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Methods of calculating the Casimir energy which do not require the
explicit knowledge of the oscillation frequencies are developed and applied
to the model of the Nambu—Goto string with the Gauss—Bonnet term in
the action.
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It is commonly believed that the construction of a string model which is
equivalent to QCD (the hypothetical “QCD string”), or even the approximate
description of QCD in the low momentum regime in terms of some sort
of strings, would be extremely helpful in understanding non-perturbative
properties of quantum chromodynamics, such as the nature of the ground
state or mechanism of confinement. The conjecture of existence of such a
description is supported by a number of facts [1,2]|, to mention only the
nature of the 1/N. expansion [3], success of the dual models in description
of Regge phenomenology, area confinement law found in the strong coupling
lattice expansion [4] or the existence of flux—line solutions in confining gauge
theories [5,6] and the analytical results concerning two—dimensional QCD
[7]. The results obtained recently in the framework of M theory (see, for
instance, [8]), stimulated by the Maldacena conjecture [9], are also very
promising.
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One of the simplest models which may have some of the properties of
the QCD string is the Nambu—Goto string with the boundary, Gauss—Bonnet
term added (for details see [10,11]). It is defined by the action:

5= [dey=g (-~ 5R) . 1)

where
Gab = aaXltabXﬂ ) a, b= T,0, g = det(gab) )

X, gives immersion of the two-dimensional string world-sheet parameter-
ized by (7,0) into the four-dimensional Minkowski spacetime, v and « are
constants and R is the inner curvature of the string world—sheet.

Distinguished class of solutions of the equations of motion following from
(1) consists of strings, which rotate rigidly in a plane,

(XH) = % ()\T, cos AT sin Ao, sin AT sin )\O’,O) , (2)

where the parameters of the model o, and the parameters of the solution
A, q are connected by the condition:

g\ ¥

The length of the rotating string (2) is given by the formula

_, [atan ()
L= 2\ECOS B (4)

Its semiclassical energy consists of the classical part,

yqm sin A
Ey=—"11
=2 ( T ) (5)

and the Casimir energy, being the (regularized and renormalized) sum of the
zero—point energies of the string oscillation modes %ﬁun (in the following we
shall adopt the natural system of units i = ¢ = 1.)
The frequencies of the oscillation modes are obtained by solving the
eigenvalue problem
N B d? 5
1 50(0) = (2 +Va(0)) Zale) = 3 Sala)

with the potential
2)2

V(@) = cos? [A(z—%
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and the boundary conditions
X(0)=X(r)=0. (7)

The goal of this letter is to develop the techniques of calculating the
Casimir energy which does not require the form of the oscillation frequen-
cies to be known explicitly (the result of the direct calculation can be found
in [12]). For the case of a field which interacts with some non—trivial back-
ground the explicit knowledge of the oscillation frequencies is an exception
rather then a rule, and we expect the results of this paper to be useful in
such a generic case.

2.

The formal sum over mode frequencies which gives the value of the
Casimir energy is divergent and in order to give it a physical meaning we
have to adopt some regularization scheme. In the ¢ function regularization
method [13] one defines:

def A .
Ec = = lim p5t!
C = g Jim ¢(s), (8)

where, for s > 1,
()= w,’ (9)
n=1

and the parameter y with dimension of mass is introduced for dimensional
reasons. The Casimir energy is obtained by analytically continuing (g (s)

to the vicinity of s = —1. To achieve this, we need to take some technical
steps.
Let us first make use of the Mellin transform and write
o o s 1 o0 o0 9
-5 _ 2\73 _ £ —tw3
an = Z(wn) 2 = F(ﬁ) /dtt2 Ze
n=1 n=1 2 0 n=1
1 o0
= dtt> "' Tre (10)
r(3) /
Due to the homogeneous boundary conditions (7) the trace of the heat

tH can be computed in the (orthonormal) Fourier basis

on(x) = \/gsin(nx), n € IN,

kernel operator e~
[14],
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with the result

vy 2
Tre tH = 2 [ dpe (@ g sin® (nz) in

ERE N
o\:‘

N | =

/dx e (@) sin2(nx)e_m2. (11)
0 n=-—oc
Application of the Poisson summation formula,

o0

o.¢] o.¢]
Z sin’(n Z /dz sin?(zx)e ~te* tomikz (12)

n=-—00 k=—00 "

then gives

71'
. 2 o 2,2 rkdz)2
’I‘re_“q:—1 /dme_tvk(x) l—eJT%—Z[e_ﬂtk — e ] .
v 2 k=1
0 -
(13)
Performing the integration over ¢ one arrives at the expression

