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Using the selfconsistent semiclassical Extended Thomas—Fermi (ETF)
method up to 4'* order in connection with Skyrme forces it is demon-
strated that the neutron and proton average potentials obtained using the
semiclassical functionals (ET%)[p] and JETF)[p] reproduce the correspond-
ing Hartree—Fock fields extremely well, except for shell oscillations in the
nuclear center.

PACS numbers: 21.60.Ev

The semiclassical Extended Thomas—Fermi method has been extremely
successful in describing average nuclear properties [1], of the Liquid-Drop
or Droplet-model type, ranging from binding energies over radii, nuclear
deformation and fission properties to the description of low-lying collective
excitations such as giant resonances. Starting from the Wigner—Kirkwood
expansion which expresses densities such as the local density p,, the kinetic
energy density 7, or the spin-orbit density j;], {g = n,p}, in a power se-
ries in /i and gradient terms of the average potential, one is able to invert
these series expansions to express e.g. 7, as a functional of p,. For effec-
tive nucleon-nucleon interactions such as those of the Skyrme type [2] which
express the total energy of the nuclear system as a functional of the above
mentioned densities pq, 74 and .J; one is then able within the ETF approach
to write the total energy as a functional of the local densities p, and p,
alone. In its selfconsistent version the ETF approach corresponds then to a
density-variational calculation where the variational quantities are the neu-
tron and proton densities instead of single-particle wave functions as is the
case in the Hartree-Fock (HF) method.

* Presented at the XXXIII Zakopane School of Physics, Zakopane, Poland, September
1-9, 1998.
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Whereas nuclear binding energies obtained in this way have been shown to
reproduce very well the average Liquid-Drop type energy as can be obtained
for a given nucleus and a given nuclear interaction from a Strutinski averaged
HF calculation [1,3], the form of the central potentials V5, have never been
explicitly investigated. It might however be interesting to look at these po-
tentials and their reproduction by semiclassical methods, especially in the
perspective of studying their dependence on rotation and nuclear excita-
tion. It would indeed be interesting to know, how to change the parameters
of a model potential as widely used as a Woods—Saxon mean field when
going from a cold non-rotating nucleus to an excited one (characterized by
a nuclear temperature T) [4] which is rotating with an angular frequency w
(angular momentum L) [5].

The present contribution is meant as a first step in this direction, namely to
establish the validity and test the quality of the ETF approach what nuclear
mean fields are concerned.

For effective nucleon-nucleon interactions of the Skyrme type (see e.g. [6]
and references therein) the nuclear energy density is written as
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where non-indexed quantities like p are the sum of neutron and proton densi-
ties p=pp + pp. In the ETF approach the kinetic energy densities 7, and the

spin-orbit densities j,;, {g=n,p} for protons and neutrons can be written
as functionals of the corresponding local densities p,

TéETF) [pq] = TchF) [pg] + 7'152) [pq] + 754) [pq]

and
T pg] = TP [pg] + TV [py] -
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The Thomas—Fermi expression for the kinetic energy density is well known
3
7 g = £ (377

whereas the semiclassical correction to 7 of order /2 is a sum of 6 terms
L 36 p, 3 6 /. 6’77, — 12"\ 7/,
9 SN\ 2
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As the spin is a pure quantal object there is no contribution to the spin-orbit
density at the TF level and one has in second order simply

- 9 - S - 2
SRR 072 SR N /0 (R Y R (wz)

J_;?) [Pq] = "5 7

The quantities f, and Wq are the effective mass and spin-orbit form factors

which will be defined below. The 4" order corrections to 7[p] and Jp] are
quite lengthy. They had been used in a partial integrated form in [1], but
have been derived recently |7] from the semiclassical expansions given in
reference [§].
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Fig. 1. Comparison of selfonsistent neutron and proton HF (solid line) and ETF
denities (dashed line) for 2°8Pb calculated with the SLy4 Skyrme force.
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As mentioned before, selfconsistent semiclassical (density variational)
calculations can be performed to obtain ground-state properties of nuclei.
The semiclassical densities that minimize the total Skyrme ETF energy are
shown in Fig. 1 for 2%Pb obtained with the Skyrme force SLy4 [9]. One
notices a very reasonable reproduction of the HF densities obtained for the
same nucleus with the same force, except for shell oscillations in the nu-
clear bulk, oscillations which by definition are absent from the semiclassical
(liquid-drop type) densities. What seems important is that the nuclear sur-
face is very well reproduced. An agreement of the same quality is obtained
for other nuclei and other Skyrme forces such as SIII [10] and SkM* [6].

Encouraged by this result one can investigate the reproduction of the HF
nuclear central potentials (7), the spin-orbit and effective-mass form fac-
tors Wq( ) and fq(7)= e (77 mentioned above. They are given by functional

derivatives of the above glven energy density. One obtains the following
expressions
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Fig.2. Same as Fig. 1 for the neutron and proton central potentials V,, and V.

That the effective mass form factor f,(7) and the spin-orbit potential Wq(r")
will be well reproduced is quite obvious from the quality of the agreement of
HF and semiclassical densities. The ability of the semiclassical functionals
to reproduce to a high degree of accuracy the nuclear mean fields V,,(7) and
Vp(7) is much less evident. This is however the case as shown on figure 2.

One notices that already at the TF level the semiclassical average po-
tentials look fairly reasonable. Going to second order in the semiclassical
correction yield already nuclear mean fields which are almost undistinguish-
able from the corresponding HF results. Including fourth order corrections
turn out to give a practically identical result. The difference between the
potentials including up to second or up to forth order terms is invisible on
figure 2.

As nuclear structure calculations using semiclassical methods are much
more directly obtained than corresponding HF calculations it is now inter-
esting, as already mentioned in the introduction, to study in a systematic
way the dependence of nuclear average potentials on both nuclear temper-
ature and angular frequency for rotating nuclei. Investigations along these
lines are under way.
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