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POTENTIAL GRADIENT PARAMETRIZATIONIN A LANGEVIN TYPE DISSIPATIVE DYNAMICSA. Wieloh, Z. SosinMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand J. BªokiSoªtan Institute for Nulear Studies, 05-400, �wierk, Poland(Reeived February 2, 1999)A parametrization of the onservative fore in the dynamial oales-ene and reseparation model is proposed. This model with one bodydissipation formula, Yukawa plus exponential �nite range potential, andshell e�ets inluded was reently adopted to follow Langevin trajetoriesfor a ollision of two very heavy nulei whih an end up as a ompoundsystem or reseparate. With our parametrization it is possible to speed upmodel alulations by a fator of 10 without loosing auray of trajetoryintegration. This an be of some importane in a ase of Langevin trajeto-ries alulation where many of them have to be traed in order to estimateprobability for a proess of interest, namely a fusion of two very heavy nu-lei at beam energies lose to the Coulomb barrier. Few examples of fusionexitation funtions of heavy nulei alulated with this faster version ofthe omputer ode are presented.PACS numbers: 25.70.�z, 25.70.Jj, 24.60.Ky1. IntrodutionIn reent years a large experimental e�ort undertaken in the GSI lab-oratory sueeded in a synthesis of new Superheavy Elements (SHE) withZ = 110; 111; 112 [1�3℄. All these elements were reated by old fusion ofdi�erent projetiles with a doubly magi nuleus 208Pb as a target. Mea-sured ross setions for prodution of an evaporation residue (ER) appearedhere to be very small. For 278112 it is only 1 piobarn. Suh ross setionis in fat a produt of two omponents: a ross setion for formation of aompound nuleus �CN and a probability PER that the CN will not deexiteinto �ssion hannels. The PER probability an be dedued on a basis of(1087)



1088 A. Wieloh, Z. Sosin, J. Bªokistatistial models where inlusion of a �ssion barrier and binding energiesof individual nuleons enables one to alulate ompetition between �ssionand evaporation residue hannels [4℄. On the other hand theory tells verylittle on values of �CN in the range of small ollision energies harateristifor old fusion. Coulomb repulsion in the entrane hannel beomes here aserious restrition. After the fusion barrier is rossed strutural e�ets areproved to play very important and even deisive role to prevent the systemfrom disintegrating immediately through one of the �ssion hannels. All theway to the CN the system evolves dynamially and onverts its relative ki-neti energy into the internal exitation. In the �rst stage it has to reah thefusion barrier. Where and how along this trajetory a deision is made bythe system to fuse, and what is the minimal energy in the entrane hannelneessary to ross the fusion barrier is so far not known.On the mirosopi level dynamis is governed by rearrangement of indi-vidual nuleons, and from the marosopi point of view it implies that thereis a oupling between olletive degrees of freedom and thermal energy ofthe system, and suh a oupling manifests itself as �utuations of olletivevariables. It seems that the marosopi dynamial model of �wi¡teki [5℄,and Bªoki et al. [6℄, and very reently barrier and fusion probability �u-tuations introdued to this model [7℄ are very well suited for the probleminvestigated here.Evolution of the system on its way to fusion is desribed in a spaeof shape oordinates, and �utuations are introdued by random Langevinfores [8℄. Trajetories are omputed numerially by integration of equationsof motion, what onsumes usually a lot of omputer time. In this paper wepropose to parametrize onservative fores, whih onsiderably redues theomputer time.The paper is organized as follows: in Setion 2 we brie�y reall mainingredients of the oalesene and reseparation model [6℄. Setion 3 explainsnew parametrization proposed for the gradient of the folding potential. Someomparisons with exat onservative fore are also given. In this setion exi-tation funtions for few ases of interest are alulated with the parametrizedversion of the model. In Setion 4 we onlude and summarize.2. Dynamial modelIn the model, shape of the fusing system is assumed to be axially symmet-ri and is parametrized by portions of two usually unequal spheres whih aresmoothly onneted by a quadrati surfae of revolution. For suh shapes alassial ollision trajetory is alulated in a spae of oordinates: �; �;�A,where the �rst one gives information on a relative distane of these twospheres, the seond one informs on a degree of window (nek) opening be-



