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The technical problems appearing in Shell Model calculations are dis-
cussed. The solutions developped in the codes ANTOINE (m-scheme) and
NATHAN (coupled scheme) are explained with a special focus on the treat-
ment of giant matrices. New possiblities, limitations and possible improve-
ments are presented.

PACS numbers: 21.60.Cs

1. Introduction

The Shell Model (SM) has always been considered as a fundamental tool
for the study of the nuclear structure. The main reason is that it allows a
simultaneous description of all the spectroscopic properties of the low-lying
states; with the same valence space and the same effective interaction it
can describe the backbending of *Cr [1] and its half-life [2], the spherical
structure of the ground state of "°Ni and its excited deformed band [3].

Two main problems appear in a Shell Model description of the nuclear
structure. The first one is related to its very foundations, i.e. to the pos-
sibility of obtaining a regularized effective interaction in a given valence
space, from the bare nucleon-nucleon force. Since the pionnering work of
Bruekner [4] this has been a basic theoretical problem and there are still
many new developements in this field [5]. In its present state, effective inter-
actions cannot be used in SM calculations without some phenomenological
corrections [6].
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The second problem is technical: with the increase of the size of the va-
lence or (and) the increase of the number of particles (holes) the dimensions
of the matrices explode.

This explains why SM calculations have been only extensively done :

e For light nuclei, p shell [7] and s — d shell [8].

e For heavy nuclei with only few particles (holes) outside an inert core [9]
or for semi-magic nuclei [10,11].

Progress in the technology of computers can help in extending the range
of nuclei amenable to a SM description, however, improvements in the qual-
ity of the SM codes will play a prepodominant role. Another avenue is
provided by the application of stochastic approaches to this problems, that
we shall not discuss here [12,13]. We shall deal in this article with the re-
cent developments leading to new codes (ANTOINE, NATHAN) that make
it possible for example the study of fp shell nuclei [2,14] reaching m-scheme
equivalent dimensions of one billion. The article is divided in 4 chapters :

1. The diagonalization method (Lanczos).

2. The choice of the basis and the calculation of the matrix elements
(m.e.).

3. The treatment of giant matrices.

4. The present possibilities and limitations.

2. The diagonalization (the Lanczos method)

Standard diagonalization methods whose CPU time increases like N3, N
being the dimension of the matrix, cannot be used if one is aiming to large
scale SM calculations. Since, in general, only a few eigenvalues and eigen-
vectors are needed, the LANCZOS algorithm appears as the most suitable
and it is in fact the standard method for this kind of problems.

In this method we build an orthogonal basis in which the Hamiltonian
H matrix is tridiagonal. We start with a normalized vector (pivot state)
@, and apply the H operator on this vector. Then we get a parallel and an
orthogonal components to the initial vector @:

H|®1) = E11|$1) + Er9|P2)

with E11 = <¢1|H|¢1> and E12|¢2> = H|¢1> - E11|¢1>.
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Acting again with H on &, we generate a third vector @3 orthogonal to
the first two.

H|®y) = E91|P1) + Eg|Ps) + Eo3|P3)

FE51 = F1q5 since in our basis H matrix is real-symmetric.
Continuing this process, at iteration n, we obtain the diagonal energy of
the vector |®,), a new vector |@,1) and the non diagonal energy Fy, 1.

H|¢n> = En n—1|¢n—1> +Enn|¢n> +En n+1|¢n+1> )
En n—1 — Enfl ) Enn = <¢n|H|¢n> )
and Fy, n+1|¢n+1> = H|¢n> - Enn|¢n> - By n—1|¢n—1> .

Due to the hermiticity of H, the construction of the Lanczos matrix ensures
that all the elements E;; with |i — j| > 1 are zero.

This iterative process will continue until all the eigenvalues that we need
are converged. For this reason the choice of the pivot state is crucial. Here
are some ideas to accelerate the convergence:

e To restore the good quantum numbers in the pivot state. For example,
in m-scheme, we project the pivot state on .J? and T2 (this projection is
achieved in doing a Lanczos calculation with the J2 and T? operators).

e Especially when we need only one converged state, it is interesting
to use as pivot state the solution obtained in a truncated space. For
example if we want to calculate the Yrast band of °Cr in the full pf
space (dimension in m-scheme 14,625,540) we will first do the calcu-
lation in a space in which only 4 particles are outside the f7/o shell
(dimension 1,856,720). The overlap between the two 0 states being
0.985, we will obtain the converged result with a much smaller number
of iterations.

