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A parametrization of the conservative force in the dynamical coales-
cence and reseparation model is proposed. This model with one body
dissipation formula, Yukawa plus exponential finite range potential, and
shell effects included was recently adopted to follow Langevin trajectories
for a collision of two very heavy nuclei which can end up as a compound
system or reseparate. With our parametrization it is possible to speed up
model calculations by a factor of 10 without loosing accuracy of trajectory
integration. This can be of some importance in a case of Langevin trajecto-
ries calculation where many of them have to be traced in order to estimate
probability for a process of interest, namely a fusion of two very heavy nu-
clei at beam energies close to the Coulomb barrier. Few examples of fusion
excitation functions of heavy nuclei calculated with this faster version of
the computer code are presented.

PACS numbers: 25.70.—z, 25.70.Jj, 24.60.Ky

1. Introduction

In recent years a large experimental effort undertaken in the GSI lab-
oratory succeeded in a synthesis of new Superheavy Elements (SHE) with
Z = 110,111,112 [1-3]. All these elements were created by cold fusion of
different projectiles with a doubly magic nucleus 2°®Pb as a target. Mea-
sured cross sections for production of an evaporation residue (ER) appeared
here to be very small. For 28112 it is only 1 picobarn. Such cross section
is in fact a product of two components: a cross section for formation of a
compound nucleus ocn and a probability Pggr that the CN will not deexcite
into fission channels. The Pgr probability can be deduced on a basis of
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statistical models where inclusion of a fission barrier and binding energies
of individual nucleons enables one to calculate competition between fission
and evaporation residue channels [4]. On the other hand theory tells very
little on values of ocn in the range of small collision energies characteristic
for cold fusion. Coulomb repulsion in the entrance channel becomes here a
serious restriction. After the fusion barrier is crossed structural effects are
proved to play very important and even decisive role to prevent the system
from disintegrating immediately through one of the fission channels. All the
way to the CN the system evolves dynamically and converts its relative ki-
netic energy into the internal excitation. In the first stage it has to reach the
fusion barrier. Where and how along this trajectory a decision is made by
the system to fuse, and what is the minimal energy in the entrance channel
necessary to cross the fusion barrier is so far not known.

On the microscopic level dynamics is governed by rearrangement of indi-
vidual nucleons, and from the macroscopic point of view it implies that there
is a coupling between collective degrees of freedom and thermal energy of
the system, and such a coupling manifests itself as fluctuations of collective
variables. It seems that the macroscopic dynamical model of Swiatecki [5],
and Btlocki et al. [6], and very recently barrier and fusion probability fluc-
tuations introduced to this model [7] are very well suited for the problem
investigated here.

Evolution of the system on its way to fusion is described in a space
of shape coordinates, and fluctuations are introduced by random Langevin
forces [8]. Trajectories are computed numerically by integration of equations
of motion, what consumes usually a lot of computer time. In this paper we
propose to parametrize conservative forces, which considerably reduces the
computer time.

The paper is organized as follows: in Section 2 we briefly recall main
ingredients of the coalescence and reseparation model [6]. Section 3 explains
new parametrization proposed for the gradient of the folding potential. Some
comparisons with exact conservative force are also given. In this section exci-
tation functions for few cases of interest are calculated with the parametrized
version of the model. In Section 4 we conclude and summarize.

2. Dynamical model

In the model, shape of the fusing system is assumed to be axially symmet-
ric and is parametrized by portions of two usually unequal spheres which are
smoothly connected by a quadratic surface of revolution. For such shapes a
classical collision trajectory is calculated in a space of coordinates: p, A\, A4,
where the first one gives information on a relative distance of these two
spheres, the second one informs on a degree of window (neck) opening be-
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tween spheres and the third one is related to asymmetry of these spheres (for
exact definition see [9] or [10]). The starting point of each trajectory corre-
sponds to two spheres separated by a distance at which a nuclear attractive
force start to be important (p ~ 1.26, A ~ 0.0, and A4 corresponds to the
initial asymmetry in the entrance channel). Dynamics of the trajectory is
governed by a conservative driving force which is calculated from the Yukawa
plus exponential finite range interaction [11] and the Coulomb interaction,
while energy dissipation is assumed as an one body in a form of the wall and
wall-plus-window formula [12]. In order to follow dynamics of a collision in
a more realistic way another variable, charge asymmetry, Az, was adopted
in the model [8]. This means that the evolution in mass and charge of two
colliding nuclei can now be traced independently. Finally, after the authors
of Ref. [8], a contribution of shell effects has been added into the potential
energy. These effects are especially important at the collision energies very
close to the fusion barrier (low excitation energy case), and for closed shell
nuclei, as suggested by Myers and Swiatecki [13].

