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1. Introduction and historical remarks

Mean-field nuclear structure calculations played and play until now the
most important role in understanding numerous forms of nuclear behavior,
for instance at high spins or those in the domain of physics of exotic- and
halo-nuclei. A recent article [1] brings an important new understanding of
the relativistic origin of the fundamental SU(2) symmetry that appears in
the Dirac mean-field Hamiltonian, Hp,

Hp © {ed@ -+ V(7)) Ly + 6 [moc + 8(F)]} — Hpvn =Entn, (1)

in which {&, [} denote an ensemble of the usual Dirac matrices, 14 is a
four-dimensional unit matrix, andﬁ' = —4iAV. The forms of the 7~dependent
interaction potentials S(7) and V() can be provided by the Relativistic
Mean Field (RMF) theories in terms of couplings of the nucleon fields to
the scalar- and the vector-meson fields, respectively (cf. e.g. Ref. [2] for a
review). Paradoxically, the consequences of the SU(2) symmetry mentioned
above have been discovered on the phenomenological grounds before the dis-
covery of the symmetry itself already in 1969, Ref. [3]; slightly more formal
framework has been given in Ref. [4]. Those early papers predicted an exis-
tence, and suggested a way to verify in experiment, of approximate degen-
eracies among certain well defined single-nucleonic levels. The degeneracies
in question and other related features will be discussed in a considerable
detail below in view of a more modern understanding of their origin.

The symmetry that underlies the existence of those degeneracies was
called “pseudo-spin symmetry” or pseudo-SU(2) symmetry, below denoted
SU;(2). Despite a tendency towards a pejorative interpretation of the ad-
jective “pseudo” this symmetry is probably one of the most fundamental (al-
though approximate) symmetries that the nuclear mean-field should carry.
This is so because, firstly, the existence of this symmetry relies on a gen-
eral universal fact: the relatively weak nucleonic binding in all nuclei as a
result of a partial cancellation of a strong nuclear attraction caused by an
exchange of the scalar mesons and of a strong nuclear repulsion caused by an
exchange of the vector mesons. Secondly, because up to a good an approxi-
mation this symmetry should depend only weakly (if at all) on the nuclear
deformation and thus it should remain a common feature of all nuclei for
which the mean-field can be introduced — 1i.e. for all, except for a very few
very light nuclei.

In 1973, Ref. [5], it has been suggested that the pseudo-spin double
degeneracies whose presence is manifested in deformed nuclei are involved in
a larger symmetry structures, described in terms of a larger group, SU(3),
called by the authors pseudo-SU(3) and below denoted SU(3). Following
the existence of this larger symmetry the pseudo-spin doublets are merely
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simple building blocks of a richer multiplet structure. Those “rich” multiplets
involve an increasing number of the pseudo-spin doublets when the shell
number, N, increases.

It is interesting to note that the formal understanding of the solution to
the nuclear pseudo-spin symmetry problem in the framework of the Dirac
formalism has been liyed out already in 1976, Ref. [6]. However, the authors
of this article were unaware of the importance of their result for the nu-
clear structure domain. Reciprocally, the paper was seemingly unknown to
the nuclear structure community who continued to investigate the pseudo-
spin problem using various other means. In particular, Ref. [7], it has been
demonstrated on the basis of the Nilsson model that the pseudo-spin dou-
blets can be viewed upon as manifestations of a certain specific representa-
tion of the nucleonic-shell structure, i.e. the one in terms of a pseudo-orbital
pseudo-spin interaction, 0V . ~ £- 5, rather than the spin-orbit 6V, ~ £ s,
interaction. According to such an approach, the “traditional” spin-orbit in-
teraction leads to a strong spin-orbit splitting between orbitals correspond-
ing to the spin-parallel, £ 11 s, vs. spin-antiparallel, £ 1| s, coupling of the
intrinsic spin to the orbital angular momentum. Within a proposed picture
in terms of pseudo-spin pseudo-orbital angular momenta, very small energy
differences between the “parallel vs. antiparallel”, £ 11 § and £ 1] § configu-
rations are obtained, while an overall comparison with experiment remains
qualitatively good in both cases.