An important point to notice is that all the Lanczos vectors must be
kept during the calculation. There are two reasons for this; firstly, we need
them to calculate the eigenvectors and secondly because of numerical rea-
sons. Mathematically the Lanczos vectors should be orthogonal, however
numerically this is not strictly so. Hence, small numerical precision errors
can, after some iterations, produce catastrophes (e.g. the lowest states may
reappear many times). To avoid that it is necessary to reorthogonalize each
new Lanczos vector to all the precedent. The necessity of keeping all these
vectors can be, for huge matrices, a real problem. As we will see, in the
m-scheme code, it is actually the most important element limiting its possi-
bilities.
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3. The choice of the basis

For a given valence space, the choice of of the basis is only a problem
of convenience. As it will be discussed later, depending on what we want
to describe (ground state, yrast band, strength function ...) one or another
basis will be more appropriate. There are basically two possibilities:

e the m-sheme,

e the coupled scheme (J or JT).

In m-scheme, the states of the basis are Slater Determinants (SD) of A
particles distributed in k individual orbits |nljmT).

Bay.an (1, A) = det {¢q, (r(k)} = [ ad, 10).
k

The fundamental advantage of this representation is the simplicity of the
calculation of the many particle m.e. of H, because they reduce to the two-
body m.e. of H in m-scheme with a phase. It means that, independently
of the size of the matrix, the number of possible values of non-zero m.e. is
relatively limited.

Based on these ideas, the Glasgow group wrote, some 20 years ago, a
very clever (because very simple) SM code [15]. In it, each SD was repre-
sented in the computer by an integer word and each bit of the word asso-
ciated to a given individual state |nljmT). Each bit has the value 1 or 0
depending on whether the state is occupied or empty. A two-body operator
a;-ra;[akal will search the words having the bits 4, 7, k,[ in the configuration
0011 and change it to 1100. This generates new words which have to be
located in the list of all the words by the bi-section method.

However the counterpart of the simplicity of the m-scheme is that only J,
and T, are good quantum numbers, therefore all the possible (J,T) states
are in the basis and as a consequence the dimensions of the matrices are
maximal, being proportional to the product of the two combinatorial num-
bers made with the total degeneracy of the proton (neutron) valence spaces
and the numbers of active protons (neutrons).

The J or JT coupled basis, splits the full m-scheme matrix in boxes
whose dimensions are much smaller. This is especially spectacular for the
J = 0 states (see Table I).

In the late 60’s, the Rochester group developped the formalism needed for
an efficient work in a (J,T) coupled basis and applied it in the Oak-Ridge
Rochester Multi-Shell code [16]. The procedure is now the following:

Firstly the states of n particles in a given j shell are defined: |y;) =
|(4:)" v J;x;) (v is the seniority).
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TABLE 1
Dimensions in pf shell

A 4 8 12 16 20

M,=T,=0 14000 2«10 1.10«10% 1.09%10° 2.29%10°
J 0 | 156 41355 1.78+10% 1.54%107 3.13%107
J 0 66 9741  3.32%¢10° 2.58%105 5.05%10°

T,
T

Then the k-shell states are obtained by successive angular momentum

I T
couplings of the one-shell basic states. “[|fyl)|72)]r2 |fyg)} L |fyk)]

Compared to the simplicity of the m-scheme, the calculation of the non-
zero multiparticle matrix elements is much more complicated. These m.e.
involve products of ¢fp’s and 95 coefficients.

However, in the case of only J (without T') coupling, a strong simplifica-
tion in the calculation of these m.e. can be achieved using the quasi-spin [17]
formalism.

The one-shell states are now written as |S;S,;J;z;) instead of |n;v;J;z;).
S; and S,; are defined by:

2; — v 2; —n,;
Si: Z2 Za SZZ: Z2 Za

where 2§2; = 2j; + 1 is the degeneracy of the shell j;.

The quasi-spin operators close an SU(2) algebra. The application of the
Wigner—Eckart theorem makes possible to use doubly reduced (in spin and
quasi-spin) cfp’s.

