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PHASE DIAGRAMS IN HIGHER DIMENSIONAL U(1)LATTICE GAUGE THEORY�Bryan BarmoreyDepartment of Physi
s, College of William and MaryWilliamsburg, Virginia 23187, USAemail: barmore�mail.phy.ornl.gov(Re
eived February 25, 1999)In �ve or more dimensions, U(1) latti
e gauge theory shows a strong�rst-order phase transition and metastable states in the region of the tran-sition. Monte Carlo 
al
ulations 
arried out in dimensions up to sevenillustrate this behavior. These metastable states are well reprodu
ed bygauge-�xed mean-�eld theory for the �superheated state� (� < �
) and byPadé approximants to the strong-
oupling expansion for the �super
ooledstate� (� > �
). In analogy to a Van der Waal's system, a 
ubi
 equation ofstate is employed to 
onne
t the two metastable states in both the MonteCarlo and analyti
 
al
ulations. A Maxwell 
onstru
t is developed allow-ing for the identi�
ation of the transition point and a 
omplete, analyti
des
ription of the phase diagram in �ve and higher dimensions.PACS numbers: 11.15.Ha, 11.15.Tk, 11.15.Me, 02.70.Lq1. Introdu
tionIt is widely a

epted that the fundamental des
ription of nu
lear physi
s
omes from quantum 
hromodynami
s (QCD). However, QCD is non-per-turbative at the energy s
ales of interest to nu
lear physi
ists. Alternatemethods must be developed to des
ribe QCD at these low energies. Themost promising development for an exa
t solution has been latti
e gaugetheory [1℄ where QCD is modeled on a dis
rete spa
e-time latti
e. The re-sulting denumerable degrees of freedom and ultraviolet 
ut-o� allow for bothformal study and numeri
 investigation. The 
ontinuum limit is approa
hedwith the help of the renormalization group, and physi
al observables are pre-di
ted. As 
omputing power in
reases and algorithms be
ome more e�
ient,� This paper has been re
ommended for publi
ation by J.D. Wale
ka, a member of theInternational Editorial Coun
il of A
ta Physi
a Poloni
a B.y Present address: Joint Institute for Heavy-Ion Resear
h, Oak Ridge Tennessee 37831.(1055)



1056 B. Barmoremore and more a

urate results 
an be obtained numeri
ally. However, it isalways pro�table to have analyti
 te
hniques that 
an o�er physi
al insightand 
he
k numeri
 results. The goal of this paper is to des
ribe a methodof 
ombining two analyti
 methods into a 
omplete des
ription of the phasediagram for arbitrary dimensions in a U(1) pure gauge theory. In addition,Monte Carlo 
al
ulations are extended to seven dimensions to 
ompare withthe analyti
 results.The U(1) latti
e gauge theory has been well studied, both analyti
al-ly [2�8℄ and numeri
ally [9�13℄. While not having the physi
al relevan
e ofa non-Abelian theory like SU(3), the U(1) theory provides a good testingground for latti
e methods and the study of latti
e artifa
ts. Understandingwhat the latti
e regularization does in a simple model group like U(1) 
anhelp to better the understanding of these e�e
ts on the more physi
allyinteresting groups.In the 
ontinuum limit, a pure U(1) gauge theory be
omes QED withoutfermions, i.e., a gas of non-intera
ting photons. However, the latti
e regu-larization introdu
es a 
oupling between the photon �elds to in�nite orderin the 
oupling 
onstant. Therefore, this be
omes a ri
h, 
omplex theory.In four dimensions a U(1) latti
e gauge theory exhibits a phase transitionas a fun
tion of 
oupling. In the groups SU(2) and SU(3), one needs to goto at least �ve dimensions before seeing a phase transition. In addition, thestudy of monopole 
ondensation in U(1) LGT 
an o�er insight into 
olor
on�nement in QCD [12℄.Many analyti
 te
hniques have been developed to ta
kle U(1) LGT.They in
lude both the strong-
oupling [3, 4, 14, 15℄ and weak-
oupling [5℄expansions, mean-�eld theory (MFT) [1, 2, 7, 14�16℄ and interpolating La-grangians [8, 17℄. The method des
ribed below 
onstru
ts a bridge betweentwo of these, the strong-
oupling expansion and mean-�eld theory, resultingin a des
ription of the phase diagram for all values of the 
oupling.Several re�nements are implemented beyond the basi
 ideas of the SCEand MFT. Padé approximants 
an be used to improve the behavior of theSCE near the transition region (see Refs. [4, 10℄). While many suggestionshave been made to improve MFT, only the simplest will be used here. Thesein
lude working in higher numbers of dimensions and gauge �xing. Theseimprovements are more than su�
ient for use with this new bridging te
h-nique.For d � 5, the U(1) gauge theory exhibits a strong �rst-order phasetransition with long-lived, metastable states. The phase diagram is reminis-
ent of the P�V diagram for a Van der Waal's gas. Therefore, we �t themetastable phases with a 
ubi
 equation of state. This introdu
es an addi-tional unphysi
al region with negative spe
i�
 heat analogous to the stateof negative 
ompressibility in the Van der Waal's gas. The relative free en-
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e Gauge Theory 1057ergy of the phases is 
al
ulated and minimizing the free energy leads to aMaxwell 
onstru
t for this system. Combining this 
ubi
 equation of statefor the metastable region with the strong 
oupling and mean-�eld resultsaway from the transition point provides an a

