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POTENTIAL GRADIENT PARAMETRIZATIONIN A LANGEVIN TYPE DISSIPATIVE DYNAMICSA. Wielo
h, Z. SosinMarian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand J. Bªo
kiSoªtan Institute for Nu
lear Studies, 05-400, �wierk, Poland(Re
eived February 2, 1999)A parametrization of the 
onservative for
e in the dynami
al 
oales-
en
e and reseparation model is proposed. This model with one bodydissipation formula, Yukawa plus exponential �nite range potential, andshell e�e
ts in
luded was re
ently adopted to follow Langevin traje
toriesfor a 
ollision of two very heavy nu
lei whi
h 
an end up as a 
ompoundsystem or reseparate. With our parametrization it is possible to speed upmodel 
al
ulations by a fa
tor of 10 without loosing a

ura
y of traje
toryintegration. This 
an be of some importan
e in a 
ase of Langevin traje
to-ries 
al
ulation where many of them have to be tra
ed in order to estimateprobability for a pro
ess of interest, namely a fusion of two very heavy nu-
lei at beam energies 
lose to the Coulomb barrier. Few examples of fusionex
itation fun
tions of heavy nu
lei 
al
ulated with this faster version ofthe 
omputer 
ode are presented.PACS numbers: 25.70.�z, 25.70.Jj, 24.60.Ky1. Introdu
tionIn re
ent years a large experimental e�ort undertaken in the GSI lab-oratory su

eeded in a synthesis of new Superheavy Elements (SHE) withZ = 110; 111; 112 [1�3℄. All these elements were 
reated by 
old fusion ofdi�erent proje
tiles with a doubly magi
 nu
leus 208Pb as a target. Mea-sured 
ross se
tions for produ
tion of an evaporation residue (ER) appearedhere to be very small. For 278112 it is only 1 pi
obarn. Su
h 
ross se
tionis in fa
t a produ
t of two 
omponents: a 
ross se
tion for formation of a
ompound nu
leus �CN and a probability PER that the CN will not deex
iteinto �ssion 
hannels. The PER probability 
an be dedu
ed on a basis of(1087)
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kistatisti
al models where in
lusion of a �ssion barrier and binding energiesof individual nu
leons enables one to 
al
ulate 
ompetition between �ssionand evaporation residue 
hannels [4℄. On the other hand theory tells verylittle on values of �CN in the range of small 
ollision energies 
hara
teristi
for 
old fusion. Coulomb repulsion in the entran
e 
hannel be
omes here aserious restri
tion. After the fusion barrier is 
rossed stru
tural e�e
ts areproved to play very important and even de
isive role to prevent the systemfrom disintegrating immediately through one of the �ssion 
hannels. All theway to the CN the system evolves dynami
ally and 
onverts its relative ki-neti
 energy into the internal ex
itation. In the �rst stage it has to rea
h thefusion barrier. Where and how along this traje
tory a de
ision is made bythe system to fuse, and what is the minimal energy in the entran
e 
hannelne
essary to 
ross the fusion barrier is so far not known.On the mi
ros
opi
 level dynami
s is governed by rearrangement of indi-vidual nu
leons, and from the ma
ros
opi
 point of view it implies that thereis a 
oupling between 
olle
tive degrees of freedom and thermal energy ofthe system, and su
h a 
oupling manifests itself as �u
tuations of 
olle
tivevariables. It seems that the ma
ros
opi
 dynami
al model of �wi¡te
ki [5℄,and Bªo
ki et al. [6℄, and very re
ently barrier and fusion probability �u
-tuations introdu
ed to this model [7℄ are very well suited for the probleminvestigated here.Evolution of the system on its way to fusion is des
ribed in a spa
eof shape 
oordinates, and �u
tuations are introdu
ed by random Langevinfor
es [8℄. Traje
tories are 
omputed numeri
ally by integration of equationsof motion, what 
onsumes usually a lot of 
omputer time. In this paper wepropose to parametrize 
onservative for
es, whi
h 
onsiderably redu
es the
omputer time.The paper is organized as follows: in Se
tion 2 we brie�y re
all mainingredients of the 
oales
en
e and reseparation model [6℄. Se
tion 3 explainsnew parametrization proposed for the gradient of the folding potential. Some
omparisons with exa
t 
onservative for
e are also given. In this se
tion ex
i-tation fun
tions for few 
ases of interest are 
al
ulated with the parametrizedversion of the model. In Se
tion 4 we 
on
lude and summarize.2. Dynami
al modelIn the model, shape of the fusing system is assumed to be axially symmet-ri
 and is parametrized by portions of two usually unequal spheres whi
h aresmoothly 
onne
ted by a quadrati
 surfa
e of revolution. For su
h shapes a
lassi
al 
ollision traje
tory is 
al
ulated in a spa
e of 
oordinates: �; �;�A,where the �rst one gives information on a relative distan
e of these twospheres, the se
ond one informs on a degree of window (ne
k) opening be-



