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In five or more dimensions, U(1) lattice gauge theory shows a strong
first-order phase transition and metastable states in the region of the tran-
sition. Monte Carlo calculations carried out in dimensions up to seven
illustrate this behavior. These metastable states are well reproduced by
gauge-fixed mean-field theory for the “superheated state” (8 < 8.) and by
Padé approximants to the strong-coupling expansion for the “supercooled
state” (8 > B.). In analogy to a Van der Waal’s system, a cubic equation of
state is employed to connect the two metastable states in both the Monte
Carlo and analytic calculations. A Maxwell construct is developed allow-
ing for the identification of the transition point and a complete, analytic
description of the phase diagram in five and higher dimensions.

PACS numbers: 11.15.Ha, 11.15.Tk, 11.15.Me, 02.70.Lq

1. Introduction

It is widely accepted that the fundamental description of nuclear physics
comes from quantum chromodynamics (QCD). However, QCD is non-per-
turbative at the energy scales of interest to nuclear physicists. Alternate
methods must be developed to describe QCD at these low energies. The
most promising development for an exact solution has been lattice gauge
theory [1] where QCD is modeled on a discrete space-time lattice. The re-
sulting denumerable degrees of freedom and ultraviolet cut-off allow for both
formal study and numeric investigation. The continuum limit is approached
with the help of the renormalization group, and physical observables are pre-
dicted. As computing power increases and algorithms become more efficient,
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more and more accurate results can be obtained numerically. However, it is
always profitable to have analytic techniques that can offer physical insight
and check numeric results. The goal of this paper is to describe a method
of combining two analytic methods into a complete description of the phase
diagram for arbitrary dimensions in a U(1) pure gauge theory. In addition,
Monte Carlo calculations are extended to seven dimensions to compare with
the analytic results.

The U(1) lattice gauge theory has been well studied, both analytical-
ly [2-8] and numerically [9-13]. While not having the physical relevance of
a non-Abelian theory like SU(3), the U(1) theory provides a good testing
ground for lattice methods and the study of lattice artifacts. Understanding
what the lattice regularization does in a simple model group like U(1) can
help to better the understanding of these effects on the more physically
interesting groups.

In the continuum limit, a pure U(1) gauge theory becomes QED without
fermions, i.e., a gas of non-interacting photons. However, the lattice regu-
larization introduces a coupling between the photon fields to infinite order
in the coupling constant. Therefore, this becomes a rich, complex theory.
In four dimensions a U(1) lattice gauge theory exhibits a phase transition
as a function of coupling. In the groups SU(2) and SU(3), one needs to go
to at least five dimensions before seeing a phase transition. In addition, the
study of monopole condensation in U(1) LGT can offer insight into color
confinement in QCD [12].

Many analytic techniques have been developed to tackle U(1) LGT.
They include both the strong-coupling [3,4, 14, 15] and weak-coupling [5]
expansions, mean-field theory (MFT) [1,2,7,14-16] and interpolating La-
grangians [8,17]. The method described below constructs a bridge between
two of these, the strong-coupling expansion and mean-field theory, resulting
in a description of the phase diagram for all values of the coupling.

Several refinements are implemented beyond the basic ideas of the SCE
and MFT. Padé approximants can be used to improve the behavior of the
SCE near the transition region (see Refs. [4,10]). While many suggestions
have been made to improve MFT, only the simplest will be used here. These
include working in higher numbers of dimensions and gauge fixing. These
improvements are more than sufficient for use with this new bridging tech-
nique.

For d > 5, the U(1) gauge theory exhibits a strong first-order phase
transition with long-lived, metastable states. The phase diagram is reminis-
cent of the P-V diagram for a Van der Waal’s gas. Therefore, we fit the
metastable phases with a cubic equation of state. This introduces an addi-
tional unphysical region with negative specific heat analogous to the state
of negative compressibility in the Van der Waal’s gas. The relative free en-
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ergy of the phases is calculated and minimizing the free energy leads to a
Maxwell construct for this system. Combining this cubic equation of state
for the metastable region with the strong coupling and mean-field results
away from the transition point provides an accurate, analytic description of
the entire phase diagram in higher dimensions.