urate, analyti
 des
ription ofthe entire phase diagram in higher dimensions.2. Analyti
 approximationsLatti
e gauge theory is de�ned in terms of a partition fun
tion, fromwhi
h all physi
al observables 
an be derived. The partition fun
tion isZ(�) = Z D[U ℄ e�� S[U ℄ ; (1)where U is the set of all link variables Ul, S[U ℄ is the gauge invariant Wilsona
tion and D[U ℄ =Ql dUl is the gauge invariant, normalized group measure.The link variable 
an be written as a 
omplex phase,Ul � ei�l ; dUl = d�l2� :The integration is over �l 2 [0; 2�℄. The parameter � is related to the bare
oupling 
onstant and the inter-site spa
ing, a, by� = ad�4e20 :In order to use the tools and insights of thermodynami
s and statisti
alme
hani
s we asso
iate Z with the 
anoni
al partition fun
tion, � with ane�e
tive inverse temperature, and S with the e�e
tive hamiltonian or energy.A free energy, F , 
an also de�ned fromZ(�) � e��F :The a
tion is 
onstru
ted to be gauge invariant and have the 
orre
t 
lassi
allimit as a approa
hes zero1S[U ℄ =X2 (1�Re U2) ; (2)where U2 � Uij Ujk Ukl Uli1 This is the 
onvention of Refs. [18, 19℄. The 
onstant 
an be removed from thisa
tion, whi
h is often done, at the 
ost of 
hanging some signs in the de�nition of thepartition fun
tion. The plaquette energy is then re�e
ted about the line E2 = 0:5.



1058 B. Barmoreis the plaquette variable traversed on
e and the sum is over all plaquetteson the latti
e. For this form of the a
tion, the plaquette energy, de�nedas the average a
tion per plaquette, has the limits E2(� ! 0) = 1 andE2(� !1) = 0.Counting is important on the latti
e sin
e many of the interesting quan-tities s
ale with di�erent properties of the latti
e. The latti
e used in thiswork is an isotropi
, d-dimensional hyper
ube with n sites per side. Thisgives Ns = nd sites, d links per site and d(d� 1)=2 plaquettes per site. Thelatti
e spa
ing is the same in all dire
tions 
orresponding to a zero physi
altemperature system.The plaquette energy will be de�ned asE2 � hS2i = 2d(d� 1)Ns � (�F)�� : (3)Both the strong 
oupling expansion and mean-�eld theory approximate thefree energy. The plaquette energy, our order parameter, is then easily 
al-
ulated using the above.For a more detailed dis
ussion of these methods see Refs. [14, 19, 20℄.2.1. Strong 
oupling expansionWhen the bare 
oupling, e0, is large then the partition fun
tion, equation(1), 
an be expanded in a Taylor series in � / 1=e20 [3℄. Series now existto order O(�16) for most groups and arbitrary dimension and to O(�22) forU(1) in d = 4 [3, 14℄. (See Table I.) TABLE ICoe�
ients for the strong 
oupling expansion for the series F = 1 �Pn 
n�n.Taken from Ref. [14℄ (and independently veri�ed by the author through n = 12).n 
n n 
n2 14 10 d2256 � 85d6144 + 24732048004 116 12 � 29d26144 + 2467d131072 � 19925331061683206 d96 � 11576 14 5d32048 � 237d216384 + 178003d5898240 � 3819709917340825608 � d128 + 75749152 16 � 15d34096 + 1485d265535 � 53956913d1132462080 + 11483169709338228674560This series has a �nite radius of 
onvergen
e. Even just a few termsis good enough to reprodu
e the Monte Carlo data for small �. However,as � approa
hes the phase transition the higher order terms dominate anddestroy this agreement. Padé approximants 
an be used to improve the
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e Gauge Theory 1059behavior of the series near the 
riti
al value. In this work, the plaquetteenergy is 
al
ulated from the free energy series and the Padé approximantapplied to the plaquette energy series. Only near diagonal approximants areused, P [m;m�1℄. The Padé approximant 
an be used for � < �P where �Pis the smallest singularity in the Padé approximant on the real axis. Thesesingularities are 
onsistently above the numeri
ally seen transition point.2.2. Mean-Field Theory (MFT)When � is large the only signi�
ant 
ontribution to the partition fun
tion
omes from when the a
tion is near zero. This o