In a collision of two heavy ions one observes conversion of an initial rela-
tive kinetic energy into internal excitation energy. Due to a coupling between
internal and macroscopic degrees of freedom, energy dissipation should be
described by a mean frictional force (wall and window formula) and by fluc-
tuating random forces known as Langevin forces [14]. These forces originate
from thermal fluctuation effects. Correspondingly, to follow evolution of a
system in a collision process, equations of motion of the Langevin type have
to be solved [7,8|:

R LES MUY )
dt9¢;  9dgi  0g;
where L = T — V is a Lagrangian (kinetic energy minus potential energy,
T—V), Ris the Rayleigh dissipation function, and Lg,(t) (¢; = p, A\, Aa, Az)
are the Langevin forces of a Gaussian type with zero average values. In a
simplest case of zero angular momentum, trajectory of a collision is obtained
by integrating numerically four equations of type (1).

In the integration procedure we use the Runge-Kutte fourth order meth-
od. It is important from the point of view of the computing time to find out
which term in Eq. (1) is the most time consuming. It is especially crucial
in the case of Langevin equations where in order to answer a question what
is the probability of a given process, e.g. fusion, one needs to calculate
many trajectories, especially at collision energies not too large comparing
to the Coulomb barrier. In the space of shape coordinates used here it
is not possible to write analytical formulas for the potential energy (three
dimensional integral), for the kinetic energy (one dimensional integral), and
for the dissipation function (one dimensional integral). That means, that at
each point on a trajectory the computer code has to calculate numerically
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all these integrals. We have checked that 90% of the processor time is used
to compute each of the four components of the conservative force: —%—‘;,

oV oV oV : : :
— 9% "9AL " BA, It is so because, there is also no analytical formula

for them, and algorithm, which computes these partial derivatives, has to
calculate the potential energy 8 times in each time step.

3. Tabularization of the conservative force

To speed up calculations we propose here two methods.
i) The first (hybrid) method.

Each of the potential gradients is a function of four variables, e.g.
oV /0p = F,(p,\,Aa,Az), and each of them has to be tabularized sepa-
rately. We will explain our method on an example of F,. The same will be
true for three other gradients. In the first step a grid is created on the plane
p, A with a typical dimension 100 x 100. In each point on the grid F, becomes
a function of Ay, Az only. For instance F,(p, X\, A, Az) = fp7 (A4, Ay),
where indexes 7, j denote p, A on the grid, respectively, and Az, A4 are in
the range [—1,1].

In fact, physical Langevin trajectories probe only a small part of the
Ay, Ag surface. They fluctuate around a line A4 = Az. Utilizing this
fact one can rotate the Ay, Ay surface by 45° to a set of new coordinates

", A’,. On this new surface it is easy to select this part of the surface
only which is interesting from the point of view of calculation (the Langevin
trajectories). Now A’ is in range [—1, 1] while A’, changes from around —.05
to 0.05. We gain a lot by parametrizing only this part of the mass asymmetry
and charge asymmetry surface which is physically interesting and with such
a rotation this part is only one twentieth of the whole Ay, Ay surface.
Using now the Taylor expansion, we expand the f;”(A',, Al,) function up
to the second power in A’, and to the fourth power in A’y with all mixing
terms included. In this expansion we include additionally one term in the
third power of A’,. Expansion is made around a point: (4’4, A%) = (0,0).
This can be written formally as:

Fo(AL, AY) = £(0,0) + 201 Al + 2024 + 203 A% + 31,04 + 211 AL A
a1 2 AYAY + 20 g AR + mot ATAY + 29y ATAG + 250 A%
a3 ABAY 4+ w30 ASAZ 4oy g A4 a g AUA Y 4y AR AT,