Defining S = (S, So, ..., Sg) (idem for S,, J, x, I') the expectation value
of an operator O reads : (SS,JxI'||O||S'S,J'2'T") = (SJzI|||O|||S'J'z'T"")
xCG(S.,S))

For a given S, we have p states JzI' and ¢ states. To get the matrix
p-qxp' -q we calculate separately the matrices :

e p x p’ doubly-reduced m.e.,

e g x ¢’ product of Clebsh—Gordan coefficients.

This factorization reduces by a huge factor the computing time (for more
details see Ref. [18]).
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4. The treatment of giant matrices

When it is said that a matrix is giant, it is not a qualitative but a
quantitative definition. It means that there are so many non-zero elements
in the matrix that they cannot all be stored on the disks of the computer.
This is the fundamental limitation of the old shell model codes. To give an
order of magnitude, the 07’s of ''?Sn in the 97/2,d5 2, ds /2, 81/2, h11/2 space
have dimension 136,940 and 346,627,207 non-zero m.e. in the coupled basis.

This means that for giant matrices it is necessary to recalculate the m.e.
in the diagonalization itself. Modern shell model codes must tackle this
problem and the quality of the code will be directly related at its performance
in the calculation of non-zero terms during the Lanczos procedure.

The first breakthrough in this direction was achieved by the Glasgow
group [15]. Their method to generate non-zero m.e. (see precedent chapter)
is so simple that it was just included in the Lanczos algorithm.

A. The m-scheme code ANTOINE

This SM code was based in Glasgow’s ideas. It takes advantage of an
important progress which appeared in the technology of computers some
years after the writing of the Glasgow code, the virtual memory which allows
to store many precalculated results.

The improvements over the Glasgow code are the following :

In the valence space there are protons and neutrons. Even for large
dimensions in the total space, the dimensions in the proton and neutron
spaces separately are small. For example, the 1,963,461 SD with M = 0 in
48Cr are generated with only the 4,865 SD (all possible M values) in **Ca.

A basis state is now written as the product of the SD of protons and
neutrons.

|I) = |i, «), where we use

1, J capital letters for states in the total space,

1,7 ... small case latin letters for proton states,

a, [ ... small case greak letters for neutron states.

The 7 and o SD can be classified by their J, values M, and M,,. The total
M being fixed, SD’s for p and n will be associated only if M, + M, = M.
An example is given in Fig. 1.

If we make a loop on %, and then on «a, we see in our example that since
we have 4 states « in the first “block” (M, M) the SD i = 1 generates
states I = 1,2,3,4 1 = 2 generates I = 5,6,7,8 and so on.

When we arrive to the second “block” (M, + 1, M, — 1), 6 x4 = 24I
states have been built. Next we have here 3 states «, it means that : =7
generates I = 25,26, 27. It is clear that for each i state the allowed « states
go without discontinuity between a minimum and a maximum values,
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Mp Mp+1
i (1/2/3|4|5]|6 718|910
a 112|334 5/6|7

Mn Mn-1

Fig.1. Schematic representation of the basis.

therefore it is possible to construct numerically an array R(7) so that :
I =R(i)+ .

In our example we have 1 = R(1) + 1, 5= R(2) + 1, 25 = R(7) + 5, ...
So having i, @ and R(7) we can get immediately I. Afterwards, the program
proceeds as follows :

For the pp and nn m.e. all the (R(i), R(j), W) and («, 8, W) where
(i|H|j) = W and (a|H|B) = W, are precalculated and stored. Therefore, in
the Lanczos procedure a simple loop on a and 7 will generate all the pp and
nn m.e. (I,.J,W). For instance, in the *Cr case, 102,886 (i,4, W) terms
generate 46,484,396 (I, J,W).

For the pn matrix elements the situation is only a bit more complicated.
Lets assume the ths SD 7 and j are connected by the one-body operator
a:gar (labeled by p), with ¢ = nljm and r = n'l'j'm’ and m’ —m = Am. We
precalculate all the (R(7), R(j),p) and (o, 3, ). Conservation of the total
M implies that the proton operators with Am must be associated at the
neutron operators with —Am. Thus we could draw the equivalent to figure
1 for the p and n one-body operators. In the same way as we did before
for I = R(i) + a, we can now define K = Q(p) + u. V(K) would be the
two-body proton-neutron m.e. that connect the states (i, @) and (j, 3).

