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PHASE DIAGRAMS IN HIGHER DIMENSIONAL U(1)LATTICE GAUGE THEORY�Bryan BarmoreyDepartment of Physis, College of William and MaryWilliamsburg, Virginia 23187, USAemail: barmore�mail.phy.ornl.gov(Reeived February 25, 1999)In �ve or more dimensions, U(1) lattie gauge theory shows a strong�rst-order phase transition and metastable states in the region of the tran-sition. Monte Carlo alulations arried out in dimensions up to sevenillustrate this behavior. These metastable states are well reprodued bygauge-�xed mean-�eld theory for the �superheated state� (� < �) and byPadé approximants to the strong-oupling expansion for the �superooledstate� (� > �). In analogy to a Van der Waal's system, a ubi equation ofstate is employed to onnet the two metastable states in both the MonteCarlo and analyti alulations. A Maxwell onstrut is developed allow-ing for the identi�ation of the transition point and a omplete, analytidesription of the phase diagram in �ve and higher dimensions.PACS numbers: 11.15.Ha, 11.15.Tk, 11.15.Me, 02.70.Lq1. IntrodutionIt is widely aepted that the fundamental desription of nulear physisomes from quantum hromodynamis (QCD). However, QCD is non-per-turbative at the energy sales of interest to nulear physiists. Alternatemethods must be developed to desribe QCD at these low energies. Themost promising development for an exat solution has been lattie gaugetheory [1℄ where QCD is modeled on a disrete spae-time lattie. The re-sulting denumerable degrees of freedom and ultraviolet ut-o� allow for bothformal study and numeri investigation. The ontinuum limit is approahedwith the help of the renormalization group, and physial observables are pre-dited. As omputing power inreases and algorithms beome more e�ient,� This paper has been reommended for publiation by J.D. Waleka, a member of theInternational Editorial Counil of Ata Physia Polonia B.y Present address: Joint Institute for Heavy-Ion Researh, Oak Ridge Tennessee 37831.(1055)



1056 B. Barmoremore and more aurate results an be obtained numerially. However, it isalways pro�table to have analyti tehniques that an o�er physial insightand hek numeri results. The goal of this paper is to desribe a methodof ombining two analyti methods into a omplete desription of the phasediagram for arbitrary dimensions in a U(1) pure gauge theory. In addition,Monte Carlo alulations are extended to seven dimensions to ompare withthe analyti results.The U(1) lattie gauge theory has been well studied, both analytial-ly [2�8℄ and numerially [9�13℄. While not having the physial relevane ofa non-Abelian theory like SU(3), the U(1) theory provides a good testingground for lattie methods and the study of lattie artifats. Understandingwhat the lattie regularization does in a simple model group like U(1) anhelp to better the understanding of these e�ets on the more physiallyinteresting groups.In the ontinuum limit, a pure U(1) gauge theory beomes QED withoutfermions, i.e., a gas of non-interating photons. However, the lattie regu-larization introdues a oupling between the photon �elds to in�nite orderin the oupling onstant. Therefore, this beomes a rih, omplex theory.In four dimensions a U(1) lattie gauge theory exhibits a phase transitionas a funtion of oupling. In the groups SU(2) and SU(3), one needs to goto at least �ve dimensions before seeing a phase transition. In addition, thestudy of monopole ondensation in U(1) LGT an o�er insight into oloron�nement in QCD [12℄.Many analyti tehniques have been developed to takle U(1) LGT.They inlude both the strong-oupling [3, 4, 14, 15℄ and weak-oupling [5℄expansions, mean-�eld theory (MFT) [1, 2, 7, 14�16℄ and interpolating La-grangians [8, 17℄. The method desribed below onstruts a bridge betweentwo of these, the strong-oupling expansion and mean-�eld theory, resultingin a desription of the phase diagram for all values of the oupling.Several re�nements are implemented beyond the basi ideas of the SCEand MFT. Padé approximants an be used to improve the behavior of theSCE near the transition region (see Refs. [4, 10℄). While many suggestionshave been made to improve MFT, only the simplest will be used here. Theseinlude working in higher numbers of dimensions and gauge �xing. Theseimprovements are more than su�ient for use with this new bridging teh-nique.For d � 5, the U(1) gauge theory exhibits a strong �rst-order phasetransition with long-lived, metastable states. The phase diagram is reminis-ent of the P�V diagram for a Van der Waal's gas. Therefore, we �t themetastable phases with a ubi equation of state. This introdues an addi-tional unphysial region with negative spei� heat analogous to the stateof negative ompressibility in the Van der Waal's gas. The relative free en-



