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772 J. Dudek et al.1. Introdu
tion and histori
al remarksMean-�eld nu
lear stru
ture 
al
ulations played and play until now themost important role in understanding numerous forms of nu
lear behavior,for instan
e at high spins or those in the domain of physi
s of exoti
- andhalo-nu
lei. A re
ent arti
le [1℄ brings an important new understanding ofthe relativisti
 origin of the fundamental SU(2) symmetry that appears inthe Dira
 mean-�eld Hamiltonian, ĤD,ĤD def= f
~� � ~̂p+ V̂ (~r ) 1I4 + � [m0
2 + Ŝ(~r )℄g ! ĤD  n = En  n; (1)in whi
h f~�; �g denote an ensemble of the usual Dira
 matri
es, 1I4 is afour-dimensional unit matrix, and ~̂p = �i~r. The forms of the ~r-dependentintera
tion potentials Ŝ(~r ) and V̂ (~r ) 
an be provided by the Relativisti
Mean Field (RMF) theories in terms of 
ouplings of the nu
leon �elds tothe s
alar- and the ve
tor-meson �elds, respe
tively (
f. e.g. Ref. [2℄ for areview). Paradoxi
ally, the 
onsequen
es of the SU(2) symmetry mentionedabove have been dis
overed on the phenomenologi
al grounds before the dis-
overy of the symmetry itself already in 1969, Ref. [3℄; slightly more formalframework has been given in Ref. [4℄. Those early papers predi
ted an exis-ten
e, and suggested a way to verify in experiment, of approximate degen-era
ies among 
ertain well de�ned single-nu
leoni
 levels. The degenera
iesin question and other related features will be dis
ussed in a 
onsiderabledetail below in view of a more modern understanding of their origin.The symmetry that underlies the existen
e of those degenera
ies was
alled �pseudo-spin symmetry� or pseudo-SU(2) symmetry, below denotedSU~s(2). Despite a tenden
y towards a pejorative interpretation of the ad-je
tive �pseudo� this symmetry is probably one of the most fundamental (al-though approximate) symmetries that the nu
lear mean-�eld should 
arry.This is so be
ause, �rstly, the existen
e of this symmetry relies on a gen-eral universal fa
t: the relatively weak nu
leoni
 binding in all nu
lei as aresult of a partial 
an
ellation of a strong nu
lear attra
tion 
aused by anex
hange of the s
alar mesons and of a strong nu
lear repulsion 
aused by anex
hange of the ve
tor mesons. Se
ondly, be
ause up to a good an approxi-mation this symmetry should depend only weakly (if at all) on the nu
leardeformation and thus it should remain a 
ommon feature of all nu
lei forwhi
h the mean-�eld 
an be introdu
ed � i.e. for all, ex
ept for a very fewvery light nu
lei.In 1973, Ref. [5℄, it has been suggested that the pseudo-spin doubledegenera
ies whose presen
e is manifested in deformed nu
lei are involved ina larger symmetry stru
tures, des
ribed in terms of a larger group, SU(3),
alled by the authors pseudo-SU(3) and below denoted SU(~3). Followingthe existen
e of this larger symmetry the pseudo-spin doublets are merely



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira
 ... 773simple building blo
ks of a ri
her multiplet stru
ture. Those �ri
h� multipletsinvolve an in
reasing number of the pseudo-spin doublets when the shellnumber, N , in
reases.It is interesting to note that the formal understanding of the solution tothe nu
lear pseudo-spin symmetry problem in the framework of the Dira
formalism has been liyed out already in 1976, Ref. [6℄. However, the authorsof this arti
le were unaware of the importan
e of their result for the nu-
lear stru
ture domain. Re
ipro
ally, the paper was seemingly unknown tothe nu
lear stru
ture 
ommunity who 
ontinued to investigate the pseudo-spin problem using various other means. In parti
ular, Ref. [7℄, it has beendemonstrated on the basis of the Nilsson model that the pseudo-spin dou-blets 
an be viewed upon as manifestations of a 
ertain spe
i�
 representa-tion of the nu
leoni
-shell stru
ture, i.e. the one in terms of a pseudo-orbitalpseudo-spin intera
tion, ÆV̂~̀�~s � ~̀� ~s, rather than the spin-orbit ÆV̂`�s � ` � s,intera
tion. A

