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TRANSFORMATION OF NON-MARKOVIAN KINETICEQUATION FOR TCF TO MARKOVIAN TYPER.M. Yulmetyeva, V.Yu. Shuryginb, and N.R. Khusnutdinovaa Department of Physi
s, Kazan State Pedagogi
al UniversityKazan 21, Mezhlauk Str.1, 420021 Russiab Department of Physi
s, Elabuga State Pedagogi
al Institute,Elabuga 630, Kazanskaya Str. 89, 423630 Russiae-mail: rmy�dtp.ksu.ras.rue-mail: nail�dtp.ksu.ras.ru(Re
eived July 30, 1998)It is shown that the non-Markovian kineti
 equation of relaxation takeson the Markovian form if the non-Markovity parameter (Phys. Lett. A148,199 (1990)) goes to in�nity.PACS numbers: 05.40+j, 02.50.Ey1. Introdu
tionIn the present paper we dis
uss transformation properties of Zwanzig�Mori type equation for Time Correlation Fun
tion (TCF) [1,2℄ in a new way.Spe
i�
ally we are dealing with a transformation of general non-Markov ki-neti
 equation to the Markov stru
ture under relevant behaviour of non-Markovity parameter. This topi
 is very important for solving many ap-plied problems. In parti
ular, it may be used for theoreti
al analysis ofmany spe
tral fun
tions whi
h are experimentally observed by methods ofopti
al, vibrational, magneti
 resonan
e and slow neutron s
attering spe
-tros
opy. For example, the low-frequen
y spe
tra give valuable informationabout longtime irreversible relaxation of spin density �u
tuation in the mag-neti
 resonan
e theory, and about the density �u
tuation in the s
atteringof low energy neutrons, and the �u
tuation of longitudinal and transversalmole
ular �uxes in the transport phenomena in Markov relaxation s
enario.The low frequen
y behaviour of TCF in statisti
al physi
s is 
losely re-lated to the Markovian properties of mole
ular random pro
esses. Startingwith the famous paper by Markov [3℄, the theory of Markov random pro-
esses forms the basis of a great number of statisti
al pro
esses in physi
s and
hemistry (see, e.g., Refs [4�6℄). In physi
s [7�9℄ the Markov pro
esses are(881)
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esses without after e�e
ts. In the theory of random pro-
esses the 
onditional mathemati
al expe
tations play a key role in modernrepresentations of the Markov property. In statisti
al physi
s [10,11℄ begin-ning with the papers by Prigogine [7℄, van Hove [8℄, Zwanzig [1℄, Mori [2℄,and others, the random pro
esses are said to be non-Markov if the kineti
equations for distributions, the density matri
es, the advan
ed or retardedGreen fun
tions, and the TCF's 
ontain 
ollision integral and the kineti
 
o-e�
ients, or the dissipative parameters whi
h des
ribe the entire evolutionof the system. It is most 
onvenient to study the non-Markov properties inthe terms of Green fun
tions and TCF's sin
e they express the importantphysi
al 
hara
teristi
s of a system, su
h as the spe
trum of 
olle
tive ex-
itations, the relaxation times, the attenuation 
onstants, and et
., [10, 11℄,and the TCF's are measured by dire
t methods in spe
tros
opy [6, 11℄.After the papers by Zwanzig [1℄ and Mori [2℄, it be
ame 
lear that thenon-Markovian pro
esses and the statisti
al e�e
ts of ma
ros
opi
 systemsplay a leading role in ma
ros
opi
 systems. It has turned out that the non-Markov pro
esses re�e
t the 
olle
tive properties of systems and of multipar-ti
le intera
tions. However, no methods for rigorous quantitative estimationof memory e�e
ts were available for a long time. The �rst quantitative 
ri-terion for the numeri
al estimation of non-Markovian e�e
ts was introdu
edin terms of TCF in Refs [12,13℄ only. In the later papers [14,15℄ the notionof the spe
trum of non-Markov parameter " and the degree of Markovizationwere de�ned for non-equilibrium pro
esses in a �uid. These parameters arerelated via TCF to the fundamental 
hara
teristi
s of the system su
h asthe memory fun
tion, the memory lifetime, and the de-Markovization.The aim of this paper is to indi
ate various ways for transformation ofthe original non-Markov kineti
 equation of Zwanzig and Mori for TCF'sto the Markov type in response to the non-Markovian parameter " whi
hwas introdu
ed in Refs [12�17℄. It is emphasized that the non-Markovianparameter " regulates the systems relaxation type. The modi�
ation ofkineti
 equation stru
ture for TCF is due to behaviour of this parameter,so that the transformation of originally non-Markovian kineti
 equation forTCF to the Markovian one takes pla
e in spe
i�
 domain of " ("!1).The layout of the paper is as follows. In Se
tion 2 we give the in�-nite hierar
hy of 
onne
ted kineti
 equations for TCF's. In Se
tion 3 wepresent the so-
alled �slow-time� van Hove approximation in terms of thenon-Markovity parameter ". Se
tion 4 
ontains an example of transforma-tion of the general equations for TCF at the delta-like behaviour memoryfun
tions of the n-th and (n+1)-th levels. In Se
tion 5 we introdu
e the ex-ponential majorant of memory fun
tion. The Tauber theorem and Laurentexpansion of the Lapla
e image of memory fun
tion are used in Se
tion 6.The Se
tion 7 gives an example of Markov and non-Markov relaxation s
e-