Phase Diagrams in Higher Dimensional U(1) Lattie Gauge Theory 1057ergy of the phases is alulated and minimizing the free energy leads to aMaxwell onstrut for this system. Combining this ubi equation of statefor the metastable region with the strong oupling and mean-�eld resultsaway from the transition point provides an aurate, analyti desription ofthe entire phase diagram in higher dimensions.2. Analyti approximationsLattie gauge theory is de�ned in terms of a partition funtion, fromwhih all physial observables an be derived. The partition funtion isZ(�) = Z D[U ℄ e�� S[U ℄ ; (1)where U is the set of all link variables Ul, S[U ℄ is the gauge invariant Wilsonation and D[U ℄ =Ql dUl is the gauge invariant, normalized group measure.The link variable an be written as a omplex phase,Ul � ei�l ; dUl = d�l2� :The integration is over �l 2 [0; 2�℄. The parameter � is related to the bareoupling onstant and the inter-site spaing, a, by� = ad�4e20 :In order to use the tools and insights of thermodynamis and statistialmehanis we assoiate Z with the anonial partition funtion, � with ane�etive inverse temperature, and S with the e�etive hamiltonian or energy.A free energy, F , an also de�ned fromZ(�) � e��F :The ation is onstruted to be gauge invariant and have the orret lassiallimit as a approahes zero1S[U ℄ =X2 (1�Re U2) ; (2)where U2 � Uij Ujk Ukl Uli1 This is the onvention of Refs. [18, 19℄. The onstant an be removed from thisation, whih is often done, at the ost of hanging some signs in the de�nition of thepartition funtion. The plaquette energy is then re�eted about the line E2 = 0:5.



1058 B. Barmoreis the plaquette variable traversed one and the sum is over all plaquetteson the lattie. For this form of the ation, the plaquette energy, de�nedas the average ation per plaquette, has the limits E2(� ! 0) = 1 andE2(� !1) = 0.Counting is important on the lattie sine many of the interesting quan-tities sale with di�erent properties of the lattie. The lattie used in thiswork is an isotropi, d-dimensional hyperube with n sites per side. Thisgives Ns = nd sites, d links per site and d(d� 1)=2 plaquettes per site. Thelattie spaing is the same in all diretions orresponding to a zero physialtemperature system.The plaquette energy will be de�ned asE2 � hS2i = 2d(d� 1)Ns � (�F)�� : (3)Both the strong oupling expansion and mean-�eld theory approximate thefree energy. The plaquette energy, our order parameter, is then easily al-ulated using the above.For a more detailed disussion of these methods see Refs. [14, 19, 20℄.2.1. Strong oupling expansionWhen the bare oupling, e0, is large then the partition funtion, equation(1), an be expanded in a Taylor series in � / 1=e20 [3℄. Series now existto order O(�16) for most groups and arbitrary dimension and to O(�22) forU(1) in d = 4 [3, 14℄. (See Table I.) TABLE ICoe�ients for the strong oupling expansion for the series F = 1 �Pn n�n.Taken from Ref. [14℄ (and independently veri�ed by the author through n = 12).n n n n2 14 10 d2256 � 85d6144 + 24732048004 116 12 � 29d26144 + 2467d131072 � 19925331061683206 d96 � 11576 14 5d32048 � 237d216384 + 178003d5898240 � 3819709917340825608 � d128 + 75749152 16 � 15d34096 + 1485d265535 � 53956913d1132462080 + 11483169709338228674560This series has a �nite radius of onvergene. Even just a few termsis good enough to reprodue the Monte Carlo data for small �. However,as � approahes the phase transition the higher order terms dominate anddestroy this agreement. Padé approximants an be used to improve the