The structure of the Nilsson-model Hamiltonian, quite particular from
the pseudo-spin symmetry point of view, has become a central discussion
element in various studies that addressed the problem of SU;(2) doublets
in the nucleonic spectra after 1982. In particular, a concept of a pseudo-
oscillator as a harmonic oscillator model of the related algebraic SU(3) prop-
erties has become a fashionable topic and a number of elegant mathematical
ways of transforming the so-called normal-parity sets of the harmonic os-
cillator Hamiltonian to the corresponding pseudo-oscillator space has been
found (cf. Ref. [8] and references therein, and for a review on earlier formu-
lations: Refs. [9] and [10]). For the first time a possible relativistic origin of
a weak pseudo-spin pseudo-orbital momentum coupling within the Nilsson
model has been suggested in [11]; a discussion of the possible mathematical
forms of the pseudo-spin transformation, again within the the Nilsson model
structure, can be found in [12].

In the late 80’ies the consequences of the SUjz(2)- and of the larger,
SU(3)-symmetries for the domain of the very strongly deformed nuclei have
been explored. In particular in 1987 — at an early stage of the nuclear
superdeformation (SD) studies, when only two SD rotational bands were
known experimentally, a general abundance scheme of the nuclear superde-
formation as a large-scale nuclear phenomenon, [13], has been predicted the-
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oretically. It has been later on confirmed up to a detail by the experiments
with the multidetector systems on over a hundred of SD bands. In the mean
time a possible influence of the pseudo-spin degeneracies on the existence
of unexpected similarities among the SD bands (“sameness” among the SD
bands) has been brought up in [14].

The most recent discovery of a connection between spin and pseudo-spin
within the Dirac equation, symmetries of the latter and in particular an
interrelation in terms of the large and small components of the Dirac bi-
spinors bring more light on the relativistic dynamics of the problem [15,16];
these aspects will be overviewed and discussed in the following sections.

The new ways to understanding the mean-field Hamiltonian’s SU(2) sym-
metries are slightly hidden. One needs to consider a four-component Dirac
solutions rather than a “traditional” form of the nucleonic wave functions.
One needs to explicitly use the fact that for the parity-conserving nuclear
Dirac Hamiltonian the parity of the grand component must be opposite to
that of the small component yet giving a good total parity of the Dirac
bispinor, etc. The question of how to combine these facts is one of the issues
underlying the pseudo-spin symmetry and goes deeper into the relativistic
physics, in particular a decomposition of the Lorentz group in terms of two
constituent SU(2) groups.

2. Motivations and relation to experiment

At the first glance one may think that the experimental results, for in-
stance on the single particle levels in spherical nuclei, clarify in a rather
unambigous manner the degree of the (weak) pseudo-spin symmetry break-
ing. The theoretical considerations provide the spectroscopic labels of the
states that should be the pseudo-spin degenerate (see also below), the cor-
responding states have often been identified in experiment and their energy
differences can be compared to zero — the larger the difference the stronger
the symmetry breaking.

The spherical symmetry case, although in some sense the simplest, the
most “academic” one, is by far not the only one of interest. The pseudo-spin
doublets are obtained in any realistic deformed mean-field potentials as e.g.
Woods—Saxon, Nilsson or Folded—Yukawa, as well as in the Hartree-Fock
approaches, and are known to depend very little on the nuclear deformation
over the very large variation ranges of the deformation parameters. The
close-lying doublet states then propagate also together in terms of the ro-
tational (cranking) frequency and possibly contribute to the similarities in
behavior of certain rotational bands.

One may be tempted to say that the verification of the size of the pseudo-
spin symmetry breaking is a direct matter and can be done more or less
“automatically” in terms of the existing simple experimental information.



Pseudo-SU(2) Symmetry and a Low Energy Limit of the Dirac ... 775

There are, however, several mechanism that make the above “straightfor-
ward” comparison biased, difficult — sometimes perhaps strongly contami-
nated with the quantum mechanisms that have nothing to do with the one
under consideration. To start with let us recall that the energy differences
among the levels that in the exact symmetry limit are expected to be zero —
are going to be small (c¢f. illustrations in the following section). Comparison
with the existing data (although the quality of this comparison will be crit-
icized just a few lines below) gives numbers in the range between a couple
of hundreds of keV and about 1.5 MeV, roughly, for the spherical nuclei.