urs for U2 
lose to unityfor all plaquettes, i.e., all of the �plaquette angles� are aligned. Variationalmean-�eld theory 
ouples ea
h link to an �external� �eld originating fromthe average intera
tion the link feels due to its 
oupling to neighbors. Thisis a good approximation if the plaquette variables are all 
lose to the samevalue; therefore, MFT is valid as � !1.Mean-�eld theory is dis
ussed and developed in Refs. [1, 2, 14, 19℄.In addition to large �, a large number of neighbors should make MFTmore appropriate. Staying with a hyper
ubi
al latti
e, that means goingto higher dimensions. We will utilize this by working in dimensions up toseven.Many authors have previously looked at the e�e
ts of gauge �xing onMFT [7, 21, 22℄. For 
ompleteness, the details of gauge �xing are dis
ussedbelow. In the 
ontext of MFT, enfor
ing the axial gauge results in a lowerbound on the free energy than no gauge �xing. There are some de�nitedisadvantages to working in the axial gauge; however, none of them dire
tlye�e
t this work. The breaking of rotational symmetry on the latti
e is aes-theti
ly unsatisfying. In addition, higher order 
orre
tions within MFT aremore di�
ult than in other gauge s
hemes. However, the simpli
ity of imple-menting the axial gauge at the tree level make it a 
ompelling improvementfor this work.The axial gauge �xes all temporal links at unity resulting in the followingself-
onsistent equationsH = 2(d� 2)� u3(H) + 2� u(H) ; u(H) = I1(H)I0(H) ;where u(H) is the expe
tation value of a single link variable. The plaquetteenergy is then E2 = 1� d� 2d u4(H)� 2du2(H) :