Phase Diagrams in Higher Dimensional U(1) Lattie Gauge Theory 1059behavior of the series near the ritial value. In this work, the plaquetteenergy is alulated from the free energy series and the Padé approximantapplied to the plaquette energy series. Only near diagonal approximants areused, P [m;m�1℄. The Padé approximant an be used for � < �P where �Pis the smallest singularity in the Padé approximant on the real axis. Thesesingularities are onsistently above the numerially seen transition point.2.2. Mean-Field Theory (MFT)When � is large the only signi�ant ontribution to the partition funtionomes from when the ation is near zero. This ours for U2 lose to unityfor all plaquettes, i.e., all of the �plaquette angles� are aligned. Variationalmean-�eld theory ouples eah link to an �external� �eld originating fromthe average interation the link feels due to its oupling to neighbors. Thisis a good approximation if the plaquette variables are all lose to the samevalue; therefore, MFT is valid as � !1.Mean-�eld theory is disussed and developed in Refs. [1, 2, 14, 19℄.In addition to large �, a large number of neighbors should make MFTmore appropriate. Staying with a hyperubial lattie, that means goingto higher dimensions. We will utilize this by working in dimensions up toseven.Many authors have previously looked at the e�ets of gauge �xing onMFT [7, 21, 22℄. For ompleteness, the details of gauge �xing are disussedbelow. In the ontext of MFT, enforing the axial gauge results in a lowerbound on the free energy than no gauge �xing. There are some de�nitedisadvantages to working in the axial gauge; however, none of them diretlye�et this work. The breaking of rotational symmetry on the lattie is aes-thetily unsatisfying. In addition, higher order orretions within MFT aremore di�ult than in other gauge shemes. However, the simpliity of imple-menting the axial gauge at the tree level make it a ompelling improvementfor this work.The axial gauge �xes all temporal links at unity resulting in the followingself-onsistent equationsH = 2(d� 2)� u3(H) + 2� u(H) ; u(H) = I1(H)I0(H) ;where u(H) is the expetation value of a single link variable. The plaquetteenergy is then E2 = 1� d� 2d u4(H)� 2du2(H) :



1060 B. Barmore2.3. Gauge �xingBefore disussing gauge �xing, gauge transformations must be disussed.A gauge transformation is de�ned by assigning a phase, eigj , to eah site andthen transforming the links via Ujk ! eigj Ujk e�igk . These gauge fatorsanel in pairs along any losed urve. Hene, the plaquette variable, theation, and the energy per plaquette are all gauge invariant quantities. Theindividual link variables are not gauge invariant.Gauge freedom allows some of the link variables to be �xed, leaving onlyintegrals over the remaining links. Sine the gauge group is ompat, gaugetransformations do not lead to divergenes as in ontinuum QED and it isnot neessary to �x the gauge. However, gauge �xing an be useful in someinstanes. The following argument is similar to Refs. [18, 23℄.Let Uf be a link whose value is to be set to U0. This is ahieved with agauge transformation. Consider a gauge invariant funtiong = Z dUf G(Uf ) ;where G(Uf ) = Z Yl 6=f dUl g[U ℄ e��S[U ℄ :Note that G(Uf ) is only a funtion of the link to be �xed. Applying thegauge transformation takes Uf ! U0. Sine g[U ℄ and S[U ℄ are de�ned tobe invariant, G(Uf ) � G(U0) = onstant. The gauge invariant funtion isnow g = G(U0)Z dUf = Z Yl 6=f dUl g[U 0℄ e��S[U 0℄with U 0 the gauge transformed links. The integration over Uf disappearssine we are using a normalized measure. This an be repeated until all ofthe remaining un�xed links would lose a loop on the lattie. These loopsare gauge invariant and annot be �xed. In the axial gauge used below, Nslinks are �xed. The trial ation for MFT beomes,�SAxial � � X2(sp) (1�Re U2) + �X2(t) (1�Re UlUl0) +HXl2spRe Ul ; (4)where the �rst term is the normal Wilson ation for the spatial plaquettes,the seond, the Wilson ation for the temporal plaquettes with the timelinks set to unity and the �nal term, the external �eld oupling with justthe spatial links. The MFT weight is adjusted analogous to the last termabove.