In the case of the spherical shape pseudo-spin degeneracies (strictly
speaking, in the spherical-symmetry case, what is referred to as doublets
in terms of the pseudo-spin quantum number are rather rich multiplets in
terms of the orbital angular momentum quantum number, ¢ and £ + 2 of
the degree of degeneracy that goes like ~ 4/) the contributing orbitals dif-
fer in ¢ by two units. Coupling of the corresponding states with the rela-
tively low-lying collective vibrations may be significantly different for the two
Z-members in a doublet thus contaminating, perhaps considerably, the com-
parison with experiment related primarily to the “naked”, pure mean-field
states — the ones that are expected to obey the pseudo-spin symmetry.

In deformed nuclei in which the pseudo-spin doublets seem to have a sim-
ilar degree of the symmetry breaking, the pairing correlations mix the single-
particle degrees of freedom strongly while the theoretical predictions based
on the present formulation of the nuclear Dirac formalism again address pure
single-particle properties that result from considering the deformed mean-
field alone.

All these aspects will need to be considered when addressing the problem
of the nuclear pseudo-spin symmetry, perhaps not so much in principle but
certainly in the case of the real life. What seems to be a dangerous possibil-
ity, the present time comparisons with experiment may be strongly biased
through the presence of various mechanisms that are not directly related
to the mean-field structure. In other words: the actual knowledge about
the experimental verification of the pseudo-spin symmetry breaking could
be much poorer than it is felt today.

Extending a simple and very well studied in the past deformed mean-field
parametrisations in terms of the Woods—Saxon potentials to the Dirac type
formalism in the nuclear structure context may turn out to be very useful
in overcoming several of the difficulties mentioned above through advances
in the realistic calculations. This can be done by modeling and parametriz-
ing the above mechanisms in connection with the Woods—Saxon technique
within the nuclear Dirac Hamiltonian. The following presentation gives an
introduction to such an approach.
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3. Dirac equation and SU(2)-type symmetries

It is a matter of a straightforward transformation to demonstrate that
within a standard representation of the Dirac matrices, relation (1) is equiv-
alent to

: moc® + [S(F) + V(7 c(d-o
o= ( e —{m002+([g(7§))— () ) @)

where & denotes an ensemble of the three Pauli matrices. The solutions in
the form of the Dirac bi-spinors 9 = (f]) contain ¢ an 7, two two-dimensional
spinors called respectively grand and small components. The above form is
better adapted, as compared to that in Eq. (1), for the discussion which
follows. In Eq. (2) the operators § = S(7) and V = V() can be viewed as
simple functions of all the three Cartesian variables. In principle, within a
phenomenological treatment both these functions can be modeled in terms
of the Woods—Saxon type potentials. However, it will turn out to be of
more advantage to parametrize the sum (S(7) 4+ V(7)) and the difference
(S(7) — V(7)) in terms of another set of the Woods-Saxon potentials since
these combinations enter directly the equations of the motion, cf. Ref. [17],
and see also below. Consequently, one may write

N ~ K ;
U(F)=S(F)+ V() = 1+ ii;[disﬂzf)/ac] ’ ¥

and similarly

~ o Ao Sy [1+K;SOI]U50
Uso(7) = S(7) = V() = 1 + exp[distx(7)/aso) ’

(4)

where I = (N — Z)/(N + Z) is the usual isospin factor, while U, (Us), Ko
(kso) and ag (ase) are adjustable constants. The nuclear surface is repre-
sented by the symbol X; function disty (7) denotes the distance of a given
point 7 in space from the nuclear surface. (Anticipating the interpretation
of the corresponding potentials as the central and spin-orbit interactions the
indices “c” and “so” have been introduced.)

In the following we would like to address the problem of the symmetries
first; the possible practical and simple parametrisations will come next.
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An Approximate SU(2) Symmetry of the Nuclear Dirac Hamil-
tonian. Let us introduce, by slightly shortening the reasoning of Ref. [6],
opelrautors1

s _ (5 0.
S]_<0 83)

The latter object is the usual momentum-helicity operator that satisfies

W=@pf=ptdt=pd=cp=hohlh=(3p?= I, = 5. (6)

Sj

(5-15)%(5-;5),355-ﬁ=<§)-ﬁ- 5)

