
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 3
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772 J. Dudek et al.1. Introdution and historial remarksMean-�eld nulear struture alulations played and play until now themost important role in understanding numerous forms of nulear behavior,for instane at high spins or those in the domain of physis of exoti- andhalo-nulei. A reent artile [1℄ brings an important new understanding ofthe relativisti origin of the fundamental SU(2) symmetry that appears inthe Dira mean-�eld Hamiltonian, ĤD,ĤD def= f~� � ~̂p+ V̂ (~r ) 1I4 + � [m02 + Ŝ(~r )℄g ! ĤD  n = En  n; (1)in whih f~�; �g denote an ensemble of the usual Dira matries, 1I4 is afour-dimensional unit matrix, and ~̂p = �i~r. The forms of the ~r-dependentinteration potentials Ŝ(~r ) and V̂ (~r ) an be provided by the RelativistiMean Field (RMF) theories in terms of ouplings of the nuleon �elds tothe salar- and the vetor-meson �elds, respetively (f. e.g. Ref. [2℄ for areview). Paradoxially, the onsequenes of the SU(2) symmetry mentionedabove have been disovered on the phenomenologial grounds before the dis-overy of the symmetry itself already in 1969, Ref. [3℄; slightly more formalframework has been given in Ref. [4℄. Those early papers predited an exis-tene, and suggested a way to verify in experiment, of approximate degen-eraies among ertain well de�ned single-nuleoni levels. The degeneraiesin question and other related features will be disussed in a onsiderabledetail below in view of a more modern understanding of their origin.The symmetry that underlies the existene of those degeneraies wasalled �pseudo-spin symmetry� or pseudo-SU(2) symmetry, below denotedSU~s(2). Despite a tendeny towards a pejorative interpretation of the ad-jetive �pseudo� this symmetry is probably one of the most fundamental (al-though approximate) symmetries that the nulear mean-�eld should arry.This is so beause, �rstly, the existene of this symmetry relies on a gen-eral universal fat: the relatively weak nuleoni binding in all nulei as aresult of a partial anellation of a strong nulear attration aused by anexhange of the salar mesons and of a strong nulear repulsion aused by anexhange of the vetor mesons. Seondly, beause up to a good an approxi-mation this symmetry should depend only weakly (if at all) on the nuleardeformation and thus it should remain a ommon feature of all nulei forwhih the mean-�eld an be introdued � i.e. for all, exept for a very fewvery light nulei.In 1973, Ref. [5℄, it has been suggested that the pseudo-spin doubledegeneraies whose presene is manifested in deformed nulei are involved ina larger symmetry strutures, desribed in terms of a larger group, SU(3),alled by the authors pseudo-SU(3) and below denoted SU(~3). Followingthe existene of this larger symmetry the pseudo-spin doublets are merely



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 773simple building bloks of a riher multiplet struture. Those �rih� multipletsinvolve an inreasing number of the pseudo-spin doublets when the shellnumber, N , inreases.It is interesting to note that the formal understanding of the solution tothe nulear pseudo-spin symmetry problem in the framework of the Diraformalism has been liyed out already in 1976, Ref. [6℄. However, the authorsof this artile were unaware of the importane of their result for the nu-lear struture domain. Reiproally, the paper was seemingly unknown tothe nulear struture ommunity who ontinued to investigate the pseudo-spin problem using various other means. In partiular, Ref. [7℄, it has beendemonstrated on the basis of the Nilsson model that the pseudo-spin dou-blets an be viewed upon as manifestations of a ertain spei� representa-tion of the nuleoni-shell struture, i.e. the one in terms of a pseudo-orbitalpseudo-spin interation, ÆV̂~̀�~s � ~̀� ~s, rather than the spin-orbit ÆV̂`�s � ` � s,interation. Aording to suh an approah, the �traditional� spin-orbit in-teration leads to a strong spin-orbit splitting between orbitals orrespond-ing to the spin-parallel, ` "" s, vs. spin-antiparallel, ` "# s, oupling of theintrinsi spin to the orbital angular momentum. Within a proposed piturein terms of pseudo-spin pseudo-orbital angular momenta, very small energydi�erenes between the �parallel