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SEARCHING FOR A UNIVERSALINTEGRABLE SYSTEMMaiej Przanowski and Sebastian Forma«skiInstitute of Physis,Tehnial University of �ód¹,Wólza«ska 219, 93-005 �ód¹, Polande-mail: mprzan-sg.p.lodz.ple-mail: sforman�k-sg.p.lodz.pl(Reeived May 13, 1998)It is argued for the hypothesis that the SDYM equations for the Moyalbraket algebra (the master equation ) is in a sense a universal integrablesystem. We show how the su(N) SDYM equations, the KP equation andthe integrable equations in two dimensions an be enoded in the masterequation.PACS numbers: 02.60.Lj 1. IntrodutionIn an interesting paper by Mason [1℄ it has been suggested that theheavenly equation of self-dual gravity may be a universal integrable system.Here we intend to argue for the hypothesis that the universal integrable sys-tem is, perhaps, de�ned by the Moyal deformation of the heavenly equationlifted to six dimensions (the master equation ).The master equation an bealso onsidered to be the SDYM system for the Moyal braket algebra. Itis known that the Moyal braket algebra appears to be the most general2-index in�nite Lie algebra [2℄ and it ontains the Poisson algebra as wellas the su(N) algebra [3℄. To �nd the master equation we �rst deal with thesu(N) SDYM equations in R4 of the metri (++��)ds2o = 2(dx
s d~x+ dy 
s d~y) : (1.1)These equations read [4℄Fxy = 0 ; F~x~y = 0 and Fx~x + Fy~y = 0 ; (1.2)where F��" su(N) 
C1(R4); �; �"fx; y; ~x; ~yg, denotes the Yang�Mills �eldtensor. Then, as F�� = [�� +A�; �� +A� ℄ (1.3)(863)



864 M. Przanowski, S. Forma«ski(A� " su(N) 
C1(R4) stands for the Yang�Mills potential) one �nds (1.2)to read �xAy � �yAx + [Ax; Ay℄ = 0 ; (1.4)�~xA~y � �~yA~x + [A~x; A~y℄ = 0 ; (1.5)�xA~x � �~xAx + �yA~y � �~yAy + [Ax; A~x℄ + [Ay; A~y℄ = 0 : (1.6)From (1.4) it follows that there exists the gauge suh thatAx = 0 = Ay : (1.7)Thus we get �~xA~y � �~yA~x + [A~x; A~y℄ = 0 ; (1.8)�xA~x + �yA~y = 0 : (1.9)From (1.9) one infers thatA~x = ��y� and A~y = �x� ; (1.10)� = �(x; y; ~x; ~y) " su(N)
 C1(R4) :Inserting (1.10) into (1.8) we obtain [4�9℄�x�~x� + �y�~y� + [�x�; �y�℄ = 0 : (1.11)It is also well known that Eqs. (1.8), (1.9) an be derived from the followingLax pair [10℄ (��y + �~x) � = �A~x � ;(���x + �~y) � = �A~y � ; � " CP 1 : (1.12)We generalize (1.12) to the Moyal �-produt algebra . Thus we writei~(��y + �~x)'� = �a~x � '� ;i~(���x + �~y)'� = �a~y � '� ; � " CP 1 ; (1.13)where '�; a~xand a~y are funtions of (~; x; y; ~x; ~y; p; q) ; the Moyal � -produtis de�ned by [11�13℄ f1 � f2 : = f1 exp� i~2 $P� f2 ;$P : =  ��q !��p �  ��p !��q ; (1.14)