7
~—~
1
Since obviously At = A1 and h = A ™! it becomes clear from Eq. (5) that
the definition of §; is equivalent to a similarity transformation that preserves

the commutation relations. Consequently the commutation relations for the
spin operators {§;; j = 1,2,3} imply

[§j,§k] = ’iﬁejkg§g — [gj,gk] = ’iﬁejkggg — [Sj,gk] =ih ejkggg, (7)
and we see that all the three ensembles of operators above generate three
SU(2) groups: ensemble {5;; j = 1,2,3} — SU,(2); ensemble {s5;; j =
1,2,3} — SU;(2), in two dimensional spaces of spinors n and &, respectively,
and the ensemble {S;; j =1,2,3} = SUs(2) in a four-dimensional space of
the Dirac bi-spinors.

The main reason for introducing the {33} operators is that, as one can
easily verify,

i &) = < [S(F)+ V(7), 5] ~0 0 ) @)

The commutator above is strictly speaking not zero. Since §j are differential
operators, c¢f. Eq. (5), we find that [S(7) + V(7), 5;] # 0 unless S(7) +
V(F ) = 0. However, the breaking of this exact symmetry corresponding to
the exact commutation relations [S’ +V, §j] = 0 is expected to be weak.
This is so because as it has been found out earlier, see e.g. Ref. [17], on the
average the discussed potentials satisfy

(8(F)) ~ —400MeV } _ (8(F) + V(7)) ~ =50 MeV } (©)

(V(7)) ~ +350MeV (8(F) = V() ~ =750 MeV

! Formally the momentum-helicity operators introduced here can be viewed as com-
plicated differential operator expressions of the type p = p/(p- p); both momentum

! are mathematically well defined objects as e.g.

related operators, i.e. pand (7 )~
matrices calculated with respect to a certain basis. In particular, (7- §)~' is an

inverse matrix with respect to ;;3' . ;;3' = —h2A where A denotes the Laplace operator.
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Denoting U(7) = S(7) + V(F) we compare the average absolute values of
the depths (or heights) of the potentials, (averages denoted with the sym-
bol “()”). We find that (U) is much smaller than the difference ((S — V));
also (U) is much smaller than (S) and at the same time much smaller than
(V) Moreover, as mentioned above, the 5; is a differential operator and it
becomes clear that for the flat bottom potentials the non-vanishing of the
commutator takes place mainly at the nuclear surface. Since the nuclear
surface-to-volume ratio decreases as A~3 the influence of the symmetry
breaking should be a decreasing function of the nuclear mass number or,
in other words, the symmetry should become better the heavier the nucleus.
Conclusion. The Dirac equation with the average nuclear interactions rep-
resented by potentials S (7) and V(F ) obeys approximately an SU(2) sym-
metry in the four-dimensional space of the Dirac bi-spinors, with the related
group of transformations spanned by the generators {Sj; j =1,2,3}. The
corresponding approximate symmetry should, to a far an extent, be deforma-
tion independent as long as the non-vanishing of the commutator in Eq. (7)
can be neglected.

Groups SU4(2) and SU;(2) as Symmetry Groups for Spinors
n and £. It is an easy exercise to show that Egs. (1) or (2) can be written
down in terms of two Schriédinger-like equations for the Dirac bi-spinor’s
grand component ¢ and small component #:

(&Y. [ ¢ #5 &e;
Ql}_<’l>’ {n= H = En, (10)

where the two Dirac operators are:

HE = (cG 7 ! - G- p
b= mw+m@A(ﬁ 7 7
+Hmoc? + (S(7) + V(7))] (11)
and
N R 1 .
HT = (¢o - ~ - co -
p = (77) € = moc? = (5(7) + V(7))] (c7-)
—[moc® + (S(F) = V(7))]. (12)

In the above two-dimensional representation a characteristic symmetry in
appearances of the sum (S + V) and of the difference (S — V) in the two
operators deserves noticing. It is also worth emphasizing that the above
eigen-equations, Eq. (10), are not eigen-energy problems in the usual sens,
since the energy dependence there is not linear, ¢f. Eqgs. (11) and (12).
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Consider, similarly as in Ref. [1|, an ideal limiting case S+V =0
Strictly speaking such a limit is a non-physical one since it corresponds to
a vanishing of the nucleonic binding through the vanishing of the central
potential U, ¢f. Eqs. (11) and (3). However, this limit can be used to model
the situation of the weak symmetry breaking as presented below. In such a
limit