vs. antiparallel�, ~̀"" ~s and ~̀"# ~s on�gu-rations are obtained, while an overall omparison with experiment remainsqualitatively good in both ases.The struture of the Nilsson-model Hamiltonian, quite partiular fromthe pseudo-spin symmetry point of view, has beome a entral disussionelement in various studies that addressed the problem of SU~s(2) doubletsin the nuleoni spetra after 1982. In partiular, a onept of a pseudo-osillator as a harmoni osillator model of the related algebrai SU(~3) prop-erties has beome a fashionable topi and a number of elegant mathematialways of transforming the so-alled normal-parity sets of the harmoni os-illator Hamiltonian to the orresponding pseudo-osillator spae has beenfound (f. Ref. [8℄ and referenes therein, and for a review on earlier formu-lations: Refs. [9℄ and [10℄). For the �rst time a possible relativisti origin ofa weak pseudo-spin pseudo-orbital momentum oupling within the Nilssonmodel has been suggested in [11℄; a disussion of the possible mathematialforms of the pseudo-spin transformation, again within the the Nilsson modelstruture, an be found in [12℄.In the late 80'ies the onsequenes of the SU~s(2)- and of the larger,SU(~3)-symmetries for the domain of the very strongly deformed nulei havebeen explored. In partiular in 1987 � at an early stage of the nulearsuperdeformation (SD) studies, when only two SD rotational bands wereknown experimentally, a general abundane sheme of the nulear superde-formation as a large-sale nulear phenomenon, [13℄, has been predited the-



774 J. Dudek et al.oretially. It has been later on on�rmed up to a detail by the experimentswith the multidetetor systems on over a hundred of SD bands. In the meantime a possible in�uene of the pseudo-spin degeneraies on the existeneof unexpeted similarities among the SD bands (�sameness� among the SDbands) has been brought up in [14℄.The most reent disovery of a onnetion between spin and pseudo-spinwithin the Dira equation, symmetries of the latter and in partiular aninterrelation in terms of the large and small omponents of the Dira bi-spinors bring more light on the relativisti dynamis of the problem [15,16℄;these aspets will be overviewed and disussed in the following setions.The new ways to understanding the mean-�eld Hamiltonian's SU(2) sym-metries are slightly hidden. One needs to onsider a four-omponent Dirasolutions rather than a �traditional� form of the nuleoni wave funtions.One needs to expliitly use the fat that for the parity-onserving nulearDira Hamiltonian the parity of the grand omponent must be opposite tothat of the small omponent yet giving a good total parity of the Dirabispinor, et. The question of how to ombine these fats is one of the issuesunderlying the pseudo-spin symmetry and goes deeper into the relativistiphysis, in partiular a deomposition of the Lorentz group in terms of twoonstituent SU(2) groups.2. Motivations and relation to experimentAt the �rst glane one may think that the experimental results, for in-stane on the single partile levels in spherial nulei, larify in a ratherunambigous manner the degree of the (weak) pseudo-spin symmetry break-ing. The theoretial onsiderations provide the spetrosopi labels of thestates that should be the pseudo-spin degenerate (see also below), the or-responding states have often been identi�ed in experiment and their energydi�erenes an be ompared to zero � the larger the di�erene the strongerthe symmetry breaking.The spherial symmetry ase, although in some sense the simplest, themost �aademi� one, is by far not the only one of interest. The pseudo-spindoublets are obtained in any realisti deformed mean-�eld potentials as e.g.Woods�Saxon, Nilsson or Folded�Yukawa, as well as in the Hartree�Fokapproahes, and are known to depend very little on the nulear deformationover the very large variation ranges of the deformation parameters. Thelose-lying doublet states then propagate also together in terms of the ro-tational (ranking) frequeny and possibly ontribute to the similarities inbehavior of ertain rotational bands.One may be tempted to say that the veri�ation of the size of the pseudo-spin symmetry breaking is a diret matter and an be done more or less�automatially� in terms of the existing simple experimental information.