Transformation of Non-Markovian Kineti
 Equation for: : : 883nario for the mole
ular variables in NMR. The �nal Se
tion 8 
ontains anassessment of the method and the results as well as an outlook on furtherpossible developments.2. In�nite hierar
hy of kineti
 equations for TCF'sThe appli
ation of the equations of non-Markovian type for the des
rip-tion of irreversible phenomena originated in the famous papers of Zwanzig [1℄and Mori [2℄. Following the Zwanzig-Mori assumption, we 
an derive thein�nite 
hain of non-Markovian kineti
 equations for the time 
orrelationfun
tion M0(t). It has the following form when the system did not have theeigen-frequen
iesdMn(t)dt = �
2n+1 tZ0 d�Mn+1(�)Mn(t� �) ; n = 0; 1; 2 : : : ; (1)where Mn+1(�) are memory fun
tions, re�e
ting the non-Markovity proper-ties of the pro
ess and statisti
al mole
ular memory e�e
ts in the system,
2n+1 are the general frequen
y relaxation parameters. The 
hain given byEq. (1) was used many times for the des
ription of the wide range of relax-ation pro
esses in many-body systems (see, for example, Refs [16�22℄).In the pre
eding papers [12�15℄ we have introdu
ed the mi
ros
opi
 non-Markovity parameter "0 and the spe
trum of this parameter " = f"ng forthe quantitative evaluation of memory e�e
ts"n = �n=�n+1 ; n = 0; 1; 2; : : : : (2)Here the relaxation (
orrelation) times of initial TCF (n = 0) and of variousorder memory fun
tions (n > 1) are introdu
ed by relations below�n = < 1Z0 dtMn(t) = <fMn(0) ;fMn(s) = 1Z0 dte�stMn(t) ; (3)where the symbol < means the real part. Let us note that the relaxation(
orrelation) times �n may be introdu
ed using another, more deli
ate waywhi
h was 
onsidered in Refs [12, 13℄. In the 
ase of "n � 1 the pro
ess isde�nitely non-Markovian on this level. However, if "n > 1, and " � 1 thepro
ess 
an be regarded as quasi-Markovian. It will be a Markovian pro
essin the limit as "n !1.
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ase ("n ! 1) the statisti
al memory e�e
ts will disappearand the non-Markovian equation of motion (1) will transform into the ordi-nary Markovian di�erential equation. The establishment of this fa
t is theprin
ipal purpose of this arti
le.3. The modi�ed �slow-time� van Hove approxomationThe transition in equations of type given by Eq. (1) to the Markovianlimit was performed �rst by Zwanzig [1℄ and van Hove [8℄. If the 
losedsystem 
onsists of two subsystems whi
h are weakly intera
ting with ea
hother, then the non-Markovian kineti
 equation (1) at the number n takesthe form dMn(t)dt = ��2n+1�2n+1 tZ0 d�Mn+1(�)Mn(t� �) : (4)Here �n+1 is the 
onstant of the intera
tion strength, �n+1 is the relaxationfrequen
y. Following van-Hove (Ref. [8℄), let us introdu
e the so-
alled �slow-time� approximation: T = �2n+1t, with t ! 1; �n+1 ! 0 and T =
onst. Ifin this s
ale we de�ne the equality Mn(t) = �n(T ), then, instead of Eq. (4),we have d�n(T )dT = ��2n+1 T=�2n+1Z0 d�Mn+1(�)�n(T � �2n+1�) : (5)Taking in Eq. (5) the limit t ! 1; �n+1 ! 0 while T is 
onstant, we 
anobtain the Markovian equationd�n(T )dT = ��n+1�2n+1�n(T ) : (6)Coming ba
k to the usual time t, when t!1, we obtaindMn(t)dt = �
nMn(t); (7)
n = �2n+1�2n+1�n+1 = 
2n+1�n+1 ; �n+1 = <fMn+1(0) :It is seen from Eqs (3), (7), that the relaxation time of the fun
tion Mn(t)is �n = 
�2n+1��1n+1 ; (8)then we have "n = 1=�2n+1
2n+1 � 1=�2n+1 (9)
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 Equation for: : : 885for the non-Markovity parameter given by Eq. (2) of nth order. From Eq. (9)follows, that the van-Hove approximation of weak intera
tion (�n+1 ! 0)means the transition to the Markovian relaxation regime on the nth level,when the 
orresponding non-Markovian parameter "n ! 1. Here, the re-laxation on the nth order level is 
aused by the memory e�e
ts on the next(n+ 1)th level.4. Æ-like behaviour of the memory fun
tionHere, we give an example how the general non-Markovian equation (1) istransformed into the Markovian one under strong assumptions about prop-erties of the memory fun
tion. Alongside with �rst derivative in Eq. (1), wewrite out the se
ond derivative of both parts of Eq. (1)d2Mn(t)dt2 =�
2n+1Mn(t)+
2n+1
2n+2 tZ0 d� �Z0 d� 0Mn+2(t��)Mn+1(��� 0)Mn(� 0):(10)In this equation there are three memory fun
tions with indexes n; n + 1and n+ 2. For two higher order memory fun
tions we assume the followingapproximation (see Refs [23, 24℄)Mk(�) = M (sm)k (�) +M (lm)k (�) ; (11)where the �rst part M (sm)k (�) a