[7:15,@] =0, — 7'22)7771 = Ennn; ggnn,s = 3(3 + 1)7771,5; gznn,s,s;
Sz2Mn,s,s, (13)

i.e. the small components in the Dirac equation can be labeled with the help
of the spin quantum numbers s and s,, and similarly

[7:[£a§z] = 0; — 7:l+§n = Enfm §2§n,§ = §(§ + 1)571,5; §z§n,§,§z
= ngn,§,§z; (14)

i.e. the grand components of the Dirac bi-spinors can be labeled with the
pseudo-spin quantum numbers § and §,. (To show that the commutation
relation in Eq. (14) is valid is a matter of an easy exercise for S+ V — 0.)
Observation. Let us emphasize that at the S +V — 0 limit, the depen-
dence of functions 1 on spin factorizes out exactly; similarly the dependence
of spinors £ on the pseudo-spin factorizes out and we may look for the cor-
responding solutions in the form of products depending on the 7 and s, (3,)
variables separately

fn,§,§; ('F) ==, (F) X3,5.3 Mn,s,s. (F) = Wn(F) Xs,8+ (15)

Prediction of Degeneracies: Fingerprints of the SUg(2) Symme-
try. The fact that [7:[2;,%] = 0 for 5 = 1,2, 3, signifies among others that
the eigen-energies characterized by “pseudospin-up” and “pseudospin-down”
condition, c¢f. commutation relation in Eq. (14), must be exactly equal in
the considered limit:

Enis. =Enss, & SFE)+V(F) = 0, V7, (16)

or, that there should exist double degeneracies. These should take place
irrespectively of the deformation of the nuclear system since none of the
arguments evoked so far was related to the particular dependence of S(7)
or V(7) on . Moreover, the above condition can be now related to the fact
that the nuclear Dirac Hamiltonian does not depend on time wherefrom it
follows that (7 denoting the time-reversal operator)

[7:[[),7-]:0 < THpT '=Hp. (17)
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The above result implies that the wave functions ¢ and 74 satisfy the
respective equations

A

Hpyp=E¢ & [THpT N (T)=E(T), (18)
—_—
Hp

i.e. the two linearly independent solutions, ¢ and T4 are degenerate with
the common energy eigenvalue £ (the well known Kramers degeneracies).
In other words: any energy eigenvalue is double degenerate and the related
wave functions correspond to two opposite directions of time. However, the
above argument can be repeated to each eigenenergy in Eq. (16) and it
follows that the nucleonic states in the limit S(7) + V() — 0 must be
quadruply degenerate:

Eng+s. — Yngs+s and Tins 43, }

(19)
Eng, 3. = Yns—5 and T,z s,

Conclusion. In the exact pseudo-spin symmetry limit all the single nucleon
states split into the groups of four-fold degenerate states with the four wave-
functions specified above, in particular for the deformed nuclei.

A Special Case: The Spherical Symmetry. The relation above will be
particularly instructive to study in the case of the spherical symmetry where
several properties can be deduced analytically. Most of the considerations
related to the implications of the pseudo-spin symmetry can be repeated
after having introduced the pseudo-orbital angular momentum operator and
the related symmetry operator /jj, an analog to the Sj, through the definition

ﬁj5<%’ Ej); lj=(G-p)0(G ). (20)

Similarly as before we demonstrate that in the commutator below

Mo, L] = ( [S(F)Jr‘g(??)azj] 78 ) (21)

~

the approximate commutation relation [S(7) + V(7), £;] ~ 0 holds for the
same reasons as those discussed above. The last relation implies immediately
that for the new operator defined as the following sum

FELi+8 o Wodl=0 & WpJ =0, (22
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1.e. that the conservation of a new observable, jj, follows. More precisely,
this new observable is generated by the operator

gi=( b5 0 )= O ). o123 (23
0, Ej—f—sj' 0, Jj

where a new symbol, 5 j» is defined as a sum of the pseudo orbital and pseudo
intrinsic angular momenta

5+ 5,= (3 p) (G -D)+ (D)3 (3 D). (24)

