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It is argued for the hypothesis that the SDYM equations for the Moyal
bracket algebra (the master equation ) is in a sense a universal integrable
system. We show how the su(N) SDYM equations, the KP equation and
the integrable equations in two dimensions can be encoded in the master
equation.

PACS numbers: 02.60.Lj

1. Introduction

In an interesting paper by Mason [1] it has been suggested that the
heavenly equation of self-dual gravity may be a universal integrable system.
Here we intend to argue for the hypothesis that the universal integrable sys-
tem is, perhaps, defined by the Moyal deformation of the heavenly equation
lifted to siz dimensions (the master equation ). The master equation can be
also considered to be the SDYM system for the Moyal bracket algebra. It
is known that the Moyal bracket algebra appears to be the most general
2-index infinite Lie algebra [2] and it contains the Poisson algebra as well
as the su(N) algebra [3]. To find the master equation we first deal with the
su(N) SDYM equations in R* of the metric (4+ + ——)

ds? = 2(dz ®, di + dy ®, dj) . (1.1)
These equations read [4]
me =0, Fjg =0 and Fu;+ Fygj =0, (1.2)

where F,, e su(N) @C®(RY), u,ve{r,y,%,7}, denotes the Yang—Mills field
tensor. Then, as
Fo=[0,+A,0,+A,) (1.3)

(863)



864 M. PRZANOWSKI, S. FORMANSKI

(A, e su(N) ®C°°(R*") stands for the Yang-Mills potential) one finds (1.2)
to read

OpAy — 0yAy + Az, Ay =0, (1.4)
0: Ay — 05A; + [Az,Ag] =0, (1.5)
0y Az — 03 A, + 0y Ay — 05 Ay + [As, Az] +[Ay, Aj] = 0. (1.6)
From (1.4) it follows that there exists the gauge such that

A, =0=A4,. (1.7)
Thus we get
Oz Az +0yA; = 0. (1.9)
From (1.9) one infers that
Aj = —8y9 and Ag = Bme, (1.10)

0 = 0(z,y,1,9) e su(N) ® C®(R").
Inserting (1.10) into (1.8) we obtain [4-9]

0,050 + 0,030 + (0,6, 0,0) = 0. (1.11)

It is also well known that Eqs. (1.8), (1.9) can be derived from the following
Lax pair [10]

(AOy + 0z)hn = —Azta,
(—)\a;p—f-ag)?ﬁ)\ = —AQQ/J)\, AeCP. (1.12)

We generalize (1.12) to the Moyal *-product algebra . Thus we write

ih(ADy + 0z)px = —az * px,
ih(=X0y + 05)px = —ag*¢px, AeCP!, (1.13)

where ¢y, azand a; are functions of (h, z,y, Z, 9, p, q) ; the Moyal * -product
is defined by [11-13]

fixfa: = frexp <zh H) fa,
90

8 8
= 1.14
dqdp 819 dq’ (1.14)

e
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(h is the deformation parameter). The integrability conditions of the system
(1.13) read
dzag — 9gaz +{az, aghv =0, (1.15)

Ogaz + 8yag =0, (1.16)
where {-,-}nm denotes the Moyal bracket [11-13]

Ji1* fa = fax f1)
sin <g ?) fa. (1.17)

1
{fi, falm = >

—~

= N

St no

From (1.16) we get

a; = —0y0, and aj=0,0,
0 =0(hz,y,2,7,p,q) - (1.18)

Consequently, inserting (1.18) into (1.15) one finds the master equation [9,14]
0,030 + 0y0;0 + {0,0,0,0}u =0. (1.19)

From the Lax pair (1.13) and from (1.18) it follows that under the assump-
tion that the functions

az = @y * (A9, + 85)(,0;1 ,
aj = @y *ih(—\0y + 837)(,0;1
(prx @y =1) (1.20)

are independent of A, the solution ¢, and © are related by

—9,6 = ihg1 * (9y + 9z)e1 ",
0,0 = ihpy * (—0; + 9) 7t (1.21)