ording to su
h an approa
h, the �traditional� spin-orbit in-tera
tion leads to a strong spin-orbit splitting between orbitals 
orrespond-ing to the spin-parallel, ` "" s, vs. spin-antiparallel, ` "# s, 
oupling of theintrinsi
 spin to the orbital angular momentum. Within a proposed pi
turein terms of pseudo-spin pseudo-orbital angular momenta, very small energydi�eren
es between the �parallel vs. antiparallel�, ~̀"" ~s and ~̀"# ~s 
on�gu-rations are obtained, while an overall 
omparison with experiment remainsqualitatively good in both 
ases.The stru
ture of the Nilsson-model Hamiltonian, quite parti
ular fromthe pseudo-spin symmetry point of view, has be
ome a 
entral dis
ussionelement in various studies that addressed the problem of SU~s(2) doubletsin the nu
leoni
 spe
tra after 1982. In parti
ular, a 
on
ept of a pseudo-os
illator as a harmoni
 os
illator model of the related algebrai
 SU(~3) prop-erties has be
ome a fashionable topi
 and a number of elegant mathemati
always of transforming the so-
alled normal-parity sets of the harmoni
 os-
illator Hamiltonian to the 
orresponding pseudo-os
illator spa
e has beenfound (
f. Ref. [8℄ and referen
es therein, and for a review on earlier formu-lations: Refs. [9℄ and [10℄). For the �rst time a possible relativisti
 origin ofa weak pseudo-spin pseudo-orbital momentum 
oupling within the Nilssonmodel has been suggested in [11℄; a dis
ussion of the possible mathemati
alforms of the pseudo-spin transformation, again within the the Nilsson modelstru
ture, 
an be found in [12℄.In the late 80'ies the 
onsequen
es of the SU~s(2)- and of the larger,SU(~3)-symmetries for the domain of the very strongly deformed nu
lei havebeen explored. In parti
ular in 1987 � at an early stage of the nu
learsuperdeformation (SD) studies, when only two SD rotational bands wereknown experimentally, a general abundan
e s
heme of the nu
lear superde-formation as a large-s
ale nu
lear phenomenon, [13℄, has been predi
ted the-



774 J. Dudek et al.oreti
ally. It has been later on 
on�rmed up to a detail by the experimentswith the multidete
tor systems on over a hundred of SD bands. In the meantime a possible in�uen
e of the pseudo-spin degenera
ies on the existen
eof unexpe
ted similarities among the SD bands (�sameness� among the SDbands) has been brought up in [14℄.The most re
ent dis
overy of a 
onne
tion between spin and pseudo-spinwithin the Dira
 equation, symmetries of the latter and in parti
ular aninterrelation in terms of the large and small 
omponents of the Dira
 bi-spinors bring more light on the relativisti
 dynami
s of the problem [15,16℄;these aspe
ts will be overviewed and dis
ussed in the following se
tions.The new ways to understanding the mean-�eld Hamiltonian's SU(2) sym-metries are slightly hidden. One needs to 
onsider a four-
omponent Dira
solutions rather than a �traditional� form of the nu
leoni
 wave fun
tions.One needs to expli
itly use the fa
t that for the parity-
onserving nu
learDira
 Hamiltonian the parity of the grand 
omponent must be opposite tothat of the small 
omponent yet giving a good total parity of the Dira
bispinor, et
. The question of how to 
ombine these fa
ts is one of the issuesunderlying the pseudo-spin symmetry and goes deeper into the relativisti
physi
s, in parti
ular a de
omposition of the Lorentz group in terms of two
onstituent SU(2) groups.2. Motivations and relation to experimentAt the �rst glan
e one may think that the experimental results, for in-stan
e on the single parti
le levels in spheri
al nu
lei, 
larify in a ratherunambigous manner the degree of the (weak) pseudo-spin symmetry break-ing. The theoreti
al 
onsiderations provide the spe
tros
opi
 labels of thestates that should be the pseudo-spin degenerate (see also below), the 
or-responding states have often been identi�ed in experiment and their energydi�eren
es 
an be 
ompared to zero � the larger the di�eren
e the strongerthe symmetry breaking.The spheri
al symmetry 
ase, although in some sense the simplest, themost �a
ademi
� one, is by far not the only one of interest. The pseudo-spindoublets are obtained in any realisti
 deformed mean-�eld potentials as e.g.Woods�Saxon, Nilsson or Folded�Yukawa, as well as in the Hartree�Fo
kapproa
hes, and are known to depend very little on the nu
lear deformationover the very large variation ranges of the deformation parameters. The
lose-lying doublet states then propagate also together in terms of the ro-tational (
ranking) frequen
y and possibly 
ontribute to the similarities inbehavior of 
ertain rotational bands.One may be tempted to say that the veri�
ation of the size of the pseudo-spin symmetry breaking is a dire
t matter and 
an be done more or less�automati
ally� in terms of the existing simple experimental information.
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 ... 775There are, however, several me
hanism that make the above �straightfor-ward� 
omparison biased, di�
ult � sometimes perhaps strongly 
ontami-nated with the quantum me
hanisms that have nothing to do with the oneunder 
onsideration. To start with let us re
all that the energy di�eren
esamong the levels that in the exa
t symmetry limit are expe
ted to be zero �are going to be small (
f. illustrations in the following se
tion). Comparisonwith the existing data (although the quality of this 
omparison will be 
rit-i
ized just a few lines below) gives numbers in the range between a 
oupleof hundreds of keV and about 1.5 MeV, roughly, for the spheri
al nu
lei.In the 
ase of the spheri
al shape pseudo-spin degenera
ies (stri
tlyspeaking, in the spheri
al-symmetry 
ase, what is referred to as doubletsin terms of the pseudo-spin quantum number are rather ri
h multiplets interms of the orbital angular momentum quantum number, ` and ` + 2 ofthe degree of degenera
y that goes like � 4`) the 
ontributing orbitals dif-fer in ` by two units. Coupling of the 
orresponding states with the rela-tively low-lying 
olle
tive vibrations may be signi�
antly di�erent for the two`-members in a doublet thus 
ontaminating, perhaps 
onsiderably, the 
om-parison with experiment related primarily to the �naked�, pure mean-�eldstates � the ones that are expe
ted to obey the pseudo-spin symmetry.In deformed nu
lei in whi
h the pseudo-spin doublets seem to have a sim-ilar degree of the symmetry breaking, the pairing 
orrelations mix the single-parti
le degrees of freedom strongly while the theoreti
al predi
tions basedon the present formulation of the nu
lear Dira
 formalism again address puresingle-parti
le properties that result from 
onsidering the deformed mean-�eld alone.All these aspe
ts will need to be 
onsidered when addressing the problemof the nu
lear pseudo-spin symmetry, perhaps not so mu
h in prin
iple but
ertainly in the 
ase of the real life. What seems to be a dangerous possibil-ity, the present time 
omparisons with experiment may be strongly biasedthrough the presen
e of various me
hanisms that are not dire
tly relatedto the mean-�eld stru
ture. In other words: the a
tual knowledge aboutthe experimental veri�
ation of the pseudo-spin symmetry breaking 
ouldbe mu
h poorer than it is felt today.Extending a simple and very well studied in the past deformed mean-�eldparametrisations in terms of the Woods�Saxon potentials to the Dira
 typeformalism in the nu
lear stru
ture 
ontext may turn out to be very usefulin over
oming several of the di�
ulties mentioned above through advan
esin the realisti
 