Potential Gradient Parametrization in a Langevin Type: : : 1089tween spheres and the third one is related to asymmetry of these spheres (forexat de�nition see [9℄ or [10℄). The starting point of eah trajetory orre-sponds to two spheres separated by a distane at whih a nulear attrativefore start to be important (� ' 1:26; � ' 0:0, and �A orresponds to theinitial asymmetry in the entrane hannel). Dynamis of the trajetory isgoverned by a onservative driving fore whih is alulated from the Yukawaplus exponential �nite range interation [11℄ and the Coulomb interation,while energy dissipation is assumed as an one body in a form of the wall andwall-plus-window formula [12℄. In order to follow dynamis of a ollision ina more realisti way another variable, harge asymmetry, �Z , was adoptedin the model [8℄. This means that the evolution in mass and harge of twoolliding nulei an now be traed independently. Finally, after the authorsof Ref. [8℄, a ontribution of shell e�ets has been added into the potentialenergy. These e�ets are espeially important at the ollision energies verylose to the fusion barrier (low exitation energy ase), and for losed shellnulei, as suggested by Myers and �wi¡teki [13℄.In a ollision of two heavy ions one observes onversion of an initial rela-tive kineti energy into internal exitation energy. Due to a oupling betweeninternal and marosopi degrees of freedom, energy dissipation should bedesribed by a mean fritional fore (wall and window formula) and by �u-tuating random fores known as Langevin fores [14℄. These fores originatefrom thermal �utuation e�ets. Correspondingly, to follow evolution of asystem in a ollision proess, equations of motion of the Langevin type haveto be solved [7, 8℄: ddt �L� _qi = �L�qi � �<� _qi + Lqi(t) ; (1)where L = T � V is a Lagrangian (kineti energy minus potential energy,T�V ), < is the Rayleigh dissipation funtion, and Lqi(t) (qi = �; �;�A;�Z)are the Langevin fores of a Gaussian type with zero average values. In asimplest ase of zero angular momentum, trajetory of a ollision is obtainedby integrating numerially four equations of type (1).In the integration proedure we use the Runge�Kutte fourth order meth-od. It is important from the point of view of the omputing time to �nd outwhih term in Eq. (1) is the most time onsuming. It is espeially ruialin the ase of Langevin equations where in order to answer a question whatis the probability of a given proess, e.g. fusion, one needs to alulatemany trajetories, espeially at ollision energies not too large omparingto the Coulomb barrier. In the spae of shape oordinates used here itis not possible to write analytial formulas for the potential energy (threedimensional integral), for the kineti energy (one dimensional integral), andfor the dissipation funtion (one dimensional integral). That means, that ateah point on a trajetory the omputer ode has to alulate numerially



1090 A. Wieloh, Z. Sosin, J. Bªokiall these integrals. We have heked that 90% of the proessor time is usedto ompute eah of the four omponents of the onservative fore: ��V�� ,��V�� , � �V��A , � �V��Z . It is so beause, there is also no analytial formulafor them, and algorithm, whih omputes these partial derivatives, has toalulate the potential energy 8 times in eah time step.3. Tabularization of the onservative foreTo speed up alulations we propose here two methods.i) The �rst (hybrid) method.Eah of the potential gradients is a funtion of four variables, e.g.�V=�� � F�(�; �;�A;�Z), and eah of them has to be tabularized sepa-rately. We will explain our method on an example of F�. The same will betrue for three other gradients. In the �rst step a grid is reated on the plane�; � with a typial dimension 100�100. In eah point on the grid F� beomesa funtion of �A, �Z only. For instane F�(�; �;�A;�Z) = f i;j� (�A;�Z),where indexes i; j denote �; � on the grid, respetively, and �Z , �A are inthe range [�1; 1℄.In fat, physial Langevin trajetories probe only a small part of the�A; �Z surfae. They �utuate around a line �A = �Z . Utilizing thisfat one an rotate the �A; �Z surfae by 450 to a set of new oordinates�0A; �0Z . On this new surfae it is easy to selet this part of the surfaeonly whih is interesting from the point of view of alulation (the Langevintrajetories). Now�0A is in range [�1; 1℄ while�0Z hanges from around �:05to 0:05. We gain a lot by parametrizing only this part of the mass asymmetryand harge asymmetry surfae whih is physially interesting and with suha rotation this part is only one twentieth of the whole �A; �Z surfae.Using now the Taylor expansion, we expand the f i;j� (�0A;�0Z) funtion upto the seond power in �0Z and to the fourth power in �0A with all mixingterms inluded. In this expansion we inlude additionally one term in thethird power of �0Z . Expansion is made around a point: (�0A;�0Z) = (0; 0).This an be written formally as:f�(�0A;�0Z) = f(0; 0) + x0;1�0Z + x0;2�02Z + x0;3�03Z + x1;0�0A + x1;1�0A�0Z+x1;2�0A�02Z + x2;0�02A + x2;1�02A�0Z + x2;2�02A�02Z + x3;0�03A+x3;1�03A�0Z+x3;2�03A�02Z+x4;0�04A+x4;1�04A�0Z+x4;2�04A�02Z ;(2)where xm;n (15 omponents) are the orresponding oe�ients of the Taylorexpansion and we treat them as unknowns. This equation is a linear onein xm;n. To solve it, one has to alulate the potential gradient f� for