Now we recall how the master equation (1.19) can be reduced to the heavenly
equations (for details see [9,14]). Assume first the following symmetry

(0 — 0:)0 = 0 = (9, — 05)6. (1.22)

Consequently, equation (1.19) takes the form of the Moyal deformation of
the Husain—Park equation

20 + 070 4+ {0,60,0,0}h = 0. (1.23)
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Hence, if © is analytic in A, i.e.,

O => W6y,
n=0
then
"lilr%{am@, 8y@}M = {(91-@0, ay@()}p s (1.25)
—

where {-,-}p stands for the Poisson bracket, and (1.23) yields
a,%@o + (9;@0 + {(91-@0, ay@()}p =0. (1.26)

This is exactly the Husain—Park heavenly equation [15,16].
The symmetry

(0s — 05)0 = 0 = ;0. (1.27)

leads to the Moyal deformation of Grant’s equation
920 +{0,0,9,0}u = 0. (1.28)

Analogously, if
(Op — 0q)0 =0 = (0y — 0,)0 (1.29)

then one gets the Moyal deformation of Plebariski’s second heavenly equation
and, under (1.24), the second heavenly equation [18]

8,0:00 + 9,0500 + 0200020 — (9,0,600)* = 0. (1.30)

Similar considerations lead to the first heavenly equation or to the Cauchy-
Kovalevskaya form of the second heavenly equation (see [9]). Concluding,
we have found the reduction of the master equation (1.19) to the heavenly
equations.

In Section 2 we show how the Lie algebra representation of the Moyal
bracket algebra onto su(V) algebra leads from the master equation to the
su(N) SDYM equations or to the chiral model equations.

Section 3 is devoted to the reduction of the master equation to the KP
equation. In Section 4 we show that the Lax equation for the function de-
pendent on two variables can be written in the form of our master equation.
Finally, some concluding remarks close the paper.
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2. From the master equation to the su(IN) SDYM
and chiral models

To start with we recall some results of [3] where the basis of the su(NV)
algebra, which appears to be useful for our purpose, has been investigated.
Define two N X N matrices

1 0 0 ... 0
0O w 0 ... 0
S:=yw| 0 0 w? ... 0 ,
00 .0 wh =1
271 Vo Y]
w:=exp| — w=exp| —
P N ) p N/
0O 1 0 0
0 0 1 0
T:= . ,
0o 0 o0 ... 1
-1 0 .0 ... 0
SN=rTVN=-1, T-S=wS-T. (2.1)
Define n
Ly := ;—wm2m2 S™MT™2 = (my,me)eZ X Z . (2.2)
T

The matrices L, have the following properties

Lﬁ‘z+NF — (_1)(m1+1)T2+(m2+1)T1+NT1T2Lm

Tr Lz = 0 except for m; = mgo =0mod N . (2.3)
.N2
Tr L= (—1 ro4r1+NriT2 7’_ 24
wre= (1) Al (2.4
IN  axm
LuLi = o Lyt s
XM : = nymg — Namy , (2.5)
N . m_,

[Lm, Lﬁ] = ? sm(ﬁm X n)Lm_i.ﬁ . (26)

Moreover, as ST = S~! and TT = T~ we get (see also (2.5))

N 2
LL =L 5= < ) Lt (2.7)

2
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Finally, from formulae detS=detT = (—1)" it follows that

iN\ "N
det Ly := (—1)N<m1+m2+m1m2>< ) : (2.8)

27

It has been shown in [3] that N? — 1 matrices L, 0<pu <N-1,0<
w1 < N —1 and i # (0,0), span the su(N ) algebra. (Henceforth, the Greek
indices fi,7,..., etc. are assumed to satisfy the above conditions).