al
ulations. This 
an be done by modeling and parametriz-ing the above me
hanisms in 
onne
tion with the Woods�Saxon te
hniquewithin the nu
lear Dira
 Hamiltonian. The following presentation gives anintrodu
tion to su
h an approa
h.
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 equation and SU(2)-type symmetriesIt is a matter of a straightforward transformation to demonstrate thatwithin a standard representation of the Dira
 matri
es, relation (1) is equiv-alent toĤD = � +fm0
2 + [Ŝ(~r ) + V̂ (~r )℄g; 
 (~� � ~̂p )
 (~� � ~̂p ); �fm0
2 + [Ŝ(~r )� V̂ (~r )℄g � ; (2)where ~� denotes an ensemble of the three Pauli matri
es. The solutions inthe form of the Dira
 bi-spinors  = ���� 
ontain � an �, two two-dimensionalspinors 
alled respe
tively grand and small 
omponents. The above form isbetter adapted, as 
ompared to that in Eq. (1), for the dis
ussion whi
hfollows. In Eq. (2) the operators Ŝ = Ŝ(~r ) and V̂ = V̂ (~r ) 
an be viewed assimple fun
tions of all the three Cartesian variables. In prin
iple, within aphenomenologi
al treatment both these fun
tions 
an be modeled in termsof the Woods�Saxon type potentials. However, it will turn out to be ofmore advantage to parametrize the sum (Ŝ(~r ) + V̂ (~r )) and the di�eren
e(Ŝ(~r )� V̂ (~r )) in terms of another set of the Woods�Saxon potentials sin
ethese 
ombinations enter dire
tly the equations of the motion, 
f. Ref. [17℄,and see also below. Consequently, one may writeÛ
(~r ) � Ŝ(~r ) + V̂ (~r ) = [1 + �
I℄U0
1 + exp[dist�(~r )=a
℄ ; (3)and similarlŷUso(~r ) � Ŝ(~r )� V̂ (~r ) = [1 + �soI℄U so
1 + exp[dist�(~r )=aso℄ ; (4)where I = (N � Z)=(N + Z) is the usual isospin fa
tor, while U
 (Uso), �o(�so) and a0 (aso) are adjustable 
onstants. The nu
lear surfa
e is repre-sented by the symbol �; fun
tion dist�(~r ) denotes the distan
e of a givenpoint ~r in spa
e from the nu
lear surfa
e. (Anti
ipating the interpretationof the 
orresponding potentials as the 
entral and spin-orbit intera
tions theindi
es �
� and �so� have been introdu
ed.)In the following we would like to address the problem of the symmetries�rst; the possible pra
ti
al and simple parametrisations will 
ome next.
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 ... 777An Approximate SU(2) Symmetry of the Nu
lear Dira
 Hamil-tonian. Let us introdu
e, by slightly shortening the reasoning of Ref. [6℄,operators1Ŝj � � ~̂sj 00 ŝj � ; ~̂sj � (~� � p̂ ) ŝj (~� � p̂ ); ĥ � ~� � p̂ = �2~s~ � � p̂: (5)The latter obje
t is the usual momentum-heli
ity operator that satis�esĥy = (~� � p̂)y = p̂y �~�y = p̂�~� = ~� � p̂ = ĥ$ ĥyĥ = (~� � p̂)2 = p̂2|{z}1 1I2 = 1I2: (6)Sin
e obviously ĥy = ĥ�1 and ĥ = ĥ�1 it be
omes 
lear from Eq. (5) thatthe de�nition of ~̂sj is equivalent to a similarity transformation that preservesthe 
ommutation relations. Consequently the 
ommutation relations for thespin operators fŝj ; j = 1; 2; 3g imply[ŝj; ŝk℄ = i~ �jk`ŝ` ! [~̂sj; ~̂sk℄ = i~ �jk` ~̂s` $ [Ŝj ; Ŝk℄ = i~ �jk`Ŝ`; (7)and we see that all the three ensembles of operators above generate threeSU(2) groups: ensemble fŝj ; j = 1; 2; 3g ! SUs(2); ensemble f~̂sj ; j =1; 2; 3g ! SU~s(2), in two dimensional spa
es of spinors � and �, respe
tively,and the ensemble fŜj ; j = 1; 2; 3g ! SUS(2) in a four-dimensional spa
e ofthe Dira
 bi-spinors.The main reason for introdu
ing the fŜjg operators is that, as one 
aneasily verify, [ĤD ; Ŝj℄ = � [Ŝ(~r ) + V̂ (~r ) ; ~̂sj℄ � 0 ; 00 ; 0 � : (8)The 
ommutator above is stri
tly speaking not zero. Sin
e ~̂sj are di�erentialoperators, 
f. Eq. (5), we �nd that [Ŝ(~r ) + V̂ (~r ) ; ~̂sj℄ 6= 0 unless Ŝ(~r ) +V̂ (~r ) = 0. However, the breaking of this exa
t symmetry 
orresponding tothe exa
t 
ommutation relations [Ŝ + V̂ ; ~̂sj ℄ = 0 is expe
ted to be weak.This is so be
ause as it has been found out earlier, see e.g. Ref. [17℄, on theaverage the dis
ussed potentials satisfyhŜ(~r )i � � 400MeVhV̂ (~r )i � + 350MeV � ) hŜ(~r) + V̂ (~r)i � �50MeVhŜ(~r)� V̂ (~r)i � �750MeV � : (9)1 Formally the momentum-heli
ity operators introdu
ed here 
an be viewed as 
om-pli
ated di�erential operator expressions of the type p̂ = ~̂p=(~̂p � ~̂p ); both momentumrelated operators, i.e. ~̂p and (~̂p � ~̂p )�1 are mathemati
ally well de�ned obje
ts as e.g.matri
es 
al
ulated with respe
t to a 
ertain basis. In parti
ular, (~̂p � ~̂p )�1 is aninverse matrix with respe
t to ~̂p � ~̂p = �~2� where � denotes the Lapla
e operator.