2. Analytic approximations

Lattice gauge theory is defined in terms of a partition function, from
which all physical observables can be derived. The partition function is

2(8) = / DU e # 51U, (1)

where U is the set of all link variables U, S[U] is the gauge invariant Wilson
action and D[U] =[], dU; is the gauge invariant, normalized group measure.
The link variable can be written as a complex phase,

_do

U, = e, du,
2

The integration is over ¢; € [0,27]. The parameter [ is related to the bare
coupling constant and the inter-site spacing, a, by

In order to use the tools and insights of thermodynamics and statistical
mechanics we associate Z with the canonical partition function, 8 with an
effective inverse temperature, and S with the effective hamiltonian or energy.
A free energy, F, can also defined from

Z(B) = e P,

The action is constructed to be gauge invariant and have the correct classical
limit as a approaches zero'

S[UJ = (1-Re Un), (2)

O

where

Un = Uij Uj U Uy

! This is the convention of Refs. [18,19]. The constant can be removed from this
action, which is often done, at the cost of changing some signs in the definition of the
partition function. The plaquette energy is then reflected about the line En = 0.5.



1058 B. BARMORE

is the plaquette variable traversed once and the sum is over all plaquettes
on the lattice. For this form of the action, the plaquette energy, defined
as the average action per plaquette, has the limits Eq(8 — 0) = 1 and

Counting is important on the lattice since many of the interesting quan-
tities scale with different properties of the lattice. The lattice used in this
work is an isotropic, d-dimensional hypercube with n sites per side. This
gives Ny = n¢ sites, d links per site and d(d — 1)/2 plaquettes per site. The
lattice spacing is the same in all directions corresponding to a zero physical
temperature system.

The plaquette energy will be defined as

2 9(BF)
d(d—1)N, 0P

En = <SD> = (3)
Both the strong coupling expansion and mean-field theory approximate the
free energy. The plaquette energy, our order parameter, is then easily cal-

culated using the above.
For a more detailed discussion of these methods see Refs. [14,19,20].

2.1. Strong coupling expansion

When the bare coupling, e, is large then the partition function, equation
(1), can be expanded in a Taylor series in 8 o< 1/e3 [3]. Series now exist
to order O(3'6) for most groups and arbitrary dimension and to O(32?) for
U(1) in d =4 [3,14]. (See Table I.)

TABLE 1

Coefficients for the strong coupling expansion for the series F = 1 — > ¢,8".
Taken from Ref. [14] (and independently verified by the author through n = 12).

n Cn n Cn
1 d? 85d 2473
2 1 10 256 — 6144 T 204800
1 294> 2467d 1992533
4 16 12 6147 T 131072 — 106168320
6 d 11 14 5d3  237d> 4+ 178003 _ _38197099
96 ~ 576 2048 ~ 16384 | 5898240 1734082560
_d 757 _ 1543 | 148542 _ 53956913d 11483169709
8 125 + 10153 | 16 1096 T 65535 1132462080 T 338228674560

This series has a finite radius of convergence. Even just a few terms
is good enough to reproduce the Monte Carlo data for small 8. However,
as [ approaches the phase transition the higher order terms dominate and
destroy this agreement. Padé approximants can be used to improve the
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behavior of the series near the critical value. In this work, the plaquette
energy is calculated from the free energy series and the Padé approximant
applied to the plaquette energy series. Only near diagonal approximants are
used, P[m, m £1]. The Padé approximant can be used for 5 < p where fp
is the smallest singularity in the Padé approximant on the real axis. These
singularities are consistently above the numerically seen transition point.

2.2. Mean-Field Theory (MFT)

When g is large the only significant contribution to the partition function
comes from when the action is near zero. This occurs for Ug close to unity
for all plaquettes, i.e., all of the “plaquette angles” are aligned. Variational
mean-field theory couples each link to an “external” field originating from
the average interaction the link feels due to its coupling to neighbors. This
is a good approximation if the plaquette variables are all close to the same
value; therefore, MFT is valid as 8 — oc.

Mean-field theory is discussed and developed in Refs. [1,2,14,19].

In addition to large 3, a large number of neighbors should make MFT
more appropriate. Staying with a hypercubical lattice, that means going
to higher dimensions. We will utilize this by working in dimensions up to
seven.