Searhing for a Universal Integrable System 865(~ is the deformation parameter). The integrability onditions of the system(1.13) read �~xa~y � �~ya~x + fa~x; a~ygM = 0 ; (1.15)�xa~x + �ya~y = 0 ; (1.16)where f�; �gM denotes the Moyal braket [11�13℄ff1; f2gM := 1i~ (f1 � f2 � f2 � f1)= f1 2~ sin�~2 $P� f2 : (1.17)From (1.16) we get a~x = ��y� ; and a~y = �x� ;� = �(~;x; y; ~x; ~y; p; q) : (1.18)Consequently, inserting (1.18) into (1.15) one �nds themaster equation [9,14℄�x�~x� + �y�~y� + f�x�; �y�gM = 0 : (1.19)From the Lax pair (1.13) and from (1.18) it follows that under the assump-tion that the funtionsa~x = '� � i~(��y + �~x)'��1� ;a~y = '� � i~(���x + �~y)'��1�('� � '��1� = 1) (1.20)are independent of �, the solution '� and � are related by��y� = i~'1 � (�y + �~x)'��11 ;�x� = i~'1 � (��x + �~y)'��11 : (1.21)Now we reall how the master equation (1.19) an be redued to the heavenlyequations (for details see [9, 14℄). Assume �rst the following symmetry(�x � �~x)� = 0 = (�y � �~y)� : (1.22)Consequently, equation (1.19) takes the form of the Moyal deformation ofthe Husain�Park equation�2x� + �2y� + f�x�; �y�gM = 0 : (1.23)



866 M. Przanowski, S. Forma«skiHene, if � is analyti in ~, i.e.,� = 1Xn=0 ~n�n ;�n = �n(x+ ~x; y + ~y; p; q) (1.24)then lim~!0f�x�; �y�gM = f�x�0; �y�0gP ; (1.25)where f�; �gP stands for the Poisson braket, and (1.23) yields�2x�0 + �2y�0 + f�x�0; �y�0gP = 0 : (1.26)This is exatly the Husain�Park heavenly equation [15, 16℄.The symmetry (�x � �~x)� = 0 = �~y� : (1.27)leads to the Moyal deformation of Grant's equation�2x� + f�x�; �y�gM = 0 : (1.28)Analogously, if (�x � �q)� = 0 = (�y � �p)� (1.29)then one gets theMoyal deformation of Pleba«ski's seond heavenly equationand, under (1.24), the seond heavenly equation [18℄�x�~x�0 + �y�~y�0 + �2x�0�2y�0 � (�x�y�0)2 = 0 : (1.30)Similar onsiderations lead to the �rst heavenly equation or to the Cauhy�Kovalevskaya form of the seond heavenly equation (see [9℄). Conluding,we have found the redution of the master equation (1.19) to the heavenlyequations.In Setion 2 we show how the Lie algebra representation of the Moyalbraket algebra onto su(N) algebra leads from the master equation to thesu(N) SDYM equations or to the hiral model equations.Setion 3 is devoted to the redution of the master equation to the KPequation. In Setion 4 we show that the Lax equation for the funtion de-pendent on two variables an be written in the form of our master equation.Finally, some onluding remarks lose the paper.



Searhing for a Universal Integrable System 8672. From the master equation to the su(N) SDYMand hiral modelsTo start with we reall some results of [3℄ where the basis of the su(N)algebra, whih appears to be useful for our purpose, has been investigated.De�ne two N �N matriesS := p!0BBBB� 1 0 0 : : : 00 ! 0 : : : 00 0 !2 : : : 0: : : : : : :0 0 :0 : : : !N�1
1CCCCA ;! := exp�2�iN � ; p! = exp��iN � ;T := 0BBB� 0 1 0 : : : 00 0 1 : : : 0: : : : :0 0 0 : : : 1�1 0 :0 : : : 0 1CCCA ;SN = TN = �1 ; T � S = !S � T : (2.1)De�ne L~m := iN2� !m1m22 Sm1Tm2 ; ~m := (m1;m2)"Z � Z : (2.2)The matries L~m have the following propertiesL~m+N~r = (�1)(m1+1)r2+(m2+1)r1+Nr1r2L~m ;TrL~m = 0 exept for m1 = m2 = 0modN : (2.3)TrLN~r := (�1)r2+r1+Nr1r2 iN22� ; (2.4)L~mL~n = iN2� ! ~n�~m2 L~m+~n ;~n� ~m : = n1m2 � n2m1 ; (2.5)[L~m; L~n℄ = N� sin( �N ~m� ~n)L~m+~n : (2.6)Moreover, as Sy = S�1 and T y = T�1 we get (see also (2.5))Ly~m = �L�~m = �N2��2 L�1~m : (2.7)