Phase Diagrams in Higher Dimensional U(1) Lattie Gauge Theory 1061What good is gauge �xing? In the Monte Carlo simulations, gauge �xingredues the number of links to be tested per lattie sweep. However, thisis not neessarily an improvement sine the new on�guration will not beas far away from the old on�guration as if all of the links were tested. InRef. [24℄ the authors argue that stati gauge �xing slows down onvergenefor Monte Carlo alulations. In the strong oupling expansion, the isotropyof the lattie is useful so no �xing is used.Mean-�eld theory is a di�erent story. The above variational method anbe implemented in a slightly di�erent manner whih evaluates the integralsusing the method of steepest desent [7, 15℄. In this ase the gauge degreesof freedom orrespond to zero-modes in the integrand leading to undesirabledivergenes when the limits in the steepest deent integrals are taken toin�nity. Gauge �xing is required. In the above desription, gauge �xing isnot required. So the question beomes, if gauge �xing is not neessary, is ituseful? Sine the desired state is that whih has the lowest free energy, thequestion beomes, does �xing the gauge lower the free energy? Working inthe axial gauge, the bound on the free energy is lower than without gauge�xing.Sine any on�guration on the un�xed lattie an be transformed into aon�guration in the axial gauge, some of the link variables are not indepen-dent, dynamial degrees of freedom. In fat, all of the �xed links orrespondto extraneous degrees of freedom. Therefore, the manifestly gauge invariantWilson ation inludes Ns non-dynamial degrees of freedom. By remov-ing the extraneous degrees of freedom, the trial ation is loser to the trueanswer and hene gives a better variational bound on the free energy.Other hoies of gauge �xing exist [7, 25, 26℄. The Feynman gauge [7℄ isappealing for its ovariant nature, but is not a simple to impliment. Twomethods, Landau [25℄ and Laplaian [26℄ gauges, are dynamial gauge �xingsand not easily implemented in MFT.3. Numeri resultsIn order to test the analyti methods, exat, numeri data are needed.New Monte Carlo alulations of the plaquette energy are performed in sixand seven dimensions. The ode is an extension of work by Dubah [27℄.A simple Metropolis algorithm is used with one hit per test and weightingof the new link value to lie lose to the old value. A typial run onsistedof 1000�50000 sweeps over the lattie depending on how quik onvergenewas. Blok averaging was used to aount for orrelations between sweeps.Error bars are smaller than plotted points on all �gures shown. Both heating,dereasing �, and ooling, inreasing �, runs were made near the transitionpoint to hek for hysteresis loops. Various lattie sizes were used to hek



1062 B. Barmorefor signi�ant �nite-size e�ets. Small e�ets were seen in four dimensionswith negligible e�ets in higher dimensions. Calulations were arried outfor the following lattie sizes: 54; 84; 104; 55; 85; 56 and 57.To test the numeri alulation the phase diagram for four dimensionwas reprodued and ompares well with that of Lautrup and Nauenberg [10℄.The data below � = 0:5 were also ompared to the SCE where agreement isexpeted to be very good.The phase diagram for �ve dimensions showed regions of metastabilityand ompares favorably with that of Bhanot and Creutz [9℄. The phasediagram for six dimensions is similar to that for �ve dimensions, showinga hysteresis loop. This is indiative of a �rst order phase transition. Thejump in plaquette energy is larger than in �ve dimensions suggesting thatthe transition is beoming stronger. The phase diagrams for four and sixdimensions are shown in �gure 1.The ritial value is also moving towards zero. As the dimension goesto in�nity, both SCE and MFT predit a ritial value of � = 0 and adisontinuity of �E2 = 1.

Fig. 1. Phase diagram for 4-d (upper frame) and 6-d (lower frame) U(1) LGT. Thediamonds are Monte Carlo data on 84 and 56 latties respetively. The solid lineis MFT in the axial gauge and the dash-dot line is the [7,8℄ Padé approximant.Notie the appearane of a metastable region near � = 0:75 in the 6-d ase.



