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As pointed out by Kutschera and Waojcik, very low concentration of
protons combined with a specific density dependence of effective neutron—
proton interaction could lead to a localization of “proton impurities” in
neutron medium at densities exceeding four times normal nuclear matter
density. We study consequences of the localization of protons for transport
processes in dense neutron star cores, assuming random distribution of pro-
ton impurities. Kinetic equations, relevant for the transport of charge, heat
and momentum, are solved using variational method. Localization of pro-
tons removes a T2 factor from the transport coefficients, which leads, at
lower temperatures, to a strong decrease of thermal conductivity, electrical
conductivity and shear viscosity of neutron star matter, as compared to
the standard case, where protons form a Fermi liquid. Due to the local-
ization of protons a number of conventional neutrino emission processes
(including modified URCA process) become inoperative in neutron star
cores. On the other hand, the energy loss rate from neutrino—antineutrino
pair bremsstrahlung due to electron and neutron scattering off (localized)
protons, will have a specific 7% dependence, which could modify the cool-
ing of the neutron star core, as compared to the standard case. Possible
astrophysical implications of the localization of protons for neutron star
evolution and dynamics are discussed.

PACS numbers: 97.60.Jd, 26.60.+c
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1. Introduction

The composition of neutron star matter above three times normal nuclear
density (p > 3pp, where pg = 2.8 x 10'* g cm™3) is largely unknown. Some
many-body calculations suggest, that above 3pg the baryon component of
matter consists nearly exclusively of neutrons, with a small admixture (a
few percent) of protons (see, e.g. models UV14+TNI, AV14+UVII of [1]);
such a composition would be similar to that at p ~ pg. A small admixture
of protons in high—density neutron matter could behave quite differently
than at densities p ~ pg. As shown by Kutschera and Wojcik [2], coupling
of “proton impurities” to the density waves in neutron matter could lead,
above some critical density, to localization of protons in the potential wells
associated with the neutron density inhomogeneities; at smaller densities the
coupling results in a gradual increase of the proton effective mass [2]. We
will show in the present paper, that the localization of protons would change
dramatically transport properties of neutron star matter. It would also lead
to the “switching on” of two new neutrino emission processes, which would
influence cooling of a neutron star.

In order to visualize possible effect of the localization of protons, let us
consider the standard case, when nucleons form degenerate normal Fermi
liquids. The transport coefficients of neutron star matter exhibit then char-
acteristic temperature dependences, which result from the combined effect
of the Pauli principle, and the energy and momentum conservation in the
scattering processes [3|. The leading terms in the low—temperature expan-
sions of electrical conductivity, o, and shear viscosity, 7, are proportional
to T~2, while the low—temperature behaviour of thermal conductivity, &, is
given by k oc T 1.

The conventional neutrino emission processes in the standard npe mat-
ter include the modified URCA process and the neutrino—antineutrino pair
bremsstrahlung from nn, np, and pp collisions. In the absence of nucleon
superfluidity the energy emission rates for all these processes vary with tem-
perature as T% (e.g. [4]).

Localized protons will act as scattering centers for neutrons and elec-
trons. In what follows, we assume that the localized protons do not exhibit
a long-range crystalline order (this point is discussed in Section 2). In such
a case, an elementary consideration indicates, that the localization would
give glocP- ploep- o 7O and gl°¢P- o T; one may thus expect a strong
effect of the proton localization on the transport coefficients at lower tem-
peratures, where scattering off protons dominates. As will be shown in this
paper, the localization of protons produces a drastic decrease of the trans-
port coefficients of neutron star cores, as compared to the standard case,
when protons form a Fermi liquid: ¢'°P-/g, n'°¢P-/n ~ 1075 — 1076 T2,
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and K9P /k ~ 1074 T82, for densities around 4pg and for a proton fraction
about 1 % (Ty = T/10® K).

Furthermore, the emission of neutrino—antineutrino pairs in the nn col-
lisions is the only process of the above mentioned, that survives the local-
ization of protons. Instead, there appear the neutrino—antineutrino pair
emission from the scattering of neutrons and electrons off localized protons.
In both cases the rate of this process reproduces the temperature dependence
of the direct URCA process (T%), which, if operative, accelerates drastically
the cooling of a neutron star. As will be seen in Section 6, when neutrons are
not superfluid the neutrino emissivity due to np collisions is approximately
3.5 orders of magnitude larger than that due to ep collisions. Despite the
same temperature dependence, the neutrino emission due to neutron scat-
tering off localized protons is much less efficient than the direct URCA pro-
cess. However, the ratio of the emissivity due to the np bremsstrahlung to
the emissivity due to the modified URCA process (the most important one
among the standard processes in neutron star cores) could be quite large in

the temperature range of interest: Qg;;;c'p'/QmURCA ~2-103 Ty 2, for the
same density and proton fraction. This implies that the proton localization
could lead to an intermediate regime of a neutron star cooling: more rapid
than the standard cooling, provided by modified URCA process, and less

fast than the accelerated cooling due to direct URCA process.

The paper is organized as follows. The physical conditions in neutron
star matter with localized protons are discussed in detail in Section 2. In
particular, we emphasize the similarity between the behaviour of a proton in
neutron matter and a polaron behaviour of slow electrons in solids; we also
present some arguments against a crystalline ordering of localized protons,
and discuss the importance of relativistic effects in the neutron component of
matter. Kinetic equations relevant for the transport of charge, heat and mo-
mentum, as well as variational solutions to them, and analytical expressions
for the transport coefficients, are derived in Section 3. Angular averages
of scattering probabilities, appearing in the expressions for the transport
coefficients, are calculated in Section 4. In Section 5, we improve the varia-
tional solutions to make them asymptotically exact in the high—-temperature
regime and present our results for the transport coefficients in the form suit-
able for practical applications. The neutrino energy emission rates from the
ep and mp bremsstrahlung are estimated in Section 6. Finally, in Section 7
we discuss some astrophysical implications of these results.

Throughout the paper we will mostly use the units A =c= kg =1 and
turn to the normal units whenever presenting the final results.



1100 D.A. BAiko, P. HAENSEL

2. Neutron star matter with localized protons

Consider npe matter at super nuclear densities. The typical kinetic en-
ergy of a proton can be estimated from the uncertainty principle and reads

R2n /3 n T 23 /i,
Ty~ —Le =07 — - 2 21 M 1
P Tomy 07<4n0 0.01) < ;;) eV, 1)

where n is a mean nucleon density, «, is a proton fraction (equal to an elec-
tron fraction z.), ng is the normal nuclear number density, ng = 0.16 fm 3,
and m, is the proton effective mass resulting from the two-body nucleon—
nucleon (NN) interactions.