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 775There are, however, several mehanism that make the above �straightfor-ward� omparison biased, di�ult � sometimes perhaps strongly ontami-nated with the quantum mehanisms that have nothing to do with the oneunder onsideration. To start with let us reall that the energy di�erenesamong the levels that in the exat symmetry limit are expeted to be zero �are going to be small (f. illustrations in the following setion). Comparisonwith the existing data (although the quality of this omparison will be rit-iized just a few lines below) gives numbers in the range between a oupleof hundreds of keV and about 1.5 MeV, roughly, for the spherial nulei.In the ase of the spherial shape pseudo-spin degeneraies (stritlyspeaking, in the spherial-symmetry ase, what is referred to as doubletsin terms of the pseudo-spin quantum number are rather rih multiplets interms of the orbital angular momentum quantum number, ` and ` + 2 ofthe degree of degeneray that goes like � 4`) the ontributing orbitals dif-fer in ` by two units. Coupling of the orresponding states with the rela-tively low-lying olletive vibrations may be signi�antly di�erent for the two`-members in a doublet thus ontaminating, perhaps onsiderably, the om-parison with experiment related primarily to the �naked�, pure mean-�eldstates � the ones that are expeted to obey the pseudo-spin symmetry.In deformed nulei in whih the pseudo-spin doublets seem to have a sim-ilar degree of the symmetry breaking, the pairing orrelations mix the single-partile degrees of freedom strongly while the theoretial preditions basedon the present formulation of the nulear Dira formalism again address puresingle-partile properties that result from onsidering the deformed mean-�eld alone.All these aspets will need to be onsidered when addressing the problemof the nulear pseudo-spin symmetry, perhaps not so muh in priniple butertainly in the ase of the real life. What seems to be a dangerous possibil-ity, the present time omparisons with experiment may be strongly biasedthrough the presene of various mehanisms that are not diretly relatedto the mean-�eld struture. In other words: the atual knowledge aboutthe experimental veri�ation of the pseudo-spin symmetry breaking ouldbe muh poorer than it is felt today.Extending a simple and very well studied in the past deformed mean-�eldparametrisations in terms of the Woods�Saxon potentials to the Dira typeformalism in the nulear struture ontext may turn out to be very usefulin overoming several of the di�ulties mentioned above through advanesin the realisti alulations. This an be done by modeling and parametriz-ing the above mehanisms in onnetion with the Woods�Saxon tehniquewithin the nulear Dira Hamiltonian. The following presentation gives anintrodution to suh an approah.



776 J. Dudek et al.3. Dira equation and SU(2)-type symmetriesIt is a matter of a straightforward transformation to demonstrate thatwithin a standard representation of the Dira matries, relation (1) is equiv-alent toĤD = � +fm02 + [Ŝ(~r ) + V̂ (~r )℄g;  (~� � ~̂p ) (~� � ~̂p ); �fm02 + [Ŝ(~r )� V̂ (~r )℄g � ; (2)where ~� denotes an ensemble of the three Pauli matries. The solutions inthe form of the Dira bi-spinors  = ���� ontain � an �, two two-dimensionalspinors alled respetively grand and small omponents. The above form isbetter adapted, as ompared to that in Eq. (1), for the disussion whihfollows. In Eq. (2) the operators Ŝ = Ŝ(~r ) and V̂ = V̂ (~r ) an be viewed assimple funtions of all the three Cartesian variables. In priniple, within aphenomenologial treatment both these funtions an be modeled in termsof the Woods�Saxon type potentials. However, it will turn out to be ofmore advantage to parametrize the sum (Ŝ(~r ) + V̂ (~r )) and the di�erene(Ŝ(~r )� V̂ (~r )) in terms of another set of the Woods�Saxon potentials sinethese ombinations enter diretly the equations of the motion, f. Ref. [17℄,and see also below. Consequently, one may writeÛ(~r ) � Ŝ(~r ) + V̂ (~r ) = [1 + �I℄U01 + exp[dist�(~r )=a℄ ; (3)and similarlŷUso(~r ) � Ŝ(~r )� V̂ (~r ) = [1 + �soI℄U so1 + exp[dist�(~r )=aso℄ ; (4)where I = (N � Z)=(N + Z) is the usual isospin fator, while U (Uso), �o(�so) and a0 (aso) are adjustable onstants. The nulear surfae is repre-sented by the symbol �; funtion dist�(~r ) denotes the distane of a givenpoint ~r in spae from the nulear surfae. (Antiipating the interpretationof the orresponding potentials as the entral and spin-orbit interations theindies �� and �so� have been introdued.)In the following we would like to address the problem of the symmetries�rst; the possible pratial and simple parametrisations will ome next.



