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PRESENT STATUS OF SHELL MODEL TECHNIQUES�Etienne CaurierInstitut de Reherhes Subatomiques (IN2P3-CNRS-Université Louis Pasteur)Bât.27/1, F�67037 Strasbourg Cedex 2, Franeand Frederi NowakiLaboratoire de Physique Théorique de Strasbourg3-5 rue de L'Université, F�67084 Strasbourg Cedex, Frane(Reeived February 1, 1999)The tehnial problems appearing in Shell Model alulations are dis-ussed. The solutions developped in the odes ANTOINE (m-sheme) andNATHAN (oupled sheme) are explained with a speial fous on the treat-ment of giant matries. New possiblities, limitations and possible improve-ments are presented.PACS numbers: 21.60.Cs 1. IntrodutionThe Shell Model (SM) has always been onsidered as a fundamental toolfor the study of the nulear struture. The main reason is that it allows asimultaneous desription of all the spetrosopi properties of the low-lyingstates; with the same valene spae and the same e�etive interation itan desribe the bakbending of 48Cr [1℄ and its half-life [2℄, the spherialstruture of the ground state of 56Ni and its exited deformed band [3℄.Two main problems appear in a Shell Model desription of the nulearstruture. The �rst one is related to its very foundations, i.e. to the pos-sibility of obtaining a regularized e�etive interation in a given valenespae, from the bare nuleon-nuleon fore. Sine the pionnering work ofBruekner [4℄ this has been a basi theoretial problem and there are stillmany new developements in this �eld [5℄. In its present state, e�etive inter-ations annot be used in SM alulations without some phenomenologialorretions [6℄.� Presented at the XXXIII Zakopane Shool of Physis, Zakopane, Poland, September1�9, 1998. (705)



706 E. Caurier, F. NowakiThe seond problem is tehnial: with the inrease of the size of the va-lene or (and) the inrease of the number of partiles (holes) the dimensionsof the matries explode.This explains why SM alulations have been only extensively done :� For light nulei, p shell [7℄ and s� d shell [8℄.� For heavy nulei with only few partiles (holes) outside an inert ore [9℄or for semi-magi nulei [10, 11℄.Progress in the tehnology of omputers an help in extending the rangeof nulei amenable to a SM desription, however, improvements in the qual-ity of the SM odes will play a prepodominant role. Another avenue isprovided by the appliation of stohasti approahes to this problems, thatwe shall not disuss here [12, 13℄. We shall deal in this artile with the re-ent developments leading to new odes (ANTOINE, NATHAN) that makeit possible for example the study of fp shell nulei [2,14℄ reahing m-shemeequivalent dimensions of one billion. The artile is divided in 4 hapters :1. The diagonalization method (Lanzos).2. The hoie of the basis and the alulation of the matrix elements(m.e.).3. The treatment of giant matries.4. The present possibilities and limitations.2. The diagonalization (the Lanzos method)Standard diagonalization methods whose CPU time inreases like N3, Nbeing the dimension of the matrix, annot be used if one is aiming to largesale SM alulations. Sine, in general, only a few eigenvalues and eigen-vetors are needed, the LANCZOS algorithm appears as the most suitableand it is in fat the standard method for this kind of problems.In this method we build an orthogonal basis in whih the HamiltonianH matrix is tridiagonal. We start with a normalized vetor (pivot state)�1 and apply the H operator on this vetor. Then we get a parallel and anorthogonal omponents to the initial vetor �1:Hj�1i = E11j�1i+E12j�2iwith E11 = h�1jHj�1i and E12j�2i = Hj�1i �E11j�1i.