A proton in neutron matter also has an effective potential energy Vg,
the value of which depends on the neutron density and ranges, according to
different parametrization, from 55 to 75 MeV for n, ~ 4ng (Fig. 1 of [2]).
Taking into account the possible inhomogeneity of the neutron sea we can
write the Hamiltonian of a proton in the form

. RAve Ve [ Oy,
H, = —_— 2
p Zm;; + Veff(nn) + Ny on, < " ) s ( )

where the last term describes the coupling of the proton to the density
waves in neutron matter. The quantity o(ny,) = n,0Veg/On, plays role of
the coupling strength and is of the order 550 — 600 MeV at n, ~ 4ng. On
comparison with the estimate of the kinetic energy, Eq. (1), it becomes clear,
that the coupling to neutron density waves might not be neglected, if one
aims at a realistic description of a proton behaviour in high—density neutron
star matter with low proton fraction [2].

The calculations presented in [2] indicate, that at weak and intermediate
couplings the proton, interacting with neutron density waves (which will be
referred to as phonons, while, basically, these are acoustical modes of neutron
matter), acquires an additional effective mass, which increases gradually
with increasing neutron density. The situation reminds the so—called “large”
polaron in solids, where a slow electron, moving through a crystal, is dressed
into a cloud of virtual phonons, and, consequently, has an effective mass
exceeding its “bare” band effective mass. If the coupling strength increases
further, the polarization of the ion lattice by the electron, could get very
strong. It can eventually be trapped by a local deformation of the lattice,
induced by the electron itself [5]. This latter situation corresponds to a
“small” polaron. If the temperature is sufficiently high the electron can
be then kicked out of the potential well trapping it. However, in the low
temperature regime, the electron could only tunnel slowly through the lattice
and spends most of the time near one ion.
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Let us now come back to the proton moving through the neutron back-
ground. The background polarization, induced by the proton, could be
characterized by its spatial scale R,. With increasing neutron density the
proton—phonon coupling strength o(ny,,) increases, whereas the R, decreases.
The conditions for proton self-trapping are roughly given by two inequalities:
myo(nn)|6n,|R2/nyh? > 1, which ensures, that the potential well formed

D
contains a bound state for a proton, and R, < n, 1/ 3, which allows each

proton to produce its own potential well, and ensures no overlap between
wave functions of different protons.

In order to check if this “small” polaron regime occurs for a proton in
neutron matter one have to perform a detailed calculation. In particular,
one should compare the energy of the state with trapped proton and that of
the state, in which the proton is not localized. The results of calculations
of this type has been reported in Ref. [2|. These authors evaluated the
energy of a Wigner—Seitz cell with homogeneous distributions of neutrons
and a proton versus that of the cell with proton wave function localized near
the center of the cell and a neutron distribution having minimum at the
center. The parameters, characterizing the deviation of those distributions
from the homogeneous ones, has been treated as variational. It was found,
that above some critical density (ranging from 4 to 9 ny depending on the
model; from now on we will adopt the most optimistic model and assume
the critical density to be ~ 4ng) there existed a domain of the parameters,
where the localized state was energetically preferable to the uniform one.
Therefore, above this density, and provided R,, the rms radius of the proton
probability distribution corresponding to the minimum energy, is sufficiently
small, the protons most likely are in effective potential wells trapping their
wave functions. The typical value of R, at 4ng is about 1 fm and typical
depth of the well is ~ 100 MeV. The mean distance between protons

~1/3
~p B35y ([ P f 3
I =M <4n0 0.01 " ®)

while the energy of the zero—point vibration of a proton in the well is Ty ~
42(R,/1 fm)? (mp/m,) MeV. Thus, we see that at densities above 4ng and
for sufficiently low proton fraction, say 1-5 %, the wave functions of the
protons are well localized around the neutron density minima, and there is no
overlap between them. This, in turn, means that there is no need to invoke
Fermi statistics to describe the proton system. The temperature, when falls
below, say 10 MeV, is negligible compared to the relevant energy scale in
the proton—trapping well, so that the protons occupy the lowest available
energy levels, and other (degenerate) particles scatter off them elastically.
The proton could then only tunnel through the neutron background with
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very low probability, and in what follows, we will neglect the possibility of
such events.

Let us discuss in some detail the astrophysical scenario of the formation
of a dense neutron star core, where one might expect the localization of
protons. According to the standard scenario of the formation of neutron
stars in a gravitational collapse of massive stellar cores, initial temperature
in the central core of a newly born neutron star is T' ~ 30 MeV. Moreover,
due to neutrino trapping in dense hot plasma, initial proton fraction is very
high, z, ~ 0.3. Both a high value of z, and a high value of T" exclude
possibility of the localization of protons. It may take place after the neutron
star core becomes transparent to neutrinos, and the core temperature falls
to the range of < 10 MeV. One could ask a question, whether the proton
impurities could be ordered during the localization process due to some long—
range interaction? We immediately find, that Coulomb energy, estimated
as,

e? n Zp 1/3
Bepp~ — =03 —-22) M 4
Cop ~ =03 <4n0 0.01) v 4)

is negligible compared to the potential energy, felt by a localized proton in
its effective well, or the energy, resulting from the Fermi motion of protons
before the localization point. However, it is not excluded, that some corre-
lation of proton sites could be induced by a long-range correlation resulting
from (strong) nuclear interactions in the neutron sea. A detailed discus-
sion of this possibility is difficult and goes beyond the scope of the present
paper. One could recall only, that the localization occurs at rather high tem-
perature, implying large thermal fluctuations, and it is uneasy to imagine a
long—range correlation, originating from strong (that is short—range) forces,
with energy scale of several MeVs. Therefore, we think that neutron star
matter with localized protons is formed as a disordered system and remains
locked in this disordered state during subsequent cooling. In what follows,
we will assume that the positions of localized protons show no long-range
crystalline order: localized protons will be treated as randomly distributed,
spatially fixed scattering centers for neutrons and electrons.