ounts for the short-time and the se
ondone M (lm)k (�) re�e
ts the long-time behaviour of memory.A

ording to Refs [23,24℄ it is satisfa
tory here to represent su
h a mem-ory by the expressionMk(�) =4smk Æ(�) + �k exp(��=� lmk ) ; (12)where 4smk are the short-memory relaxation times, � lmk are the long-memorytimes and � is the dimensionless partition parameter. The equation (12)should be real as denoting the relaxation time of memory fun
tions�n+1 = limt!1 tZ0 d�Mn+1(�) = 4smn+1 + �n+1� lmn+1 ; (13)�n+2 = limt!1 tZ0 d�Mn+2(�) = 4smn+2 + �n+2� lmn+2 : (14)



886 R.M. Yulmetyev, V.Yu. Shurygin N.R. KhusnutdinovFor the Markov limit we have�n+1 ! 0 ; �n+2 ! 0 ; �n+1 !4smn+1 ; �n+2 !4smn+2 : (15)The last expression means that in the limit t!1, namely when t� �n+1and t � �n+2, both higher memory fun
tions have delta-like singularity.Then the memory fun
tion Mn obeys the Markovian equation�2Mn(t)�t2 = �
2n+1Mn(t) +
2n+1
2n+2�n+1�n+2Mn(t) : (16)From the foregoing formulae it is seen that the gain in di�erential equationorder takes into a

ount memory fun
tions of higher orders. As it 
an beseen from 
omparison of Eq. (16) with Eqs (6)�(9), the �slow-time� vanHove approximation is equivalent to the assumption of delta-like behaviourof higher memory fun
tions in long-time region. It 
orresponds physi
allyto short-range memory. The analysis of physi
al examples shows us that itis e�e
tive only for lowest indexes n; as the number n of kineti
 equationin in�nity hierar
hy (1) in
reases then the 
ondition (16) be
omes in
orre
t(see, for examples Refs [13,14℄). Consideration of higher relaxation levels inEq. (16) leads to �renormalization� of relaxation time of nth level. Then wearrive at ��2n = f
2n+1
2n+2�n+1�n+2 �
2n+1g ; (17)instead of Eq. (8), and"n = f�n+1q
2n+1(
2n+2�n+1�n+2 � 1)g�1 ; (18)instead of Eq. (9) for the non-Markovity parameter.If we take into a