868 M. Przanowski, S. Forma«skiFinally, from formulae detS=detT = (�1)N it follows thatdetL~m := (�1)N(m1+m2+m1m2) � iN2��N : (2.8)It has been shown in [3℄ that N2 � 1 matries L~�, 0 � �1 � N � 1, 0 ��1 � N � 1 and ~� 6= (0; 0), span the su(N) algebra. (Heneforth, the Greekindies ~�; ~�; : : : ; et. are assumed to satisfy the above onditions).Now we deal with the basis of smooth funtions on the 2-torus T 2E~m := exp[i(m1p+m2q)℄ ; (2.9)~m := (m1;m2)"Z � Z and (p; q)"T 2 :Employing (1.14) and (1.17) one quikly �nds the relationsE~m �E~n = exp�i~2 ~m� ~n�E~m+~n ; (2.10)fE~m; E~ngM = 2~ sin�~2 ~m� ~n�E~m+~n : (2.11)Take the deformation parameter ~ to be~ = 2�N : (2.12)Then (2.11) readsfE~m; E~ngM = N� sin� �N ~m� ~n�E~m+~n : (2.13)Comparing (2.13) with (2.6) we are led to the linear mapping of smoothfuntion on T 2 onto su(N) de�ned by the linear extension of the followingmapping� : E~�+N~r 7�! L~m+N~r = (�1)(�1+1)r2+(�2+1)r1+Nr1r2L~�EN~r 7�! 0 ; (2.14)where, as before, ~� := (�1; �2), 0 � �1 � N � 1, 0 � �2 � N � 1, and~� 6= (0; 0), and ~r := (r1; r2)"Z � Z:Using (2.3), (2.6) and (2.13) one easily �nds that the mapping (2.14)de�nes the Lie algebra homomorphism of the Moyal braket algebra on T 2with ~ = 2�N onto su(N).



Searhing for a Universal Integrable System 869Let � = �(~;x; y; ~x; ~y; p; q) be a solution of the master equation (1.19)on V � T 2; V � R4, and let� = �(~;x; y; ~x; ~y; p; q) =X~m �~m(~;x; y; ~x; ~y)E~m (2.15)be the Fourier expansion of �. Substituting ~ = 2�N into (2.15) and employ-ing (2.14) we get� = �(N ;x; y; ~x; ~y) := ����2�N ;x; y; ~x; ~y; p; q�� =X~� �~�(N ;x; y; ~x; ~y)L~� ;(2.16)where�~�=�~�(N ;x; y; ~x; ~y) :=X~r (�1)(�1+1)r2+(�2+1)r1+Nr1r2�~�+N~r �2�N ;x; y; ~x; ~y�:(2.17)As � is the Lie algebra homomorphism the su(N)-valued funtion de�nedby (2.16) and (2.17) ful�lls the su(N) SDYM equation (1.11) on V .Conversely, every analyti solution of Eq. (1.11) an be obtained in thisway. Indeed, let the su(N)-valued funtion� = �(N ;x; y; ~x; ~y) =X~� �~�(N ;x; y; ~x; ~y)L~� (2.18)be the analyti solution of Eq. (1.11) for the following analyti Cauhy data~� = ~�(x; y; ~y) =X~� ~�~�(x; y; ~y)L~� := �(N ;x; y; ~x; ~y) j~x=x ;~� = ~�(x; y; ~y) =X~� ~�~�(x; y; ~y)L~� := (�x + �~x)�(N ;x; y; ~x; ~y) j~x=x :(2.19)De�ne the funtions �~�+N~r = �~�+N~r(x; y; ~y) and �~�+N~r = �~�+N~r(x; y; ~y) by(ompare with (2.17))~�~� = X~r (�1)(�1+1)r2+(�2+1)r1+Nr1r2�~m+N~r ;~�~� = X~r (�1)(�1+1)r2+(�2+1)r1+Nr1r2�~m+N~r : (2.20)