Transport processes in neutron star matter with localized protons are
carried out by electrons and neutrons. For simplicity, we will not allow for
the presence of muons. Their inclusion would lead to some modifications of
the kinetic equation formalism (see, for details, the paper by Gnedin and
Yakovlev [6], where the thermal conductivity of pey component of neutron
star core matter was studied under standard assumptions) but would not
alter qualitatively the main results of this paper.
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The Fermi energy of electrons is given by

4ng  0.01

Typical energy of Coulomb ee and ep interactions are on the order of Ecp,
(4), that is much smaller than ep.. Therefore, electrons should be treated
as a free, uniform, ultrarelativistic, and strongly degenerate (ep, > T)
Fermi gas. Transport of energy, momentum and charge is carried out by
the elementary excitations in electron gas — thermal electron quasiparti-
cles. Electron quasiparticles are approximated by the excited single—particle
states in a free electron gas, close to the Fermi surface [i.e. with momenta

n Z 1/3
ere = 113.4 (— : —p> MeV . (5)

close to kpe = (37r2ne) 1/3], with effective mass given by m; = ep.. The pair
interaction between electron quasiparticles is described in the formalism of
the dielectric function, the details of which are outlined in Section 3. Here
we mention only, that since usually we have T' < 0.1ep, in the neutron stars
cores, the effect of dynamical screening can be neglected.

Neutrons, by contrast, form a strongly interacting Fermi system. We
will consider the case, when neutrons are normal (non—superfluid). Trans-
port processes involving neutrons can then be described in the spirit of
the Landau theory of normal Fermi liquids. Namely, transport of energy
and momentum is carried out by the neutron quasiparticles — elementary
single—particle excitations in the vicinity of the Fermi surface. As we re-
strict ourselves to strongly degenerate neutron matter, the gas of neutron
quasiparticles is dilute. The Fermi momentum of neutron ql/lasiparticles co-
)1

incides with that of the real neutron matter, kp,, = (3772nn ? The neutron

quasiparticle velocity at the Fermi surface is given by

han _

Vpn = 0.56 [l(l - xp)] Y (6)

4n0 7*1 ’

where m;, is the neutron quasiparticle effective mass. We see, that at den-
sities of interest (we will confine ourselves to densities below 5ng), and
with z, < 1, neutrons gradually become relativistic, although not very
much; nevertheless, we will take neutron relativism into account. In the
non-relativistic system the effective mass of neutron quasiparticles m; =
Prn /vy differs from bare nucleon mass my due to many—body effects. Here
it should also include relativistic effect. Using Lorentz invariance arguments
one obtains, in the reference frame of neutron matter, m} /ep, = 1 + F} /3,
where e, is the neutron chemical potential, which includes neutron rest
mass, and Fy is the Landau parameter.

Actually, the presence of proton impurities leads to the appearance of
neutron density inhomogeneities. These inhomogeneities will slightly mod-
ify the mean-field, felt by an incident neutron quasiparticle (the de Broglie
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wavelength of which is generally smaller than the sizes of the inhomo-
geneities), inducing a continuous drift of the quasiparticle in the momentum
space. We note, that these inhomogeneities are restricted to a very small
fraction of the volume (Rp/a,)® ~ 0.01, and are concentrated around the
proton impurities. The latter produce sudden changes in neutron momenta,
thus making a dominant contribution to the scattering. The contribution
from the inhomogeneities would account for a correction to the off-proton
scattering, which, in principle, could be included into np scattering transi-
tion probability. However, in view of the anticipated smallness of this effect,
we will neglect it.

3. Kinetic equation

Transport of charge, heat or momentum is limited by scattering of the
elementary excitations (quasiparticles) off localized protons and by their mu-
tual collisions. Among the latter we neglect those caused by weak en electro-
magnetic interaction, which enables us to study transport properties of elec-
trons and neutrons separately. The distribution function of electrons satisfies
the standard time-independent Boltzmann equation, valid for ideal gases,
(e.g. Ref. [7]), whereas the neutron distribution is governed by the time—
independent Landau equation, which takes into account a self-consistent
mean field depending on the quasiparticle distribution itself. However, a
proper linearization (e.g. Ref. [8]) reveals that the quantity of real signifi-
cance for the transport processes (the deviation of the distribution function
from the local equilibrium one) satisfies the linearized Boltzmann equation,
which allows a unified treatment for electrons and neutrons. We have

v10r ff, = Lii + Lip, (7)
eEaklfkl = Iee + Iep (8)

where fg, is the distribution function in question, i = {n,e}, E is an ex-
ternal electric field, vy is the velocity of quasiparticles, which is assumed to
be independent of coordinates, and k; is the quasiparticle wavevector. On
the right hand sides of these equations we have integrals of particle—particle
and particle—proton collisions which can be written as

(2m)*

1 2
I; = ) /dk?dkgdk; 0E - €)0(K' — K) Lii 5 > 14l (9)

0207 0%
2mny, , , 1 9
I, = o) /dk1 ol —e1) 5 > Ayl

! <1
apo0y

X [fkfl(l—fkl)—fkl(l—fkfl)}- (10)
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In this case, non—primed and primed variables correspond to particles before
and after a collision, respectively, A;; and A;, are the transition amplitudes
of the 47 and 4p scattering processes, containing all exchange contributions,
L;; is the standard “two fermion” Pauli factor, and n, is the density of
localized protons. In the first integral the factor 1/2 serves to avoid double
counting of the final states in a collision event. In the second one the same
factor accounts for the fact that the density n, already includes protons with
both possible spin orientations.

It is useful to cast the spin sums in the preceding equations in a more
symmetric form:

% > A :i > JAil® = Qi (11)

o200, 01020} ),

with analogous expression for Q.

If the distribution functions are known, the kinetic coefficients can be
found by calculating the currents induced in the system by the spatial gra-
dients or the external field. We have

2
Jr = W/dk fr (e —p)v=—kVT, (12)
. 2
Je = W/dk fke’U:O'E, (13)
2 Qux
Oy = W/dk Fro s vy = —na—z, (14)

where £ is the thermal conductivity, o is the electrical conductivity, 7 is the
shear viscosity, and u is a bulk velocity, which is assumed to be directed along
the z—axis and to be dependent only on the y coordinate (thus satisfying
div w = 0). Further, jr, j., and oy, are, respectively, the heat flux, the
charge flux and the zy—component of the dissipative part of the stress tensor.

In the presence of the spatial gradients we approximate the true distri-
bution functions on the left hand side of the Boltzmann equation (8) by the
local equilibrium (le) distributions as

w(e) = [1+eXp %] _1, (15)
le(e) = [1+exp w]_l. (16)

Simple estimates [8] show that it is a plausible approximation provided
the typical scales of the gradients of temperature or bulk velocity are large
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compared to the quasiparticle mean free path [. On the left hand side of
Eq. (8) we use the global equilibrium distribution f°(g). Corresponding
condition of applicability reads |eEl| < T.

On the right hand side we adopt the following decomposition of the true
distribution functions in terms of the f9:

f2 =0

] (17)

f Kyo,n — f 0 +

In this case @, is an unknown function of energy and angular variables,

which represents a nonequilibrium correction to the distribution function.

It is clear that the nonequilibrium term should be tied to the Fermi surface.