1060 B. Barmore2.3. Gauge �xingBefore dis
ussing gauge �xing, gauge transformations must be dis
ussed.A gauge transformation is de�ned by assigning a phase, eigj , to ea
h site andthen transforming the links via Ujk ! eigj Ujk e�igk . These gauge fa
tors
an
el in pairs along any 
losed 
urve. Hen
e, the plaquette variable, thea
tion, and the energy per plaquette are all gauge invariant quantities. Theindividual link variables are not gauge invariant.Gauge freedom allows some of the link variables to be �xed, leaving onlyintegrals over the remaining links. Sin
e the gauge group is 
ompa
t, gaugetransformations do not lead to divergen
es as in 
ontinuum QED and it isnot ne
essary to �x the gauge. However, gauge �xing 
an be useful in someinstan
es. The following argument is similar to Refs. [18, 23℄.Let Uf be a link whose value is to be set to U0. This is a
hieved with agauge transformation. Consider a gauge invariant fun
tiong = Z dUf G(Uf ) ;where G(Uf ) = Z Yl 6=f dUl g[U ℄ e��S[U ℄ :Note that G(Uf ) is only a fun
tion of the link to be �xed. Applying thegauge transformation takes Uf ! U0. Sin
e g[U ℄ and S[U ℄ are de�ned tobe invariant, G(Uf ) � G(U0) = 
onstant. The gauge invariant fun
tion isnow g = G(U0)Z dUf = Z Yl 6=f dUl g[U 0℄ e��S[U 0℄with U 0 the gauge transformed links. The integration over Uf disappearssin
e we are using a normalized measure. This 
an be repeated until all ofthe remaining un�xed links would 
lose a loop on the latti
e. These loopsare gauge invariant and 
annot be �xed. In the axial gauge used below, Nslinks are �xed. The trial a
tion for MFT be
omes,�SAxial � � X2(sp) (1�Re U2) + �X2(t) (1�Re UlUl0) +HXl2spRe Ul ; (4)where the �rst term is the normal Wilson a
tion for the spatial plaquettes,the se
ond, the Wilson a
tion for the temporal plaquettes with the timelinks set to unity and the �nal term, the external �eld 
oupling with justthe spatial links. The MFT weight is adjusted analogous to the last termabove.
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e Gauge Theory 1061What good is gauge �xing? In the Monte Carlo simulations, gauge �xingredu
es the number of links to be tested per latti
e sweep. However, thisis not ne
essarily an improvement sin
e the new 
on�guration will not beas far away from the old 
on�guration as if all of the links were tested. InRef. [24℄ the authors argue that stati
 gauge �xing slows down 
onvergen
efor Monte Carlo 
al
ulations. In the strong 
oupling expansion, the isotropyof the latti
e is useful so no �xing is used.Mean-�eld theory is a di�erent story. The above variational method 
anbe implemented in a slightly di�erent manner whi
h evaluates the integralsusing the method of steepest des
ent [7, 15℄. In this 
ase the gauge degreesof freedom 
orrespond to zero-modes in the integrand leading to undesirabledivergen
es when the limits in the steepest de
ent integrals are taken toin�nity. Gauge �xing is required. In the above des
ription, gauge �xing isnot required. So the question be
omes, if gauge �xing is not ne
essary, is ituseful? Sin
e the desired state is that whi
h has the lowest free energy, thequestion be
omes, does �xing the gauge lower the free energy? Working inthe axial gauge, the bound on the free energy is lower than without gauge�xing.Sin
e any 
on�guration on the un�xed latti
e 
an be transformed into a
on�guration in the axial gauge, some of the link variables are not indepen-dent, dynami
al degrees of freedom. In fa
t, all of the �xed links 
orrespondto extraneous degrees of freedom. Therefore, the manifestly gauge invariantWilson a
tion in
ludes Ns non-dynami
al degrees of freedom. By remov-ing the extraneous degrees of freedom, the trial a
tion is 
loser to the trueanswer and hen
e gives a better variational bound on the free energy.Other 
hoi
es of gauge �xing exist [7, 25, 26℄. The Feynman gauge [7℄ isappealing for its 
ovariant nature, but is not a simple to impliment. Twomethods, Landau [25℄ and Lapla
ian [26℄ gauges, are dynami
al gauge �xingsand not easily implemented in MFT.3. Numeri
 resultsIn order to test the analyti
 methods, exa
t, numeri
 data are needed.New Monte Carlo 
al
ulations of the plaquette energy are performed in sixand seven dimensions. The 
ode is an extension of work by Duba
h [27℄.A simple Metropolis algorithm is used with one hit per test and weightingof the new link value to lie 
lose to the old value. A typi
al run 
onsistedof 1000�50000 sweeps over the latti
e depending on how qui
k 
onvergen
ewas. Blo
k averaging was used to a

ount for 
orrelations between sweeps.Error bars are smaller than plotted points on all �gures shown. Both heating,de
reasing �, and 
ooling, in
reasing �, runs were made near the transitionpoint to 
he
k for hysteresis loops. Various latti
e sizes were used to 
he
k



