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PRESENT STATUS OF SHELL MODEL TECHNIQUES�Etienne CaurierInstitut de Re
her
hes Subatomiques (IN2P3-CNRS-Université Louis Pasteur)Bât.27/1, F�67037 Strasbourg Cedex 2, Fran
eand Frederi
 Nowa
kiLaboratoire de Physique Théorique de Strasbourg3-5 rue de L'Université, F�67084 Strasbourg Cedex, Fran
e(Re
eived February 1, 1999)The te
hni
al problems appearing in Shell Model 
al
ulations are dis-
ussed. The solutions developped in the 
odes ANTOINE (m-s
heme) andNATHAN (
oupled s
heme) are explained with a spe
ial fo
us on the treat-ment of giant matri
es. New possiblities, limitations and possible improve-ments are presented.PACS numbers: 21.60.Cs 1. Introdu
tionThe Shell Model (SM) has always been 
onsidered as a fundamental toolfor the study of the nu
lear stru
ture. The main reason is that it allows asimultaneous des
ription of all the spe
tros
opi
 properties of the low-lyingstates; with the same valen
e spa
e and the same e�e
tive intera
tion it
an des
ribe the ba
kbending of 48Cr [1℄ and its half-life [2℄, the spheri
alstru
ture of the ground state of 56Ni and its ex
ited deformed band [3℄.Two main problems appear in a Shell Model des
ription of the nu
learstru
ture. The �rst one is related to its very foundations, i.e. to the pos-sibility of obtaining a regularized e�e
tive intera
tion in a given valen
espa
e, from the bare nu
leon-nu
leon for
e. Sin
e the pionnering work ofBruekner [4℄ this has been a basi
 theoreti
al problem and there are stillmany new developements in this �eld [5℄. In its present state, e�e
tive inter-a
tions 
annot be used in SM 
al
ulations without some phenomenologi
al
orre
tions [6℄.� Presented at the XXXIII Zakopane S
hool of Physi
s, Zakopane, Poland, September1�9, 1998. (705)
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kiThe se
ond problem is te
hni
al: with the in
rease of the size of the va-len
e or (and) the in
rease of the number of parti
les (holes) the dimensionsof the matri
es explode.This explains why SM 
al
ulations have been only extensively done :� For light nu
lei, p shell [7℄ and s� d shell [8℄.� For heavy nu
lei with only few parti
les (holes) outside an inert 
ore [9℄or for semi-magi
 nu
lei [10, 11℄.Progress in the te
hnology of 
omputers 
an help in extending the rangeof nu
lei amenable to a SM des
ription, however, improvements in the qual-ity of the SM 
odes will play a prepodominant role. Another avenue isprovided by the appli
ation of sto
hasti
 approa
hes to this problems, thatwe shall not dis
uss here [12, 13℄. We shall deal in this arti
le with the re-
ent developments leading to new 
odes (ANTOINE, NATHAN) that makeit possible for example the study of fp shell nu
lei [2,14℄ rea
hing m-s
hemeequivalent dimensions of one billion. The arti
le is divided in 4 
hapters :1. The diagonalization method (Lan
zos).2. The 
hoi
e of the basis and the 
al
ulation of the matrix elements(m.e.).3. The treatment of giant matri
es.4. The present possibilities and limitations.2. The diagonalization (the Lan
zos method)Standard diagonalization methods whose CPU time in
reases like N3, Nbeing the dimension of the matrix, 
annot be used if one is aiming to larges
ale SM 
al
ulations. Sin
e, in general, only a few eigenvalues and eigen-ve
tors are needed, the LANCZOS algorithm appears as the most suitableand it is in fa
t the standard method for this kind of problems.In this method we build an orthogonal basis in whi
h the HamiltonianH matrix is tridiagonal. We start with a normalized ve
tor (pivot state)�1 and apply the H operator on this ve
tor. Then we get a parallel and anorthogonal 
omponents to the initial ve
tor �1:Hj�1i = E11j�1i+E12j�2iwith E11 = h�1jHj�1i and E12j�2i = Hj�1i �E11j�1i.