Phase Diagrams in Higher Dimensional U(1) Lattie Gauge Theory 10634. BridgeIn Setion 2, two analyti methods were presented to approximate thephase diagram for a U(1) lattie gauge theory. The strong oupling expan-sion with Padé approximants works well below the transition point and evenreprodues the superooled region in the higher dimensions. Mean-�eld the-ory with axial gauge �xing reprodues the weak oupling region inludingthe superheated phase. Now we wish to build a bridge between these twodesriptions.It is known that the four dimensional U(1) theory exhibits either a se-ond order or weak �rst order transition. This transition region has beenwell studied previously [10, 28, 29℄ and the ritial value is � � 1:011 [29℄.However, it is unreasonable to expet the analyti methods to predit a se-ond order transition. Long-range orrelations ome into play and neithermethod an handle them aurately. In larger dimensions the transition is�rst order; there are no long-range orrelations and the analyti methods areaurate well into the metastable regions. Therefore, the bridging methodwill be developed in higher dimensions. In the end, this tehnique will beapplied in four dimensions to see how well it works.Where metastable states exist it is lear that the plaquette energy is nota true funtion of �; rather, it is multivalued. However, one might suspetthat E2 is a ontinuous, single-valued funtion of �. This would be analo-gous to the Van der Waal's equation of state where the pressure is a uniquefuntion of the volume but there are regions where the volume is a multi-valued funtion of the pressure. There is then a physially unstable regionwhere E2 inreases with �; the spei� heat is negative. Sine this regionannot be explored using the numeri tehniques disussed above, a simpleparameterization will be used to desribe the unphysial region2. The ubiis the lowest order polynomial with the desired shape to �t the metastablestates and the unphysial state. Therefore, the data in the multivalued re-gion will be �t with a ubi E2(�) = O(�3). The relative free energy omesfrom integrating E2 along this urve,���FNs � = Za E2 d� :Integrating E2 along this urve gives the exat free energy relative to thelower bound of the integral. A rossing in the free energy urve is seen asshown in �gure 2 (see also Ref. [32℄). The free energy is also a multivalued2 Methods for exploring this region numerially with a miroanonial ensemble havebeen suggested by Hetherington and Stump [30℄ for the U(1) model and by Challaand Hetherington [31℄ for the related Potts models.



1064 B. Barmorefuntion of �. The prefered phase is the one with lowest free energy. Thisde�nes a Maxwell onstrution. This rossing point identi�es the point ofphase transition.

Fig. 2. The upper frame shows the ubi �t in the metastable region for the 6-d phase diagram. The lower frame shows the relative free energy obtained byintegrating the plaquette energy along the upper urve. The system favors thephase with lowest free energy and thus hanges phase where the lower two linesross.This method gives a lean signal of the transition that is in line withprevious tehniques. The ritial values predited with this method andsome previous results are ompared in Table II. The �ubi values are fromthis work using the ubi equation of state and Maxwell onstrution asdesribed above. The four dimensional Monte Carlo �other� results are fromRef. [29℄; the �ve dimensional result is from Ref. [9℄. In six dimensions themethod of Bhanot and Creutz [9℄ gives � = 0:64. The �Fl values are takenfrom Ref. [7℄ where orretions to MFT were alulated to fourth-order inone over the mean-�eld strength and then a diret mathing of the preditedfree energies was used to �nd the transition point.This method an also be used in four dimensions. To the auray of theMonte Carlo alulations in this study, the transition appears to be seondorder. A seond order transition will show a in�etion point at the ritialvalue and no rossing of the free energy. In other words, ��=�(E2) should bezero. Sine a �nite size lattie annot show a true phase transition, we �ndfor a 84 lattie a slope of �0:00654 at a ritial value �(84) = 1:004. Thisritial value is in reasonable agreement with that of Klaus and Roiesnel [29℄who �nd �(84) = 1:007.



Phase Diagrams in Higher Dimensional U(1) Lattie Gauge Theory 1065TABLE IIComparison of ritial oupling valuesLattie size Monte Carlo Analyti�ubi �others �ubi �Fl54 0.995(1) 0.9985(4) [29℄ 0.88(1) 1.00 [7℄84 1.004(1) 1.007(1) [29℄ 0.88(1) 1.00 [7℄55 0.751(2) 0.736(5) [9℄ 0.742(5) 0.758 [7℄56 0.634(5) �� 0.652(5) ��Riding on the suesses in mathing the phases and �nding ritial valuesfor the Monte Carlo data, the same tehnique is applied to the analytimethods. However, a di�ulty immediately arises, where do the analytiurves end? For the Monte Carlo data there is a de�nite point where thesuperheated phase ends. It ours when there is a sudden hange in theplaquette energy and the energy is the same as in the hot phase. Suh asignal does not exist for the analyti urves. Sine it is desirable to have ananalyti method whih is independent of the Monte Carlo data, we annotuse the atual ends of the metastable regions. Also, sine one of the goalsis to �nd the ritial oupling, the method needs to be independent of �.One suh unambiguous method is to require that the slopes of the urvesmath at the uto� points. This is a simple, ad ho method that satis�esthe requirements and the results an be heked against the Monte Carloresults. The uto� slope is hosen so there is some overlap between the twophases. The two urves are then �t with the ubi in the range between thetwo uto� ouplings. Variations in the value of the uto� slope make onlysmall hanges in the alulated ritial value. The analyti phase diagramthen onsists of the Padé approximants to the strong oupling expansion for� � �, a phase transition at � and mean �eld theory in the axial gauge for� � �. An example for six dimensions is shown in �gure 3.Attempts to apply this method to the analyti approximations in fourdimensions do not meet with the suess seen in higher dimensions. Thepredited ritial value is too low by at least 10% in four dimensions. Aareful study of the four dimensional phase diagram reveals why. Near theritial point for a seond order transition long-range orrelations are im-portant. The SCE aounts for some of this with terms orresponding toextended shapes. For example, there is a diagram that ontributes at 14thorder whih is a ylinder onneting plaquettes three sites apart. Largerorder series inlude longer range onnetions. In ontrast, MFT redues theproblem to a loal one-body problem; e�ets arising from sales larger than