Now we deal with the basis of smooth functions on the 2-torus 72

By, := exp[i(mip + m2q)] (2.9)

m = (m1,m2)eZ x Z and (p,q)eT?.
Employing (1.14) and (1.17) one quickly finds the relations

.
Em * Eﬁ = exp <%7’?L X ’fi) Eﬁﬂ_ﬁ, (210)
2 . (h,
{Em, Eﬁ}M = ﬁ s §m Xmn En'ﬁ,—i—r'i . (211)
Take the deformation parameter i to be
27
h=—. 2.12
N (2.12)
Then (2.11) reads
N (m_,
{Eg, B = —sin (Nm X n) B (2.13)

Comparing (2.13) with (2.6) we are led to the linear mapping of smooth
function on T2 onto su(N) defined by the linear extension of the following

mapping

X Egine +—  Lggpye= (—1)0tDretuethrsNnr (2.14)
Eng — 0,
where, as before, i = (p1,2), 0 < 3 < N—-1,0 < puo < N —1, and
i # (0,0), and 7 := (r1,7r9)eZ X Z.
Using (2.3), (2.6) and (2.13) one easily finds that the mapping (2.14)
defines the Lie algebra homomorphism of the Moyal bracket algebra on T?

with h = 2% onto su(N).
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Let © = O(h;z,y,%,9,p,q) be a solution of the master equation (1.19)
onV xT? V C R* and let

m

be the Fourier expansion of ©. Substituting s = 5 into (2.15) and employ-
ing (2.14) we get

o 27 o o
6= Q(Naxayaxay) =X <@ <F;xayaxayapa q)) = Zgﬁ(Naxayaxay)Lﬁa
i
(2.16)
where

0= 0a(N; 5,1, 5, ) =3 (—1) Uttt DN g, (%” yy)
r
(2.17)
As x is the Lie algebra homomorphism the su(N)-valued function defined
by (2.16) and (2.17) fulfills the su(N) SDYM equation (1.11) on V.
Conversely, every analytic solution of Eq. (1.11) can be obtained in this
way. Indeed, let the su(N)-valued function

0 =0(N;z,y,%9) =Y 05(N;z,y,%,9) Lz (2.18)
i
be the analytic solution of Eq. (1.11) for the following analytic Cauchy data

p = p@,y,9 Zpuwyy =0(N;7,9,%,9) |z=z ,

o= :Eyy Zoﬂmya (a +a) (N’:L‘aya:iag) |£‘i:fL‘
(2.19)

Define the functions p;i ni = pﬁ+NF(SE, y,Y) and Oji+N7 = Uﬁ+NF(Ia y,9) by
(compare with (2.17))
5 Z(_1)(m+1)T2+(M2+1)T1+NT1T2Pﬁz+NFa
7
6,1' — Z(_1)(,u1+1)T2+(#2+1)T1+N7“17“2Um+NF_ (2_20)

-
T
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Let @(QWW; z,Yy, T, 7, p,q) be the unique solution of the master equation (1.19)
in R* x T? for h = %” and for the Cauchy data

2T

@(F;xaya:iagapaq) |fi::L‘ = Zpﬁ+NFEﬁ+NF7
B
(02 + 0)O(N; 2,9, 2,9) |a=e = Y OprneFainr- (2:21)

P
H,T

From our previous considerations it follows that the su(N)-valued function
x(©) fulfills the su(N) SDYM equation (1.11) for the Cauchy data given
by (2.19). Consequently, by the uniqueness of the solution of the Cauchy
problem for Eq. (1.11) we conclude that x(©) = 6, where 6 is defined by
(2.18). Gathering, one arrives at the theorem

Theorem 2.1
Let

0= @(ha Iayaiagapa q) = Z @Tﬁ(ha Iayaiag) eXP[i(mlp + qu)] (222)

m

be a solution of the master equation (1.19) on V x T2,V C R*. Then, the
su(NV)-valued function

0 =0(N;z,y,%,7)

2
-3 (Dt o (s |
i \ 7

(2.23)

is the solution of the su(N) SDYM equation (1.11) on V. Conversely, every
analytic solution of Eq. (1.11) can be obtained in this way. O

Consider now an especially interesting case when the solution © has the
symmetry (1.22) i.e., it is of the form

O =0hz+%,y+79,0p,q). (2.24)