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ting again with H on �2, we generate a third ve
tor �3 orthogonal tothe �rst two. Hj�2i = E21j�1i+E22j�2i+E23j�3iE21 = E12 sin
e in our basis H matrix is real-symmetri
.Continuing this pro
ess, at iteration n, we obtain the diagonal energy ofthe ve
tor j�ni, a new ve
tor j�n+1i and the non diagonal energy En n+1.Hj�ni = En n�1j�n�1i+Ennj�ni+En n+1j�n+1i ;En n�1 = En�1 n; Enn = h�njHj�ni ;and En n+1j�n+1i = Hj�ni �Ennj�ni �En n�1j�n�1i :Due to the hermiti
ity of H, the 
onstru
tion of the Lan
zos matrix ensuresthat all the elements Eij with ji� jj > 1 are zero.This iterative pro
ess will 
ontinue until all the eigenvalues that we needare 
onverged. For this reason the 
hoi
e of the pivot state is 
ru
ial. Hereare some ideas to a

elerate the 
onvergen
e:� To restore the good quantum numbers in the pivot state. For example,inm-s
heme, we proje
t the pivot state on J2 and T 2 (this proje
tion isa
hieved in doing a Lan
zos 
al
ulation with the J2 and T 2 operators).� Espe
ially when we need only one 
onverged state, it is interestingto use as pivot state the solution obtained in a trun
ated spa
e. Forexample if we want to 
al
ulate the Yrast band of 50Cr in the full pfspa
e (dimension in m-s
heme 14,625,540) we will �rst do the 
al
u-lation in a spa
e in whi
h only 4 parti
les are outside the f7=2 shell(dimension 1,856,720). The overlap between the two 0+ states being0.985, we will obtain the 
onverged result with a mu
h smaller numberof iterations.An important point to noti
e is that all the Lan
zos ve
tors must bekept during the 
al
ulation. There are two reasons for this; �rstly, we needthem to 
al
ulate the eigenve
tors and se
ondly be
ause of numeri
al rea-sons. Mathemati
ally the Lan
zos ve
tors should be orthogonal, howevernumeri
ally this is not stri
tly so. Hen
e, small numeri
al pre
ision errors
an, after some iterations, produ
e 
atastrophes (e.g. the lowest states mayreappear many times). To avoid that it is ne
essary to reorthogonalize ea
hnew Lan
zos ve
tor to all the pre
edent. The ne
essity of keeping all theseve
tors 
an be, for huge matri
es, a real problem. As we will see, in them-s
heme 
ode, it is a
tually the most important element limiting its possi-bilities.
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ki3. The 
hoi
e of the basisFor a given valen
e spa
e, the 
hoi
e of of the basis is only a problemof 
onvenien
e. As it will be dis
ussed later, depending on what we wantto des
ribe (ground state, yrast band, strength fun
tion ...) one or anotherbasis will be more appropriate. There are basi
ally two possibilities:� the m-sheme,� the 
oupled s
heme (J or JT).In m-s
heme, the states of the basis are Slater Determinants (SD) of Aparti
les distributed in k individual orbits jnljm�i.�a1:::aA(1; :::; A) = det f�ak (r(k)g =Yk a+ak j0i :The fundamental advantage of this representation is the simpli
ity of the
al
ulation of the many parti
le m.e. of H, be
ause they redu
e to the two-body m.e. of H in m-s
heme with a phase. It means that, independentlyof the size of the matrix, the number of possible values of non-zero m.e. isrelatively limited.Based on these ideas, the Glasgow group wrote, some 20 years ago, avery 
lever (be
ause very simple) SM 
ode [15℄. In it, ea
h SD was repre-sented in the 
omputer by an integer word and ea
h bit of the word asso-
iated to a given individual state jnljm�i. Ea
h bit has the value 1 or 0depending on whether the state is o

upied or empty. A two-body operatorayiayjakal will sear
h the words having the bits i; j; k; l in the 
on�guration0011 and 
hange it to 1100. This generates new words whi
h have to belo
ated in the list of all the words by the bi-se
tion method.However the 
ounterpart of the simpli
ity of them-s
heme is that only Jzand Tz are good quantum numbers, therefore all the possible (J; T ) statesare in the basis and as a 
onsequen
e the dimensions of the matri
es aremaximal, being proportional to the produ
t of the two 
ombinatorial num-bers made with the total degenera
y of the proton (neutron) valen
e spa
esand the numbers of a
tive protons (neutrons).The J or JT 
oupled basis, splits the full m-s
heme matrix in boxeswhose dimensions are mu
h smaller. This is espe
ially spe
ta
ular for theJ = 0 states (see Table I).In the late 60's, the Ro
hester group developped the formalism needed foran e�
ient work in a (J; T ) 
oupled basis and applied it in the Oak-RidgeRo
hester Multi-Shell 
ode [16℄. The pro
edure is now the following:Firstly the states of n parti
les in a given j shell are de�ned: j
ii =j(ji)niviJixii (vi is the seniority).