Present Status of Shell Model Tehniques 707Ating again with H on �2, we generate a third vetor �3 orthogonal tothe �rst two. Hj�2i = E21j�1i+E22j�2i+E23j�3iE21 = E12 sine in our basis H matrix is real-symmetri.Continuing this proess, at iteration n, we obtain the diagonal energy ofthe vetor j�ni, a new vetor j�n+1i and the non diagonal energy En n+1.Hj�ni = En n�1j�n�1i+Ennj�ni+En n+1j�n+1i ;En n�1 = En�1 n; Enn = h�njHj�ni ;and En n+1j�n+1i = Hj�ni �Ennj�ni �En n�1j�n�1i :Due to the hermitiity of H, the onstrution of the Lanzos matrix ensuresthat all the elements Eij with ji� jj > 1 are zero.This iterative proess will ontinue until all the eigenvalues that we needare onverged. For this reason the hoie of the pivot state is ruial. Hereare some ideas to aelerate the onvergene:� To restore the good quantum numbers in the pivot state. For example,inm-sheme, we projet the pivot state on J2 and T 2 (this projetion isahieved in doing a Lanzos alulation with the J2 and T 2 operators).� Espeially when we need only one onverged state, it is interestingto use as pivot state the solution obtained in a trunated spae. Forexample if we want to alulate the Yrast band of 50Cr in the full pfspae (dimension in m-sheme 14,625,540) we will �rst do the alu-lation in a spae in whih only 4 partiles are outside the f7=2 shell(dimension 1,856,720). The overlap between the two 0+ states being0.985, we will obtain the onverged result with a muh smaller numberof iterations.An important point to notie is that all the Lanzos vetors must bekept during the alulation. There are two reasons for this; �rstly, we needthem to alulate the eigenvetors and seondly beause of numerial rea-sons. Mathematially the Lanzos vetors should be orthogonal, howevernumerially this is not stritly so. Hene, small numerial preision errorsan, after some iterations, produe atastrophes (e.g. the lowest states mayreappear many times). To avoid that it is neessary to reorthogonalize eahnew Lanzos vetor to all the preedent. The neessity of keeping all thesevetors an be, for huge matries, a real problem. As we will see, in them-sheme ode, it is atually the most important element limiting its possi-bilities.



708 E. Caurier, F. Nowaki3. The hoie of the basisFor a given valene spae, the hoie of of the basis is only a problemof onveniene. As it will be disussed later, depending on what we wantto desribe (ground state, yrast band, strength funtion ...) one or anotherbasis will be more appropriate. There are basially two possibilities:� the m-sheme,� the oupled sheme (J or JT).In m-sheme, the states of the basis are Slater Determinants (SD) of Apartiles distributed in k individual orbits jnljm�i.�a1:::aA(1; :::; A) = det f�ak (r(k)g =Yk a+ak j0i :The fundamental advantage of this representation is the simpliity of thealulation of the many partile m.e. of H, beause they redue to the two-body m.e. of H in m-sheme with a phase. It means that, independentlyof the size of the matrix, the number of possible values of non-zero m.e. isrelatively limited.Based on these ideas, the Glasgow group wrote, some 20 years ago, avery lever (beause very simple) SM ode [15℄. In it, eah SD was repre-sented in the omputer by an integer word and eah bit of the word asso-iated to a given individual state jnljm�i. Eah bit has the value 1 or 0depending on whether the state is oupied or empty. A two-body operatorayiayjakal will searh the words having the bits i; j; k; l in the on�guration0011 and hange it to 1100. This generates new words whih have to beloated in the list of all the words by the bi-setion method.However the ounterpart of the simpliity of them-sheme is that only Jzand Tz are good quantum numbers, therefore all the possible (J; T ) statesare in the basis and as a onsequene the dimensions of the matries aremaximal, being proportional to the produt of the two ombinatorial num-bers made with the total degeneray of the proton (neutron) valene spaesand the numbers of ative protons (neutrons).The J or JT oupled basis, splits the full m-sheme matrix in boxeswhose dimensions are muh smaller. This is espeially spetaular for theJ = 0 states (see Table I).In the late 60's, the Rohester group developped the formalism needed foran e�ient work in a (J; T ) oupled basis and applied it in the Oak-RidgeRohester Multi-Shell ode [16℄. The proedure is now the following:Firstly the states of n partiles in a given j shell are de�ned: jii =j(ji)niviJixii (vi is the seniority).



Present Status of Shell Model Tehniques 709TABLE IDimensions in pf shellA 4 8 12 16 20Mz = Tz = 0 4000 2�106 1.10�108 1.09�109 2.29�109J = Tz = 0 156 41355 1.78�106 1.54�107 3.13�107J = T = 0 66 9741 3.32�105 2.58�106 5.05�106Then the k-shell states are obtained by suessive angular momentumouplings of the one-shell basi states. �h[j1ij2i℄�2 j3ii�3 : : : jki��kCompared to the simpliity of the m-sheme, the alulation of the non-zero multipartile matrix elements is muh more ompliated. These m.e.involve produts of fp's and 9j oe�ients.However, in the ase of only J (without T ) oupling, a strong simpli�a-tion in the alulation of these m.e. an be ahieved using the quasi-spin [17℄formalism.The one-shell states are now written as jSiSziJixii instead of jniviJixii.Si and Szi are de�ned by:Si = 
i � vi2 ; Szi = 
i � ni2 ;where 2
i = 2ji + 1 is the degeneray of the shell ji.The quasi-spin operators lose an SU(2) algebra. The appliation of theWigner�Ekart theorem makes possible to use doubly redued (in spin andquasi-spin) fp's.De�ning S � (S1; S2; :::; Sk) (idem for Sz, J , x, � ) the expetation valueof an operator O reads : hSSzJx� jjOjjS0S0zJ 0x0� 0i = hSJx� jjjOjjjS0J 0x0� 0i�CG(Sz; S0z)For a given S, we have p states Jx� and q states. To get the matrixp � q � p0 � q0 we alulate separately the matries :� p� p0 doubly-redued m.e. ,� q � q0 produt of Clebsh�Gordan oe�ients.This fatorization redues by a huge fator the omputing time (for moredetails see Ref. [18℄).