Potential Gradient Parametrization in a Langevin Type: : : 1091sixteen points on the �0A; �0Z surfae (sixteen not �fteen beause there isa free term f(0; 0)) thus reeiving 15 linear equations whih are solved withrespet to xm;n numerially with a standard method. In suh a way eah ofthe gradients was parametrized. Typially, for one gradient 100 � 100 � 15numbers are neessary (equivalent of 600 Kb of omputer memory, what isnot so muh omparing to the memory available in modern omputers) andthey are kept as matries in the ode.Now, with suh parametrization we no longer need to alulate threedimensional integrals in eah step of integration along the trajetory, in or-der to ompute any of the �V=��, �V=��, �V=��A, �V=��Z gradients.Instead, when a gradient is needed for a given (�; �; �A; �Z) point, e.g.�V=��, we loate �rst suh a point on the �; � grid then a linear interpo-lation is used to obtain orresponding oe�ients xm;n of the parametrizedgradient �V=�� for a given �; �, and �nally by rotating �A; �Z by 450 andputting them into equation (2) the neessary gradient is obtained. In thesame way all gradients an be alulated. To ompare the quality of suhparametrization with the originally alulated gradient, �V=��, we havesampled the spae (�; �; �A; �Z) in a random way with 2 � 104 points.The result is presented in Fig. 1. For larity the �V=�� is drawn in six
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Fig. 1. Comparison, for di�erent values of �, between exatly alulated potentialgradient �V=�� (solid line), and the one alulated with the hybrid method (emptysquares). Spae �; �;�A; �Z was randomly sampled, and the grid in �; � was100� 100.



1092 A. Wieloh, Z. Sosin, J. Bªokidi�erent regions of � as a funtion of �. Eah point is a mean value over therandomly sampled �A, �Z spae. As one an see, agreement between theexat gradient (full line), and that obtained from the grid (empty squares)is quite satisfatory.ii) The seond method.Alternatively one an span the grid over a whole four dimensional spaeof �, �, �0A, �0Z . For one gradient the grid is 30� 30� 30� 30, what gives8:1 � 105 values. They are kept in a matrix whih oupies 3.24 Mb of theomputer random aess memory (RAM). Beause there are four gradientsone needs 12.96 Mb of RAM. Although in this ase the needed amount ofomputer memory is large, it is still quite easy to have it with present dayomputers.To ompute in a dynamial alulations e.g. the �V=��(�; �;�0A;�0Z)gradient the following interpolation proedure is applied. First we searh fora position of the (�; �;�0A;�0Z) point on the grid. Suppose it has been foundthat � 2 [�i; �i+1℄ , � 2 [�j; �j+1℄, �A 2 [�0kA ;�0k+1A ℄, �Z 2 [�0lZ ;�0l+1Z ℄. For�i, and also for �i+1 one an de�ne a ell: [�j ; �j+1℄, [�0kA ;�0k+1A ℄, [�0lZ ;�0l+1Z ℄.For interpolation between points �i� and �i+1� one �rst make an interpola-tion inside eah ell, and then a linear interpolation between two ells. Thesame method is applied for all gradients. As in the ase of the �rst (hybrid)method we have sampled randomly the spae (�; �; �A; �Z) with 2� 104points, and used the same averaging proedure. Result of that test is de-pited in Fig. 2 showing also a nie agreement with the gradient alulatedin the exat way (using three dimensional integrals).Using gradient parametrizations desribed above, we have performed aseries of tests applying those gradients to the dynamial model representedby the set of oupled equations (see (1)). This was done in the following way:starting from the same initial onditions, i.e. the same system, energy, andangular momentum, dynamis of a ollision was followed either using exatpotential gradients (three dimensional integrals), or using the �rst or seondgrid method. In Fig. 3 two examples of dynamial trajetories are presented,both for entral ollisions (L = 0~): the upper trajetory, leading to fusion,was alulated for the reation 86Kr+136Xe, at a ollision energy EL = 4:25MeV/u (Lab) and the lower one illustrates the oalesene and reseparation(the sission line is drawn as a dashed one) for the system 64Ni+208Pb atEL = 5:25 MeV/u. Trajetories alulated by the original ode are markedas empty squares, the solid line orresponds to the trajetory in whih thepotential gradient was alulated on the grid and the dotted line orrespondsto the trajetory where the onservative fore was alulated with a hybridmethod. For 86Kr+136Xe our dynamis with parametrizations give a verygood agreement with the dynamis of the original ode. For the seond
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Fig. 2. Comparison, for di�erent values of �, between originally alulated potentialgradient �V=�� (solid line), and the one alulated with the seond method (emptysquares). Spae �; �;�A; �Z was randomly sampled over the grid 30�30�30�30.
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Fig. 3. For eah of the reation indiated in the �gure three trajetories are pre-sented. The empty squares orrespond to trajetory alulated with the originalode, dotted line represents trajetory alulated with the hybrid method: with100� 100 grid on the �; � subspae, and the solid line represents trajetory alu-lated when a grid 30� 30� 30� 30 spanned over the hole �; �;�A; �Z spae wasadopted.