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hniques 709TABLE IDimensions in pf shellA 4 8 12 16 20Mz = Tz = 0 4000 2�106 1.10�108 1.09�109 2.29�109J = Tz = 0 156 41355 1.78�106 1.54�107 3.13�107J = T = 0 66 9741 3.32�105 2.58�106 5.05�106Then the k-shell states are obtained by su

essive angular momentum
ouplings of the one-shell basi
 states. �h[j
1ij
2i℄�2 j
3ii�3 : : : j
ki��kCompared to the simpli
ity of the m-s
heme, the 
al
ulation of the non-zero multiparti
le matrix elements is mu
h more 
ompli
ated. These m.e.involve produ
ts of 
fp's and 9j 
oe�
ients.However, in the 
ase of only J (without T ) 
oupling, a strong simpli�
a-tion in the 
al
ulation of these m.e. 
an be a
hieved using the quasi-spin [17℄formalism.The one-shell states are now written as jSiSziJixii instead of jniviJixii.Si and Szi are de�ned by:Si = 
i � vi2 ; Szi = 
i � ni2 ;where 2
i = 2ji + 1 is the degenera
y of the shell ji.The quasi-spin operators 
lose an SU(2) algebra. The appli
ation of theWigner�E
kart theorem makes possible to use doubly redu
ed (in spin andquasi-spin) 
fp's.De�ning S � (S1; S2; :::; Sk) (idem for Sz, J , x, � ) the expe
tation valueof an operator O reads : hSSzJx� jjOjjS0S0zJ 0x0� 0i = hSJx� jjjOjjjS0J 0x0� 0i�CG(Sz; S0z)For a given S, we have p states Jx� and q states. To get the matrixp � q � p0 � q0 we 
al
ulate separately the matri
es :� p� p0 doubly-redu
ed m.e. ,� q � q0 produ
t of Clebsh�Gordan 
oe�
ients.This fa
torization redu
es by a huge fa
tor the 
omputing time (for moredetails see Ref. [18℄).