Potential Gradient Parametrization in a Langevin Type: : : 1089tween spheres and the third one is related to asymmetry of these spheres (forexa
t de�nition see [9℄ or [10℄). The starting point of ea
h traje
tory 
orre-sponds to two spheres separated by a distan
e at whi
h a nu
lear attra
tivefor
e start to be important (� ' 1:26; � ' 0:0, and �A 
orresponds to theinitial asymmetry in the entran
e 
hannel). Dynami
s of the traje
tory isgoverned by a 
onservative driving for
e whi
h is 
al
ulated from the Yukawaplus exponential �nite range intera
tion [11℄ and the Coulomb intera
tion,while energy dissipation is assumed as an one body in a form of the wall andwall-plus-window formula [12℄. In order to follow dynami
s of a 
ollision ina more realisti
 way another variable, 
harge asymmetry, �Z , was adoptedin the model [8℄. This means that the evolution in mass and 
harge of two
olliding nu
lei 
an now be tra
ed independently. Finally, after the authorsof Ref. [8℄, a 
ontribution of shell e�e
ts has been added into the potentialenergy. These e�e
ts are espe
ially important at the 
ollision energies very
lose to the fusion barrier (low ex
itation energy 
ase), and for 
losed shellnu
lei, as suggested by Myers and �wi¡te
ki [13℄.In a 
ollision of two heavy ions one observes 
onversion of an initial rela-tive kineti
 energy into internal ex
itation energy. Due to a 
oupling betweeninternal and ma
ros
opi
 degrees of freedom, energy dissipation should bedes
ribed by a mean fri
tional for
e (wall and window formula) and by �u
-tuating random for
es known as Langevin for
es [14℄. These for
es originatefrom thermal �u
tuation e�e
ts. Correspondingly, to follow evolution of asystem in a 
ollision pro
ess, equations of motion of the Langevin type haveto be solved [7, 8℄: ddt �L� _qi = �L�qi � �<� _qi + Lqi(t) ; (1)where L = T � V is a Lagrangian (kineti
 energy minus potential energy,T�V ), < is the Rayleigh dissipation fun
tion, and Lqi(t) (qi = �; �;�A;�Z)are the Langevin for
es of a Gaussian type with zero average values. In asimplest 
ase of zero angular momentum, traje
tory of a 
ollision is obtainedby integrating numeri
ally four equations of type (1).In the integration pro
edure we use the Runge�Kutte fourth order meth-od. It is important from the point of view of the 
omputing time to �nd outwhi
h term in Eq. (1) is the most time 
onsuming. It is espe
ially 
ru
ialin the 
ase of Langevin equations where in order to answer a question whatis the probability of a given pro
ess, e.g. fusion, one needs to 
al
ulatemany traje
tories, espe
ially at 
ollision energies not too large 
omparingto the Coulomb barrier. In the spa
e of shape 
oordinates used here itis not possible to write analyti
al formulas for the potential energy (threedimensional integral), for the kineti
 energy (one dimensional integral), andfor the dissipation fun
tion (one dimensional integral). That means, that atea
h point on a traje
tory the 
omputer 
ode has to 
al
ulate numeri
ally
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kiall these integrals. We have 
he
ked that 90% of the pro
essor time is usedto 
ompute ea
h of the four 
omponents of the 
onservative for
e: ��V�� ,��V�� , � �V��A , � �V��Z . It is so be
ause, there is also no analyti
al formulafor them, and algorithm, whi
h 
omputes these partial derivatives, has to
al
ulate the potential energy 8 times in ea
h time step.3. Tabularization of the 
onservative for
eTo speed up 
al
ulations we propose here two methods.i) The �rst (hybrid) method.Ea
h of the potential gradients is a fun
tion of four variables, e.g.�V=�� � F�(�; �;�A;�Z), and ea
h of them has to be tabularized sepa-rately. We will explain our method on an example of F�. The same will betrue for three other gradients. In the �rst step a grid is 