The dependences on angular and energy variables can be separated and
the functions @ can be looked for in the form

&, = —1;j¥(x)vVT,
&, = 1,¥,(z)vEe,
@77 = —Tii!pn(x) ’UV(kU,) (18)

In this case a dimensionless function ¥, represents a dependence on energy
[z = (¢ — p)/T|, while angular dependences are uniquely determined by the
left hand sides of Eqs. (7), (8); i is a constant, which has the meaning of a
typical time between the collisions of identical particles.

Omitting standard details which include the linearization of the collision
integrals Egs. (9), (10) with respect to the small nonequilibrium corrections
(17) and integration of the momentum and energy conserving delta func-
tions, we arrive at the one—dimensional equation for the functions ¥,,:

2 7'('2
galen) 00— 1) = T 01— )0 ()

o0

1 +x
+ / dizs f{)fgllig%(@)

— e T1—T2
+ T (1 = 10) (1 = wa) Palz1), (19)

where « runs over k,0, and 7, gx(z1) = 21, and g, = 1. The expression
for the characteristic collisional time is given by

873

PTG o

Tii =
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where the angle brackets denote an angular averaging of the form

dod 0
Qi) = [ T S Que.o). 1)
(47)

In this case, the angles 6 and ¢ specify a collision of identical particles in the
Abrikosov—Khalatnikov frame of reference. Namely, 0 is an angle between
momenta, of first and second incident particles, and ¢ is an angle between
planes, containing two incident and two final momenta. The other quantities
characterizing 71—type collisions are

A = (Qii (0, ¢) (1 4+ 2cos b)),
<Qu>
Ay = @ ><Q“(0 ,$) (3sin?0/2 sin? ¢ — 1)), (22)
and A, = —1. The latter relation corresponds to the fact that ee collisions

do not limit the transport of electric charge.
A characteristic time between collisions of a particle with localized pro-

tons reads
2

Tip = ————F——~

P npmz( sz<sz> ’
where in the case of ip—collisions the angle brackets stand for an averaging
according to

(23)

™

<sz> 1 /dX SlnXQzP( ) (24)
0

x is a scattering angle of a particle colliding with a proton. Finally, the
efficiency of ip—collisions is described by the quantities w, defined as:

W = Wg =—

<sz> <Q2p( )COSX>7

wy = <sz> (Qip(x) 5 (3cos® x — 1)). (25)

Egs. (19) can be solved exactly if either particle—proton collisions dominate
(7 > Tip) or in the opposite case. In the former situation we have simply
Vo(r) = gol®)Tip[Tii(1 — wa)] 1. If, in contrast, the ip—collisions are neg-
ligible the exact solution is nontrivial and can be obtained with the aid of
a method developed by Brooker and Sykes [9] and by Hgjgaard Jensen et
al. [10]. Finally, it is possible to find variational solutions [7] for the functions
¥, at arbitrary value of the ratio 7;;/7;,. This is done by assuming specific
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dependences of these functions on = (¥, « z,¥,, = const), which are con-
sistent with symmetries of Eq. (19), and by subsequent determination of the
unknown coefficients on integration of the equation over z; within infinite
limits (the thermal conduction equation must be, in addition, multiplied by
21). The resulting expressions are:

.o _1
U (r) = [% 72 (3 —X\e) + ;—Z (1- wn)] z, (26)
.o _1
Tonle) = 3720000 4 (w1

When the functions ¥, are known the calculation of the transport coefficients
becomes straightforward. We insert Eqgs. (17), (18), (26), and (27) into Egs.
(12)—(14) and find

2
T
Ki = , (28)
3m; (Vi + Vsip)
2
oo = — (29)
M Vgep
* oo 2.
N = _ M NiVp (30)

D (Vm'i + Vm'p) .
In this case v, are the effective frequencies of particle—particle collisions:

m*3T? 3 3— X
wii = —— (Qii) 3 — A\g) = = Upii ———, 1
v pon (@i B = Ae) =5 1+, (31)

while v,;, are those of particle-proton collisions:

1 1l—w
Vkip = §"pm;'kkFi (Qip) (1 — wi) = vyip #7
U

Vgep = Vgep- (32)

The above variational expressions for the transport coefficients are exact
in the limit when ip—collisions dominate. However, in the opposite limit the
variational method appears to be not very accurate (most notably for the
thermal conductivity). The exact formulae of refs. [9,10] differs from ours by
some factors, depending on the parameters A. We will come back to those
factors and correct our equations in Section 5. Now we turn to a calculation
of the angular integrals which appear in the above equations for the effective
frequencies.
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4. Scattering probabilities
4.1. Electrons

Let us summarize briefly the main assumptions that facilitate the angu-
lar averaging for electrons in Eqgs. (21)-(22), and (24)-(25). The electron—
electron scattering is described adequately by a Coulomb potential, screened
by modifications of the charge density induced in the vicinity of each charge.
This screening, being purely electron (as the protons are fixed and in no
way respond to a small perturbation), is represented by a dielectric function
€(w,q) [(w,q) — is a 4-momentum transfer in a collision event| and results
mainly in a strong suppression of the collision probability when the momen-
tum transfer ¢ is smaller than ¢rr = 2/« /mvpe kp. — the Thomas—Fermi
wave number (here « is the fine-structure constant). When w < gv (where
v is a typical velocity of electrons) the screening is static and the dielectric
function may be approximated by [12]

). e

where u = ¢q/2kp., and we took into account that electrons are ultrarelativis-
tic. In practice, the required smallness of energy transfers for a degenerate
system puts limit on its temperature: T € qUpe ~ @TFVUFe = \/§Tpe, where
Tpe is an electron plasma temperature. In terms of the degeneracy parameter
for the ultrarelativistic system this means that T' < 0.1¢p — the condition
we assume to be met.