Many authors have previously looked at the effects of gauge fixing on
MFT [7,21,22]. For completeness, the details of gauge fixing are discussed
below. In the context of MFT, enforcing the axial gauge results in a lower
bound on the free energy than no gauge fixing. There are some definite
disadvantages to working in the axial gauge; however, none of them directly
effect this work. The breaking of rotational symmetry on the lattice is aes-
theticly unsatisfying. In addition, higher order corrections within MFT are
more difficult than in other gauge schemes. However, the simplicity of imple-
menting the axial gauge at the tree level make it a compelling improvement
for this work.

The axial gauge fixes all temporal links at unity resulting in the following
self-consistent equations

I, (H)

H=2(d-2)pu*(H)+26u(H); uw(H) = To(H)’

where u(H) is the expectation value of a single link variable. The plaquette
energy is then

d—2 2

En=1- Tu4(H) — Zu?(H).
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2.8. Gauge fixing

Before discussing gauge fixing, gauge transformations must be discussed.
A gauge transformation is defined by assigning a phase, €'% , to each site and
then transforming the links via Ujp — eldi Uijk e 9% These gauge factors
cancel in pairs along any closed curve. Hence, the plaquette variable, the
action, and the energy per plaquette are all gauge invariant quantities. The
individual link variables are not gauge invariant.

Gauge freedom allows some of the link variables to be fixed, leaving only
integrals over the remaining links. Since the gauge group is compact, gauge
transformations do not lead to divergences as in continuum QED and it is
not necessary to fix the gauge. However, gauge fixing can be useful in some
instances. The following argument is similar to Refs. [18,23].

Let Uy be a link whose value is to be set to Up. This is achieved with a
gauge transformation. Consider a gauge invariant function

QZ/de G(Uy),

where

G(Uf) = /HdUl glU] e ASIU
l#f

Note that G(Uy) is only a function of the link to be fixed. Applying the
gauge transformation takes Uy — Up. Since g[U] and S[U] are defined to
be invariant, G(Uy) = G(Ug) = constant. The gauge invariant function is

now
g9 = G(Uy) / dUy = / [T av gler) e=Po141
I#f

with U’ the gauge transformed links. The integration over Uy disappears
since we are using a normalized measure. This can be repeated until all of
the remaining unfixed links would close a loop on the lattice. These loops
are gauge invariant and cannot be fixed. In the axial gauge used below, N
links are fixed. The trial action for MFT becomes,

BSaxia =B Y, (1-Re Un)+BY (1-Re UUy)+ HY Re Uy, (4)

O(sp) ao(t) lesp

where the first term is the normal Wilson action for the spatial plaquettes,
the second, the Wilson action for the temporal plaquettes with the time
links set to unity and the final term, the external field coupling with just
the spatial links. The MFT weight is adjusted analogous to the last term
above.
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What good is gauge fixing? In the Monte Carlo simulations, gauge fixing
reduces the number of links to be tested per lattice sweep. However, this
is not necessarily an improvement since the new configuration will not be
as far away from the old configuration as if all of the links were tested. In
Ref. [24] the authors argue that static gauge fixing slows down convergence
for Monte Carlo calculations. In the strong coupling expansion, the isotropy
of the lattice is useful so no fixing is used.

Mean-field theory is a different story. The above variational method can
be implemented in a slightly different manner which evaluates the integrals
using the method of steepest descent [7,15]. In this case the gauge degrees
of freedom correspond to zero-modes in the integrand leading to undesirable
divergences when the limits in the steepest decent integrals are taken to
infinity. Gauge fixing is required. In the above description, gauge fixing is
not required. So the question becomes, if gauge fixing is not necessary, is it
useful? Since the desired state is that which has the lowest free energy, the
question becomes, does fixing the gauge lower the free energy? Working in
the axial gauge, the bound on the free energy is lower than without gauge
fixing.

Since any configuration on the unfixed lattice can be transformed into a
configuration in the axial gauge, some of the link variables are not indepen-
dent, dynamical degrees of freedom. In fact, all of the fixed links correspond
to extraneous degrees of freedom. Therefore, the manifestly gauge invariant
Wilson action includes Ng non-dynamical degrees of freedom. By remov-
ing the extraneous degrees of freedom, the trial action is closer to the true
answer and hence gives a better variational bound on the free energy.