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ki4. The treatment of giant matri
esWhen it is said that a matrix is giant, it is not a qualitative but aquantitative de�nition. It means that there are so many non-zero elementsin the matrix that they 
annot all be stored on the disks of the 
omputer.This is the fundamental limitation of the old shell model 
odes. To give anorder of magnitude, the 0+'s of 112Sn in the g7=2; d5=2; d3=2; s1=2; h11=2 spa
ehave dimension 136,940 and 346,627,207 non-zero m.e. in the 
oupled basis.This means that for giant matri
es it is ne
essary to re
al
ulate the m.e.in the diagonalization itself. Modern shell model 
odes must ta
kle thisproblem and the quality of the 
ode will be dire
tly related at its performan
ein the 
al
ulation of non-zero terms during the Lan
zos pro
edure.The �rst breakthrough in this dire
tion was a
hieved by the Glasgowgroup [15℄. Their method to generate non-zero m.e. (see pre
edent 
hapter)is so simple that it was just in
luded in the Lan
zos algorithm.A. The m-s
heme 
ode ANTOINEThis SM 
ode was based in Glasgow's ideas. It takes advantage of animportant progress whi
h appeared in the te
hnology of 
omputers someyears after the writing of the Glasgow 
ode, the virtual memory whi
h allowsto store many pre
al
ulated results.The improvements over the Glasgow 
ode are the following :In the valen
e spa
e there are protons and neutrons. Even for largedimensions in the total spa
e, the dimensions in the proton and neutronspa
es separately are small. For example, the 1,963,461 SD with M = 0 in48Cr are generated with only the 4,865 SD (all possible M values) in 44Ca.A basis state is now written as the produ
t of the SD of protons andneutrons.jIi = ji; �i, where we useI; J 
apital letters for states in the total spa
e ,i; j : : : small 
ase latin letters for proton states ,�; � : : : small 
ase greak letters for neutron states.The i and � SD 
an be 
lassi�ed by their Jz valuesMp andMn. The totalM being �xed, SD's for p and n will be asso
iated only if Mp +Mn = M .An example is given in Fig. 1.If we make a loop on i, and then on �, we see in our example that sin
ewe have 4 states � in the �rst �blo
k� (Mp;Mn) the SD i = 1 generatesstates I = 1; 2; 3; 4 i = 2 generates I = 5; 6; 7; 8 and so on.When we arrive to the se
ond �blo
k� (Mp + 1;Mn � 1), 6 � 4 = 24Istates have been built. Next we have here 3 states �, it means that i = 7generates I = 25; 26; 27. It is 
lear that for ea
h i state the allowed � statesgo without dis
ontinuity between a minimum and a maximum values,
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 representation of the basis.therefore it is possible to 
onstru
t numeri
ally an array R(i) so that :I = R(i) + � :In our example we have 1 = R(1) + 1; 5 = R(2) + 1; 25 = R(7) + 5; ...So having i, � and R(i) we 
an get immediately I. Afterwards, the programpro
eeds as follows :For the pp and nn m.e. all the (R(i); R(j); W ) and (�; �; W ) wherehijHjji =W and h�jHj�i =W , are pre
al
ulated and stored. Therefore, inthe Lan
zos pro
edure a simple loop on � and i will generate all the pp andnn m.e. (I; J;W ). For instan
e, in the 48Cr 
ase, 102,886 (i; j;W ) termsgenerate 46,484,396 (I; J;W ).For the pn matrix elements the situation is only a bit more 
ompli
ated.Lets assume the ths SD i and j are 
onne
ted by the one-body operatorayqar (labeled by p), with q = nljm and r = n0l0j0m0 and m0�m = �m. Wepre
al
ulate all the (R(i); R(j); p) and (�; �; �). Conservation of the totalM implies that the proton operators with �m must be asso
iated at theneutron operators with ��m. Thus we 
ould draw the equivalent to �gure1 for the p and n one-body operators. In the same way as we did beforefor I = R(i) + �, we 
an now de�ne K = Q(p) + �. V (K) would be thetwo-body proton-neutron m.e. that 
onne
t the states (i; �) and (j; �).On
e (R(i); R(j); Q(p)) and (�; �; �) stored, the non-zero elements ofthe matrix in the full spa
e are generated with 3 integer additions:I = R(i) + � ;J = R(j) + � ;K = Q(p) + � ;HI;J = HJ;I = V (K) :
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kiB. The 
oupled 
ode NATHANWe 
an apply the same basi