870 M. Przanowski, S. Forma«skiLet �(2�N ;x; y; ~x; ~y; p; q) be the unique solution of the master equation (1.19)in R4 � T 2 for ~ = 2�N and for the Cauhy data�(2�N ;x; y; ~x; ~y; p; q) j~x=x = X~�;~r �~�+N~rE~�+N~r ;(�x + �~x)�(N ;x; y; ~x; ~y) j~x=x = X~�;~r �~�+N~rE~�+N~r : (2.21)From our previous onsiderations it follows that the su(N)-valued funtion�(�) ful�lls the su(N) SDYM equation (1.11) for the Cauhy data givenby (2.19). Consequently, by the uniqueness of the solution of the Cauhyproblem for Eq. (1.11) we onlude that �(�) = �, where � is de�ned by(2.18). Gathering, one arrives at the theoremTheorem 2.1Let� = �(~;x; y; ~x; ~y; p; q) =X~m �~m(~;x; y; ~x; ~y) exp[i(m1p+m2q)℄ (2.22)be a solution of the master equation (1.19) on V � T 2; V � R4. Then, thesu(N)-valued funtion� = �(N ;x; y; ~x; ~y)=X~�  X~r (�1)(�1+1)r2+(�2+1)r1+Nr1r2�~�+N~r �2�N ;x; y; ~x; ~y�!L~�(2.23)is the solution of the su(N) SDYM equation (1.11) on V . Conversely, everyanalyti solution of Eq. (1.11) an be obtained in this way. 2Consider now an espeially interesting ase when the solution � has thesymmetry (1.22) i.e., it is of the form� = �(~;x+ ~x; y + ~y; p; q) : (2.24)In this ase, as we know the funtion � satis�es the Moyal deformation ofthe Husain�Park equation (1.23) and then the su(N)-valued funtion � =�(N ;x+ ~x; y+ ~y) de�ned by (2.23) appears to be the solution of the su(N)prinipal hiral equation in two dimensions�2x� + �2y� + [�x�; �y�℄ = 0 (2.25)



Searhing for a Universal Integrable System 871(see [19, 20℄). Moreover, if N ! 1 then ~ = 2�N ! 0. Assuming that �given by (2.24) is analyti in ~ we �nd that the funtion�0 = �0(x+ ~x; y + ~y; p; q) := �(0;x+ ~x; y + ~y; p; q) (2.26)ful�lls the Husain�Park heavenly equation (1.26). From (2.23) one onludesthat limN!1 �(N ;x+ ~x; y + ~y) = X~� 6=(0;0)�~�(0;x+ ~x; y + ~y)L~� : (2.27)These results an be interpreted as follows;If �(~;x+ ~x; y+ ~y; p; q) is a solution of the master equation on V � T 2;V � R4, analyti in ~, then the sequene of su(N) hiral �elds �(N ;x +~x; y + ~y) := �(�(2�N ;x + ~x; y + ~y; p; q)), for N = 2; 3; : : : tends (in general)to a urved spae in the limit.This is a partial answer to Ward's question [21℄ (see also [22℄).Another interesting ase orresponds to the integrable hiral equationsin 2+1 dimensions [23�26℄. Here the following symmetry is assumed(�x � �~x)� = 0 (2.28)i.e., � is of the form � = �(~;x + ~x; y; ~y; p; q). Consequently, by Theo-rem 2.1, the su(N)-valued funtion � de�ned by (2.23), � = �(N ;x+ ~x; y; ~y)ful�lls the hiral equation in 2+1 dimension�2x� + �y�~y� + [�x�; �y�℄ = 0 : (2.29)Remark: The proof of the seond part of Theorem 2.1 is based on theCauhy�Kovalevskaya theorem. Consequently, this part has been provedunder the assumption that the solutions are analyti. However, we supposethat it holds for the general ase.3. From the master equation to the KP equationConsider the pseudo-di�erential operator [27�29℄L̂:= � +Xn=1un(t1; t2; : : :)��n ; � := �t1 : (3.1)De�ne the following operatorsB̂n:= h L̂n i+; n = 1; 2; : : : ; (3.2)