778 J. Dudek et al.Denoting Û(~r ) � Ŝ(~r ) + V̂ (~r ) we 
ompare the average absolute values ofthe depths (or heights) of the potentials, (averages denoted with the sym-bol �hi�). We �nd that hÛi is mu
h smaller than the di�eren
e h(Ŝ � V̂ )i;also hÛ i is mu
h smaller than hŜi and at the same time mu
h smaller thanhV̂ i. Moreover, as mentioned above, the ~sj is a di�erential operator and itbe
omes 
lear that for the �at bottom potentials the non-vanishing of the
ommutator takes pla
e mainly at the nu
lear surfa
e. Sin
e the nu
learsurfa
e-to-volume ratio de
reases as A� 13 the in�uen
e of the symmetrybreaking should be a de
reasing fun
tion of the nu
lear mass number or,in other words, the symmetry should be
ome better the heavier the nu
leus.Con
lusion. The Dira
 equation with the average nu
lear intera
tions rep-resented by potentials Ŝ(~r ) and V̂ (~r ) obeys approximately an SU(2) sym-metry in the four-dimensional spa
e of the Dira
 bi-spinors, with the relatedgroup of transformations spanned by the generators fŜj ; j = 1; 2; 3g. The
orresponding approximate symmetry should, to a far an extent, be deforma-tion independent as long as the non-vanishing of the 
ommutator in Eq. (7)
an be negle
ted.Groups SUs(2) and SU~s(2) as Symmetry Groups for Spinors� and �. It is an easy exer
ise to show that Eqs. (1) or (2) 
an be writtendown in terms of two S
hrödinger-like equations for the Dira
 bi-spinor'sgrand 
omponent � and small 
omponent �: = � ��� ; � � : Ĥ�D � = E�;� : Ĥ�D � = E�; (10)where the two Dira
 operators are:Ĥ�D � (
~� � ~̂p) 1[E +m0
2 + (Ŝ(~r)� V̂ (~r))℄ (
~� � ~̂p)+[m0
2 + (Ŝ(~r ) + V̂ (~r ))℄ (11)and Ĥ�D � (
~� � ~̂p) 1[E �m0
2 � (Ŝ(~r) + V̂ (~r ))℄ (
~� � ~̂p)�[m0
2 + (Ŝ(~r )� V̂ (~r ))℄ : (12)In the above two-dimensional representation a 
hara
teristi
 symmetry inappearan
es of the sum (Ŝ + V̂ ) and of the di�eren
e (Ŝ � V̂ ) in the twooperators deserves noti
ing. It is also worth emphasizing that the aboveeigen-equations, Eq. (10), are not eigen-energy problems in the usual sens,sin
e the energy dependen
e there is not linear, 
f. Eqs. (11) and (12).
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 ... 779Consider, similarly as in Ref. [1℄, an ideal limiting 
ase Ŝ + V̂ ! 0.Stri
tly speaking su
h a limit is a non-physi
al one sin
e it 
orresponds toa vanishing of the nu
leoni
 binding through the vanishing of the 
entralpotential Û , 
f. Eqs. (11) and (3). However, this limit 
an be used to modelthe situation of the weak symmetry breaking as presented below. In su
h alimit [Ĥ�D; ŝi℄ = 0; ! Ĥ�D�n = En�n; ŝ2�n;s = s(s+ 1)�n;s; ŝz�n;s;sz= sz�n;s;sz ; (13)i.e. the small 
omponents in the Dira
 equation 
an be labeled with the helpof the spin quantum numbers s and sz, and similarly[Ĥ+D; ~̂si℄ = 0; ! Ĥ+�n = En�n; ~̂s2�n;~s = ~s(~s+ 1)�n;~s; ~̂sz�n;~s;~sz= ~sz�n;~s;~sz ; (14)i.e. the grand 
omponents of the Dira
 bi-spinors 
an be labeled with thepseudo-spin quantum numbers ~s and ~sz. (To show that the 
ommutationrelation in Eq. (14) is valid is a matter of an easy exer
ise for Ŝ + V̂ ! 0.)Observation. Let us emphasize that at the Ŝ + V̂ ! 0 limit, the depen-den
e of fun
tions � on spin fa
torizes out exa
tly; similarly the dependen
eof spinors � on the pseudo-spin fa
torizes out and we may look for the 
or-responding solutions in the form of produ
ts depending on the ~r and sz (~sz)variables separately�n;~s;~sz(~r ) = �n(~r )�~s;~sz ; �n;s;sz(~r ) = 	n(~r )�s;sz : (15)Predi
tion of Degenera
ies: Fingerprints of the SUS(2) Symme-try. The fa
t that [Ĥ+D; ~̂sj℄ = 0 for j = 1; 2; 3, signi�es among others thatthe eigen-energies 
hara
terized by �pseudospin-up� and �pseudospin-down�
ondition, 
f. 
ommutation relation in Eq. (14), must be exa
tly equal inthe 
onsidered limit:En;~s;+~sz = En;~s;�~sz ; $ Ŝ(~r ) + V̂ (~r ) ! 0; 8 ~r; (16)or, that there should exist double degenera
ies. These should take pla
eirrespe
tively of the deformation of the nu
lear system sin
e none of thearguments evoked so far was related to the parti
ular dependen
e of Ŝ(~r )or V̂ (~r ) on ~r. Moreover, the above 
ondition 
an be now related to the fa
tthat the nu
lear Dira
 Hamiltonian does not depend on time wherefrom itfollows that (T̂ denoting the time-reversal operator)[ĤD; T̂ ℄ = 0 $ T̂ ĤD T̂ �1 = ĤD: (17)