Furthermore, one can easily verify that it is reasonable to approximate
the right hand side of the Eq. (33) for any ¢ < 2k, by the formula

u2

——1In

3

1—u 2

14w

21— 3u? 1—u

e(O,q)zl—F%(—— ln‘

u2

3 6u

2
(0,q) =1+ 4F (34)
€ ’q + q27

valid strictly only for small momentum transfers ¢ < 2kp.. Even with the
latter simplification the integrations in Egs. (21), and (22) remain cumber-
some. However, for ultrarelativistic particles the ratio y = qrr/2kre is a
small number and, for practical applications, it is sufficient to retain only
the lowest order terms of expansions of the sought-for quantities in y. In
this way we obtain
3rd et 1
(Qee) = TN @a Ak = BEE Ay = —1+10y°. (35)

The resulting expressions for partial electron—electron thermal conductivity
and viscosity coincide with those obtained by other authors (e.g. Refs. [6,11])
in the ultrarelativistic limit.
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The treatment of the electron—proton collisions is somewhat simpler.
First of all, here, the electron screening is always static (unless, of course,
the temperature is large enough to excite the protons at their sites). The
situation with proton—proton correlations is not quite certain. According
to the arguments given in Section 2, we assume that the proton system is
completely disordered. Under such conditions the problem of ep scattering
is very similar to the scattering of electrons off impurities which was studied
e.g. by Flowers and Itoh [11]. In this case the integrations can be performed
exactly at any degree of electron relativism and at any y, but again only
the lowest order terms in y in Eqs. (24), and (25) are needed. The exact
expressions can be found in [11]|, however, the formula for viscosity obtained
in this work is slightly inaccurate. For this reason we give here both exact
and approximate expressions for the shear viscosity and an approximate
formula for the thermal and electrical conductivities:

2met

R we = 1+4y*(Iny+1), w, =1+12y*(ny+1.25). (36)

<er> =

The exact expression for the viscosity reads

4 2
(Qep) (1 —wy) = 1]2%6 {[1 +20%(1 + B°) + 3y 8] hﬂ%
Fe
o B0
2-5 3, (37)

where 8 = vp,/c.
Finally, we note that the results obtained for ep scattering, remain un-
changed, if the protons are fully spin polarized.

4.2. Neutrons

Contributions of neutrons and protons to the thermal conductivity and
viscosity for the standard non-localized model of matter in neutron star cores
were studied by Flowers and Itoh [13]. In the case of nucleon contributions
a great deal of uncertainty is related to the description of the scattering pro-
cesses. It is impossible to make use of the Landau theory for nn scattering,
since at present we do not know values of the momentum dependent quasi-
particle amplitudes in the density range of interest. Yet even worse is our
understanding of scattering of a neutron quasiparticle at the Fermi surface
off a localized proton.

Another approach, fundamentally cruder, but able to supply us with
the desired physical input, consists of a neglect of an influence of many-
body effects on the scattering amplitudes. This means that we base our
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consideration on the data on nucleon—nucleon (NN) scattering in vacuum.
An obvious disadvantage of this approach is an inappropriate treatment of
the short-range repulsive part of the NN interaction: being to some extent
screened in a collision of quasiparticles, it is well sampled in a collision
of bare nucleons. Therefore, such a method is expected to overestimate
the role of the collisional processes in limiting the neutron transport, thus
underestimating the transport coefficients. Although, following this second
way, we hope that it must yield correct order-of-magnitude estimate of the
neutron transport coefficients, we warn the reader that our results can be a
few times less than the actual values of the quantities in question.

Within this framework the transition probabilities for nn collisions at
any degree of relativism are easily reconstructed from vacuum differential
cross sections in the center-of-mass (cm) reference frame, namely:

16724 dony

0,¢) = Elab, dem), 38
an( ¢) m?v+k%nsin20/2dﬂcm( lab (]50 ) ( )
where
k2
By = ﬂ(l —cosf), and ¢y = o, (39)
my

are the collision energy in the laboratory (lab) reference frame and the cm
scattering angle.

The situation is more problematical for the case of np collisions. Under
the condition that neutrons are not relativistic, the transition probability
for the scattering of a neutron off a localized proton (which can be thought
of as a neutron scattering off an external field describing by the same np
potential) can be again derived from the differential cross sections of np
scattering in vacuum as

_ 1672h* dopy

np(0) = Elabs $em), 4
Qnp(0) - d-Qcm( labs Pem) (40)
where
2k,
By, =—"2, and ¢em = 6. (41)
my

However, with growing relativism, such a procedure ceases to be adequate, as
the scattering off an instantaneous external potential becomes different from
the scattering of two particles (the case studied in a laboratory). But for the
densities considered (< 5ng) the neutrons are only moderately relativistic,
and, consequently, we may adopt the above formalism with the natural
modification of the Eq. (40):

1672h*  doy,
m?v + p%n d2em

an (9) = (Elaba ¢cm)- (42)
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We have calculated the required angular averages of the transition prob-
abilities [those appearing in the Eqgs. (31), and (32)] using the tables of
vacuum cross sections in the cm reference frame as functions of lab energy
(in the range from 10 to 700 MeV) and cm scattering angle. The tables
themselves for pp and np scattering were obtained by using the partial wave
solution WI96 available in the SAID database [14]| developed at the Vir-
ginia Polytechnic Institute by R.A. Arndt with collaborators. To construct
the nn cross sections from the pp ones the following procedure was used.
First of all we subtracted from the table values the well known values of the
Coulomb cross sections. This gave us reasonable estimates of the nn cross
sections at larger angles but made the tables inapplicable at smaller angles
(e.g. at energies less than 400 MeV the table values at 5° became negative,
indicating the importance of the interference terms). It was tempting then
to extrapolate smoothly the values of the nn cross sections at larger angles
( 2 20° — 40° depending on energy) to the domain of small angles, which
yielded a reasonable estimate of the mn cross sections over the entire an-
gle range. Finally, at zero energy we have used the value of 3030 mb that
followed from the theory of nn scattering length (e.g. Ref. [15]).

The calculations were done for the values of neutron Fermi wave vector
kpp from 1.1 to 2.9 fm™! (ny from 0.5 to 5 mg). To interpolate between
the neighbour nodes of the tables of the cross sections the bilinear interpo-
lation was used. The results of our calculations are fitted with the mean
and maximum errors of the fits less than 1.5 % by the following analytical
expressions:

m% (Qnn) (3 —As) _ 0.3833

- — 652 0.4
5 256 wh4 1mb 23\ /Zn +3.6522,7,
¢ m% (Qnn) (14 Ap) _ 0.1152 N 3.9652,

" 192 wh* 1mb 23 2.499 + 28 /7,
g m% (Qnp) (1 — wy) _ 1.833 1.43022

P 16 7h* 1mb 22 0.3958 + 28’

2
m% (Qnp) (1 —wy) 05663  4.5452,

S 16774 Tmb 2 1276 1 48 (43)

In all these expressions the quantity z, is the neutron Fermi wave vector in
units of 2.666 fm~! (corresponding to density 4ng).

5. Practical formulae

Let us summarize the results, derived in the previous sections, and
present them in the form useful for practical applications. First of all, we
note that the variational solutions obtained could be corrected to yield the
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exact asymptotes in the limit when particle—particle collisions dominate.
This is done customarily by multiplying the partial particle-particle varia-
tional transport coefficients by well-known factors C, depending on the pa-
rameters \,. In the case of electrons Cy(—1/3) = 1.3, while C,)(—1+¢?) ~ 1,
1.e. the variational solution for the shear viscosity is exact for ultrarelativis-
tic electrons. For neutrons the coefficients C, are weakly varying functions
of density. For the considered density range it is a very good approximation
to adopt fixed values of the correction factors C; = 1.2 and (), = 1.05.