In this case, as we know the function @ satisfies the Moyal deformation of
the Husain-Park equation (1.23) and then the su(N)-valued function 6 =
O(N;x+ Z,y + ) defined by (2.23) appears to be the solution of the su(NV)
principal chiral equation in two dimensions

020 4 930 + [0,0,0,0] = 0 (2.25)
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(see [19, 20]). Moreover, if N — oo then i = 2 — 0. Assuming that ©
given by (2.24) is analytic in / we find that the function

G0 =6(z+Z,y+9,p,q) =002+ 2,y +7,p,q) (2.26)

fulfills the Husain-Park heavenly equation (1.26). From (2.23) one concludes
that

Jim O(N;z+ i,y +7) = %0:0) 0:(0;z + &,y +§)L; . (2.27)
(0,

These results can be interpreted as follows;

If O(h;z + %,y + 1, p, q) is a solution of the master equation on V x T?,
V C R*, analytic in h, then the sequence of su(N) chiral fields 6(N;x +
T,y +9) = X(@(%;x +Z,y+9,p,q)), for N =2,3,... tends (in general)
to a curved space in the limit.

This is a partial answer to Ward’s question [21] (see also [22]).

Another interesting case corresponds to the integrable chiral equations
in 2-+1 dimensions [23-26]. Here the following symmetry is assumed

9y — 03)0 =0 (2.28)

i.e., © is of the form © = O(h;z + &,y,7,p,q). Consequently, by Theo-
rem 2.1, the su(N)-valued function 6 defined by (2.23), 8 = O(N;z + %, vy, )
fulfills the chiral equation in 2+1 dimension

920 + 0,050 + (0.0, 0,0) = 0. (2.29)

Remark: The proof of the second part of Theorem 2.1 is based on the
Cauchy-Kovalevskaya theorem. Consequently, this part has been proved
under the assumption that the solutions are analytic. However, we suppose
that it holds for the general case.

3. From the master equation to the KP equation

Consider the pseudo-differential operator [27-29]

A
L=0+4Y un(tr,ta,..)0 ",  0:=0,. (3.1)

n=1

Define the following operators
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A A
where [R]4 stands for the projection of the pseudo-differential operator R

A A
onto differential part, i.e., [R]+ denotes the part of R containing non nega-
tive powers of 0. Then the KP hierarchy is given by the Lax equations

%:[gmﬁ}, n=12,... (3.3)

(About KP hierarchy see also [5]).
Alternatively, the KP hierarchy can be defined by the zero-curvature
conditions

A A A A
Ot Bn —0ty B +| Bu B | =0, mn=12..  (34)

One quickly finds that for n =1 or m = 1 Eq. (3.4) appears to be trivial.
Now, for the further convenience we put

q = t1 . (35)

Then the operators 2 and l/’;’n, n = 1,2,... can be considered to be the
operators acting in the Hilbert space L2(R'). Therefore one can use the
machinery of the Weyl-Wigner—Moyal formalism [11-13, 30-33].

In particular the Weyl correspondence W~ gives

A
Wil :Bn— Bn = Bn(hapa q,t2,13,.. )

+00 .
::/<q—§ q+§>exp<%)d§, n=12,... (3.6)

A
Bn 9 7

Define
by, := —ihB,, n=12,... (3.7)

Thus Eq. (3.4) can be equivalently written in the following form
8tmbn —8tnbm+{bm,bn}M =0, m,n=12,... (38)

An especially interesting case is when m = 2 and n = 3. Straightforward
calculations give

b2 = %pQ — 2z'hu1 s

1 1
by = > + 3puy — 3ih <§Bqu1 + UQ) . (3.9)

n2
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Then Eq. (3.8) for m = 2 and n = 3 reads
Op, b3 — Orba + {b2, b3} = 0. (3.10)
Substituting (3.9) into (3.10) one gets
40y,u1 — 39401, u1 — 604,uz — Oguy — 12u3Oquy =0, (3.11)