780 J. Dudek et al.The above result implies that the wave fun
tions  and T̂  satisfy therespe
tive equationsĤD  = E  $ [T̂ ĤD T̂ �1℄| {z }ĤD (T̂  ) = E (T̂  ); (18)i.e. the two linearly independent solutions,  and T̂  are degenerate withthe 
ommon energy eigenvalue E (the well known Kramers degenera
ies).In other words: any energy eigenvalue is double degenerate and the relatedwave fun
tions 
orrespond to two opposite dire
tions of time. However, theabove argument 
an be repeated to ea
h eigenenergy in Eq. (16) and itfollows that the nu
leoni
 states in the limit Ŝ(~r ) + V̂ (~r ) ! 0 must bequadruply degenerate:En;~s;+~sz !  n;~s;+~sz and T  n;~s;+~szEn;~s;�~sz ; !  n;~s;�~sz and T  n;~s;�~sz ) : (19)Con
lusion. In the exa
t pseudo-spin symmetry limit all the single nu
leonstates split into the groups of four-fold degenerate states with the four wave-fun
tions spe
i�ed above, in parti
ular for the deformed nu
lei.A Spe
ial Case: The Spheri
al Symmetry. The relation above will beparti
ularly instru
tive to study in the 
ase of the spheri
al symmetry whereseveral properties 
an be dedu
ed analyti
ally. Most of the 
onsiderationsrelated to the impli
ations of the pseudo-spin symmetry 
an be repeatedafter having introdu
ed the pseudo-orbital angular momentum operator andthe related symmetry operator L̂j, an analog to the Ŝj, through the de�nitionL̂j �  ~̀̂j 00 ^̀j ! ; ~̀̂j � (~� � p̂ ) ^̀j (~� � p̂ ): (20)Similarly as before we demonstrate that in the 
ommutator below[ĤD ; L̂j℄ =  [Ŝ(~r ) + V̂ (~r ) ; ~̂Lj ℄ ; 00 ; 0 ! (21)the approximate 
ommutation relation [Ŝ(~r ) + V̂ (~r ); ~̂Lj℄ � 0 holds for thesame reasons as those dis
ussed above. The last relation implies immediatelythat for the new operator de�ned as the following sumĴj def= L̂j + Ŝj $ [ĤD; Ĵj ℄ = 0 $ [ĤD; ~̂J 2℄ = 0 ; (22)
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 ... 781i.e. that the 
onservation of a new observable, Ĵj, follows. More pre
isely,this new observable is generated by the operatorĴj �  ~̀̂j + ~̂sj; 00; ^̀j + ŝj ! �  ~̂jj ; 00; ĵj ! ; j = 1; 2; 3; (23)where a new symbol, ~̂jj , is de�ned as a sum of the pseudo orbital and pseudointrinsi
 angular momenta~̂jj def= ~̀j + ~sj = (~� � p̂) ^̀j (~� � p̂) + (~� � p̂) ŝj (~� � p̂): (24)Using now the 
ommutators between ^̀j and p̂j operators we �nd that ~̂jj =~̀̂j + ~̂sj = ^̀j + ŝj = ĵj and thus that the total pseudo angular momentum isequal to the total angular momentum although ~̀̂j 6= ^̀j and ~̂sj 6= ŝj.The above 
onsiderations 
an be summarized as follows. At the limitŜ + V̂ ! 0 the nu
lear Dira
 Hamiltonian of spheri
al symmetry 
ommuteswith the following operators[ĤD; Ĵk℄ = 0$ [ĤD; ~̂J � ~̂J ℄ = 0 and [ĤD; Ĵk℄ = 0$ [ĤD; ~̂J � ~̂J ℄ = 0;(25)as well as[ĤD; L̂k℄ = 0$ [ĤD; ~̂L � ~̂L ℄ = 0 and [ĤD; Ŝk℄ = 0$ [ĤD; ~̂S � ~̂S℄ = 0: (26)At that limit the solutions to the 
orresponding relativisti
 problem (letus remind the reader that all these 
ommutation relations hold generallyand not just at the non-relativisti
 redu
tion 
ase) 
an be labeled with thefollowing quantum numbers�n;J ;Jz;L;Lz;S;Sz ; �n; j; jz ; ~̀; ~̀z; ~s; ~sz and �n; j; jz ; `; `z ; s; sz :(27)In the last relations we took into a