1066 B. Barmore

Fig. 3. Analyti phase diagram in six dimensions. Dash-dot line is Padé series forSCE up to the transition point, the solid vertial line marks the transition pointand the long-dashed line is axial MFT beyond the transition point. Also shownare the Monte Carlo data.nearest neighbor are lost in MFT. Mean-�eld theory is better near a strong�rst-order transition than a seond-order transition. When the plaquetteenergy inreases near the ritial point due to orrelation e�ets, MFT annot keep up and the analyti predition is moved to lower �.5. ConlusionsThe goal of this work has been to develop an analyti desription of theU(1) phase diagram in arbitrary dimension. Many methods have been de-veloped over the years to takle this problem. Two of the earliest methods,strong oupling expansion and mean-�eld theory, are found to need onlyminor adjustments to be in exellent agreement with Monte Carlo alula-tions. A onsistent, physially motivated proedure is developed to onnetone desription to the other in the region of the phase transition. To do this,similarities between the U(1) phase diagram and that of the Van der Waal'sequation of state are exploited.In large dimensions, numeri simulations of U(1) LGT show a �rst ordertransition with long-lived metastable phases. This is exatly what oursnear the transition region for a Van der Waal's system. It is postulated thatin the metastable region there exists an additional state whih is physiallyunstable and numerially unreahable with the anonial partition funtionused here. It is noted again in passing that miroanonial methods havebeen developed whih show this unstable state [30℄. As in the Van derWaal's equation of state, the U(1) system is modeled as being ubi in theinverse oupling squared. The oe�ients in this ubi equation of state are�t to the data for the metastable states in the region of the transition. The



Phase Diagrams in Higher Dimensional U(1) Lattie Gauge Theory 1067relative free energy is found by integrating along the equation of state andshows a point where the phase with lowest free energy hanges. This de�nesthe transition point. This tehnique allows for the aurate identi�ation ofthe transition point of a �rst-order phase transition.The suess of the analogy to the Van der Waal's system suggests usingthis tehnique to onnet the two analyti desriptions. The strong ou-pling expansion to at least order O(�16) is used. Padé approximants areonstruted to take into aount singularities in the series. The results arein exellent agreement with numeri data from small � past the transitionpoint into the superooled phase. Variational mean-�eld theory is applied tothe large � region. It is found that gauge �xing improves the bounds onthe free energy by removing non-independent degrees of freedom from theproblem. The axial gauge is used giving the lowest upper bound on the freeenergy. Mean-�eld theory is then in agreement with the Monte Carlo datafrom large � down past the transition region through the superheated phase.Its only failure is in aounting for the long range orrelations that developnear the seond-order (or weak �rst-order) transition in four dimensions.The appliation of the above method of �tting a ubi equation of stategives transition points in exellent agreement with those from the MonteCarlo data.As a �nal test of these methods, strong oupling and MFT alula-tions were done for seven dimensions and the transition point found at� = 0:583(2). Monte Carlo runs were then performed on a 57 lattie forouplings near the transition point. The results are shown in �gure 4. Theanalyti preditions are in exellent agreement with the Monte Carlo alu-lations well beyond the transition point. Agreement between preditions forthe ritial value is as good as in �ve and six dimensions.

Fig. 4. Phase diagram for seven dimensional U(1) LGT. Diamonds are Monte Carlodata on a 57 lattie. Solid line is axial MFT and dash-dot line is the [7,8℄ Padéapproximant for the SCE.
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