Bringing together Eqs. (28)-(32), (35), (36), and (43), and incorporating
the above factors, we may write for the thermal conductivity:

'%i = + sz ’
n T 1 _ rr—

KRee = 221023 <m 061) 'ZTS ergs s 1cm 1K 17
n 1/3

Kep = 2.5-10Y | — ) Ts ergs s 'em 'K 1,
4’]7,0

n_) ergs s ‘em 'K
4

- 2/3

4dng

ergs s lem 'K, (44)

Finp = 8.9-10'7

n —1
X RN
4dng 0.01

for the electrical conductivity:

1/3
O¢ = O¢p = 9.2 1023 <4l . OIS]_) Sil, (45)
and for the shear viscosity: o b

-1 -1 -1
n;, = Ny +77ip )

Kpn = 8.3-10%3 < )

Nee = 1.7-10%

Tan = 1.5- 10

Nop = 2.2-1013

n 1
Nep = 1.1-10" <m-051) g em™ st
< 4
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Let us remind the conditions of applicability of the above expressions.
Both electrons and neutrons must be strongly degenerate. The neglect of
the dynamical screening effect is based on a more stringent condition for
electrons: T < 0.lep,. The electron number density must ensure their
ultrarelativism. Finally, the density of neutrons is restricted to the range
from 0.5 to 5 ng.

6. Neutrino losses

In this section we study two processes, contributing to neutrino cool-
ing, which are specific for neutron star matter with localized protons. The
first of these processes is the neutrino—antineutrino pair bremsstrahlung
due to electron scattering off localized protons. The second process is the
strong-interaction analog of the first one: it is the neutrino—antineutrino pair
bremsstrahlung accompanying scattering of neutrons off protons localized in
neutron medium. The temperature dependence of both these processes is
TS, that is the same as for the direct URCA process. Therefore, the localiza-
tion of protons may imply non-standard (accelerated) cooling of a neutron
star. Below, we will estimate the rate of the energy losses in these processes
under some model assumptions.

(a) Electrons. In the case of electrons we can use the results of Ref. [16].
This paper was concerned with the neutrino-pair bremsstrahlung due to
electron—nucleus scattering in the liquid phase of the neutron star crusts.
The authors derived the following general expression for the energy loss rate
(Eq. (8) of [16])

8nG2 7% C?
Q%rem = W(kBT)GnZL ergs Sil Cm737 (47)

where Gr = 1.436 - 107*° ergs cm? is the Fermi weak coupling constant,
factor Ci = 1.675 takes into account the emission of v,,v,, and v, Z is the
nucleus charge, n; is the number density of nuclei, and the quantity L =~ 1,
interpreted as a Coulomb logarithm, is a weakly varying function of Z, T,
and n;. The authors derived also the general formula for L [their Eq. (19)],
which takes into account the nucleus electromagnetic formfactor, the static
structure factor of nuclei, static electron screening, non-Born corrections and
incorporates accurately the thermal effects. They also proposed an analyt-
ical fitting formula for L [Eq. (25)]. In our case we have obviously Z =1
and n; = n,. The fit of [16] does not apply here (the authors were interested
in the crust and considered Z > 10). Besides, in our situation the tem-
perature is much lower than the screening momentum, the low-temperature
case of [16]. In this regime the thermal effects are not important and L is
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given by much simpler formula (21) of [16]. In this expression we can ne-
glect non-Born corrections and nucleus formfactor as well as nuclei structure
factor (because our proton system is assumed to be fully disordered), and
approximate static dielectric electron screening function by Eq. (34). Per-
forming one-dimensional integration for ultrarelativistic electrons, we obtain
L = 1.755. Inserting this value into Eq. (47) we obtain

e—loc.p. 18 6 n Te ] _3
Brem = 6.0-10"° Ty <4n0 0.0 ) ergs s =~ cm °, (48)
where Ty = T/10° K.

(b) Neutrons. In this subsection we will obtain an expression, which will
enable us to estimate the energy loss rate due to neutrino pair emission from
neutron scattering off a localized proton. To simplify the derivation we will,
first, regard the neutrons as fully non-relativistic, and, second, will treat
np-interaction in a very crude manner, assuming it to be given by a contact
spin-independent potential, which will be treated in the Born approximation.
The interaction strength U will further be made density-dependent by fitting
it at a given density (or, equivalently, at a given collision energy) to the total
vacuum np cross-section, known experimentally or theoretically (see below).
No correction of the np scattering rate to account for the presence of the
medium (except for the exclusion principle in the initial and final neutron
states) will be made.

The process in question, in the formalism of Feynman diagrams, is de-
scribed (to lowest order) by two diagrams, (A) and (B). In both cases, we
consider an initial neutron with 4-momentum k = (¢, k). In the case of di-
agram (A), this neutron first emits a neutrino—antineutrino pair with total
4-momentum p = (w,p) = k1 + ko, where k1 = (w1, k1) and ko = (w9, k2)
are, respectively, 4-momenta of neutrino and antineutrino, then propagates
with 4-momentum k — p and finally interacts strongly with a localized pro-
ton, absorbing 4-momentum ¢ = (0,q) and ending in the final state with
4-momentum k' = (¢/,k’). Diagram (B) corresponds to the situation, in
which neutron first interacts strongly with a localized proton, then propa-
gates with 4-momentum k' + p, and, finally, emits a neutrino—antineutrino
pair of total 4-momentum p, ending in the final state &’.

We will use nonrelativistic formalism (for neutrons) to describe the weak-
interaction vertex, take non-relativistic neutron Green functions, when deal-
ing with the intermediate states, and nonrelativistic spinors for neutron ini-
tial and final states. Then the first order matrix element assumes the form

1GrU

X (040 = 948,i07)x [G(k—p) + G (K +p)] 1", (49)
2v/2
where g4 & 1.26 is the axial renormalization constant, greek indices take the
values 0, 1, 2, 3, and latin indices take the values 1, 2, 3, o; are the standard

M = My+Mp = —
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Pauli matrices, x and x’ are the Pauli spinors, describing the initial and
final neutron states. Further, [# is the neutrino neutral current given by

M =y (147 )u_s, (50)

where u; = u(k1) and u_y9 = u(—k9) are respectively neutrino and antineu-
trino bispinors, and bar means Dirac conjugate. In our problem the denom-
inators of the neutron propagators G cannot be zero. Hence, we can replace
them by the vacuum propagators, in spite of the fact, that our process goes
in the presence of neutron Fermi sea. Nonrelativistic neutron propagator
takes therefore the form

1

k)= ———.
Clok) = e 0

(51)

The neutrino pair energy loss rate (in erg cm™3 s™1) is given by

n—loc.p. __ dk dk’ dk, dk, dq
Brem - 37Lp 40.110.12 (27’(’)15

xf(l—=fw Y [MP, (52)

m) W (k4 q — K — ky — ky)

where ny, is the number density of localized protons, f = f(g) and f' = f(¢')
are the neutron Fermi—Dirac distribution functions, and the summation runs
over final and initial neutron spin states. A factor of 3 accounts for the
emission of v,,v,, and v, pairs.