ount that sin
e Ĵk = Ĵk only one ofthese ve
tor quantities 
an be treated as independent and that a

ordingto the de�nitions in Eqs. (5) and (20) the operators a
ting on the � and �spinors di�er in stru
ture as it is indi
ated by the di�eren
es in the labels.Let us now re
all that within the representations of the Dira
 matri
esused above the parity operator P̂ satis�es (up to a phase fa
tor that isunimportant for us here):P̂ = 
0 = � +1I2 00 �1I2 � $ P̂���� = �+����; (28)



782 J. Dudek et al.while at the same time we may write�̂ : ��(~r)�(~r)� ~r!�~r�! ��(�~r)�(�~r)� = ����(~r )���(~r )�;�� = (�1)~̀ and �� = (�1)`: (29)Sin
e for a parity invariant Hamiltonian, as it is the 
ase here, we have inaddition P̂� = ���; �� = �1;it then follows that�� = ��� $ ~̀= `� 1;�3;�5 : : : ; (30)but sin
e we must always have ~j = j the only possible 
ombinations amongthe quantum numbers in question are:s = ~s = 12 ; j = ~j : j = `� s $ ~j = ~̀+ ~s ! ~̀= `� 1; (31)and s = ~s = 12 ; j = ~j : j = `+ s $ ~j = ~̀� ~s ! ~̀= `+ 1: (32)Simultaneously, the states 
orresponding to a given j quantum number musthave the energies of the pseudo-spin �up� 
on�guration equal to that of thepseudo-spin �down� 
on�guration and we arrive at an ideal pseudo-spin sym-metri
 spe
trum of a spheri
ally symmetri
 Hamiltonian that is representeds
hemati
ally in Fig. 1. To the left: for a given prin
ipal quantum num-ber N , the possible ` quantum numbers form a sequen
e as indi
ated. Thelevels marked with the label �No spin orbit� 
orrespond to the spin-up vs.spin-down degenera
y � in su
h a 
ase the Hamiltonian does not dependon spin. Introdu
ing gradually the spin-orbit potential will split the levels
orresponding to the orbital angular momenta 
oupled with spins in eitherparallel or antiparallel 
on�gurations. In su
h a �
titious pseudo-spin sym-metry obeying potential, the Hamiltonian will produ
e a spe
trum markedto the right, in whi
h one orbital 
oming from below and one orbital 
om-ing from above form eventually a degenerate pseudo-spin doublet. Keeping`max � ` = N as a referen
e value and pro
eeding upwards we obtain allpossible ~̀ values. They are equal ~̀= N � 1, ~̀= N � 3, ~̀= N � 5 et
.The s
hemati
 illustration in Fig. 1 is 
onfronted with the experimentalresults on the neutron single parti
le energies in 208Pb nu
leus, the levelsabove the Z = 126 gap, Fig. 2 and below the Z = 126 gap, Fig. 3. Thepseudo-spin degenera
ies are marked expli
itly. It be
omes 
lear from these�gures that the splitting of the levels that in the exa
t symmetry limit should
oin
ide, does not ex
eed � 1 MeV; these splittings should be 
ompared to
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Fig. 1. A s
hemati
 representation of a single-nu
leon spe
trum for a heavy nu
leusillustrating a possible s
enario of the pseudo-spin symmetry. This Figure shouldbe interpreted as an artist's view rather than any numeri
al simulation result,re
alling that the exa
t symmetry limit arises when Ŝ + V̂ ! 0 i.e. at the limit ofthe disappearing nu
leoni
 binding.
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Fig. 2. Experimental results for the single-parti
le neutron-levels in the 208Pb nu-
leus above the N = 208 gap. The usual spe
tros
opi
 labels are pla
ed to the left;the analogous notation interms of the pseudo angular momentum is given to theright. In parti