1094 A. Wieloh, Z. Sosin, J. Bªokiase, 64Ni+208Pb, it seems that the potential gradient alulated on the gridreprodues the original dynamis better then the hybrid gradient. However,also in this ase we onsider that the agreement of our alulation with theoriginal one is still satisfatory.This faster version of the ode, with thermal �utuations inluded, en-ables one to alulate fusion exitation funtions in the region of ollisionenergies lose to the interation barrier of heavy nulei, where many traje-tories have to be alulated in order to ollet a su�ient number of thoseleading to fusion. We present here two examples (Fig. 4) of suh exita-tion funtions alulated for fusion of 86Kr+136Xe and 86Kr+123Sb. In the
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Sahm et al.Fig. 4. The upper panel presents the omparison of the fusion exitation fun-tion (FEF) for the reation 86Kr+136Xe alulated applying our potential gradientparametrization method to the dynamial model (full squares), and this based onthe importane sampling method of paper [8℄ (solid line). In the lower panel ex-perimental FEF (empty squares) from the reation 86Kr+123Sb [15℄ are omparedwith present alulations based on the seond method (full squares).ase of the �rst reation whih produes a ompound nuleus 222Th (up-per panel in the �gure) our alulations (full squares) are ompared withthese of ref. [8℄ (solid line) where the importane sampling method [7℄ wasused in the dynamial model to alulate probability of very rare fusion



Potential Gradient Parametrization in a Langevin Type: : : 1095events at the lowest bombarding energies. As one an see these two meth-ods are in reasonable agreement. Some disrepanies observed for ECMsmaller then 217 MeV an be due to statistial errors. In the lower panel ofFig. 4 omparison of our alulations is made with experimental 209Fr fusionexitation funtion [15℄ (empty squares). As seen from Fig. 4 the experimen-tal urve extends to lower bombarding energies and this part of exitationfuntion is not reprodued by the model alulations. On the other handfusion probabilities at higher inident energies (>212 MeV) are quite wellreprodued by the model and in this energy range model seems to workreasonably well. Similar observation was made reently in Ref. [8℄. Amongfators whih an be responsible for suh disagreement one ould point outEinstein�Smoluhowski relation implemented to the model. This theoremworks at moderate exitation energies while at the lowest ollision energiestypial exitation energies are below 20 or even 10 MeV. For suh low valuesof exitation energies Einstein�Smoluhowski relation probably needs somemodi�ations as suggested by the nonperturbative transport theory [16℄.Other possible soures of disrepany are disussed in Ref. [8℄.4. Summary and onlusionsIt has been shown that the fusion proess of two heavy nulei has to betreated as a dynamial one, where thermal �utuations oupled to maro-sopi degrees of freedom (shape parameters) play important role in thease of fusion of heavy and super heavy nulei [8℄, [14℄ e.g. they modify ina substantial way fusion exitation funtions. Suh a oupling an be takeninto aount by introduing a Langevin fore, Lqi(t), to the deterministidynamis.In this paper we have presented a speial parametrization of onservativefore used in the model of Ref. [6℄. Appliability of suh parametrization hasbeen presented in problems where one has to alulate many trajetories inorder to get quantitative information on fusion exitation funtions of heavyor superheavy nulei. This approah takes advantage of large RAM memo-ries of modern omputers in tabularizing onservative fore. Computationof suh a fore is the most time onsuming task of the ode. In this way weare able to gain a fator of 10 in the omputer time.Authors are indebted to the Polish State Committee for Sienti� Re-searh (KBN), for its �nanial support (Projet No. 2-P03B-114-09). Com-putational part of the work was done at ACK CYFRONET (Projet No.KBN/S2000/UJ/015/1998). We would like to thank Professor K. Grotowskifor his ritial remarks.
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