Once (R(7), R(j), Q(p)) and («, B, ) stored, the non-zero elements of
the matrix in the full space are generated with 3 integer additions:

I—R(z)
K = Qp) +u,

H;; = Hy;=V(K).

’
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B. The coupled code NATHAN

We can apply the same basic idea (p — n factorization) to the J-coupled
formalism. Now instead of M, and M, we have .J, and J,,. The difference
is that for a given .J, we have many .J,, but we will maintain the continuity
between the first state with Jyn and the last with Jy.c. As a consequence
the fundamental relation I = R(7) 4+ « still holds.

The generation of the pp(nn) m.e. is exactly as for the m-scheme. The

pn operators are now (a}l%))‘ and we have a strict analogy between Am

in m-scheme and A in the coupled scheme. It means that we can yet write
K=R(p)+p.
However, the proton-neutron m.e. are not so simple. They now read:

Hrj=Hjpr=hij*xhagxW(K),

where h; j and h, g are the mean values of the one-body operators (a kind of
generalized c¢fp coefficients), W (K) is the product of the two-body m.e. with
the 95 coefficient for the coupling of the proton and neutron wave-functions.
Therfore, the generation of the proton-neutron m.e. demands three integer
additions as in the m-scheme code, plus two floating point multiplications.

5. Possiblities, limitations, perspective

The largest calculation done with the code ANTOINE is the yrast band
of #2Fe (including the isomeric state J = 12%) [19]. Choosing .J, = 0 and
taking into account for M, # 0 the time reversal symmetry we have to deal
with a dimension 62,786,462 . The equivalent of 17 millions of integer words
(precalculated and stored) allow the generation of the 75%10° non-zero terms
in the Lanczos procedure. In the present version of the code two Lanczos
vectors must be simultanously resident in the memory and the limitation is
clearly there and not in the calculation itself.

In the coupled scheme we have the opposite situation. The dimensions
are never a problem so that we have been able to calculate the ground state
of Ni (dimension 15,443,684 but 10° in m-scheme) [20]. Here the limitation
comes from the huge number of non-zero terms related at the multiplicity in
X. To come back at the example of 52Fe, the 0 state has dimension 1,777,116
and 180 * 10° non-zero terms, the 67 state has dimension 11,909,614 and
6.5 * 10'? non-zero. We then see that the two codes are complementary,
the coupled one will be preferable for small spins or when a lot of Lanczos
iterations are needed as for the calculation of strength function [21]. It has
also the possibility to incorporate seniority truncations which is interesting
for heavier spherical nuclei.
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A common weakness of the two codes appears when the spaces generated
by protons and neutrons are too asymmetric. For semi-magic nuclei, the
codes calculate and store all the non-zero terms of the matrix. Sn or Pb
isotopes are not our favourite nuclei.

Some improvements can be envisaged:

e In some cases Davidson method can be better than Lanczos, accel-
erating the convergence and avoiding the storage of numerous huge
vectors [22].

e The Lanczos algorithm is relatively easy to parallelize. The generation
of the Hy j can be shared between different processors.

e Reasonable approximations on H can simplify strongly the calculation.

In the m-scheme a separable (even a sum of) proton-neutron interac-
tion can simplify strongly the calculation, by succesive application of
the p and n operators. The J? operator is calculated with this method.

For the coupled code some A can certainly be forgotten. As an example
we consider the ground state of 82Kr in the full . P3/2.f5/2P1/299/2 Space
(dimension of the matrix 783,879 with 27.5 * 10° non-zero).

TABLE 1II
Number of terms (percentage) and energy contribution

A 1" 2t 3t 4+ 5+ 6+ 7t 8% 9f

non-zero (%) | 0.7 33 36 35 14 12 07 1.0 05
energy (kev) | -3. -8040. -1. -350. 11. -8 04 1. 04

A 2- 3~ 4~ o~ 6~ (

non-zero (%) | 27 12.1 239 252 152 5.1
energy (kev) | 1. -468. 4. -322. 6. -153.

We give in Table II the number of terms (percentage) and the contribu-
tion to the energy of each A coupling of the proton-neutron interaction.

e For very asymmetric p and n space, other factorizations (shells) could
be more favorable and the possiblility of a (J,T') coupled code along
these lines is under consideration.
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