 idea (p�n fa
torization) to the J -
oupledformalism. Now instead of Mp and Mn we have Jp and Jn. The di�eren
eis that for a given Jp we have many Jn, but we will maintain the 
ontinuitybetween the �rst state with Jmin and the last with Jmax. As a 
onsequen
ethe fundamental relation I = R(i) + � still holds.The generation of the pp(nn) m.e. is exa
tly as for the m-s
heme. Thepn operators are now (ayj1aj2)� and we have a stri
t analogy between �min m-s
heme and � in the 
oupled s
heme. It means that we 
an yet writeK = R(p) + � .However, the proton-neutron m.e. are not so simple. They now read:HI;J = HJ;I = hi;j � h�;� �W (K) ;where hi;j and h�;� are the mean values of the one-body operators (a kind ofgeneralized 
fp 
oe�
ients),W (K) is the produ
t of the two-body m.e. withthe 9j 
oe�
ient for the 
oupling of the proton and neutron wave-fun
tions.Therfore, the generation of the proton-neutron m.e. demands three integeradditions as in the m-s
heme 
ode, plus two �oating point multipli
ations.5. Possiblities, limitations, perspe
tiveThe largest 
al
ulation done with the 
ode ANTOINE is the yrast bandof 52Fe (in
luding the isomeri
 state J = 12+) [19℄. Choosing Jz = 0 andtaking into a

ount for Mp 6= 0 the time reversal symmetry we have to dealwith a dimension 62,786,462 . The equivalent of 17 millions of integer words(pre
al
ulated and stored) allow the generation of the 75�109 non-zero termsin the Lan
zos pro
edure. In the present version of the 
ode two Lan
zosve
tors must be simultanously resident in the memory and the limitation is
learly there and not in the 
al
ulation itself.In the 
oupled s
heme we have the opposite situation. The dimensionsare never a problem so that we have been able to 
al
ulate the ground stateof 56Ni (dimension 15,443,684 but 109 inm-s
heme) [20℄. Here the limitation
omes from the huge number of non-zero terms related at the multipli
ity in�. To 
ome ba
k at the example of 52Fe, the 0+ state has dimension 1,777,116and 180 � 109 non-zero terms, the 6+ state has dimension 11,909,614 and6:5 � 1012 non-zero. We then see that the two 
odes are 
omplementary,the 
oupled one will be preferable for small spins or when a lot of Lan
zositerations are needed as for the 
al
ulation of strength fun
tion [21℄. It hasalso the possibility to in
orporate seniority trun
ations whi
h is interestingfor heavier spheri
al nu
lei.
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ommon weakness of the two 
odes appears when the spa
es generatedby protons and neutrons are too asymmetri
. For semi-magi
 nu
lei, the
odes 
al
ulate and store all the non-zero terms of the matrix. Sn or Pbisotopes are not our favourite nu
lei.Some improvements 
an be envisaged:� In some 
ases Davidson method 
an be better than Lan
zos, a

el-erating the 
onvergen
e and avoiding the storage of numerous hugeve
tors [22℄.� The Lan
zos algorithm is relatively easy to parallelize. The generationof the HI;J 
an be shared between di�erent pro
essors.� Reasonable approximations onH 
an simplify strongly the 
al
ulation.In the m-s
heme a separable (even a sum of) proton-neutron intera
-tion 
an simplify strongly the 
al
ulation, by su

esive appli
ation ofthe p and n operators. The J2 operator is 
al
ulated with this method.For the 
oupled 
ode some � 
an 
ertainly be forgotten. As an examplewe 
onsider the ground state of 82Kr in the full . p3=2f5=2p1=2g9=2 spa
e(dimension of the matrix 783,879 with 27:5 � 109 non-zero). TABLE IINumber of terms (per
entage) and energy 
ontribution� 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+non-zero (%) 0.7 3.3 3.6 3.5 1.4 1.2 0.7 1.0 0.5energy (kev) -3. -8040. -1. -350. 11. -8. 0.4 1. 0.4� 2� 3� 4� 5� 6� 7�non-zero (%) 2.7 12.1 23.9 25.2 15.2 5.1energy (kev) 1. -468. 4. -322. 6. -153.We give in Table II the number of terms (per
entage) and the 
ontribu-tion to the energy of ea
h � 
oupling of the proton-neutron intera
tion.� For very asymmetri
 p and n spa
e, other fa
torizations (shells) 
ouldbe more favorable and the possiblility of a (J; T ) 
oupled 
ode alongthese lines is under 
onsideration.
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