1062 B. Barmorefor signi�
ant �nite-size e�e
ts. Small e�e
ts were seen in four dimensionswith negligible e�e
ts in higher dimensions. Cal
ulations were 
arried outfor the following latti
e sizes: 54; 84; 104; 55; 85; 56 and 57.To test the numeri
 
al
ulation the phase diagram for four dimensionwas reprodu
ed and 
ompares well with that of Lautrup and Nauenberg [10℄.The data below � = 0:5 were also 
ompared to the SCE where agreement isexpe
ted to be very good.The phase diagram for �ve dimensions showed regions of metastabilityand 
ompares favorably with that of Bhanot and Creutz [9℄. The phasediagram for six dimensions is similar to that for �ve dimensions, showinga hysteresis loop. This is indi
ative of a �rst order phase transition. Thejump in plaquette energy is larger than in �ve dimensions suggesting thatthe transition is be
oming stronger. The phase diagrams for four and sixdimensions are shown in �gure 1.The 
riti
al value is also moving towards zero. As the dimension goesto in�nity, both SCE and MFT predi
t a 
riti
al value of � = 0 and adis
ontinuity of �E2 = 1.

Fig. 1. Phase diagram for 4-d (upper frame) and 6-d (lower frame) U(1) LGT. Thediamonds are Monte Carlo data on 84 and 56 latti
es respe
tively. The solid lineis MFT in the axial gauge and the dash-dot line is the [7,8℄ Padé approximant.Noti
e the appearan
e of a metastable region near � = 0:75 in the 6-d 
ase.
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tion 2, two analyti
 methods were presented to approximate thephase diagram for a U(1) latti
e gauge theory. The strong 
oupling expan-sion with Padé approximants works well below the transition point and evenreprodu
es the super
ooled region in the higher dimensions. Mean-�eld the-ory with axial gauge �xing reprodu
es the weak 
oupling region in
ludingthe superheated phase. Now we wish to build a bridge between these twodes
riptions.It is known that the four dimensional U(1) theory exhibits either a se
-ond order or weak �rst order transition. This transition region has beenwell studied previously [10, 28, 29℄ and the 
riti
al value is �
 � 1:011 [29℄.However, it is unreasonable to expe
t the analyti
 methods to predi
t a se
-ond order transition. Long-range 
orrelations 
ome into play and neithermethod 
an handle them a

urately. In larger dimensions the transition is�rst order; there are no long-range 
orrelations and the analyti
 methods area

urate well into the metastable regions. Therefore, the bridging methodwill be developed in higher dimensions. In the end, this te
hnique will beapplied in four dimensions to see how well it works.Where metastable states exist it is 
lear that the plaquette energy is nota true fun
tion of �; rather, it is multivalued. However, one might suspe
tthat E2 is a 
ontinuous, single-valued fun
tion of �. This would be analo-gous to the Van der Waal's equation of state where the pressure is a uniquefun
tion of the volume but there are regions where the volume is a multi-valued fun
tion of the pressure. There is then a physi
ally unstable regionwhere E2 in
reases with �; the spe
i�
 heat is negative. Sin
e this region
annot be explored using the numeri
 te
hniques dis
ussed above, a simpleparameterization will be used to des
ribe the unphysi
al region2. The 
ubi
is the lowest order polynomial with the desired shape to �t the metastablestates and the unphysi
al state. Therefore, the data in the multivalued re-gion will be �t with a 
ubi
 E2(�) = O(�3). The relative free energy 
omesfrom integrating E2 along this 
urve,���FNs � = Za E2 d� :Integrating E2 along this 
urve gives the exa
t free energy relative to thelower bound of the integral. A 
rossing in the free energy 
urve is seen asshown in �gure 2 (see also Ref. [32℄). The free energy is also a multivalued2 Methods for exploring this region numeri
ally with a mi
ro
anoni
al ensemble havebeen suggested by Hetherington and Stump [30℄ for the U(1) model and by Challaand Hetherington [31℄ for the related Potts models.
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tion of �. The prefered phase is the one with lowest free energy. Thisde�nes a Maxwell 
onstru
tion. This 
rossing point identi�es the point ofphase transition.