Using now the commutators between le and p; operators we find that J ;=
Ej + §j = @j +3;= 5']- and thus that the total pseudo angular momentum is

equal to the total angular momentum although Zj # Ej and §j # 35

~ The above considerations can be summarized as follows. At the limit
S+ V — 0 the nuclear Dirac Hamiltonian of spherical symmetry commutes
with the following operators

~ ~
Py py

[(Hp,Je] =0« [Hp,J-J]=0and [Hp, Je] =0 < [Hp, T - T]=0;(25)

as well as

~
—

[Hp, L] =0 [Hp,L-L]=0and [Hp,Sk] =0+« [Hp,S -8 =0. (26)

At that limit the solutions to the corresponding relativistic problem (let
us remind the reader that all these commutation relations hold generally
and not just at the non-relativistic reduction case) can be labeled with the
following quantum numbers

¢n7u7at727£7£278a82’ g’n,j,jz,g,gz,g,gz &Dd nnajajzagagzasasz(z?)

In the last relations we took into account that since jk = jk only one of
these vector quantities can be treated as independent and that according
to the definitions in Egs. (5) and (20) the operators acting on the ¢ and 7
spinors differ in structure as it is indicated by the differences in the labels.

Let us now recall that within the representations of the Dirac matrices
used above the parity operator P satisfies (up to a phase factor that is
unimportant for us here):

e (B 4) e ()-()
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while at the same time we may write

o (40) 7 (450) - (o oot

Since for a parity invariant Hamiltonian, as it is the case here, we have in
addition X
Pd = neP; 7w = *E1,

it then follows that
mp=—m ¢ £=0+1,43 +5... | (30)

but since we must always have j = j the only possible combinations among
the quantum numbers in question are:

s=8=dj=j:j=0—s & j=0+3F > {=0-1 (31)
and
s=8=4j=7:j=4+s & j=0-5 > L=(+1. (32)

Simultaneously, the states corresponding to a given j quantum number must
have the energies of the pseudo-spin “up” configuration equal to that of the
pseudo-spin “down” configuration and we arrive at an ideal pseudo-spin sym-
metric spectrum of a spherically symmetric Hamiltonian that is represented
schematically in Fig. 1. To the left: for a given principal quantum num-
ber N, the possible £ quantum numbers form a sequence as indicated. The
levels marked with the label “No spin orbit” correspond to the spin-up vs.
spin-down degeneracy — in such a case the Hamiltonian does not depend
on spin. Introducing gradually the spin-orbit potential will split the levels
corresponding to the orbital angular momenta coupled with spins in either
parallel or antiparallel configurations. In such a fictitious pseudo-spin sym-
metry obeying potential, the Hamiltonian will produce a spectrum marked
to the right, in which one orbital coming from below and one orbital com-
ing from above form eventually a degenerate pseudo-spin doublet. Keeping
lmax = £ = N as a reference value and proceeding upwards we obtain all
possible 7 values. They are equal /=N — 1,=N-3,£=N —5 etc.

The schematic illustration in Fig. 1 is confronted With the experimental
results on the neutron single particle energies in 2°®Pb nucleus, the levels
above the Z = 126 gap, Fig. 2 and below the Z = 126 gap, Fig. 3. The
pseudo-spin degeneracies are marked explicitly. It becomes clear from these
figures that the splitting of the levels that in the exact symmetry limit should
coincide, does not exceed ~ 1 MeV; these splittings should be compared to
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Mean-Field Degeneracy in the Presence
of a Pseudo-SU(2) Scheme

T
@
1

i

< _ i=(-8)+2=(-7)-12L-
- j=(1-6)-L2=(-7)y+ /2= +
I-6 —C/ j=(1-6)+1/2=(1-5)-1/2=1-1]
=5
~  j=(-4)+1/2=(-3)-L2-1-172
2 {\j=(I-2)-1/2=(I-3)+1/2=I+112
— j=(-2)+V2=(-1)-V2

2

I=N {\ j=(1-0)-1/2=(1-1)+L/2=1+

j=I+1/2=intruder
No spin-orbit Spin-orbit

It}
25

!

T
51N1

11
!

1

S

r

2

Fig. 1. A schematic representation of a single-nucleon spectrum for a heavy nucleus
illustrating a possible scenario of the pseudo-spin symmetry. This Figure should
be interpreted as an artist’s view rather than any numerical simulation result,
recalling that the exact symmetry limit arises when S+V = 0i.e at the limit of
the disappearing nucleonic binding.