reated on the plane�; � with a typi
al dimension 100�100. In ea
h point on the grid F� be
omesa fun
tion of �A, �Z only. For instan
e F�(�; �;�A;�Z) = f i;j� (�A;�Z),where indexes i; j denote �; � on the grid, respe
tively, and �Z , �A are inthe range [�1; 1℄.In fa
t, physi
al Langevin traje
tories probe only a small part of the�A; �Z surfa
e. They �u
tuate around a line �A = �Z . Utilizing thisfa
t one 
an rotate the �A; �Z surfa
e by 450 to a set of new 
oordinates�0A; �0Z . On this new surfa
e it is easy to sele
t this part of the surfa
eonly whi
h is interesting from the point of view of 
al
ulation (the Langevintraje
tories). Now�0A is in range [�1; 1℄ while�0Z 
hanges from around �:05to 0:05. We gain a lot by parametrizing only this part of the mass asymmetryand 
harge asymmetry surfa
e whi
h is physi
ally interesting and with su
ha rotation this part is only one twentieth of the whole �A; �Z surfa
e.Using now the Taylor expansion, we expand the f i;j� (�0A;�0Z) fun
tion upto the se
ond power in �0Z and to the fourth power in �0A with all mixingterms in
luded. In this expansion we in
lude additionally one term in thethird power of �0Z . Expansion is made around a point: (�0A;�0Z) = (0; 0).This 
an be written formally as:f�(�0A;�0Z) = f(0; 0) + x0;1�0Z + x0;2�02Z + x0;3�03Z + x1;0�0A + x1;1�0A�0Z+x1;2�0A�02Z + x2;0�02A + x2;1�02A�0Z + x2;2�02A�02Z + x3;0�03A+x3;1�03A�0Z+x3;2�03A�02Z+x4;0�04A+x4;1�04A�0Z+x4;2�04A�02Z ;(2)where xm;n (15 
omponents) are the 
orresponding 
oe�
ients of the Taylorexpansion and we treat them as unknowns. This equation is a linear onein xm;n. To solve it, one has to 
al
ulate the potential gradient f� for
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e (sixteen not �fteen be
ause there isa free term f(0; 0)) thus re
eiving 15 linear equations whi
h are solved withrespe
t to xm;n numeri
ally with a standard method. In su
h a way ea
h ofthe gradients was parametrized. Typi
ally, for one gradient 100 � 100 � 15numbers are ne
essary (equivalent of 600 Kb of 
omputer memory, what isnot so mu
h 
omparing to the memory available in modern 
omputers) andthey are kept as matri
es in the 
ode.Now, with su
h parametrization we no longer need to 
al
ulate threedimensional integrals in ea
h step of integration along the traje
tory, in or-der to 
ompute any of the �V=��, �V=��, �V=��A, �V=��Z gradients.Instead, when a gradient is needed for a given (�; �; �A; �Z) point, e.g.�V=��, we lo
ate �rst su
h a point on the �; � grid then a linear interpo-lation is used to obtain 
orresponding 
oe�
ients xm;n of the parametrizedgradient �V=�� for a given �; �, and �nally by rotating �A; �Z by 450 andputting them into equation (2) the ne
essary gradient is obtained. In thesame way all gradients 
an be 
al
ulated. To 
ompare the quality of su
hparametrization with the originally 
al
ulated gradient, �V=��, we havesampled the spa
e (�; �; �A; �Z) in a random way with 2 � 104 points.The result is presented in Fig. 1. For 
larity the �V=�� is drawn in six
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Fig. 1. Comparison, for di�erent values of �, between exa
tly 
al
ulated potentialgradient �V=�� (solid line), and the one 
al
ulated with the hybrid method (emptysquares). Spa
e �; �;�A; �Z was randomly sampled, and the grid in �; � was100� 100.
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kidi�erent regions of � as a fun
tion of �. Ea
h point is a mean value over therandomly sampled �A, �Z spa
e. As one 
an see, agreement between theexa
t gradient (full line), and that obtained from the grid (empty squares)is quite satisfa
tory.ii) The se
ond method.Alternatively one 
an span the grid over a whole four dimensional spa
eof �, �, �0A, �0Z . For one gradient the grid is 30� 30� 30� 30, what gives8:1 � 105 values. They are kept in a matrix whi
h o