Other choices of gauge fixing exist [7,25,26]. The Feynman gauge [7] is
appealing for its covariant nature, but is not a simple to impliment. Two
methods, Landau [25] and Laplacian [26] gauges, are dynamical gauge fixings
and not easily implemented in MFT.

3. Numeric results

In order to test the analytic methods, exact, numeric data are needed.
New Monte Carlo calculations of the plaquette energy are performed in six
and seven dimensions. The code is an extension of work by Dubach [27].

A simple Metropolis algorithm is used with one hit per test and weighting
of the new link value to lie close to the old value. A typical run consisted
of 1000-50000 sweeps over the lattice depending on how quick convergence
was. Block averaging was used to account for correlations between sweeps.
Error bars are smaller than plotted points on all figures shown. Both heating,
decreasing 3, and cooling, increasing [, runs were made near the transition
point to check for hysteresis loops. Various lattice sizes were used to check
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for significant finite-size effects. Small effects were seen in four dimensions
with negligible effects in higher dimensions. Calculations were carried out
for the following lattice sizes: 5%,8%,10%,5% 8% 55 and 57.

To test the numeric calculation the phase diagram for four dimension
was reproduced and compares well with that of Lautrup and Nauenberg [10].
The data below 8 = 0.5 were also compared to the SCE where agreement is
expected to be very good.

The phase diagram for five dimensions showed regions of metastability
and compares favorably with that of Bhanot and Creutz [9]. The phase
diagram for six dimensions is similar to that for five dimensions, showing
a hysteresis loop. This is indicative of a first order phase transition. The
jump in plaquette energy is larger than in five dimensions suggesting that
the transition is becoming stronger. The phase diagrams for four and six
dimensions are shown in figure 1.

The critical value is also moving towards zero. As the dimension goes
to infinity, both SCE and MFT predict a critical value of § = 0 and a
discontinuity of AEg = 1.

1.0

0.8

02 r

Fig. 1. Phase diagram for 4-d (upper frame) and 6-d (lower frame) U(1) LGT. The
diamonds are Monte Carlo data on 8* and 5% lattices respectively. The solid line
is MFT in the axial gauge and the dash-dot line is the [7,8] Padé approximant.
Notice the appearance of a metastable region near § = 0.75 in the 6-d case.
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4. Bridge

In Section 2, two analytic methods were presented to approximate the
phase diagram for a U(1) lattice gauge theory. The strong coupling expan-
sion with Padé approximants works well below the transition point and even
reproduces the supercooled region in the higher dimensions. Mean-field the-
ory with axial gauge fixing reproduces the weak coupling region including
the superheated phase. Now we wish to build a bridge between these two
descriptions.

It is known that the four dimensional U(1) theory exhibits either a sec-
ond order or weak first order transition. This transition region has been
well studied previously [10,28,29| and the critical value is 5, ~ 1.011 [29].
However, it is unreasonable to expect the analytic methods to predict a sec-
ond order transition. Long-range correlations come into play and neither
method can handle them accurately. In larger dimensions the transition is
first order; there are no long-range correlations and the analytic methods are
accurate well into the metastable regions. Therefore, the bridging method
will be developed in higher dimensions. In the end, this technique will be
applied in four dimensions to see how well it works.

Where metastable states exist it is clear that the plaquette energy is not
a true function of B; rather, it is multivalued. However, one might suspect
that Fp is a continuous, single-valued function of 8. This would be analo-
gous to the Van der Waal’s equation of state where the pressure is a unique
function of the volume but there are regions where the volume is a multi-
valued function of the pressure. There is then a physically unstable region
where Fn increases with (; the specific heat is negative. Since this region
cannot be explored using the numeric techniques discussed above, a simple
parameterization will be used to describe the unphysical region?. The cubic
is the lowest order polynomial with the desired shape to fit the metastable
states and the unphysical state. Therefore, the data in the multivalued re-
gion will be fit with a cubic Eq(8) = O(8?%). The relative free energy comes
from integrating Fn along this curve,

A ):a/EDdﬁ.