872 M. Przanowski, S. Forma«skiwhere [R̂℄+ stands for the projetion of the pseudo-di�erential operator R̂onto di�erential part, i.e., [R̂℄+ denotes the part of R̂ ontaining non nega-tive powers of �. Then the KP hierarhy is given by the Lax equations� L̂�tn = h B̂n; L̂ i; n = 1; 2; : : : (3.3)(About KP hierarhy see also [5℄).Alternatively, the KP hierarhy an be de�ned by the zero-urvatureonditions �tm B̂n ��tn B̂m +h B̂n; B̂m i = 0 ; m; n = 1; 2; : : : (3.4)One quikly �nds that for n = 1 or m = 1 Eq. (3.4) appears to be trivial.Now, for the further onveniene we putq := t1 : (3.5)Then the operators L̂ and B̂n, n = 1; 2; : : : an be onsidered to be theoperators ating in the Hilbert spae L2(R1). Therefore one an use themahinery of the Weyl�Wigner�Moyal formalism [11�13, 30�33℄.In partiular the Weyl orrespondene W�1 givesW�1 :B̂n 7! Bn = Bn(~; p; q; t2; t3; : : :):= +1Z�1 �q � �2 ��� B̂n ���q + �2� exp� ip�~ � d� ; n = 1; 2; : : : (3.6)De�ne bn := �i~Bn; n = 1; 2; : : : (3.7)Thus Eq. (3.4) an be equivalently written in the following form�tmbn � �tnbm + fbm; bngM = 0 ; m; n = 1; 2; : : : (3.8)An espeially interesting ase is when m = 2 and n = 3. Straightforwardalulations giveb2 = i~p2 � 2i~u1 ;b3 = � 1~2 p3 + 3pu1 � 3i~�12�qu1 + u2� : (3.9)



Searhing for a Universal Integrable System 873Then Eq. (3.8) for m = 2 and n = 3 reads�t2b3 � �t3b2 + fb2; b3gM = 0 : (3.10)Substituting (3.9) into (3.10) one gets4�t3u1 � 3�q�t2u1 � 6�t2u2 � �3qu1 � 12u1�qu1 = 0 ; (3.11)�3�t2u1 + 3�2qu1 + 6�qu2 = 0 : (3.12)Di�erentiating (3.11) with respet to q and (3.12) with respet to t2 andomparing the results one gets the well known KP equation�q(4�t3u1 � 12u1�qu1 � �3qu1) = 3�2t2u1 : (3.13)Eq. (3.10) resembles very muh Eq. (1.15). Therefore we put~x : = t2; ~y := t3 ;a~x = a~x(~; ~x; ~y; p; q) := i~p2 � 2i~u ;a~y = a~y(~; ~x ; ~y; p; q) = � 1~2 p3 + 3pu� 3i~v ;u = u(q; ~x; ~y) and v = v(q; ~x; ~y) : (3.14)Then by (3.9), (3.10), (3.11) and (3.12) one infers that a~x and a~y de�ned by(3.14) ful�ll Eq. (1.15) i�,4�~yu� 6�~xv � �3qu� 12u�qu = 0 ; (3.15)and �3�~xu+ 6�qv = 0 : (3.16)Consequently, as before, we are led to the KP equation�q(4�~yu� 12u�qu� �3qu) = 3�2~xu ; u = u(q; ~x; ~y) : (3.17)It is evident that a~x and a~y given by(3.14) ful�ll also Eq. (1.16). Gathering,one arrives at the lemmaLemma 3.1The funtions a~x and a~y given by (3.14) satisfy Eqs. (1.15)and (1.16) i�the funtion u is a solution of the KP equation (3.17) and the funtion v isdetermined by u aording to (3.15) and (3.16). 2Let a~x and a~y be given by (3.14). Then by (1.18) we �nd � to be� = �(~;x; y; ~x; ~y; p; q) = � 1~2xp3 � i1~yp2 + 3xpu+ i~(2yu� 3xv) ;u = u(q; ~x; ~y); v = v(q; ~x; ~y) : (3.18)