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 777An Approximate SU(2) Symmetry of the Nulear Dira Hamil-tonian. Let us introdue, by slightly shortening the reasoning of Ref. [6℄,operators1Ŝj � � ~̂sj 00 ŝj � ; ~̂sj � (~� � p̂ ) ŝj (~� � p̂ ); ĥ � ~� � p̂ = �2~s~ � � p̂: (5)The latter objet is the usual momentum-heliity operator that satis�esĥy = (~� � p̂)y = p̂y �~�y = p̂�~� = ~� � p̂ = ĥ$ ĥyĥ = (~� � p̂)2 = p̂2|{z}1 1I2 = 1I2: (6)Sine obviously ĥy = ĥ�1 and ĥ = ĥ�1 it beomes lear from Eq. (5) thatthe de�nition of ~̂sj is equivalent to a similarity transformation that preservesthe ommutation relations. Consequently the ommutation relations for thespin operators fŝj ; j = 1; 2; 3g imply[ŝj; ŝk℄ = i~ �jk`ŝ` ! [~̂sj; ~̂sk℄ = i~ �jk` ~̂s` $ [Ŝj ; Ŝk℄ = i~ �jk`Ŝ`; (7)and we see that all the three ensembles of operators above generate threeSU(2) groups: ensemble fŝj ; j = 1; 2; 3g ! SUs(2); ensemble f~̂sj ; j =1; 2; 3g ! SU~s(2), in two dimensional spaes of spinors � and �, respetively,and the ensemble fŜj ; j = 1; 2; 3g ! SUS(2) in a four-dimensional spae ofthe Dira bi-spinors.The main reason for introduing the fŜjg operators is that, as one aneasily verify, [ĤD ; Ŝj℄ = � [Ŝ(~r ) + V̂ (~r ) ; ~̂sj℄ � 0 ; 00 ; 0 � : (8)The ommutator above is stritly speaking not zero. Sine ~̂sj are di�erentialoperators, f. Eq. (5), we �nd that [Ŝ(~r ) + V̂ (~r ) ; ~̂sj℄ 6= 0 unless Ŝ(~r ) +V̂ (~r ) = 0. However, the breaking of this exat symmetry orresponding tothe exat ommutation relations [Ŝ + V̂ ; ~̂sj ℄ = 0 is expeted to be weak.This is so beause as it has been found out earlier, see e.g. Ref. [17℄, on theaverage the disussed potentials satisfyhŜ(~r )i � � 400MeVhV̂ (~r )i � + 350MeV � ) hŜ(~r) + V̂ (~r)i � �50MeVhŜ(~r)� V̂ (~r)i � �750MeV � : (9)1 Formally the momentum-heliity operators introdued here an be viewed as om-pliated di�erential operator expressions of the type p̂ = ~̂p=(~̂p � ~̂p ); both momentumrelated operators, i.e. ~̂p and (~̂p � ~̂p )�1 are mathematially well de�ned objets as e.g.matries alulated with respet to a ertain basis. In partiular, (~̂p � ~̂p )�1 is aninverse matrix with respet to ~̂p � ~̂p = �~2� where � denotes the Laplae operator.



778 J. Dudek et al.Denoting Û(~r ) � Ŝ(~r ) + V̂ (~r ) we ompare the average absolute values ofthe depths (or heights) of the potentials, (averages denoted with the sym-bol �hi�). We �nd that hÛi is muh smaller than the di�erene h(Ŝ � V̂ )i;also hÛ i is muh smaller than hŜi and at the same time muh smaller thanhV̂ i. Moreover, as mentioned above, the ~sj is a di�erential operator and itbeomes lear that for the �at bottom potentials the non-vanishing of theommutator takes plae mainly at the nulear surfae. Sine the nulearsurfae-to-volume ratio dereases as A� 13 the in�uene of the symmetrybreaking should be a dereasing funtion of the nulear mass number or,in other words, the symmetry should beome better the heavier the nuleus.Conlusion. The Dira equation with the average nulear interations rep-resented by potentials Ŝ(~r ) and V̂ (~r ) obeys approximately an SU(2) sym-metry in the four-dimensional spae of the Dira bi-spinors, with the relatedgroup of transformations spanned by the generators fŜj ; j = 1; 2; 3g. Theorresponding approximate symmetry should, to a far an extent, be deforma-tion independent as long as the non-vanishing of the ommutator in Eq. (7)an be negleted.Groups SUs(2) and SU~s(2) as Symmetry Groups for Spinors� and �. It is an easy exerise to show that Eqs. (1) or (2) an be writtendown in terms of two Shrödinger-like equations for the Dira bi-spinor'sgrand omponent � and small omponent �: = � ��� ; � � : Ĥ�D � = E�;� : Ĥ�D � = E�; (10)where the two Dira operators are:Ĥ�D � (~� � ~̂p) 1[E +m02 + (Ŝ(~r)� V̂ (~r))℄ (~� � ~̂p)+[m02 + (Ŝ(~r ) + V̂ (~r ))℄ (11)and Ĥ�D � (~� � ~̂p) 1[E �m02 � (Ŝ(~r) + V̂ (~r ))℄ (~� � ~̂p)�[m02 + (Ŝ(~r )� V̂ (~r ))℄ : (12)In the above two-dimensional representation a harateristi symmetry inappearanes of the sum (Ŝ + V̂ ) and of the di�erene (Ŝ � V̂ ) in the twooperators deserves notiing. It is also worth emphasizing that the aboveeigen-equations, Eq. (10), are not eigen-energy problems in the usual sens,sine the energy dependene there is not linear, f. Eqs. (11) and (12).