(2)
where 2, , (15 components) are the corresponding coefficients of the Taylor

expansion and we treat them as unknowns. This equation is a linear one
in ;. To solve it, one has to calculate the potential gradient f, for
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sixteen points on the A’,, A, surface (sixteen not fifteen because there is
a free term f(0,0)) thus receiving 15 linear equations which are solved with
respect to T, , numerically with a standard method. In such a way each of
the gradients was parametrized. Typically, for one gradient 100 x 100 x 15
numbers are necessary (equivalent of 600 Kb of computer memory, what is
not so much comparing to the memory available in modern computers) and
they are kept as matrices in the code.

Now, with such parametrization we no longer need to calculate three
dimensional integrals in each step of integration along the trajectory, in or-
der to compute any of the dV/dp, OV/OX, OV/OA,, OV/IAz gradients.
Instead, when a gradient is needed for a given (p, A, A4, Ayz) point, e.g.
0V /0p, we locate first such a point on the p, A grid then a linear interpo-
lation is used to obtain corresponding coefficients x,,, of the parametrized
gradient OV /dp for a given p, A, and finally by rotating A4, Az by 45° and
putting them into equation (2) the necessary gradient is obtained. In the
same way all gradients can be calculated. To compare the quality of such
parametrization with the originally calculated gradient, 0V/dp, we have
sampled the space (p, A\, A4, Az) in a random way with 2 x 10* points.
The result is presented in Fig. 1. For clarity the 0V /dp is drawn in six
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Fig. 1. Comparison, for different values of A, between exactly calculated potential
gradient 0V/9p (solid line), and the one calculated with the hybrid method (empty
squares). Space p, A\, A4, Az was randomly sampled, and the grid in p, A\ was
100 x 100.
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different regions of A as a function of p. Each point is a mean value over the
randomly sampled A4, Az space. As one can see, agreement between the
exact gradient (full line), and that obtained from the grid (empty squares)
is quite satisfactory.

i1) The second method.

Alternatively one can span the grid over a whole four dimensional space
of p, A\, A"y, A”,. For one gradient the grid is 30 x 30 x 30 x 30, what gives
8.1 x 10° values. They are kept in a matrix which occupies 3.24 Mb of the
computer random access memory (RAM). Because there are four gradients
one needs 12.96 Mb of RAM. Although in this case the needed amount of
computer memory is large, it is still quite easy to have it with present day
computers.

To compute in a dynamical calculations e.g. the 0V/0p(p, X, Ay, A')
gradient the following interpolation procedure is applied. First we search for
a position of the (p, A, Ay, A’,) point on the grid. Suppose it has been found
that p € [pf, p't1] , A € (M, N1, Ay € (A%, AR Ay € [AL, ALY, For
p', and also for p'*! one can define a cell: [\, A+, [A%] A;’f“], (AL, A%‘H].
For interpolation between points “i” and “i+1” one first make an interpola-
tion inside each cell, and then a linear interpolation between two cells. The
same method is applied for all gradients. As in the case of the first (hybrid)
method we have sampled randomly the space (p, A\, A4, Az) with 2 x 10*
points, and used the same averaging procedure. Result of that test is de-
picted in Fig. 2 showing also a nice agreement with the gradient calculated
in the exact way (using three dimensional integrals).

