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Quadrupole excitations in Ru isotopes are described within microscopic
approach including the effect od pairing dynamics. The observed collective
energies and transition probabilities of 1°4!'12Ru are reproduced in the cal-
culation containing no free parameters.

PACS numbers: 21.60.Ev, 23.20.—g, 27.60.+]

Collective properties of even-even neutron-rich Ru isotopes have been
recently investigated and discussed [1,2]. However, the models applied up
to now to study the role of the v deformation in this nuclear region made
use of parameters fitted to the data [3]. The aim of this work is to describe
collective excitations in Ru isotopes in the frame of a microscopic approach
containing no free parameters [4] and to show that including the effect of
pairing vibrations we are able to reproduce the experimental data.

Our calculations are based on the microscopically derived Hamiltonian of
the generalized Bohr collective model [5-7| expressed in terms of the intrinsic
variables  and « (parametrizing the nuclear shape) and the Euler angles
denoted in short as 2 :

/}:[Bohr = ﬁib(/@a 7) + ﬁot(/@a Y, ‘Q) + ‘/0011(677) : (1)

* Presented at the XXXIII Zakopane School of Physics, Zakopane, Poland, September
1-9, 1998.
** The work was supported in part by KBN, Project no. 2 P03B 068 13.

(765)



766 K. ZAJAC ET AL.

The vibrational 7A:,ib and rotational 'f;ot kinetic energy operators depend on
the set of inertial functions of intrinsic variables: mass parameters Bgg,
Bg.,, B,, and moments of inertia Jj, (k = 1,2,3). All these functions
as well as the collective potential Vo can be determined microscopically
assuming that the nucleus is a system of nucleons moving in a deformed mean
field and interacting through state-independent pairing forces. We applied
here known [4,6] cranking formulas and the standard Nilsson single-particle
potential [8]. The collective potential was evaluated within macroscopic-
microscopic Strutinsky method [4].

Within this approach one can describe quadrupole excitations in all types
of nuclei but, as is known for a long time, energies yielded by the model are
in general of about 50% too large with respect to the experimental data
(see Fig. 2). The discrepancy is connected with a strong influence of pairing
correlations on collective qadrupole degrees of freedom [4,7]. In consequence,
the gap parameter A should not be artifficially fixed at its equilibrium point
(found from the BCS equations) but it rather takes the role of a collective
variable too.

For a given number of particles N (protons or neutrons) the Hamiltonian
of collective pairing vibrations takes the form [9,10]:

i 0 V9B 0 Ly Ay, 2)

0= X +
o 21/9(A) 9A Baa(A) 9A

The pairing mass function Baa, the metric tensor determinant g and the
collective pairing potential Vj,ir can be evaluated microscopically at each
deformation point according to the formulas given in Ref. [10] (see Fig. 1).
It should be mentioned that we apply the approximate projection of the
BCS wave function on the correct particle number [11]. All calculations are
made with the standard pairing strength G = goN~2/3 where go = 0.26 hwy
and N means the number of protons or neutrons [4,12].

Solving the eigenproblem of Eq. (2) we can find the the ground state-
function ¥y(A) and the most probable value of the pairing gap Ag (which
corresponds to the maximum of the function g(A)[¥(A)|?). Usually the
most probable gap is shifted towards smaller A values from the equilibrium
point as it is exemplified in Fig. 1. On average the ratio of Ay to the
equilibrium gap value is of about 0.7.

This general behaviour of the pairing vibrational ground-state function
is due to the rapid increase of the inertial function Baa and it allows us
to approximate the complete "quadrupole + pairing" collective Hamiltonian
(difficult to solve because of nine degrees of freedom) by the expression

Heoll = H'Bonr (B85 7, 25 AD, ALY + Hopair. (3)
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Fig. 1. Pairing vibrations for neutrons in °*Ru at deformation 8 = 0.2, v = 20°.
The equilibrium value of the energy gap is Ae¢q & 0.14Awp, the most probable one
is AO ~ 00977,(4)0
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Fig. 2. Experimental [13,14] and calculated excitation energies in °4Ru versus the
angular momentum J™. Theoretical bands are marked with full lines, the dashed
line connects the energies of the g.s. band calculated without pairing vibrations
effect taken into account.
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Here the quadrupole part H'onr has the same structure as usual Bohr Hamil-
tonian (1) but the potential and all inertial functions appearing in it are
calculated using the most probable gap values Al and A} (for protons and
neutrons respectively) instead the equilibrium ones.
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Fig.3. Experimental [13] and calculated reduced E2 transition probabilities for
ground-state and - bands in '*Ru. Theoretical values are connected by straight
lines.
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Fig.4. Experimental [1] and calculated energies of ground-state and - bands in
12Ru. Theoretical values are marked with straight lines.

Diagonalizing the Hamiltonian (3) in the complete basis discussed in
Ref. [4] we have obtained excitation energies and other collective character-
istics of 199~12Ru. Some examples of our results are presented here. The
theoretical and experimental energies of excitations with positive parity of
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104Ru [13,14] are compared in Fig. 2. The agreement is surprisingly good in
spite of the calculation has been done with no free parametrs. Some small
discrepancies (e.g. for 0?{ and 8 levels) could be connected with the ap-
proximate treatment of pairing vibrations or an admixture of two-particle
modes.

Investigating quadrupole moments and E2 transitions (Fig. 3) we can
confirm the quadrupole nature of reproduced states. The calculated proba-
bilities of E2 transitions in the ground-state band are too small indeed (this
tendency can be connected with absence of the pairing-quadrupole mixed
terms in Hamiltonian (3) [4]) but nevertheless, they are close to the mea-
sured ones. The results obtained for other Ru isotopes are similar. As an
example we present in Fig. 4 the energies of ''2Ru ground-state and - bands
in comparison to the experimental values. The agreement for the ground-
state band is still very good whereas the theoretical moment of inertia of
~v-band is a little bit too big in this case.

We may conclude that the influence of pairing vibrations appears to
be very important in describing the quadrupole excitations of triaxially de-
formed neutron-rich nuclei like Ru isotopes. Taking it into account we can
reproduce quadrupole energy levels and transition probabilities in the frame
of the microscopic model with no need of introducing free parameters.
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