Integrating Ep along this curve gives the exact free energy relative to the
lower bound of the integral. A crossing in the free energy curve is seen as
shown in figure 2 (see also Ref. [32]). The free energy is also a multivalued

BF
N

2 Methods for exploring this region numerically with a microcanonical ensemble have
been suggested by Hetherington and Stump [30] for the U(1) model and by Challa
and Hetherington [31] for the related Potts models.
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function of 8. The prefered phase is the one with lowest free energy. This
defines a Maxwell construction. This crossing point identifies the point of
phase transition.

0.8 . .
07 F
06 |

w05 F
04|

03 |

A (BF/N,)
[=]
8

0.24 L L
0.55 0.60 P 0.65 0.70

Fig.2. The upper frame shows the cubic fit in the metastable region for the 6-
d phase diagram. The lower frame shows the relative free energy obtained by
integrating the plaquette energy along the upper curve. The system favors the
phase with lowest free energy and thus changes phase where the lower two lines
Cross.

This method gives a clean signal of the transition that is in line with
previous techniques. The critical values predicted with this method and
some previous results are compared in Table II. The SS"P¢ values are from
this work using the cubic equation of state and Maxwell construction as
described above. The four dimensional Monte Carlo “other” results are from
Ref. |29]; the five dimensional result is from Ref. [9]. In six dimensions the
method of Bhanot and Creutz [9] gives 3. = 0.64. The I values are taken
from Ref. [7] where corrections to MFT were calculated to fourth-order in
one over the mean-field strength and then a direct matching of the predicted
free energies was used to find the transition point.

This method can also be used in four dimensions. To the accuracy of the
Monte Carlo calculations in this study, the transition appears to be second
order. A second order transition will show a inflection point at the critical
value and no crossing of the free energy. In other words, 93/9(Er) should be
zero. Since a finite size lattice cannot show a true phase transition, we find
for a 8% lattice a slope of —0.00654 at a critical value f3.(8*) = 1.004. This
critical value is in reasonable agreement with that of Klaus and Roiesnel [29]
who find S.(8*) = 1.007.
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TABLE II
Comparison of critical coupling values
Lattice size Monte Carlo Analytic
Bcubic ﬂothers Bcubic BFI
C c C C

54 0.995(1) 0.9985(4) [29] 0.88(1) 1.00 [7]
84 1.004(1) 1.007(1) [29]  0.88(1) 1.00 [7]
5° 0.751(2)  0.736(5) [9] 0.742(5) 0.758 [7]
56 0.634(5) —_— 0.652(5) —_—

Riding on the successes in matching the phases and finding critical values
for the Monte Carlo data, the same technique is applied to the analytic
methods. However, a difficulty immediately arises, where do the analytic
curves end? For the Monte Carlo data there is a definite point where the
superheated phase ends. It occurs when there is a sudden change in the
plaquette energy and the energy is the same as in the hot phase. Such a
signal does not exist for the analytic curves. Since it is desirable to have an
analytic method which is independent of the Monte Carlo data, we cannot
use the actual ends of the metastable regions. Also, since one of the goals
is to find the critical coupling, the method needs to be independent of .
One such unambiguous method is to require that the slopes of the curves
match at the cutoff points. This is a simple, ad hoc method that satisfies
the requirements and the results can be checked against the Monte Carlo
results. The cutoff slope is chosen so there is some overlap between the two
phases. The two curves are then fit with the cubic in the range between the
two cutoff couplings. Variations in the value of the cutoff slope make only
small changes in the calculated critical value. The analytic phase diagram
then consists of the Padé approximants to the strong coupling expansion for
B < Bc, a phase transition at 5. and mean field theory in the axial gauge for
B > Bc. An example for six dimensions is shown in figure 3.