upies 3.24 Mb of the
omputer random a

ess memory (RAM). Be
ause there are four gradientsone needs 12.96 Mb of RAM. Although in this 
ase the needed amount of
omputer memory is large, it is still quite easy to have it with present day
omputers.To 
ompute in a dynami
al 
al
ulations e.g. the �V=��(�; �;�0A;�0Z)gradient the following interpolation pro
edure is applied. First we sear
h fora position of the (�; �;�0A;�0Z) point on the grid. Suppose it has been foundthat � 2 [�i; �i+1℄ , � 2 [�j; �j+1℄, �A 2 [�0kA ;�0k+1A ℄, �Z 2 [�0lZ ;�0l+1Z ℄. For�i, and also for �i+1 one 
an de�ne a 
ell: [�j ; �j+1℄, [�0kA ;�0k+1A ℄, [�0lZ ;�0l+1Z ℄.For interpolation between points �i� and �i+1� one �rst make an interpola-tion inside ea
h 
ell, and then a linear interpolation between two 
ells. Thesame method is applied for all gradients. As in the 
ase of the �rst (hybrid)method we have sampled randomly the spa
e (�; �; �A; �Z) with 2� 104points, and used the same averaging pro
edure. Result of that test is de-pi
ted in Fig. 2 showing also a ni
e agreement with the gradient 
al
ulatedin the exa
t way (using three dimensional integrals).Using gradient parametrizations des
ribed above, we have performed aseries of tests applying those gradients to the dynami
al model representedby the set of 
oupled equations (see (1)). This was done in the following way:starting from the same initial 
onditions, i.e. the same system, energy, andangular momentum, dynami
s of a 
ollision was followed either using exa
tpotential gradients (three dimensional integrals), or using the �rst or se
ondgrid method. In Fig. 3 two examples of dynami
al traje
tories are presented,both for 
entral 
ollisions (L = 0~): the upper traje
tory, leading to fusion,was 
al
ulated for the rea
tion 86Kr+136Xe, at a 
ollision energy EL = 4:25MeV/u (Lab) and the lower one illustrates the 
oales
en
e and reseparation(the s
ission line is drawn as a dashed one) for the system 64Ni+208Pb atEL = 5:25 MeV/u. Traje
tories 
al
ulated by the original 
ode are markedas empty squares, the solid line 
orresponds to the traje
tory in whi
h thepotential gradient was 
al
ulated on the grid and the dotted line 
orrespondsto the traje
tory where the 
onservative for
e was 
al
ulated with a hybridmethod. For 86Kr+136Xe our dynami
s with parametrizations give a verygood agreement with the dynami
s of the original 
ode. For the se
ond



Potential Gradient Parametrization in a Langevin Type: : : 1093
86Kr+136Xe

-20

0

20

0.8 1 1.2 1.4

dV
/d

ρ 
 (

M
eV

)

λ=0.57

-20

0

20

0.8 1 1.2 1.4

λ=0.62

-20

0

20

0.8 1 1.2 1.4

λ=0.67
dV

/d
ρ 

(M
eV

)

-20

0

20

0.8 1 1.2 1.4

λ=0.71

-20

0

20

0.8 1 1.2 1.4ρ

dV
/d

ρ 
 (

M
eV

)