Pseudo-SU(2) Doublets (N>126)

‘ 3.4y 208Pb
%1 g 7/23 = -
s 4s . P22
Y 1152 - f © 8
T 3ds), / 712,52 (‘:{ 8 g
] intruder N E §
—
8 1i me ' _ zZ g —
% " h 1202 w
> 4 |- Yo / B

€ (n 1j=1+1/2) - € (n,-11+2,j=1+3/2)

Fig. 2. Experimental results for the single-particle neutron-levels in the 2°8Pb nu-
cleus above the N = 208 gap. The usual spectroscopic labels are placed to the left;
the analogous notation interms of the pseudo angular momentum is given to the
right. In particular, the notation like p3 /5 1 /2 means: p-type level in the pseudo an-

gular momentum sense, ¢ =1, ¢f. Egs. (31~) and (32), originating from “traditional”
ds/s and sy)5 levels of £ =/(+ 1 and £ ={ — 1, etc.
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Pseudo-SU(2) Doublets

208
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S 3p1/2/— SU(2)-singlet
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% 3P 3/ — d5/2,3/2 g 8 1%
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= 712 > 3 0

ol 1h 912,712
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€ (0, 1j=1+1/2) ~ & (n11+2j=1+3/2)

Fig.3. Similar to Fig. 2 but for the neutron levels below the N = 208 gap (for
more details see text).

—

(U(7)) ~ =50 MeV or to the other averages that represent directly either
the attractive nucleon-nucleon forces, (S(7)) ~ —400 MeV or the repulsive
forces (V (7)) ~ +350 MeV. Independently of the scale used the breaking of
the pseudo-spin symmetry could be considered small since the corresponding
relative deviations defined in the above sense are of the order of 2 % to a few
per mille. Very similar picture is obtained for the protons (not shown). One
observes here systematically an increase of the pseudo-spin splitting with an
increase in £ (or /).

4. The nuclear Dirac equation at low-energy

Despite the fact that we were able to present above a few illustrations
related to the actual experimental situation with respect to the pseudo-spin
symmetry the conclusions could be drawn mainly on the qualitative level.
The symmetry discussed so far was formulated for the “naked” nucleons in
the Dirac formalism. In a real nucleus the nucleon coupling to, for instance,
surface vibrations or their participation in the pairing interactions make an
adequate comparison in terms of small quantities as those seen in Figs. (2)
and (3) more difficult as it may seem. To prepare the grounds for the more
adequate comparisons, taking into account couplings of the type mentioned,
one will need the single-particle Hamiltonian that is conform with the Dirac
formalism presented above. For this purpose one will need a reasonable
model potentials that replace those used in many microscopic model calcu-
lations in the past.
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We will use Eq. (11) as a starting point; we apply the non-relativistic
reduction & ~ mgc? + e and follow a suggestion of Ref. [17], to introduce a
position dependent effective mass as follows

1 1 1 1
2mmﬁ+e+¢mfy—an"e+2m*_2m*<1+z%)
! (1 £ ) : (33)

2m* o

1

The effective mass m*(7') is defined by
m* () = moc® + 3[S(F) - V()] (34)

By elementary transformations we obtain now the Schrodinger-type equation
for the spinor &

S oA 1 LA G\ | Tri=
{0 D) g (0 D)4 B + VO o= entnr (9
from where, by directly applying the fact that {5’ = —ihV we find

{ oty @2 + T i)+ Vol 725) +[707) 500 o = eno (30)

In the above relation, the term V(7) + S(7) plays a role of the central
potential and will be parametrized with the help of Eq. (3). The spin-
orbit potential, following a straightforward but a little longer sequence of
transformations, is given by

hc? - sy 2 - 1 - A
g (Vi) A7} 3 with Vi) = — (V) = $(7)

(37)
The difference V(7) — S(7) will be parametrised in terms of another Woods—
Saxon type expression — cf. Eq. (4). In principle the same difference appears
also in the definition of the effective mass, Eq. (34). The same is true for

the “linear momentum potential” of Eq. (36):