874 M. Przanowski, S. Forma«skiFinally, employing Lemma 3.1, one onludes that the KP equation is en-oded in the master equation aording to the following theoremTheorem 3.1The funtion � = �(~;x; y; ~x; ~y; p; q) given by (3.18) is the solution ofthe master equation (1.19) i� the funtion u ful�lls the KP equation (3.17)and v is de�ned by u aording to (3.15) and (3.16). 2The above results suggest that other integrable equations an be enodedin the master equation. We onsider this question in the next setion.4. From the master equation to the Lax equationLet L̂ be a pseudo-di�erential operator onstruted by � := �q and bythe funtions ui(q; ~y); i = 1; 2; : : : . Then, let B̂+ be a di�erential operatorde�ned by � and ui; i = 1; 2; : : : .The Lax equation reads �~y L̂= h B̂+; L̂ i : (4.1)By means of the Weyl orrespondene (see (3.6)) one getsL = L(~; p; q; ~y) := W�1� L̂ �= +1Z�1 �q � �2 ��� L̂ ���q + �2� exp�ip�~ � d� ; (4.2)B+ = B+(~; p; q; ~y) := W�1� B̂+ �= +1Z�1 �q � �2 ��� B̂+ ���q + �2� exp� ip�~ � d� : (4.3)De�ne l := �i~L and b+ := �i~B+ : (4.4)In terms of l and b+ the equation (4.1) reads��~yl + fl; b+gM = 0 : (4.5)Finally, de�ning� = �(~;x; y; ~y; p; q) := �yl+ xb+ = i~(yL� xB+) (4.6)



Searhing for a Universal Integrable System 875one onludes that the master equation (1.19) with � de�ned by (4.6) isequivalent to the Lax equation (4.1).Examples(i) The KdV equationIf we put in Eqs. (3.15) and (3.16)v = 0 (4.7)then we get �~xu = 0 i :e:; u = u(q; ~y) (4.8)and 4�~yu� �3qu� 12u�qu = 0 : (4.9)This last equation appears to be the resaled KdV equation. Indeed, sub-stituting into (4.9)Q := 2 15 q; ~Y := 2 35 ~y and U := 2 35u (4.10)one gets the KdV equation [5℄4� ~Y U � �3QU � 6U�QU = 0 : (4.11)Consequently, inserting v = 0 into (3.18) and assuming that u = u(q; ~y) we�nd that the funtion �� = �(~;x; y; ~y; p; q) = �~�2xp3 � ~�1iyp2 + 3xpu+ ~2iyu; (4.12)ful�lls the master equation (1.19) i� u satis�es the resaled KdV equation(4.9).(ii) The Toda lattie equation and the Boyer�Finley�Pleba«ski equationConsider the operators L̂ and B̂+ to be [29℄L̂ = e� � u0 � u1e�� ;B̂+ = e� � u0 ;u0 = u0(q; ~y); u1 = u1(q; ~y); � := �q : (4.13)Then the Lax equation (4.1) gives�~yu0(q; ~y) = u1(q + 1; ~y)� u1(q; ~y) ;�~yu1(q; ~y) = �u1(q; ~y)fu0(q; ~y)� u0(q � 1; ~y)g : (4.14)



