of the di�useness to the e�e
tivesharp radius R and, using standard formulae [12℄, one �ndsEC = C � C2�2p + C3�3p ; (5)where C = 3e2Z25R = 0:7579Z2A1=3 MeV ; (6)C2 = 3e2Z2w202R3 = 1:4579Z2A MeV ; (7)C3 = 3e2Z2w30k35R4 = 1:5457Z2A4=3 MeV : (8)Here e is the 
harge unit and k3 is a numeri
al 
oe�
ient whi
h, for a Fermifun
tion 
harge distribution, has the value 3.0216. The quantity w0 is ameasure of the di�useness for standard semi-in�nite nu
lear matter and hasthe approximate value w0 = 1 fm. We also took R = 1:14A1=3 fm.Adding Eq. (5) to Eq. (1) and minimizing with respe
t to �n and �pone �nds for the optimum value of �p the relation�p = p
21 + 4
0
2 � 
12
2 ; (9)where 
0 = 1� K2S� = 1� 0:3250A1=3� ; (10)
1 = 1� 2C2S = 1� 0:1565Z2A5=3 ; (11)
2 = 3C3S = 0:2489Z2A2 ; (12)where  stands for(�21 � �22)=�1 and � stands for (�1 � �2).The optimum value of �n is related to �p by�n � 1 = �K2S + (�p � 1)�1�2 = �0:3250A�1=3 + (�p � 1)�1�2 : (13)Figure 1 
ompares the predi
ted values of the relative di�useness �pwith measured relative di�usenesses, obtained by taking the values of thedi�useness parameter �z� for A � 40, listed in Ref [13℄ for �two-parameter
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Fig. 1. The solid 
urve is the relative proton di�useness �p as predi
ted by Eq. (9)along the valley of stability. The long-dashed 
urve shows the result of disregard-ing the 
urvature energy, the short-dashed 
urve the result of disregarding theCoulomb energy. The squares refer to the relative proton di�useness dedu
ed frommeasurements of 
harge distributions a

ording to [13℄.Fermi �ts,� and dividing them by their average (equal to about 1.022 fm).It will be seen that, along the valley of stability, theory predi
ts a slightgradual in
rease of the di�useness, the result of the 
ompetition of Coulomband 
urvature driving for
es pushing against the surfa
e-energy restoringpotential. For the super-heavy nu
leus Z = 126, N = 184 (whi
h is o� thevalley of stability) Eq. (9) gives �p = 1:081 as the optimum di�useness. The
ost of a further in
rease of �p from the optimum (assuming, for purposes ofillustration, that the 
hanges in neutron and proton di�usenesses are lo
kedin step) is found by taking the se
ond derivative of Eq. (1) with �n = �p = �:�E = 12 d2Ed�2 (�� 1)2 = 411:5(� � 1)2MeV : (14)For example, an additional 10% in
rease of di�useness would 
ost about4 MeV. It remains to be seen whether the possible gain in shell-e�e
t energyasso
iated with making the nu
lear potential more os
illator-like (whi
h isestimated both in Ref. [8℄ and [10℄ as up to a dozen MeV) would be ableto stabilize the above super-heavy nu
leus su�
iently to make it dete
table.The problem is under study, Ref. [14℄. However this will turn out, it isnow possible to improve the 
onventional ma
ros
opi
-mi
ros
opi
 methodby in
luding the degrees of freedom asso
iated with the neutron and protondi�usenesses. This may lead to a better des
ription of nu
lear masses and
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ations of the Nu
lear Thomas�Fermi Model 653deformation energies throughout the periodi
 table, espe
ially near the driplines. It may also be useful in ma
ros
opi
 des
riptions of the giant monopoleresonan
e. 3. The nu
lear equation of stateThere is 
urrently 
onsiderable interest in the energy per parti
le of nu-
lear matter, e(�; Æ) 
onsidered as a fun
tion of the nu
lear density � and therelative neutron ex
ess Æ, where � = �neutrons+�protons and Æ = (�n��p)=�.This fundamental quantity, the equation of state of 
old nu
lear matter,plays a key role in theories of neutron stars and supernova explosions, aswell as in the interpretation of nu
leus-nu
leus 
ollisions at energies wherenu
lear 
ompressibility 
omes into play. (For a review and referen
es see,for example, Ref. [15℄.)Dire
t information on e(�; Æ) is di�
ult to 
ome by for values of � awayfrom those 
hara
terizing normal nu
lei and for Æ beyond the relatively smallvalues 
hara
teristi
 of the most neutron-ri
h nu
lei. One way to extrapo-late beyond this limited regime is by using a nu
lear model �tted to bindingenergies of �nite nu
lei and extrapolating to nu
lear matter. Having devel-oped a reliable Thomas�Fermi model of �nite nu
lei we 
an readily makethis extrapolation, and this is what we �nd:e(�; Æ) = T0�(
; Æ) ;where �(
; Æ) = a
2 � b
3 + 

5 : (15)Here 
 � (�=�0)1=3 and �0 = 0:16114 fm�3 and T0 = 37:0206 MeV are thesaturation density and Fermi energy of standard nu
lear matter as predi
tedby the model. The 
oe�
ients a; b; 
 are the following fun
tions of Æ:a = 320�2(1 � 
l)(p5 + q5)�
u � (5p2q3 � q5) for �n � �p(5p3q2 � p5) for �n � �p� ; (16)b = 14 ��l(p6 + q6) + 2�up3q3� (17)
 = 310 �Bl(p8 + q8) +Bup3q3(p2 + q2)� ; (18)where p = (1 + Æ)1=3; q = (1� Æ)1=3. The quantities 
l; 
u; �l; �u; Bl; Bu arerelative intera
tion strengths 
hara
terizing the e�e
tive nu
leon�nu
leonfor
e in the Thomas�Fermi model. They have the following values
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l = 0:25198 ; 
u = 0:88474 ;�l = 0:70110 ; �u = 1:24574 ;Bl = 0:22791 ; Bu = 080020 : (19)Figure 2 displays the dimensionless energy per parti
le �(
; Æ) as a fun
-tion of 
 for Æ = 0; 0:2; 0:3; 0:4; : : : 1:0. It will be seen that neutron matter(Æ = 1) is unbound in our model. A minimum in � appears below the 
riti
alvalue Æ
 = 0:8213, where 
 = 