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 779Consider, similarly as in Ref. [1℄, an ideal limiting ase Ŝ + V̂ ! 0.Stritly speaking suh a limit is a non-physial one sine it orresponds toa vanishing of the nuleoni binding through the vanishing of the entralpotential Û , f. Eqs. (11) and (3). However, this limit an be used to modelthe situation of the weak symmetry breaking as presented below. In suh alimit [Ĥ�D; ŝi℄ = 0; ! Ĥ�D�n = En�n; ŝ2�n;s = s(s+ 1)�n;s; ŝz�n;s;sz= sz�n;s;sz ; (13)i.e. the small omponents in the Dira equation an be labeled with the helpof the spin quantum numbers s and sz, and similarly[Ĥ+D; ~̂si℄ = 0; ! Ĥ+�n = En�n; ~̂s2�n;~s = ~s(~s+ 1)�n;~s; ~̂sz�n;~s;~sz= ~sz�n;~s;~sz ; (14)i.e. the grand omponents of the Dira bi-spinors an be labeled with thepseudo-spin quantum numbers ~s and ~sz. (To show that the ommutationrelation in Eq. (14) is valid is a matter of an easy exerise for Ŝ + V̂ ! 0.)Observation. Let us emphasize that at the Ŝ + V̂ ! 0 limit, the depen-dene of funtions � on spin fatorizes out exatly; similarly the dependeneof spinors � on the pseudo-spin fatorizes out and we may look for the or-responding solutions in the form of produts depending on the ~r and sz (~sz)variables separately�n;~s;~sz(~r ) = �n(~r )�~s;~sz ; �n;s;sz(~r ) = 	n(~r )�s;sz : (15)Predition of Degeneraies: Fingerprints of the SUS(2) Symme-try. The fat that [Ĥ+D; ~̂sj℄ = 0 for j = 1; 2; 3, signi�es among others thatthe eigen-energies haraterized by �pseudospin-up� and �pseudospin-down�ondition, f. ommutation relation in Eq. (14), must be exatly equal inthe onsidered limit:En;~s;+~sz = En;~s;�~sz ; $ Ŝ(~r ) + V̂ (~r ) ! 0; 8 ~r; (16)or, that there should exist double degeneraies. These should take plaeirrespetively of the deformation of the nulear system sine none of thearguments evoked so far was related to the partiular dependene of Ŝ(~r )or V̂ (~r ) on ~r. Moreover, the above ondition an be now related to the fatthat the nulear Dira Hamiltonian does not depend on time wherefrom itfollows that (T̂ denoting the time-reversal operator)[ĤD; T̂ ℄ = 0 $ T̂ ĤD T̂ �1 = ĤD: (17)



780 J. Dudek et al.The above result implies that the wave funtions  and T̂  satisfy therespetive equationsĤD  = E  $ [T̂ ĤD T̂ �1℄| {z }ĤD (T̂  ) = E (T̂  ); (18)i.e. the two linearly independent solutions,  and T̂  are degenerate withthe ommon energy eigenvalue E (the well known Kramers degeneraies).In other words: any energy eigenvalue is double degenerate and the relatedwave funtions orrespond to two opposite diretions of time. However, theabove argument an be repeated to eah eigenenergy in Eq. (16) and itfollows that the nuleoni states in the limit Ŝ(~r ) + V̂ (~r ) ! 0 must bequadruply degenerate:En;~s;+~sz !  n;~s;+~sz and T  n;~s;+~szEn;~s;�~sz ; !  n;~s;�~sz and T  n;~s;�~sz ) : (19)Conlusion. In the exat pseudo-spin symmetry limit all the single nuleonstates split into the groups of four-fold degenerate states with the four wave-funtions spei�ed above, in partiular for the deformed nulei.A Speial Case: The Spherial Symmetry. The relation above will bepartiularly instrutive to study in the ase of the spherial symmetry whereseveral properties an be dedued analytially. Most of the onsiderationsrelated to the impliations of the pseudo-spin symmetry an be repeatedafter having introdued the pseudo-orbital angular momentum operator andthe related symmetry operator L̂j, an analog to the Ŝj, through the de�nitionL̂j �  ~̀̂j 00 ^̀j ! ; ~̀̂j � (~� � p̂ ) ^̀j (~� � p̂ ): (20)Similarly as before we demonstrate that in the ommutator below[ĤD ; L̂j℄ =  [Ŝ(~r ) + V̂ (~r ) ; ~̂Lj ℄ ; 00 ; 0 ! (21)the approximate ommutation relation [Ŝ(~r ) + V̂ (~r ); ~̂Lj℄ � 0 holds for thesame reasons as those disussed above. The last relation implies immediatelythat for the new operator de�ned as the following sumĴj def= L̂j + Ŝj $ [ĤD; Ĵj ℄ = 0 $ [ĤD; ~̂J 2℄ = 0 ; (22)