—30u1 + 302u1 + 695uz = 0. (3.12)

Differentiating (3.11) with respect to ¢ and (3.12) with respect to to and
comparing the results one gets the well known KP equation

0q (40, u1 — 121 0quy — Ojur) = 307, uy . (3.13)
Eq. (3.10) resembles very much Eq. (1.15). Therefore we put
xr: = tQ, Y= t3,

1 .
Gz = a’i(h;xayapa q) = ﬁp2 - QZHU,

1
—ﬁps + 3pu — 3ihv

aj = ay(h;&,9,p,q) =

Then by (3.9), (3.10), (3.11) and (3.12) one infers that a; and ay defined by
(3.14) fulfill Eq. (1.15) iff,

405u — 60zv — Ogu — 12udu = 0, (3.15)

and
—303u + 60,0 =0. (3.16)

Consequently, as before, we are led to the KP equation
9q(405u — 12udgu — Jju) = 303u,  u=u(q,i,7). (3.17)

It is evident that a;z and ay given by(3.14) fulfill also Eq. (1.16). Gathering,
one arrives at the lemma

Lemma 3.1

The functions az and ay given by (3.14) satisfy Eqs. (1.15)and (1.16) iff
the function u is a solution of the KP equation (3.17) and the function v is
determined by u according to (3.15) and (3.16). O

Let a3 and ag be given by (3.14). Then by (1.18) we find © to be

1 1
O = O(h;z,y,%,7,p,q) = zp” —izyp® + Bzpu + ifi(2yu — 3zv),

T n2
u = u(q,,7), v=u0(q,Z,7). (3.18)
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Finally, employing Lemma 3.1, one concludes that the KP equation is en-
coded in the master equation according to the following theorem

Theorem 8.1

The function ©® = O(k;z,y,T,7,p,q) given by (3.18) is the solution of
the master equation (1.19) iff the function u fulfills the KP equation (3.17)
and v is defined by u according to (3.15) and (3.16). O

The above results suggest that other integrable equations can be encoded
in the master equation. We consider this question in the next section.

4. From the master equation to the Lax equation

A
Let I be a pseudo-differential operator constructed by 0 := 9, and by

A
the functions u;(q,9), 1 = 1,2,... . Then, let B, be a differential operator
defined by d and u;, 1 =1,2,... .

The Lazx equation reads

0y 1= By L (4.1)

By means of the Weyl correspondence (see (3.6)) one gets

L= Likp.a.i) =W (L)
Tt (e w
By = By(p.a.g) ="' (B)
_ +/oo<q_ _\ B, ‘q+§> p(%) ac. (43)
Define lim —ihL  and by = —ihB, . (4.4)

In terms of [ and b, the equation (4.1) reads
=05l +{l,b1}m =0. (4.5)
Finally, defining

6 = O 2,y,5,p,q) = —yl + by —ih(yL—aBy)  (46)
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one concludes that the master equation (1.19) with © defined by (4.6) is
equivalent to the Lax equation (4.1).
Examples

(i) The KdV equation
If we put in Egs. (3.15) and (3.16)

v=>0 (4.7)
then we get
Ozu=0 ide, u=u(qy) (4.8)
and
405u — Ou — 12udu = 0. (4.9)

This last equation appears to be the rescaled KdV equation. Indeed, sub-
stituting into (4.9)

Q:=25q, V:=235 and U:=2%u (4.10)
one gets the KdV equation [5]
405U — 95U — 6U0U = 0. (4.11)

Consequently, inserting v = 0 into (3.18) and assuming that u = u(q,y) we
find that the function @

O =O(hz,y,5,p,q) = —h*zp® — K~ iyp® + 3zpu + h2iyu,  (4.12)

fulfills the master equation (1.19) iff u satisfies the rescaled KdV equation
(4.9).