710 E. Caurier, F. Nowaki4. The treatment of giant matriesWhen it is said that a matrix is giant, it is not a qualitative but aquantitative de�nition. It means that there are so many non-zero elementsin the matrix that they annot all be stored on the disks of the omputer.This is the fundamental limitation of the old shell model odes. To give anorder of magnitude, the 0+'s of 112Sn in the g7=2; d5=2; d3=2; s1=2; h11=2 spaehave dimension 136,940 and 346,627,207 non-zero m.e. in the oupled basis.This means that for giant matries it is neessary to realulate the m.e.in the diagonalization itself. Modern shell model odes must takle thisproblem and the quality of the ode will be diretly related at its performanein the alulation of non-zero terms during the Lanzos proedure.The �rst breakthrough in this diretion was ahieved by the Glasgowgroup [15℄. Their method to generate non-zero m.e. (see preedent hapter)is so simple that it was just inluded in the Lanzos algorithm.A. The m-sheme ode ANTOINEThis SM ode was based in Glasgow's ideas. It takes advantage of animportant progress whih appeared in the tehnology of omputers someyears after the writing of the Glasgow ode, the virtual memory whih allowsto store many prealulated results.The improvements over the Glasgow ode are the following :In the valene spae there are protons and neutrons. Even for largedimensions in the total spae, the dimensions in the proton and neutronspaes separately are small. For example, the 1,963,461 SD with M = 0 in48Cr are generated with only the 4,865 SD (all possible M values) in 44Ca.A basis state is now written as the produt of the SD of protons andneutrons.jIi = ji; �i, where we useI; J apital letters for states in the total spae ,i; j : : : small ase latin letters for proton states ,�; � : : : small ase greak letters for neutron states.The i and � SD an be lassi�ed by their Jz valuesMp andMn. The totalM being �xed, SD's for p and n will be assoiated only if Mp +Mn = M .An example is given in Fig. 1.If we make a loop on i, and then on �, we see in our example that sinewe have 4 states � in the �rst �blok� (Mp;Mn) the SD i = 1 generatesstates I = 1; 2; 3; 4 i = 2 generates I = 5; 6; 7; 8 and so on.When we arrive to the seond �blok� (Mp + 1;Mn � 1), 6 � 4 = 24Istates have been built. Next we have here 3 states �, it means that i = 7generates I = 25; 26; 27. It is lear that for eah i state the allowed � statesgo without disontinuity between a minimum and a maximum values,
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4  5  6Fig. 1. Shemati representation of the basis.therefore it is possible to onstrut numerially an array R(i) so that :I = R(i) + � :In our example we have 1 = R(1) + 1; 5 = R(2) + 1; 25 = R(7) + 5; ...So having i, � and R(i) we an get immediately I. Afterwards, the programproeeds as follows :For the pp and nn m.e. all the (R(i); R(j); W ) and (�; �; W ) wherehijHjji =W and h�jHj�i =W , are prealulated and stored. Therefore, inthe Lanzos proedure a simple loop on � and i will generate all the pp andnn m.e. (I; J;W ). For instane, in the 48Cr ase, 102,886 (i; j;W ) termsgenerate 46,484,396 (I; J;W ).For the pn matrix elements the situation is only a bit more ompliated.Lets assume the ths SD i and j are onneted by the one-body operatorayqar (labeled by p), with q = nljm and r = n0l0j0m0 and m0�m = �m. Weprealulate all the (R(i); R(j); p) and (�; �; �). Conservation of the totalM implies that the proton operators with �m must be assoiated at theneutron operators with ��m. Thus we ould draw the equivalent to �gure1 for the p and n one-body operators. In the same way as we did beforefor I = R(i) + �, we an now de�ne K = Q(p) + �. V (K) would be thetwo-body proton-neutron m.e. that onnet the states (i; �) and (j; �).One (R(i); R(j); Q(p)) and (�; �; �) stored, the non-zero elements ofthe matrix in the full spae are generated with 3 integer additions:I = R(i) + � ;J = R(j) + � ;K = Q(p) + � ;HI;J = HJ;I = V (K) :