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 781i.e. that the onservation of a new observable, Ĵj, follows. More preisely,this new observable is generated by the operatorĴj �  ~̀̂j + ~̂sj; 00; ^̀j + ŝj ! �  ~̂jj ; 00; ĵj ! ; j = 1; 2; 3; (23)where a new symbol, ~̂jj , is de�ned as a sum of the pseudo orbital and pseudointrinsi angular momenta~̂jj def= ~̀j + ~sj = (~� � p̂) ^̀j (~� � p̂) + (~� � p̂) ŝj (~� � p̂): (24)Using now the ommutators between ^̀j and p̂j operators we �nd that ~̂jj =~̀̂j + ~̂sj = ^̀j + ŝj = ĵj and thus that the total pseudo angular momentum isequal to the total angular momentum although ~̀̂j 6= ^̀j and ~̂sj 6= ŝj.The above onsiderations an be summarized as follows. At the limitŜ + V̂ ! 0 the nulear Dira Hamiltonian of spherial symmetry ommuteswith the following operators[ĤD; Ĵk℄ = 0$ [ĤD; ~̂J � ~̂J ℄ = 0 and [ĤD; Ĵk℄ = 0$ [ĤD; ~̂J � ~̂J ℄ = 0;(25)as well as[ĤD; L̂k℄ = 0$ [ĤD; ~̂L � ~̂L ℄ = 0 and [ĤD; Ŝk℄ = 0$ [ĤD; ~̂S � ~̂S℄ = 0: (26)At that limit the solutions to the orresponding relativisti problem (letus remind the reader that all these ommutation relations hold generallyand not just at the non-relativisti redution ase) an be labeled with thefollowing quantum numbers�n;J ;Jz;L;Lz;S;Sz ; �n; j; jz ; ~̀; ~̀z; ~s; ~sz and �n; j; jz ; `; `z ; s; sz :(27)In the last relations we took into aount that sine Ĵk = Ĵk only one ofthese vetor quantities an be treated as independent and that aordingto the de�nitions in Eqs. (5) and (20) the operators ating on the � and �spinors di�er in struture as it is indiated by the di�erenes in the labels.Let us now reall that within the representations of the Dira matriesused above the parity operator P̂ satis�es (up to a phase fator that isunimportant for us here):P̂ = 0 = � +1I2 00 �1I2 � $ P̂���� = �+����; (28)



782 J. Dudek et al.while at the same time we may write�̂ : ��(~r)�(~r)� ~r!�~r�! ��(�~r)�(�~r)� = ����(~r )���(~r )�;�� = (�1)~̀ and �� = (�1)`: (29)Sine for a parity invariant Hamiltonian, as it is the ase here, we have inaddition P̂� = ���; �� = �1;it then follows that�� = ��� $ ~̀= `� 1;�3;�5 : : : ; (30)but sine we must always have ~j = j the only possible ombinations amongthe quantum numbers in question are:s = ~s = 12 ; j = ~j : j = `� s $ ~j = ~̀+ ~s ! ~̀= `� 1; (31)and s = ~s = 12 ; j = ~j : j = `+ s $ ~j = ~̀� ~s ! ~̀= `+ 1: (32)Simultaneously, the states orresponding to a given j quantum number musthave the energies of the pseudo-spin �up� on�guration equal to that of thepseudo-spin �down� on�guration and we arrive at an ideal pseudo-spin sym-metri spetrum of a spherially symmetri Hamiltonian that is representedshematially in Fig. 1. To the left: for a given prinipal quantum num-ber N , the possible ` quantum numbers form a sequene as indiated. Thelevels marked with the label �No spin orbit� orrespond to the spin-up vs.spin-down degeneray � in suh a ase the Hamiltonian does not dependon spin. Introduing gradually the spin-orbit potential will split the levelsorresponding to the orbital angular momenta oupled with spins in eitherparallel or antiparallel on�gurations. In suh a �titious pseudo-spin sym-metry obeying potential, the Hamiltonian will produe a spetrum markedto the right, in whih one orbital oming from below and one orbital om-ing from above form eventually a degenerate pseudo-spin doublet. Keeping`max � ` = N as a referene value and proeeding upwards we obtain allpossible ~̀ values. They are equal ~̀= N � 1, ~̀= N � 3, ~̀= N � 5 et.The shemati illustration in Fig. 1 is onfronted with the experimentalresults on the neutron single partile energies in 208Pb nuleus, the levelsabove the Z = 126 gap, Fig. 2 and below the Z = 126 gap, Fig. 3. Thepseudo-spin degeneraies are marked expliitly. It beomes lear from these�gures that the splitting of the levels that in the exat symmetry limit shouldoinide, does not exeed � 1 MeV; these splittings should be ompared to
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Fig. 1. A shemati representation of a single-nuleon spetrum for a heavy nuleusillustrating a possible senario of the pseudo-spin symmetry. This Figure shouldbe interpreted as an artist's view rather than any numerial simulation result,realling that the exat symmetry limit arises when Ŝ + V̂ ! 0 i.e. at the limit ofthe disappearing nuleoni binding.
