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ROTATION OF SUPERDEFORMED EVEN-EVEN
NUCLET *
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Starting from the microscopic Hamiltonian, we generalized the Bohr—
Mottelson equation to describe both the rotation and g-vibrations of su-
perdeformed even-even axially symmetric nuclei.

PACS numbers: 21.10.Re, 21.60.-n, 27.70.-+q

A lot of papers (see e.g. [1]) are devoted to investigation of the rota-
tion with high spins of superdeformed nuclei, which are characterized by the
quadrupole deformation parameter Sy ~ 1. Their energy levels are usually
calculated in the frameworks of the cranked shell model. But the familiar
cranking model deals only with static deformation of the nuclei and do not
take into consideration any relation of the rotation and vibrations of the
nuclear shape. At the same time, this relation is described by the Bohr-
Mottelson equation [2]. Most explicitly the dependence of the rotation of
the normally deformed nuclei (8 ~ 0.2 —0.3) on S-vibrations is revealed in
the Davydov-Chaban model [3]|. But its application to superdeformed nuclei
faces with difficulty that the Bohr-Mottelson equation is derived assuming
small deviations of the nuclear shape from the sphere, when 8 < 1. There-
fore their generalization to the case of arbitrary deformations seems to be
actual.

For this aim we shall use the kinetic energy operator expressed [4] in
terms of independent collective variables. As usually two frames were intro-
duced. One of them z,y, z is the laboratory coordinate system and another
&,n,( is the moving one with the axes directed along the principal axes of
the inertia tensor of the nucleus. Then the projections of the Jakobi vectors
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of the nucleons ¢; on these axes obey the following constraints:
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where A is the number of nucleons in the nucleus.

The rotation of the nucleus is identified with the rotation of the coor-
dinate frame £, 7, , whose orientation with respect to z,y, z is determined
by the Euler angles ¢, 6,1. Equation (1) is formally considered as the or-
thogonality condition for three vectors A¢ = (quig, gae,- - qa-1¢), Ay =
(Q1n7 q2n; - - - 7‘]14—1,77)’ and A§ = (QIQ q2¢y - - - 7‘]14*1,() in an abstract (A - 1)_
dimensional space. Three of intrinsic coordinates are defined as lengths of
these vectors:

a= /Zqi, b= /Zqign, c= /Zqi?g- (2)

Others are the angles to specify rotation in the abstract space. We shall
consider only axially symmetric prolate nuclei (y = 0) and introduce the
nuclear radius p and deformation parameter 5:
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where § varies from 0 to oo. Neglecting in the kinetic energy operator,
derived in [4]], all the terms which depend on the intrinsic angular variables
we find
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The Hamiltonian of the nucleus will be
H=T+V(p), (5)

where V() is a potential for S-vibrations.

The Schrodinger equation with the Hamiltonian given above coincides
with the Bohr-Mottelson equation for prolate axially symmetrical nucleus
only if 8 « 1. Its solution may be written as a product of two factors
depending on § and 6:

B +3p)12!

W[(/Bae) = (1 +,8)3A/2_5
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where the function

130 >= /250 (D4 (6) + (1) Dl 9) @

describes the rotation of an axially symmetrical rigid rotor with spin I, its
projection M on the axis z, and projection K = 0 on the symmetry axis
¢; DLy, are the Wigner functions. The function ¢;(/) obeys the boundary
condition ¢;(0) = 0 and the normalization constraint

[ #@ra@as =1, Q
0
where
a(f) = (1+38) (1 +8)2 (9)
Substitution of (6) into (4) yields the equation for ¢;(f):
o2
{—%a—ﬁ?‘FWI(ﬁ)_El}@I(ﬁ):Oa (10)
where the effective potential energy is
h? 3
Wi (B) :Wo(ﬁ)+W(1+§ﬁ)(1+ﬁ)1(1+1)a (11)

with

B (1 +/8)3A/4_1/2
WO(ﬁ) - V('B)+ﬁ3/2(1+3,3)’4/4_3/2

9 /83(14_35)14/271 9
X% (14 B)3A/2=5 9B

(1 +B)3A/475/2
53/2(1—1-3,3)’4/4_1/2 ’ (12)

For the mass parameter B(f3) we find the expression

B(B) = B(0)a(f) , B(0) = 3mp;. (13)

Hereafter we neglect the dependence of a on § and take the value a =
a(fBp). The corresponding mass parameter is designated by B = B(f).
This procedure gives the relative error of the order of u, which stands for
the softness parameter.
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Besides, we approximate Wy(/3) by the function

2
Wo(B) = Co+ Cf2 (% - %) , (14)

where the constant Cjy determines the position of the potential well bottom.
Introducing the notations

I L AP (15)
271 = % — 2500041(1 +1),

1 4 4o
= - 1+—+—I(I+1)-1
2[\/+u4+3(+) ]

one can rewrite equation (10) as

0% I(l+1) 27
— — —+2 =0. 16
Here 2¢; is related to the energy by
2B 1,
2er = " 2ﬁooozI(I +1). (17)

We see that (16) is formally the equation for the radial part of the wave
function of a charged particle bound in the Coulomb potential (see e.g. [5]).
This enables us to write immediately the energies as

hw
Elnﬂ = — 2 {n ,80005](] + 1)} + C(), (18)
where ng = 0,1,2,... determines the number of phonons for $-vibrations,

and n =ng + 1+ 1. Note that the numbers / and n are not integers.
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