Vio 7,5, 5) =

~ ~ 7 02 > f - ~ ~
p(75) = ~ gz |9 (V6 - 560) | -5 (58)
that satisfies
- 1 A 2 .2 .
() gz D) = gy 7+ VA7) (30)
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There are three terms in the above Hamiltonian, Eq. (36), that depend on
the difference V(7) — S(7): these are the effective mass, the linear mo-
mentum potential and the spin-orbit potential. This difference is going to
be parametrised with the Woods—Saxon type forms. In principle one may
look for the maximum parametric freedom that will be contained in the fi-
nal parametrization of the Hamiltonian. In particular it will be possible to
parametrize the spin-orbit term with the help of parameters that differ from
those in the effective mass and in the linear momentum term. However those
contained in the effective mass and the linear momentum term must be the
same in order that the operator (39) remains hermitian (as an element of
the Hamiltonian).

I ! I ! I ! I
\)}‘wﬁ 55 53 52 52 55 Exp.  R"_ 345
(r®) 546 546 546 546 545 “
6V,> —-36 -35 -33 -32 -31

3812 — § 3s1,2
Zda/z/w\ Rda/e
.\ ANy

Rds/e

Proton Levels [MeV]

-12-10-8 -6 -4-2 0 2 4

Rds /2
1g8r/e —

e
_— 18w/

1 1 1 1
208
82PP 126 11 12 13 14

Spin—Orbit Strength A

Fig.4. An example of the single proton-level spectrum calculated with the new (pre-
liminary) parametrization of the Woods—Saxon potentials within the low-energy
limit of the nuclear Dirac formalism. The optimal central potential depth is larger
than those usually found in the literature — here: U? = 71.5 MeV, ¢f. Eq. (3). The
quality of the fit is comparable to- or better than most of the Woods-Saxon type
parametrisations that can be found in the literature. The other parameter values
are: Radii (central, spin-orbit and effective mass: 1.15 fm, 0.92 fm and 0.81 fm,
respectively); diffuseness (in the same order, 1.22 fm, 0.6 fm and 0.42 fm); isospin
strengths, ¢f. Eq. (3) (0.5, 0.6, 0.5). The strengths of the Woods-Saxon factors in
the spin-orbit and the effective mass terms are expressed as multiples of a “standard
unit” equal 50 MeV. For the effective mass Aegr = 14.4 while )\, is varied. On top of
the figure: root-mean-square deviation for the single particle energies (experiment
vs. theory), xiy, root-mean-square radii, 1/(r2), and the estimated error of the
binding energy of the last nucleon, d15. Experimental value of the proton radius
is given in the upper-right corner.
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It is not our purpose to discuss in details the properties of the new
parametrization used here — this will be done elsewhere. Here we will limit
ourselves to presenting a typical illustration of the new fit calculated with
the help of the Hamiltonian (39) where, in addition to the nuclear potentials
discussed the usual Coulomb potential corresponding to a uniformly charged
sphere has been added, cf. Fig. 4. Despite the fact that the effective mass
term is of the order of 60 % of the rest mass, the single particle level density
around the Fermi level is comparable to the one obtained with the best
among the older parametrizations.

5. Summary and conclusions

After a short historical overview of the problem of the nuclear SU(2)
symmetries and in particular of the pseudo-spin symmetry, we have dis-
cussed in some more detail a recent formulation of the problem. This recent
formulation is based on the properties of the nuclear Dirac equation, [1].
The latter contains two potentials that differ in sign: an attractive one con-
tributed by the exchange of the scalar mesons and a repulsive one coming
from the mechanism of the exchange of the vector mesons. After presenting
the commutation relations of the related Dirac Hamiltonian with appropri-
ately chosen operators involving nucleonic spin and helicity, the relativistic
pseudo-spin formalism has been discussed together with the existence of the
approximate pseudo-spin symmetry. In view of the microscopic calculations
that use the above concepts in realistic situations a new set of the Woods—
Saxon type potentials is introduced and a preliminary set of parameters
found that assure a good description of the single nucleonic states within
the low energy limit of the Dirac formalism. The potentials are found to
differ considerably from those usually used in the literature; here however
the position dependent effective mass is explicitly introduced. As expected,
the effective mass that differs markedly from the nucleonic rest-mass, only
when combined with the new potential parametrisations brings very rea-
sonable fits that take into account at the same time the binding energies,
the single-particle level order as well as the nucleon (in the first place the
proton) spatial mass distributions.
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