Calculating the spin-summed squared matrix elements in the straight-
forward manner and using the identity [17]

dk; dk -
/ L2 YD (p — Ky — k) = 5 (p%g" + 2pt'p"), (53)

w19
we obtain the following expression for the emissivity

- TG%U?n
e = T [ akak ap (1 - £)wsghe? + (1 - 20207

x4m? < L ! )2, (54)

2mnw — 2pk' — p2  2maw — 2pk + p2

where we have replaced the integration over dg by that over dp. In this
expression we must integrate over the domain, where ¢/ < ¢ and for |p| <
w = € — €. In the denominators we can safely omit the terms p?/2m,,
which are negligible compared to w, and using the fact that neutrons are
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nonrelativistic, we can expand the denominators to first order in pk'/m,,
and pk/my. Then we direct the z-axis of the spherical reference frame
along the vector k and place the vector k' into the zz-plane. Integrations
over dp and over angle between vectors k and k' yield the emissivity in the
form of two-dimensional “Fermi” integral

2 7172 ® 0\ 2
Brem 21(27{')8 ( + * gA) n

« /d5d5’|k||k’|(k2+k’2)f(1 Pt

167G%U?n,, o [(mE)?
= —F _P(1422 n) o gd T

o0

X_Zo dx/dw = H)‘(‘ﬁm — (55)

0

where we have taken into account that neutrons are strongly degenerate
and have pulled all the smooth functions of the neutron momenta out of the
integral at the Fermi surface. The latter integral is standard and is equal to
(2m)%/504. Substituting this value into Eq. (55) we obtain

_ G2.U? m\ 2
e = S (1 2268) (22) b (56)
The last step is to specify the value of U2. For the contact spin-independent
np interaction U? gives differential probability of elastic neutron scattering
off a localized proton (the same for all angles 6). Our approximation consists
in expressing U? in terms of the total elastic cross section for np scattering
in vacuum, using Eqgs. (40, 41). Integrating over the solid angle we have

16724 22
ArU?% = ij apoel- <—F"> : (57)
my my

In this case, ot <l is the total elastic np cross section which can be obtained

from the same theoretical model as in Section 4.2., WI96, in the SAID
database. We propose the following fitting formula for U? in the energy
range from 100 to 700 MeV:

47h* 1 mb 444
T2 st where S 5

np’
my

U? =

(58)

n

and z, is defined below Eq. (43). The mean error of this expression is
~ 1.2% and the maximum error occurring at 700 MeV is = 2.9%. Combining
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Egs. (56) and (58), we obtain the following numerical result:

nloc.p 91 ot n Zp Ny, 43 7\ 2
Brem np <4’n0 001) <4’I’L0) <mn)
><T96 ergss~ ' em ™3, (59)

Medium effects can be expected to modify both the magnitude and the den-
sity dependence of U?, as compared to that given by our simple prescription,
Eq. (58). Therefore, expression (59) should be treated as a rough estimate
of anloc.p.

Brem

7. Astrophysical implications

As one can see from the results obtained in the preceding sections, pres-
ence of randomly distributed localized protons, removing the 72 factor
from the transport coefficients, leads at lower temperatures to a dramatic
decrease of k, o, and 7, as compared to the standard case, where protons
form a Fermi liquid. Let us discuss in some detail the astrophysical impli-
cations of this effect for neutron stars.

(a) Thermal conductivity. In our case transport of heat is dominated by

electrons, which scatter predominantly off localized protons, so that x!°¢P- ~

loc.p. loc.p. . . :
ke P~ Kepy . Let us compare this result with the values of x corresponding

to the standard case. The latter are expressed by the formulae derived in [6]:

7.6 - 1024 1/2 7/6
ke = ————— <mp) <E) ergs cm s 1K1 (60)
Tg my n0
for non-superfluid p, and
5.6 - 102
Ke = T <Z—Z) ergs cm ™ s IK ! (61)

for highly superfluid p, the decisive difference between the two regimes being
the presence or absence of proton screening. At n = 4ng and z, = 0.01 we
thus get
ke (5+10)-10°
Kloc.p. T82

(62)

The diffusive thermal conductivity due to neutrons is generally on the order
of or somewhat smaller than that of electrons. (The actual ratio between
them depends sensitively on (i) the fraction of electrons, (i7) the nucleon
effective masses, and (774) the strength of quasiparticle interactions; in the
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: . loc.p. . .
non-superfluid regime sy, " may serve as a good approximation of the neu-

tron conductivity.) Thus we can accept the value of 10*/T¢ as a reasonable
estimate of the ratio /K9P

Neutron stars are born as very hot objects which cool subsequently due
to neutrino losses from their interior. The cooling is accompanied by thermal
equilibration of the stellar interior with a typical time scale, determined by
the size of the core Rcgre, the specific heat per unit volume C, and the
thermal conductivity of matter k as

R2
coreC
~N —,

K

Tt.e. (63)
For estimates, in the standard non-superfluid case we can set C' = C,, the
specific heat of degenerate neutrons,

. 1/3
C, =2.6-10% <:nn—;) <4nTno> Ty ergs cm K™ (64)

and approximate & by k. (60). Approximating further all the effective masses
by bare masses and assuming a core of constant density (n ~ n, = 4ng) and
composition (z, = 0.01) we obtain 7 ~ 460 T¢ (Reore/10 km)? years. If
the core is superfluid we may use for C the specific heat of electrons Cl:

C,=6.6-108 [ 1. Le
€ <4n0 0.01

2/3
) Ty ergs cm K1, (65)

and take s from Eq. (61). This gives us 7o, ~ 10 T¢ (Reore/10 km)?
years (the latter relation should be regarded as a lower bound, as the neu-
tron specific heat could decrease rather slowly depending on the type of
superfluidity [18]). The temperature dependence of both those expressions
is removed by the localization of protons. Multiplying 71 by the factor
K /KCP (62) we obtain 7o equal to 4.6 - 10* (RiotP /10 km)? years and
103 (Rlc%(ﬁép'/ 10 k]rn)2 years for non-superfluid and strongly superfluid cases,
respectively.