™

i F(—].‘f—ff) l—¢
Cu(—1+4+2¢) = mo/dﬂﬁ (Va(w))

T
I

1—¢
) K - 2(rk + x)Ux(z)) }) , (14)

where Uy(z) = /|Va(z)] and e = L=
Under the assumption that lim, .o Uy(z) exists we can rewrite the ex-
pression in the second line of (14) in the form
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Inserting (15) into (14) we finally get
11 r
CH(—1+25):2— [E+210g2—1] /de)\(x)—i—EH—i—(’)(s) (16)
s
0

with
1
Xy = ——= — —/de)\ ) log Vi (z)
212 2
0

_% / 2‘% 20U (2) K (2205 (z)) — 1]
0

.\ % / NS {Kl (2(7:&1 szA(x)) K (%:kUA(x))}
0

The pole in Eq. (16) for ¢ — 0 leads to the ambiguity in the definition of
the finite part of the Casimir energy,

finite ki
Io
(Z wn) = fﬁ“ /dx Va(z) + Zu. (17)

0

3.

In the heat—kernel regularization method one introduces into the sum
over frequencies an exponential cut—off,

(T;‘”n> ) = nz:l wpe U =Tr {\/Eef\/g} ’ (18)
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with € — 0. In order to separate in (18) terms which diverge in this limit let
us first evaluate the trace in the same basis as in (11),

{7} _gﬁ {eeﬁ}

_ l 0?2 / Z sin? _swmi{nz) - 2+, (2) ‘ (19)
m O o V1Pt V,\( )
Using the Poisson summation formula,

sm n2+V/\(m)

n=—oco V nQ + V)\

Z / sin? e2mikz—en/2>+VA (@) (20)
iy \/W

we arrive at the expression

(f:wn> 2 8 /de {%Ko (eUyx(z)) — Ko (U)\(:E)w/gQ +4x2>
n=1

T 0e2

n i [KO (U)\(x)\/62 n 47r2k2> ~ K, (IJA(:JU)\/&-2 Y A(nk + x)2)] }.(21)
k=1

Rewriting the second term in the Eq. (21) in the form

9 s
2 882 /dm Ky (U)\(m)\/ e? +4$2)
0

_2 9% [ @
2 e [ (00 V) 10 V]
0

and using the resulting formula in (21) one finally gets

1 [ 1
(an> ———ﬂ dz Vy(x) [loge +9+ 3~ logQ] +Xg+0(¢e), (23)
0

where X'y is given by Eq. (17).
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The finite part of this expression cannot be, as in the zeta function
regularization method, defined uniquely. In taking the limit € — 0 one can
equally well use instead of £ a combination pe with arbitrary p. This gives

00 finite m
1
(§ jwn> - 02%:‘ /d.’L‘V)\(I)—f—EH, (24)
n=1

€ 0

1.e. precisely the same expression as obtained in the zeta function method.

4.

After calculating the finite part of a quantity such as a sum of the mode
frequencies we are facing the final task of fixing the ambiguities which arise
due to the subtraction of the pole term. This can be achieved by imposing
on the calculated quantity appropriately chosen physical conditions [15]. In
the considered case we expect that the Casimir energy for long strings should
behave like ~ L', where L is the string length. Terms which do not vanish
in this limit can be treated [16] as renormalizing the classical string mass
(let us note that the ambiguous term in (17) also belongs to this class). In
order to fix the coefficient of the L™! term let us note that in the Nambu-
Goto limit (vanishing coefficient « in front of the Gauss-Bonnet term in the
action (1)) the oscillation eigenfrequencies tend to

y i{Kl 2(xk +z)Ux(z)) K (27rkU)\(x))}] (25)

k + x 7k
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Fig.1. Casimir energy versus string length for various values of the parameter
a : a = 1073 (solid line), @ = 1 (dashed line) and a = 10% (dotted line). All
dimensionful quantities in the system of units v = 1.
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