ular, the notation like ~p3=2;1=2 means: p-type level in the pseudo an-gular momentum sense, ~̀= 1, 
f. Eqs. (31) and (32), originating from �traditional�d3=2 and s1=2 levels of ` = ~̀+ 1 and ` = ~̀� 1, et
.
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Fig. 3. Similar to Fig. 2 but for the neutron levels below the N = 208 gap (formore details see text).hU(~r )i � �50 MeV or to the other averages that represent dire
tly eitherthe attra
tive nu
leon-nu
leon for
es, hS(~r )i � �400 MeV or the repulsivefor
es hV (~r )i � +350 MeV. Independently of the s
ale used the breaking ofthe pseudo-spin symmetry 
ould be 
onsidered small sin
e the 
orrespondingrelative deviations de�ned in the above sense are of the order of 2 % to a fewper mille. Very similar pi
ture is obtained for the protons (not shown). Oneobserves here systemati
ally an in
rease of the pseudo-spin splitting with anin
rease in ` (or ~̀).4. The nu
lear Dira
 equation at low-energyDespite the fa
t that we were able to present above a few illustrationsrelated to the a
tual experimental situation with respe
t to the pseudo-spinsymmetry the 
on
lusions 
ould be drawn mainly on the qualitative level.The symmetry dis
ussed so far was formulated for the �naked� nu
leons inthe Dira
 formalism. In a real nu
leus the nu
leon 
oupling to, for instan
e,surfa
e vibrations or their parti
ipation in the pairing intera
tions make anadequate 
omparison in terms of small quantities as those seen in Figs. (2)and (3) more di�
ult as it may seem. To prepare the grounds for the moreadequate 
omparisons, taking into a

ount 
ouplings of the type mentioned,one will need the single-parti
le Hamiltonian that is 
onform with the Dira
formalism presented above. For this purpose one will need a reasonablemodel potentials that repla
e those used in many mi
ros
opi
 model 
al
u-lations in the past.



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira
 ... 785We will use Eq. (11) as a starting point; we apply the non-relativisti
redu
tion E � m0
2 + " and follow a suggestion of Ref. [17℄, to introdu
e aposition dependent e�e
tive mass as follows12m0
2 + "+ [Ŝ(~r )� V̂ (~r )℄ = 1"+ 2m� = 12m� � 11 + "2m� �' 12m� �1� "2m�� : (33)The e�e
tive mass m�(~r ) is de�ned bym�(~r ) = m0
2 + 12 [Ŝ(~r )� V̂ (~r )℄: (34)By elementary transformations we obtain now the S
hrödinger-type equationfor the spinor ��(
~� � ~̂p ) 12m�(~r )(
~� � ~̂p ) + [Ŝ(~r ) + V̂ (~r )℄� �n = "n�n; (35)from where, by dire
tly applying the fa
t that ~̂p = �i~r we �nd� 12m�(~r )(
~̂p) 2 + V̂~p (~r; ~̂p )+ V̂so(~r; ~̂p; ~̂s ) +[V̂ (~r )+ Ŝ(~r )℄��n = "n�n: (36)In the above relation, the term V̂ (~r ) + Ŝ(~r ) plays a role of the 
entralpotential and will be parametrized with the help of Eq. (3). The spin-orbit potential, following a straightforward but a little longer sequen
e oftransformations, is given byV̂so(~r; ~̂p; ~̂s ) = ~
22m0
2 f(~rV`s) ^ ~̂p g � ~̂s with V̂`s(~r ) � 1m�(~r ) [V̂ (~r )� Ŝ(~r )℄:(37)The di�eren
e V̂ (~r )�Ŝ(~r ) will be parametrised in terms of another Woods�Saxon type expression � 
f. Eq. (4). In prin
iple the same di�eren
e appearsalso in the de�nition of the e�e
tive mass, Eq. (34). The same is true forthe �linear momentum potential� of Eq. (36):V̂~p (~r; ~̂p ) � � i~
2(2m�)2 �~r�V̂ (~r )� Ŝ(~r )�� � ~̂p (38)that satis�es (
~̂p ) 12m�(~r ) (
~̂p) = 
22m�(~r ) ~̂p 2 + V̂p(~r; ~p ): (39)