Attempts to apply this method to the analytic approximations in four
dimensions do not meet with the success seen in higher dimensions. The
predicted critical value is too low by at least 10% in four dimensions. A
careful study of the four dimensional phase diagram reveals why. Near the
critical point for a second order transition long-range correlations are im-
portant. The SCE accounts for some of this with terms corresponding to
extended shapes. For example, there is a diagram that contributes at 14"
order which is a cylinder connecting plaquettes three sites apart. Larger
order series include longer range connections. In contrast, MFT reduces the
problem to a local one-body problem; effects arising from scales larger than
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Fig. 3. Analytic phase diagram in six dimensions. Dash-dot line is Padé series for
SCE up to the transition point, the solid vertical line marks the transition point
and the long-dashed line is axial MFT beyond the transition point. Also shown
are the Monte Carlo data.

nearest neighbor are lost in MFT. Mean-field theory is better near a strong
first-order transition than a second-order transition. When the plaquette
energy increases near the critical point due to correlation effects, MFT can
not keep up and the analytic prediction is moved to lower f.

5. Conclusions

The goal of this work has been to develop an analytic description of the
U(1) phase diagram in arbitrary dimension. Many methods have been de-
veloped over the years to tackle this problem. Two of the earliest methods,
strong coupling expansion and mean-field theory, are found to need only
minor adjustments to be in excellent agreement with Monte Carlo calcula-
tions. A consistent, physically motivated procedure is developed to connect
one description to the other in the region of the phase transition. To do this,
similarities between the U(1) phase diagram and that of the Van der Waal’s
equation of state are exploited.

In large dimensions, numeric simulations of U(1) LGT show a first order
transition with long-lived metastable phases. This is exactly what occurs
near the transition region for a Van der Waal’s system. It is postulated that
in the metastable region there exists an additional state which is physically
unstable and numerically unreachable with the canonical partition function
used here. It is noted again in passing that microcanonical methods have
been developed which show this unstable state [30]. As in the Van der
Waal’s equation of state, the U(1) system is modeled as being cubic in the
inverse coupling squared. The coefficients in this cubic equation of state are
fit to the data for the metastable states in the region of the transition. The
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relative free energy is found by integrating along the equation of state and
shows a point where the phase with lowest free energy changes. This defines
the transition point. This technique allows for the accurate identification of
the transition point of a first-order phase transition.

The success of the analogy to the Van der Waal’s system suggests using
this technique to connect the two analytic descriptions. The strong cou-
pling expansion to at least order O(3'6) is used. Padé approximants are
constructed to take into account singularities in the series. The results are
i excellent agreement with numeric data from small 3 past the transition
point into the supercooled phase. Variational mean-field theory is applied to
the large 8 region. It is found that gauge fixing improves the bounds on
the free energy by removing non-independent degrees of freedom from the
problem. The axial gauge is used giving the lowest upper bound on the free
energy. Mean-field theory is then in agreement with the Monte Carlo data
from large B down past the transition region through the superheated phase.
Its only failure is in accounting for the long range correlations that develop
near the second-order (or weak first-order) transition in four dimensions.
The application of the above method of fitting a cubic equation of state
gives transition points in excellent agreement with those from the Monte
Carlo data.

As a final test of these methods, strong coupling and MFT calcula-
tions were done for seven dimensions and the transition point found at
B = 0.583(2). Monte Carlo runs were then performed on a 57 lattice for
couplings near the transition point. The results are shown in figure 4. The
analytic predictions are in excellent agreement with the Monte Carlo calcu-
lations well beyond the transition point. Agreement between predictions for
the critical value is as good as in five and six dimensions.

1.0 < T T T T

0.8 | ~.
N'N.
"0
-~ N

0.6 -

a
=

04 -

0R

0.0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Phase diagram for seven dimensional U(1) LGT. Diamonds are Monte Carlo
data on a 57 lattice. Solid line is axial MFT and dash-dot line is the [7,8] Padé
approximant for the SCE.
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In this paper a method to describe the entire U(1) lattice gauge theory
phase diagram analytically has been developed. The method is particularly
successful in higher dimensions where there is a strong first-order phase
transition. The use of strong coupling expansions and variational mean-field
theory should allow these techniques to be extended to other Abelian and
non-Abelian groups where these analytic methods have also been developed.
A completely analytic description could be used as a launching pad for more
in-depth analytic and numeric studies of lattice gauge theories.

The author would like to thank John Dubach for the original Monte
Carlo code used in this work, Dirk Walecka for his guidance and insight
and Shiwei Zhang for many fruitful discussions. This work was supported
by a fellowship from the Southeastern Research Universities and Thomas
Jefferson National Accelerator Facility.
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