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Fig. 3. Similar to Fig. 2 but for the neutron levels below the N = 208 gap (formore details see text).hU(~r )i � �50 MeV or to the other averages that represent diretly eitherthe attrative nuleon-nuleon fores, hS(~r )i � �400 MeV or the repulsivefores hV (~r )i � +350 MeV. Independently of the sale used the breaking ofthe pseudo-spin symmetry ould be onsidered small sine the orrespondingrelative deviations de�ned in the above sense are of the order of 2 % to a fewper mille. Very similar piture is obtained for the protons (not shown). Oneobserves here systematially an inrease of the pseudo-spin splitting with aninrease in ` (or ~̀).4. The nulear Dira equation at low-energyDespite the fat that we were able to present above a few illustrationsrelated to the atual experimental situation with respet to the pseudo-spinsymmetry the onlusions ould be drawn mainly on the qualitative level.The symmetry disussed so far was formulated for the �naked� nuleons inthe Dira formalism. In a real nuleus the nuleon oupling to, for instane,surfae vibrations or their partiipation in the pairing interations make anadequate omparison in terms of small quantities as those seen in Figs. (2)and (3) more di�ult as it may seem. To prepare the grounds for the moreadequate omparisons, taking into aount ouplings of the type mentioned,one will need the single-partile Hamiltonian that is onform with the Diraformalism presented above. For this purpose one will need a reasonablemodel potentials that replae those used in many mirosopi model alu-lations in the past.



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 785We will use Eq. (11) as a starting point; we apply the non-relativistiredution E � m02 + " and follow a suggestion of Ref. [17℄, to introdue aposition dependent e�etive mass as follows12m02 + "+ [Ŝ(~r )� V̂ (~r )℄ = 1"+ 2m� = 12m� � 11 + "2m� �' 12m� �1� "2m�� : (33)The e�etive mass m�(~r ) is de�ned bym�(~r ) = m02 + 12 [Ŝ(~r )� V̂ (~r )℄: (34)By elementary transformations we obtain now the Shrödinger-type equationfor the spinor ��(~� � ~̂p ) 12m�(~r )(~� � ~̂p ) + [Ŝ(~r ) + V̂ (~r )℄� �n = "n�n; (35)from where, by diretly applying the fat that ~̂p = �i~r we �nd� 12m�(~r )(~̂p) 2 + V̂~p (~r; ~̂p )+ V̂so(~r; ~̂p; ~̂s ) +[V̂ (~r )+ Ŝ(~r )℄��n = "n�n: (36)In the above relation, the term V̂ (~r ) + Ŝ(~r ) plays a role of the entralpotential and will be parametrized with the help of Eq. (3). The spin-orbit potential, following a straightforward but a little longer sequene oftransformations, is given byV̂so(~r; ~̂p; ~̂s ) = ~22m02 f(~rV`s) ^ ~̂p g � ~̂s with V̂`s(~r ) � 1m�(~r ) [V̂ (~r )� Ŝ(~r )℄:(37)The di�erene V̂ (~r )�Ŝ(~r ) will be parametrised in terms of another Woods�Saxon type expression � f. Eq. (4). In priniple the same di�erene appearsalso in the de�nition of the e�etive mass, Eq. (34). The same is true forthe �linear momentum potential� of Eq. (36):V̂~p (~r; ~̂p ) � � i~2(2m�)2 �~r�V̂ (~r )� Ŝ(~r )�� � ~̂p (38)that satis�es (~̂p ) 12m�(~r ) (~̂p) = 22m�(~r ) ~̂p 2 + V̂p(~r; ~p ): (39)



786 J. Dudek et al.There are three terms in the above Hamiltonian, Eq. (36), that depend onthe di�erene V̂ (~r ) � Ŝ(~r ): these are the e�etive mass, the linear mo-mentum potential and the spin-orbit potential. This di�erene is going tobe parametrised with the Woods�Saxon type forms. In priniple one maylook for the maximum parametri freedom that will be ontained in the �-nal parametrization of the Hamiltonian. In partiular it will be possible toparametrize the spin-orbit term with the help of parameters that di�er fromthose in the e�etive mass and in the linear momentum term. However thoseontained in the e�etive mass and the linear momentum term must be thesame in order that the operator (39) remains hermitian (as an element ofthe Hamiltonian).