 = 0:5735 and �
 = 0:02979. The satu-ration energy per parti
le be
omes negative for Æ < 0:7783 and attains thevalue � = �0:43859 (i.e., e = �16:24 MeV) at Æ = 0. Figure 2 shows, as afun
tion of Æ, the density �, the energy per parti
le e, and the 
ompressibilityK0 along the sequen
e of minima in Fig. 2.The equilibrium value of 
 is obtained by solving the 
ubi
 resultingfrom equating to zero the derivative ��=�
 whi
h leads to 
 = 0 or2a� 3b
 + 5

3 = 0 : (20)

Fig. 2. The dimensionless energy per parti
le �(
; Æ) plotted as fun
tion of 
, the
ube root of the relative density �=�0, for ten values of the relative neutron ex
essÆ = 0; 0:2; 0:3; 0:4; : : : ; 1:0. The dashed 
urve follows the lo
i of the energy minimaup to the 
riti
al point marked by a 
ross.
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lear Thomas�Fermi Model 655The relevant solution is
 =r b5
 �
os �3 +p3 sin �3� ; (21)where � = 
os�1 abr5
b ! : (22)The 
ompressibility 
oe�
ient at the minimum, K0, is given byK0(Æ) = 9 ��2 �2e��2 ��=�min = T0(2a
2 � 6b
3 + 20

5) ; (23)with 
 given by Eq. (21).As 
an be seen from Fig. 3, K0 starts at 234 MeV at Æ = 0 and de
reasesto zero at the 
riti
al point Æ
. Figure 3 shows also that the behaviour ofK0(Æ) parallels the behaviour of the depth of the binding energy minimumtaken with respe
t to the energy e
 at Æ
. This is an extension to large valuesof Æ of the parallelism between K(N;Z) and e(N;Z) for �nite nu
lei, dis-
overed in Refs. [16,17℄. This near 
onstan
y of the ratio of 
ompressibilityto binding energy is illustrated by the fa
t that this ratio 
hanged by only7.5% between Æ = 0 and Æ = 0:52, where e was halved from �16:24 MeV to�8:12 MeV.In some appli
ations the 
ompressibility of nonequilibrium nu
lear mat-ter is of interest. De�ning K(�; Æ) in the usual way asK(�; Æ) = 9�P�� ; (24)where P is the pressure given by P = �2(�e=��), we �ndK(�; Æ) = T0(10a
2 � 18b
3 + 40

5) : (25)This is again readily evaluated for a given Æ by 
al
ulating the 
oe�
ientsa; b; 
; using Eqs. (16)�(18).Equation (15) represents the extrapolated equation of state as predi
tedby a model that gives the 
urrently most a

urate representation of measuredbinding energies and �ssion barriers [1,2,4℄. For relatively modest deviationsfrom standard density, the key quantity is the 
ompressibility K0(Æ), whosevalue at Æ = 0 we estimate as about 234 MeV. Other re
ent estimates ofthis quantity [18,19℄, based on the interpretation of the giant monopole res-onan
e, suggest values near 215 MeV. At the present time there is enough



656 W.D. Myers, W.J. Swiate
ki

Fig. 3. The saturation density �, the energy per parti
le e and the 
ompressibilityK0(Æ) at saturation, plotted as fun
tion of the relative neutron ex
ess Æ. The
ompressibility vanishes at the 
riti
al point de�ned by Æ
 = 0:8213, where �
 =0:03039 fm3 and e
 = 1:1029 MeV. Note the similarity of the Æ dependen
es of K0and e
 � e. (The dashed line 
orresponds to e = e
.)
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lear Thomas�Fermi Model 657un
ertainty all around so that we do not regard this 8% di�eren
e as ne
es-sarily signi�
ant. But the relative reliability of estimates of K0 derived froma very pre
ise �t of a nu
lear model to binding energies and the surfa
e dif-fuseness does not appear to be su�
iently appre
iated. Thus one still �ndsstatements to the e�e
t that the saturation energy and density are the onlywell determined 
hara
teristi
s of the equation of state, and 
ompressibility
oe�
ients di�ering by a fa
tor of two are quoted in the literature. We be-lieve that the Thomas�Fermi model has redu
ed the un
ertainty 
on
erningthe value of K being around 230 MeV, and that the value derived from giantmonopole resonan
es is in substantial agreement with this 
on
lusion. Wealso believe that the dependen
e of the 
ompressibility on neutron ex
esspredi
ted by Eq. (23) is fairly reliable.For very large extrapolations (several times the standard density) oursimple expression for e(�; Æ) will have to be judged by whatever experimentalinformation be
omes available, and by 
omparisons with theories that are
onsidered to be intrinsi
ally more reliable. (In this 
onne
tion see Ref. [20℄,where our e(�; Æ) was in
orporated in neutron star studies and the results
ompared with those based on other theoreti
al equations of state.) Inthe meantime, be
ause of its simpli
ity and �rm 
onta
t with measuredproperties of �nite nu
lei, our algebrai
 expression for e(�; Æ) 
ould be usedas a 
onvenient baseline formula for the equation of state of 
old nu
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