712 E. Caurier, F. NowakiB. The oupled ode NATHANWe an apply the same basi idea (p�n fatorization) to the J -oupledformalism. Now instead of Mp and Mn we have Jp and Jn. The di�ereneis that for a given Jp we have many Jn, but we will maintain the ontinuitybetween the �rst state with Jmin and the last with Jmax. As a onsequenethe fundamental relation I = R(i) + � still holds.The generation of the pp(nn) m.e. is exatly as for the m-sheme. Thepn operators are now (ayj1aj2)� and we have a strit analogy between �min m-sheme and � in the oupled sheme. It means that we an yet writeK = R(p) + � .However, the proton-neutron m.e. are not so simple. They now read:HI;J = HJ;I = hi;j � h�;� �W (K) ;where hi;j and h�;� are the mean values of the one-body operators (a kind ofgeneralized fp oe�ients),W (K) is the produt of the two-body m.e. withthe 9j oe�ient for the oupling of the proton and neutron wave-funtions.Therfore, the generation of the proton-neutron m.e. demands three integeradditions as in the m-sheme ode, plus two �oating point multipliations.5. Possiblities, limitations, perspetiveThe largest alulation done with the ode ANTOINE is the yrast bandof 52Fe (inluding the isomeri state J = 12+) [19℄. Choosing Jz = 0 andtaking into aount for Mp 6= 0 the time reversal symmetry we have to dealwith a dimension 62,786,462 . The equivalent of 17 millions of integer words(prealulated and stored) allow the generation of the 75�109 non-zero termsin the Lanzos proedure. In the present version of the ode two Lanzosvetors must be simultanously resident in the memory and the limitation islearly there and not in the alulation itself.In the oupled sheme we have the opposite situation. The dimensionsare never a problem so that we have been able to alulate the ground stateof 56Ni (dimension 15,443,684 but 109 inm-sheme) [20℄. Here the limitationomes from the huge number of non-zero terms related at the multipliity in�. To ome bak at the example of 52Fe, the 0+ state has dimension 1,777,116and 180 � 109 non-zero terms, the 6+ state has dimension 11,909,614 and6:5 � 1012 non-zero. We then see that the two odes are omplementary,the oupled one will be preferable for small spins or when a lot of Lanzositerations are needed as for the alulation of strength funtion [21℄. It hasalso the possibility to inorporate seniority trunations whih is interestingfor heavier spherial nulei.



Present Status of Shell Model Tehniques 713A ommon weakness of the two odes appears when the spaes generatedby protons and neutrons are too asymmetri. For semi-magi nulei, theodes alulate and store all the non-zero terms of the matrix. Sn or Pbisotopes are not our favourite nulei.Some improvements an be envisaged:� In some ases Davidson method an be better than Lanzos, ael-erating the onvergene and avoiding the storage of numerous hugevetors [22℄.� The Lanzos algorithm is relatively easy to parallelize. The generationof the HI;J an be shared between di�erent proessors.� Reasonable approximations onH an simplify strongly the alulation.In the m-sheme a separable (even a sum of) proton-neutron intera-tion an simplify strongly the alulation, by suesive appliation ofthe p and n operators. The J2 operator is alulated with this method.For the oupled ode some � an ertainly be forgotten. As an examplewe onsider the ground state of 82Kr in the full . p3=2f5=2p1=2g9=2 spae(dimension of the matrix 783,879 with 27:5 � 109 non-zero). TABLE IINumber of terms (perentage) and energy ontribution� 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+non-zero (%) 0.7 3.3 3.6 3.5 1.4 1.2 0.7 1.0 0.5energy (kev) -3. -8040. -1. -350. 11. -8. 0.4 1. 0.4� 2� 3� 4� 5� 6� 7�non-zero (%) 2.7 12.1 23.9 25.2 15.2 5.1energy (kev) 1. -468. 4. -322. 6. -153.We give in Table II the number of terms (perentage) and the ontribu-tion to the energy of eah � oupling of the proton-neutron interation.� For very asymmetri p and n spae, other fatorizations (shells) ouldbe more favorable and the possiblility of a (J; T ) oupled ode alongthese lines is under onsideration.
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