(ii) The Toda lattice equation and the Boyer—Finley—Plebariski equation
A A
Consider the operators [ and B4 to be [29]

A
L = e8 — Ug —’U,leia,
A o
B+ = € — U,
Uy = uO(Qa g)a Up = u1 (Q7 g)a 0:= aq . (413)

Then the Lax equation (4.1) gives

aQU'O(qa g) = Ul(q + ]-a ﬂ) - Ul(q, ﬂ) 5
9u1(q,9) = —ui(q, 9){uo(q,9) —volqg—1,9)} . (4.14)



876 M. PRZANOWSKI, S. FORMANSKI

Eliminating wug in (4.14) and substituting u := In u; one gets the Toda lattice

equation
agu(q’ g) — _eu(q'i'l;g) + 2€u(qag) — eu(q_Lg) A (415)

From (4.2) with (4.13) we obtain
_1 - 1 1 .
L= o —up(g.d) ~ o i (g4 5.5)
By = e P —uy(q,7). (4.16)
Finally, by (4.6) and (4.16) we find © to be
- ) 1 - 1 1
0 =0(hr,y,9,p,q) = lﬁ{(y—w)(e i —ug(q,9)) —yeirPuy <q +§,y)} :
(4.17)

Now one can deform Eq. (4.15) as follows. First, we define (compare with
[29])

1 - ~
L = E{e_p — ’U:()(h, q,y) —ef U’l(h’a qay)}a

1 -
Bi = —f{e? —ug(hiq.g}. (4.18)
Then according to (4.4) one finds
I = —ihL = —e™" +ug(f;q,9) + € ur(hiq,9),
by = —ihBy = —e P +uo(h;q,9}. (4.19)

Consequently, the Lax equation (4.5) gives

N 1 ih ih
Oyuo(h;q,9) = s {m <ﬁ;q+ 54/) —up <ﬁ;q— 5y>} ,

_ 1 5 ih ih
Ogui (h;q,9) = — (h;q,9) {UO <ﬁ;q+ 54/) — ug (ﬁ;q - Ey)} -
(4.20)

Finally, eliminating ug in (4.20) and substituting u = Inu; we get the de-
formation of the Toda lattice equation

1 . ih ~ = . ih o~
agu(h’ q’g) — (Zh)2 {e_u(ﬁﬂﬁ'jhﬁ/) + 2eu(ﬁ7Q7y) _ eu(ﬁ:q—g;y)} A (421)

For i = 1 one gets the Toda lattice equation (4.15), for A — 0 we obtain
the reduced Boyer—Finley—Plebanski equation [34-35]

030(q,7) + 92 @) =0, (4.22)
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where
P(q,y) = lim u(h; ¢, 9) -
h—0
From (4.6) and (4.19) it follows that © leading to (4.21) reads
0 =0(hz,y,§.p.q) = (y—2){e™” —uo(h;q,9)} —ye’ ui(hyq,y). (4.23)
As limp0{-, - }a = {-, - }p one concludes that the function
@0 = @O(Ia Y, gapa q) = (y - I){eip - UO(qa g)} - yep e@(q,g]) (424)

satisfies the equation

ayag@() + {8m@0, ay@()}p =0 (4.25)
iff
agU() = 8,1 e¢,
9,8 = —0,Us (4.26)

(see Eqgs (4.20) with i — 0). Eliminating U, we get the reduced Boyer—
Finley—Plebariski equation (4.22).

5. Conclusions

The main purpose of our paper has been to show that the master equa-
tion (1.19) is in a sense a universal integrable system. We have proved
(Theorem 2.1) that any solution of the master equation on V x T2, V C R*,
defines by the Lie algebra representation a solution to the su(N) SDYM
equations on V.

Conversely, every analytic solution to the su(N) SDYM equation can be
obtained in this manner.

The fundamental problem which should be considered is to generalize
Theorem 2.1 on the cases when one deals with the solutions of the master
equation on V x ¥, where V' C R?* and ¥ is an arbitrary two dimensional
surface.

Such a generalization applied to the results of the Sections 3 and 4 would
enable us to encode the KP equation and other integrable equations in the
SDYM equations (compare with Ward’s hypothesis [5]). We intend to con-
sider this question soon.
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