λ=0.76

-20

0

20

0.8 1 1.2 1.4ρ

λ=0.81

Fig. 2. Comparison, for di�erent values of �, between originally 
al
ulated potentialgradient �V=�� (solid line), and the one 
al
ulated with the se
ond method (emptysquares). Spa
e �; �;�A; �Z was randomly sampled over the grid 30�30�30�30.
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Fig. 3. For ea
h of the rea
tion indi
ated in the �gure three traje
tories are pre-sented. The empty squares 
orrespond to traje
tory 
al
ulated with the original
ode, dotted line represents traje
tory 
al
ulated with the hybrid method: with100� 100 grid on the �; � subspa
e, and the solid line represents traje
tory 
al
u-lated when a grid 30� 30� 30� 30 spanned over the hole �; �;�A; �Z spa
e wasadopted.
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ase, 64Ni+208Pb, it seems that the potential gradient 
al
ulated on the gridreprodu
es the original dynami
s better then the hybrid gradient. However,also in this 
ase we 
onsider that the agreement of our 
al
ulation with theoriginal one is still satisfa
tory.This faster version of the 
ode, with thermal �u
tuations in
luded, en-ables one to 
al
ulate fusion ex
itation fun
tions in the region of 
ollisionenergies 
lose to the intera
tion barrier of heavy nu
lei, where many traje
-tories have to be 
al
ulated in order to 
olle
t a su�
ient number of thoseleading to fusion. We present here two examples (Fig. 4) of su
h ex
ita-tion fun
tions 
al
ulated for fusion of 86Kr+136Xe and 86Kr+123Sb. In the
10
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Sahm et al.Fig. 4. The upper panel presents the 
omparison of the fusion ex
itation fun
-tion (FEF) for the rea
tion 86Kr+136Xe 
al
ulated applying our potential gradientparametrization method to the dynami
al model (full squares), and this based onthe importan
e sampling method of paper [8℄ (solid line). In the lower panel ex-perimental FEF (empty squares) from the rea
tion 86Kr+123Sb [15℄ are 
omparedwith present 
al
ulations based on the se
ond method (full squares).
ase of the �rst rea
tion whi
h produ
es a 
ompound nu
leus 222Th (up-per panel in the �gure) our 
al
ulations (full squares) are 
ompared withthese of ref. [8℄ (solid line) where the importan
e sampling method [7℄ wasused in the dynami
al model to 
al
ulate probability of very rare fusion
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an see these two meth-ods are in reasonable agreement. Some dis
repan
ies observed for ECMsmaller then 217 MeV 
an be due to statisti
al errors. In the lower panel ofFig. 4 
omparison of our 
al
ulations is made with experimental 209Fr fusionex
itation fun
tion [15℄ (empty squares). As seen from Fig. 4 the experimen-tal 
urve extends to lower bombarding energies and this part of ex
itationfun
tion is not reprodu
ed by the model 
al
ulations. On the other handfusion probabilities at higher in
ident energies (>212 MeV) are quite wellreprodu
ed by the model and in this energy range model seems to workreasonably well. Similar observation was made re
ently in Ref. [8℄. Amongfa
tors whi
h 
an be responsible for su
h disagreement one 
ould point outEinstein�Smolu
howski relation implemented to the model. This theoremworks at moderate ex
itation energies while at the lowest 
ollision energiestypi
al ex
itation energies are below 20 or even 10 MeV. For su
h low valuesof ex
itation energies Einstein�Smolu
howski relation probably needs somemodi�
ations as suggested by the nonperturbative transport theory [16℄.Other possible sour
es of dis
repan
y are dis
ussed in Ref. [8℄.4. Summary and 
on
lusionsIt has been shown that the fusion pro
ess of two heavy nu
lei has to betreated as a dynami
al one, where thermal �u
tuations 
oupled to ma
ro-s
opi
 degrees of freedom (shape parameters) play important role in the
ase of fusion of heavy and super heavy nu
lei [8℄, [14℄ e.g. they modify ina substantial way fusion ex
itation fun
tions. Su
h a 
oupling 
an be takeninto a

ount by introdu
ing a Langevin for
e, Lqi(t), to the deterministi
dynami
s.In this paper we have presented a spe
ial parametrization of 
onservativefor
e used in the model of Ref. [6℄. Appli
ability of su
h parametrization hasbeen presented in problems where one has to 
al
ulate many traje
tories inorder to get quantitative information on fusion ex
itation fun
tions of heavyor superheavy nu
lei. This approa
h takes advantage of large RAM memo-ries of modern 
omputers in tabularizing 
onservative for
e. Computationof su
h a for
e is the most time 
onsuming task of the 
ode. In this way weare able to gain a fa
tor of 10 in the 
omputer time.Authors are indebted to the Polish State Committee for S
ienti�
 Re-sear
h (KBN), for its �nan
ial support (Proje
t No. 2-P03B-114-09). Com-putational part of the work was done at ACK CYFRONET (Proje
t No.KBN/S2000/UJ/015/1998). We would like to thank Professor K. Grotowskifor his 
riti
al remarks.
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