Fig. 2. The upper frame shows the 
ubi
 �t in the metastable region for the 6-d phase diagram. The lower frame shows the relative free energy obtained byintegrating the plaquette energy along the upper 
urve. The system favors thephase with lowest free energy and thus 
hanges phase where the lower two lines
ross.This method gives a 
lean signal of the transition that is in line withprevious te
hniques. The 
riti
al values predi
ted with this method andsome previous results are 
ompared in Table II. The �
ubi

 values are fromthis work using the 
ubi
 equation of state and Maxwell 
onstru
tion asdes
ribed above. The four dimensional Monte Carlo �other� results are fromRef. [29℄; the �ve dimensional result is from Ref. [9℄. In six dimensions themethod of Bhanot and Creutz [9℄ gives �
 = 0:64. The �Fl
 values are takenfrom Ref. [7℄ where 
orre
tions to MFT were 
al
ulated to fourth-order inone over the mean-�eld strength and then a dire
t mat
hing of the predi
tedfree energies was used to �nd the transition point.This method 
an also be used in four dimensions. To the a

ura
y of theMonte Carlo 
al
ulations in this study, the transition appears to be se
ondorder. A se
ond order transition will show a in�e
tion point at the 
riti
alvalue and no 
rossing of the free energy. In other words, ��=�(E2) should bezero. Sin
e a �nite size latti
e 
annot show a true phase transition, we �ndfor a 84 latti
e a slope of �0:00654 at a 
riti
al value �
(84) = 1:004. This
riti
al value is in reasonable agreement with that of Klaus and Roiesnel [29℄who �nd �
(84) = 1:007.
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e Gauge Theory 1065TABLE IIComparison of 
riti
al 
oupling valuesLatti
e size Monte Carlo Analyti
�
ubi

 �others
 �
ubi

 �Fl
54 0.995(1) 0.9985(4) [29℄ 0.88(1) 1.00 [7℄84 1.004(1) 1.007(1) [29℄ 0.88(1) 1.00 [7℄55 0.751(2) 0.736(5) [9℄ 0.742(5) 0.758 [7℄56 0.634(5) �� 0.652(5) ��Riding on the su

esses in mat
hing the phases and �nding 
riti
al valuesfor the Monte Carlo data, the same te
hnique is applied to the analyti
methods. However, a di�
ulty immediately arises, where do the analyti

urves end? For the Monte Carlo data there is a de�nite point where thesuperheated phase ends. It o

urs when there is a sudden 
hange in theplaquette energy and the energy is the same as in the hot phase. Su
h asignal does not exist for the analyti
 
urves. Sin
e it is desirable to have ananalyti
 method whi
h is independent of the Monte Carlo data, we 
annotuse the a
tual ends of the metastable regions. Also, sin
e one of the goalsis to �nd the 
riti
al 
oupling, the method needs to be independent of �.One su
h unambiguous method is to require that the slopes of the 
urvesmat
h at the 
uto� points. This is a simple, ad ho
 method that satis�esthe requirements and the results 
an be 
he
ked against the Monte Carloresults. The 
uto� slope is 
hosen so there is some overlap between the twophases. The two 
urves are then �t with the 
ubi
 in the range between thetwo 
uto� 
ouplings. Variations in the value of the 
uto� slope make onlysmall 
hanges in the 
al
ulated 
riti
al value. The analyti
 phase diagramthen 
onsists of the Padé approximants to the strong 
oupling expansion for� � �
, a phase transition at �
 and mean �eld theory in the axial gauge for� � �
. An example for six dimensions is shown in �gure 3.Attempts to apply this method to the analyti
 approximations in fourdimensions do not meet with the su

ess seen in higher dimensions. Thepredi
ted 
riti
al value is too low by at least 10% in four dimensions. A
areful study of the four dimensional phase diagram reveals why. Near the
riti
al point for a se
ond order transition long-range 
orrelations are im-portant. The SCE a