786 J. Dudek et al.There are three terms in the above Hamiltonian, Eq. (36), that depend onthe di�eren
e V̂ (~r ) � Ŝ(~r ): these are the e�e
tive mass, the linear mo-mentum potential and the spin-orbit potential. This di�eren
e is going tobe parametrised with the Woods�Saxon type forms. In prin
iple one maylook for the maximum parametri
 freedom that will be 
ontained in the �-nal parametrization of the Hamiltonian. In parti
ular it will be possible toparametrize the spin-orbit term with the help of parameters that di�er fromthose in the e�e
tive mass and in the linear momentum term. However those
ontained in the e�e
tive mass and the linear momentum term must be thesame in order that the operator (39) remains hermitian (as an element ofthe Hamiltonian).

Fig. 4. An example of the single proton-level spe
trum 
al
ulated with the new (pre-liminary) parametrization of the Woods�Saxon potentials within the low-energylimit of the nu
lear Dira
 formalism. The optimal 
entral potential depth is largerthan those usually found in the literature � here: U0
 = 71:5MeV, 
f. Eq. (3). Thequality of the �t is 
omparable to- or better than most of the Woods-Saxon typeparametrisations that 
an be found in the literature. The other parameter valuesare: Radii (
entral, spin-orbit and e�e
tive mass: 1.15 fm, 0.92 fm and 0.81 fm,respe
tively); di�useness (in the same order, 1.22 fm, 0.6 fm and 0.42 fm); isospinstrengths, 
f. Eq. (3) (0.5, 0.6, 0.5). The strengths of the Woods-Saxon fa
tors inthe spin-orbit and the e�e
tive mass terms are expressed as multiples of a �standardunit� equal 50 MeV. For the e�e
tive mass �e� = 14:4 while �so is varied. On top ofthe �gure: root-mean-square deviation for the single parti
le energies (experimentvs. theory), �0W , root-mean-square radii, phr2i, and the estimated error of thebinding energy of the last nu
leon, ÆV0. Experimental value of the proton radiusis given in the upper-right 
orner.
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 ... 787It is not our purpose to dis
uss in details the properties of the newparametrization used here � this will be done elsewhere. Here we will limitourselves to presenting a typi
al illustration of the new �t 
al
ulated withthe help of the Hamiltonian (39) where, in addition to the nu
lear potentialsdis
ussed the usual Coulomb potential 
orresponding to a uniformly 
hargedsphere has been added, 
f. Fig. 4. Despite the fa
t that the e�e
tive massterm is of the order of 60 % of the rest mass, the single parti
le level densityaround the Fermi level is 
omparable to the one obtained with the bestamong the older parametrizations.5. Summary and 
on
lusionsAfter a short histori
al overview of the problem of the nu
lear SU(2)symmetries and in parti
ular of the pseudo-spin symmetry, we have dis-
ussed in some more detail a re
ent formulation of the problem. This re
entformulation is based on the properties of the nu
lear Dira
 equation, [1℄.The latter 
ontains two potentials that di�er in sign: an attra
tive one 
on-tributed by the ex
hange of the s
alar mesons and a repulsive one 
omingfrom the me
hanism of the ex
hange of the ve
tor mesons. After presentingthe 
ommutation relations of the related Dira
 Hamiltonian with appropri-ately 
hosen operators involving nu
leoni
 spin and heli
ity, the relativisti
pseudo-spin formalism has been dis
ussed together with the existen
e of theapproximate pseudo-spin symmetry. In view of the mi
ros
opi
 
al
ulationsthat use the above 
on
epts in realisti
 situations a new set of the Woods�Saxon type potentials is introdu
ed and a preliminary set of parametersfound that assure a good des
ription of the single nu
leoni
 states withinthe low energy limit of the Dira
 formalism. The potentials are found todi�er 
onsiderably from those usually used in the literature; here howeverthe position dependent e�e
tive mass is expli
itly introdu
ed. As expe
ted,the e�e
tive mass that di�ers markedly from the nu
leoni
 rest-mass, onlywhen 
ombined with the new potential parametrisations brings very rea-sonable �ts that take into a

ount at the same time the binding energies,the single-parti
le level order as well as the nu
leon (in the �rst pla
e theproton) spatial mass distributions.REFERENCES[1℄ J.N. Gino
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