Using gradient parametrizations described above, we have performed a
series of tests applying those gradients to the dynamical model represented
by the set of coupled equations (see (1)). This was done in the following way:
starting from the same initial conditions, i.e. the same system, energy, and
angular momentum, dynamics of a collision was followed either using exact
potential gradients (three dimensional integrals), or using the first or second
grid method. In Fig. 3 two examples of dynamical trajectories are presented,
both for central collisions (L = 0f): the upper trajectory, leading to fusion,
was calculated for the reaction 86Kr+!36Xe, at a collision energy Ej, = 4.25
MeV /u (Lab) and the lower one illustrates the coalescence and reseparation
(the scission line is drawn as a dashed one) for the system ®Ni+2%Pb at
E;p, = 5.25 MeV /u. Trajectories calculated by the original code are marked
as empty squares, the solid line corresponds to the trajectory in which the
potential gradient was calculated on the grid and the dotted line corresponds
to the trajectory where the conservative force was calculated with a hybrid
method. For 8Kr+136Xe our dynamics with parametrizations give a very
good agreement with the dynamics of the original code. For the second
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Fig. 2. Comparison, for different values of A, between originally calculated potential
gradient 0V/9p (solid line), and the one calculated with the second method (empty
squares). Space p, A, A4, Az was randomly sampled over the grid 30 x 30 x 30 x 30.
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Fig.3. For each of the reaction indicated in the figure three trajectories are pre-
sented. The empty squares correspond to trajectory calculated with the original
code, dotted line represents trajectory calculated with the hybrid method: with
100 x 100 grid on the p, A subspace, and the solid line represents trajectory calcu-
lated when a grid 30 x 30 x 30 x 30 spanned over the hole p, A\, A4, Az space was
adopted.
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case, %4Ni+298Pb, it seems that the potential gradient calculated on the grid
reproduces the original dynamics better then the hybrid gradient. However,
also in this case we consider that the agreement of our calculation with the
original one is still satisfactory.

This faster version of the code, with thermal fluctuations included, en-
ables one to calculate fusion excitation functions in the region of collision
energies close to the interaction barrier of heavy nuclei, where many trajec-
tories have to be calculated in order to collect a sufficient number of those
leading to fusion. We present here two examples (Fig. 4) of such excita-
tion functions calculated for fusion of 36Kr+'36Xe and 8Kr+'23Sb. In the
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Fig.4. The upper panel presents the comparison of the fusion excitation func-
tion (FEF) for the reaction 8¢Kr+136Xe calculated applying our potential gradient
parametrization method to the dynamical model (full squares), and this based on
the importance sampling method of paper [8] (solid line). In the lower panel ex-
perimental FEF (empty squares) from the reaction 36Kr+123Sb [15] are compared
with present calculations based on the second method (full squares).

case of the first reaction which produces a compound nucleus ?22Th (up-
per panel in the figure) our calculations (full squares) are compared with
these of ref. [8] (solid line) where the importance sampling method [7] was
used in the dynamical model to calculate probability of very rare fusion
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events at the lowest bombarding energies. As one can see these two meth-
ods are in reasonable agreement. Some discrepancies observed for Fonm
smaller then 217 MeV can be due to statistical errors. In the lower panel of
Fig. 4 comparison of our calculations is made with experimental ?°°Fr fusion
excitation function [15] (empty squares). As seen from Fig. 4 the experimen-
tal curve extends to lower bombarding energies and this part of excitation
function is not reproduced by the model calculations. On the other hand
fusion probabilities at higher incident energies (>212 MeV) are quite well
reproduced by the model and in this energy range model seems to work
reasonably well. Similar observation was made recently in Ref. [8]. Among
factors which can be responsible for such disagreement one could point out
Einstein—Smoluchowski relation implemented to the model. This theorem
works at moderate excitation energies while at the lowest collision energies
typical excitation energies are below 20 or even 10 MeV. For such low values
of excitation energies Einstein-Smoluchowski relation probably needs some
modifications as suggested by the nonperturbative transport theory [16].
Other possible sources of discrepancy are discussed in Ref. [8].

4. Summary and conclusions

It has been shown that the fusion process of two heavy nuclei has to be
treated as a dynamical one, where thermal fluctuations coupled to macro-
scopic degrees of freedom (shape parameters) play important role in the
case of fusion of heavy and super heavy nuclei [8], [14] e.g. they modify in
a substantial way fusion excitation functions. Such a coupling can be taken
into account by introducing a Langevin force, Lg,(t), to the deterministic
dynamics.

In this paper we have presented a special parametrization of conservative
force used in the model of Ref. [6]. Applicability of such parametrization has
been presented in problems where one has to calculate many trajectories in
order to get quantitative information on fusion excitation functions of heavy
or superheavy nuclei. This approach takes advantage of large RAM memo-
ries of modern computers in tabularizing conservative force. Computation
of such a force is the most time consuming task of the code. In this way we
are able to gain a factor of 10 in the computer time.
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