Fig. 4. An example of the single proton-level spetrum alulated with the new (pre-liminary) parametrization of the Woods�Saxon potentials within the low-energylimit of the nulear Dira formalism. The optimal entral potential depth is largerthan those usually found in the literature � here: U0 = 71:5MeV, f. Eq. (3). Thequality of the �t is omparable to- or better than most of the Woods-Saxon typeparametrisations that an be found in the literature. The other parameter valuesare: Radii (entral, spin-orbit and e�etive mass: 1.15 fm, 0.92 fm and 0.81 fm,respetively); di�useness (in the same order, 1.22 fm, 0.6 fm and 0.42 fm); isospinstrengths, f. Eq. (3) (0.5, 0.6, 0.5). The strengths of the Woods-Saxon fators inthe spin-orbit and the e�etive mass terms are expressed as multiples of a �standardunit� equal 50 MeV. For the e�etive mass �e� = 14:4 while �so is varied. On top ofthe �gure: root-mean-square deviation for the single partile energies (experimentvs. theory), �0W , root-mean-square radii, phr2i, and the estimated error of thebinding energy of the last nuleon, ÆV0. Experimental value of the proton radiusis given in the upper-right orner.



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dira ... 787It is not our purpose to disuss in details the properties of the newparametrization used here � this will be done elsewhere. Here we will limitourselves to presenting a typial illustration of the new �t alulated withthe help of the Hamiltonian (39) where, in addition to the nulear potentialsdisussed the usual Coulomb potential orresponding to a uniformly hargedsphere has been added, f. Fig. 4. Despite the fat that the e�etive massterm is of the order of 60 % of the rest mass, the single partile level densityaround the Fermi level is omparable to the one obtained with the bestamong the older parametrizations.5. Summary and onlusionsAfter a short historial overview of the problem of the nulear SU(2)symmetries and in partiular of the pseudo-spin symmetry, we have dis-ussed in some more detail a reent formulation of the problem. This reentformulation is based on the properties of the nulear Dira equation, [1℄.The latter ontains two potentials that di�er in sign: an attrative one on-tributed by the exhange of the salar mesons and a repulsive one omingfrom the mehanism of the exhange of the vetor mesons. After presentingthe ommutation relations of the related Dira Hamiltonian with appropri-ately hosen operators involving nuleoni spin and heliity, the relativistipseudo-spin formalism has been disussed together with the existene of theapproximate pseudo-spin symmetry. In view of the mirosopi alulationsthat use the above onepts in realisti situations a new set of the Woods�Saxon type potentials is introdued and a preliminary set of parametersfound that assure a good desription of the single nuleoni states withinthe low energy limit of the Dira formalism. The potentials are found todi�er onsiderably from those usually used in the literature; here howeverthe position dependent e�etive mass is expliitly introdued. As expeted,the e�etive mass that di�ers markedly from the nuleoni rest-mass, onlywhen ombined with the new potential parametrisations brings very rea-sonable �ts that take into aount at the same time the binding energies,the single-partile level order as well as the nuleon (in the �rst plae theproton) spatial mass distributions.REFERENCES[1℄ J.N. Ginohio, A. Leviatan, Phys. Lett. B425, 1 (1998).[2℄ P. Ring, Prog. Part. Nul. Phys. 37, 193 (1996).[3℄ A. Arima, M. Harvey, Y. Shimizu, Phys. Lett. B30, 955 (1969).[4℄ K.T. Heht, A. Adler, Nul. Phys. A137, 129 (1969).
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