The thermal conduction becomes important when the above time scales
are comparable or smaller than a characteristic time of thermal evolution
of matter due to neutrino losses. Otherwise, the temperature of a given
element of matter is determined locally. The neutrino cooling time scale
could be estimated as CT/e,, where ¢, is the total neutrino emissivity.
The temperature dependences of ¢, for various neutrino-emission processes
are usually very strong. In view of this, the equilibration temperature for
the case of proton localization will not be much smaller, than that for the
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standard case; in both cases the temperatures fall to the range of 10%-
10° K. However, the time required to reach the thermal equilibrium in a
core, containing localized protons, will be two orders of magnitude longer
than that for a standard liquid core. The latter conclusion will not be
changed by the appearance of neutron superfluidity.

Another difference between the two cases comes from the simple idea that
the thermal equilibration time in the localized protons case is temperature
independent. While in the standard case the core below ~ 108 K could be
treated as perfectly isothermal, it will still take ~ 10% — 10* years to wash
out any accidental temperature inhomogeneity in the core with localized
protons.

(b) Electrical conductivity. The electrical conductivity is relevant for the
ohmic dissipation of internal magnetic fields in neutron stars. In the stan-
dard case of npe matter with non-superfluid protons the charge transport
is dominated by ultrarelativistic electrons, scattering off protons, which re-
sults in an electrical conductivity oep = 2.1 x 103! (n./ng)>? /T s~ [19].
Localization of protons prevents the appearance of a proton superconductor
(as the localization temperature is rather high, of the order of 100 — 10!
K, which is commonly believed to be higher than T,,) and at n = 4n¢ and
T = 0.01 reduces the electrical conductivity of neutron star matter by a
large factor

Oep _ 2-10°
Uleoc.p. - T82

(66)
Such a low value of electrical conductivity would lead to a significant decay

of the electric currents, circulating within the core with localized protons,
over a time scale of

) Uloc.p.( loc.p.)2 loc.p. 2
7_doc.p. . Ze core ~3. 107 core years. (67)

c? 10 km

Current analyses of the population of radio pulsars do not show any
evidence of magnetic field decay during active lifetime of a normal radio
pulsar [20]. Specific lower bounds on the magnetic field decay timescale,
obtained using various types of statistical analyses, range from 2 x 107 years
to 10% years [20]. To be consistent with this observational fact, we should
assume that either the core with localized protons is small, and the bulk of
the field is sustained by the currents, circulating in the outer part of the
core; either the external field is separated from the internal field, and the
observable bounds for the decay of the surface field put no evident constraints
on the evolution of the core field; or that the core magnetic field is due not to
electric currents but results from a permanent ferromagnetic magnetization
of the matter. Actually, as demonstrated by Kutschera and Wojcik [21,22],
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ferromagnetism due to a complete spin polarization of protons and a partial
spin polarization of neutrons (of the order of z;,) could be a generic property
of the neutron star matter with localized protons (for a confrontation of this
theoretical prediction with observations of radio pulsars, see [23]).

(c) Shear viscosity. The localization of protons leads also to a strong
decrease of the shear viscosity of neutron star matter. Assuming normal
neutrons, we can estimate the value of 5 of standard npe matter by the
quantity n}fﬁ'p'. The localization of protons will result in a decrease of n by
a factor

n__T7-10°

nloc.p. - T82

In contrast to the standard case 1'°°P- is temperature independent. This
might be relevant for stability of rapidly rotating neutron stars. In the stan-
dard case of the npe matter, n increases with decreasing temperature as 72.
Dissipative effects due to 1 contribute to damping of the secular instability
driven by the gravitational radiation reaction (GRR) [24,25] in rapidly ro-
tating neutron stars. Detailed calculations show, that viscous effects of n
damp completely the GRR secular instability, if internal temperature falls
below 107 K [26]. However, within a neutron star core with localized pro-
tons, the shear viscosity remains constant and close to the value of the shear
viscosity of standard npe matter at T ~ 10" K [see Eq. (68)]. Such a low
value of the shear viscosity could not prevent the growth of the GRR secular
instability at any internal temperature of a neutron star [26].

(d) Neutrino cooling. At the earlier stages of the evolution matter with
localized protons cools emitting neutrinos via two reactions involving only
nucleons, and several reactions, which involve also electrons. The two nucle-
onic reactions are the neutrino—antineutrino pair bremsstrahlung in the nn
and np collisions. The first process (e.g. [4]) is common for both standard
and localized protons models of matter, and the rate of energy emission in
this process varies with temperature as T®. The second nucleonic process
is modified drastically by the localization of protons: its emissivity becomes
proportional to T, reproducing the temperature dependence of the direct
URCA process. Nevertheless, the np bremsstrahlung remains several or-
ders of magnitude less efficient than the direct URCA (Qg;eloc'p' /Q4uRrRcA ~
3-1075). On the other hand, at temperatures below ~ 10§HK its emissiv-
ity exceeds that of the modified URCA (Qg;elglc'p'/QmURCA ~2-10° Ty ?)
process, which, in turn, is thought to govern the cooling in the standard
(non-localized) model, when the direct URCA is forbidden by the momen-
tum conservation law. Thus, one might expect that cooling of a neutron
star with significant fraction of mass being in the phase with localized pro-
tons would follow some intermediate path between the curves describing the
standard (modified URCA) and accelerated (direct URCA) cooling.

(68)



1122 D.A. BAiKO, P. HAENSEL

As is any nucleonic process, the np bremsstrahlung is subject to strong
suppression, if the neutron superfluidity appears. In this case, the neutrino
pair emission from the scattering of electrons off localized protons serves as
a dominant mechanism of cooling of a neutron star core.

(e) Final remarks. In this subsection we will come back to the problem
of a crystalline ordering of localized protons and comment on the values of
the transport coefficients in this case. As discussed in Section 2, we consider
this possibility unlikely, however, see Ref. [27]. For temperatures below 1
MeV the phase space available for phonons (in the proton crystal) is small
(as T3). Then the transport of energy, charge and momentum would be
limited by ee, nn, and, in the case of the electrical conductivity, by en col-
lisions. This means that all the transport coefficients would be even larger
than those in the standard case and would reproduce the standard (Fermi
liquid) temperature dependences. The situation would be complicated by
the band structure of quasiparticle states, however, this would further in-
crease the transport coefficients by reducing the phase space available for
scattering quasiparticles.
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