876 M. Przanowski, S. Forma«skiEliminating u0 in (4.14) and substituting u := ln u1 one gets the Toda lattieequation �2~yu(q; ~y) = �eu(q+1;~y) + 2eu(q;~y) � eu(q�1;~y) : (4.15)From (4.2) with (4.13) we obtainL = e� 1i~ p � u0(q; ~y)� e 1i~p u1�q + 12 ; ~y� ;B+ = e� 1i~ p � u0(q; ~y) : (4.16)Finally, by (4.6) and (4.16) we �nd � to be� = �(~;x; y; ~y; p; q) = i~�(y�x)(e� 1i~p�u0(q; ~y))�ye 1i~ pu1�q +12 ; ~y�� :(4.17)Now one an deform Eq. (4.15) as follows. First, we de�ne (ompare with[29℄) L = 1i~fe�p � u0(~; q; ~y)� ep u1(~; q; ~y)g;B+ = 1i~fe�p � u0(~; q; ~yg : (4.18)Then aording to (4.4) one �ndsl = �i~L = �e�p + u0(~; q; ~y) + ep u1(~; q; ~y) ;b+ = �i~B+ = �e�p + u0(~; q; ~yg : (4.19)Consequently, the Lax equation (4.5) gives�~yu0(~; q; ~y) = 1i~ �u1�~; q + i~2 ; ~y�� u1�~; q � i~2 ; ~y�� ;�~yu1 (~; q; ~y) = � 1i~u1 (~; q; ~y)�u0�~; q + i~2 ; ~y�� u0�~; q � i~2 ; ~y�� :(4.20)Finally, eliminating u0 in (4.20) and substituting u = lnu1 we get the de-formation of the Toda lattie equation�~yu(~; q; ~y) = 1(i~)2 ne�u(~;q+ i~2 ;~y) + 2eu(~;q;~y) � eu(~;q� i~2 ;~y)o : (4.21)For i~ = 1 one gets the Toda lattie equation (4.15), for ~ ! 0 we obtainthe redued Boyer�Finley�Pleba«ski equation [34�35℄�2~y�(q; ~y) + �2q e�(q;~y) = 0 ; (4.22)



Searhing for a Universal Integrable System 877where �(q; ~y) = lim~!0u(~; q; ~y) :From (4.6) and (4.19) it follows that � leading to (4.21) reads� = �(~;x; y; ~y; p; q) = (y� x)fe�p � u0(~; q; ~y)g� y ep u1(~; q; ~y) : (4.23)As lim~!0f�; �gM = f�; �gP one onludes that the funtion�0 = �o(x; y; ~y; p; q) = (y � x)fe�p � U0(q; ~y)g � y ep e�(q;~y) (4.24)satis�es the equation �y�~y�0 + f�x�0; �y�0gP = 0 (4.25)i� �~yU0 = �q e� ;�~y� = ��qU0 (4.26)(see Eqs (4.20) with ~ ! 0). Eliminating U0 we get the redued Boyer�Finley�Pleba«ski equation (4.22).5. ConlusionsThe main purpose of our paper has been to show that the master equa-tion (1.19) is in a sense a universal integrable system. We have proved(Theorem 2.1) that any solution of the master equation on V �T 2, V � R4,de�nes by the Lie algebra representation a solution to the su(N) SDYMequations on V .Conversely, every analyti solution to the su(N) SDYM equation an beobtained in this manner.The fundamental problem whih should be onsidered is to generalizeTheorem 2.1 on the ases when one deals with the solutions of the masterequation on V � �, where V � R4 and � is an arbitrary two dimensionalsurfae.Suh a generalization applied to the results of the Setions 3 and 4 wouldenable us to enode the KP equation and other integrable equations in theSDYM equations (ompare with Ward's hypothesis [5℄). We intend to on-sider this question soon.
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