ounts for some of this with terms 
orresponding toextended shapes. For example, there is a diagram that 
ontributes at 14thorder whi
h is a 
ylinder 
onne
ting plaquettes three sites apart. Largerorder series in
lude longer range 
onne
tions. In 
ontrast, MFT redu
es theproblem to a lo
al one-body problem; e�e
ts arising from s
ales larger than
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Fig. 3. Analyti
 phase diagram in six dimensions. Dash-dot line is Padé series forSCE up to the transition point, the solid verti
al line marks the transition pointand the long-dashed line is axial MFT beyond the transition point. Also shownare the Monte Carlo data.nearest neighbor are lost in MFT. Mean-�eld theory is better near a strong�rst-order transition than a se
ond-order transition. When the plaquetteenergy in
reases near the 
riti
al point due to 
orrelation e�e
ts, MFT 
annot keep up and the analyti
 predi
tion is moved to lower �.5. Con
lusionsThe goal of this work has been to develop an analyti
 des
ription of theU(1) phase diagram in arbitrary dimension. Many methods have been de-veloped over the years to ta
kle this problem. Two of the earliest methods,strong 
oupling expansion and mean-�eld theory, are found to need onlyminor adjustments to be in ex
ellent agreement with Monte Carlo 
al
ula-tions. A 
onsistent, physi
ally motivated pro
edure is developed to 
onne
tone des
ription to the other in the region of the phase transition. To do this,similarities between the U(1) phase diagram and that of the Van der Waal'sequation of state are exploited.In large dimensions, numeri
 simulations of U(1) LGT show a �rst ordertransition with long-lived metastable phases. This is exa
tly what o

ursnear the transition region for a Van der Waal's system. It is postulated thatin the metastable region there exists an additional state whi
h is physi
allyunstable and numeri
ally unrea
hable with the 
anoni
al partition fun
tionused here. It is noted again in passing that mi
ro
anoni
al methods havebeen developed whi
h show this unstable state [30℄. As in the Van derWaal's equation of state, the U(1) system is modeled as being 
ubi
 in theinverse 
oupling squared. The 
oe�
ients in this 
ubi
 equation of state are�t to the data for the metastable states in the region of the transition. The
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e Gauge Theory 1067relative free energy is found by integrating along the equation of state andshows a point where the phase with lowest free energy 
hanges. This de�nesthe transition point. This te
hnique allows for the a

urate identi�
ation ofthe transition point of a �rst-order phase transition.The su

ess of the analogy to the Van der Waal's system suggests usingthis te
hnique to 
onne
t the two analyti
 des
riptions. The strong 
ou-pling expansion to at least order O(�16) is used. Padé approximants are
onstru
ted to take into a

ount singularities in the series. The results arein ex
ellent agreement with numeri
 data from small � past the transitionpoint into the super
ooled phase. Variational mean-�eld theory is applied tothe large � region. It is found that gauge �xing improves the bounds onthe free energy by removing non-independent degrees of freedom from theproblem. The axial gauge is used giving the lowest upper bound on the freeenergy. Mean-�eld theory is then in agreement with the Monte Carlo datafrom large � down past the transition region through the superheated phase.Its only failure is in a

ounting for the long range 
orrelations that developnear the se
ond-order (or weak �rst-order) transition in four dimensions.The appli
ation of the above method of �tting a 
ubi
 equation of stategives transition points in ex
ellent agreement with those from the MonteCarlo data.As a �nal test of these methods, strong 
oupling and MFT 
al
ula-tions were done for seven dimensions and the transition point found at� = 0:583(2). Monte Carlo runs were then performed on a 57 latti
e for
ouplings near the transition point. The results are shown in �gure 4. Theanalyti
 predi
tions are in ex
ellent agreement with the Monte Carlo 
al
u-lations well beyond the transition point. Agreement between predi
tions forthe 
riti
al value is as good as in �ve and six dimensions.

Fig. 4. Phase diagram for seven dimensional U(1) LGT. Diamonds are Monte Carlodata on a 57 latti
e. Solid line is axial MFT and dash-dot line is the [7,8℄ Padéapproximant for the SCE.



1068 B. BarmoreIn this paper a method to des
ribe the entire U(1) latti
e gauge theoryphase diagram analyti
ally has been developed. The method is parti
ularlysu

essful in higher dimensions where there is a strong �rst-order phasetransition. The use of strong 
oupling expansions and variational mean-�eldtheory should allow these te
hniques to be extended to other Abelian andnon-Abelian groups where these analyti
 methods have also been developed.A 
ompletely analyti
 des
ription 
ould be used as a laun
hing pad for morein-depth analyti
 and numeri
 studies of latti
e gauge theories.The author would like to thank John Duba
h for the original MonteCarlo 
ode used in this work, Dirk Wale
ka for his guidan
e and insightand Shiwei Zhang for many fruitful dis
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