ount two exa
t relations"n"n+1 = 
2n+2
2n+1 ; �n�n+1 = 
�2n+1 ; (19)whi
h arise from de�nitions (1)�(3), then we obtain the Markovian limit forthe non-Markovity parameter "n of nth levellim�n+2!��1n+1
�2n+2+0 "n !1 ; lim�n+2!��1n+1
�2n+2+0 �n !1 : (20)Above limits are due to the assumptions (10)�(14). On the other hand,the �slow-time� van Hove approximation maintains the Markovian limit("n ! 1; �n ! 1) in the limit of weak intera
tion (�n+1 ! 0) only, asit is seen from Eqs (8), (9). This means that the assumption of delta-likebehaviour of single memory fun
tion of n-th level is la
king in order to ob-tain the Markovian relaxation. It is su�
ient that two neighbouring memoryfun
tions Mn+1 and Mn+2 have delta-like behaviour. The simple analysisabove also indi
ates that the single exponential regime of relaxation doesnot provide the Markovian relaxation.
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 Equation for: : : 8875. Exponential majorant of the memory fun
tionLet us show now that the Eq. (1) takes on the Markovian form also foranother strong assumption about the properties of the fun
tions Mn(t) andMn+1(t). Using the property of the time shift operator in Eq. (1), we gettZ0 d�Mn+1(�)Mn(t� �) = bR(t)Mn(t) ; (21)where we introdu
ed the operator bR(t) = tR0 d�Mn+1(�) exp(��d=dt). Inwhat follows we shall take into 
onsideration that the memory fun
tions Miare the normalized TCF's, that is the relationslim�!0Mi(�)=1; lim�!1Mi(�)=0;�1 �Mi(�) � 1; jMi(�)j � 1for � 2 (0;1);(22)are ful�lled for i = 0; 1; 2; : : : n; n + 1; n + 2; : : : Let us 
onsider the twotemporal s
ales �n = < 1Z0 dtMn(t) ; Tn = 1Z0 dtjMn(t)j :The estimation �n � Tn is valid due to Eq. (22), where �n = (
2n+1�n+1)�1.Be
ause our analysis presupposes the Markovian regime we 
an use estima-tion jMn(t)j � exp(�t=�n) for t � �n. It allows us to use the exponents asmajorant fun
tions for longtime limit t!1, when t� �n; Tn. Taking into
onsideration the exponential relaxation regime in the limit t!1, we 
anobtain the following inequality����< dmdtmMn(t)���� � (�n)�mMn(t) : (23)From Eqs (10) and (11) follows that��� tZ0 d�Mn+1(�)Mn(t� �)��� � tZ0 d�Mn+1(�) 1Xm=0(�n+1=�n)mMn(t) ; (24)where we used the assumption (23) for the (n+1)-th order memory fun
tiongiven below ��� tZ0 d��mMn+1(�)��� � m!�mn+1 1Z0 d�Mn+1(�) : (25)



888 R.M. Yulmetyev, V.Yu. Shurygin N.R. KhusnutdinovGoing then to the limit t ! 1 in the Eq. (24), we arrive at the followinginequality��� tZ0 d�Mn+1(�)Mn(t� �)��� � 1Z0 d�Mn+1(�)(1 � "�1n )�1Mn(t) : (26)The inequalities (23)�(26) are valid only for longtime regime t ! 1 andt� �n; Tn. The non Markovity parameter "n = �n=�n+1 has been introdu
edin above estimations. We obtain the Markovian kineti
 equation for Mn(t)in the form given by Eq. (7) in the 
ase when "n !1.Therefore, the estimations obtained above show that the Markovian re-laxation regime in kineti
 equation for TCF Mn(t) depends on the variable"n. It be
omes Markovian in the limit "n !1 only.6. Laurent expansion of the Lapla
e imageLet us 
onsider now the transformation of the type of non-linear kineti
equation (1) using the Laurent expansion of the Lapla
e image fMn(s) in
ase of "n !1.If a fun
tion Mn(t) in the limit t ! 1 is des
ribed by an exponen-tial fun
tion, the Lapla
e image fMn(s) may possess poles-like singularities.Let us use now the Tauber theorem about the restitution of the arbitraryfun
tion f(t) when t ! 1 by the properties of its Lapla
e image [25℄. Letus assume, that the fun
tion fMn(s) possesses a �nite number of singularpoints (s�) and it has the following form of the Laurent expansion in theneighbourhood of these pointsfMn(s) = 1Xk=0 �(�)k (s� s�)n(�)k ; (27)where n(�)k are the integer numbers whi
h satisfy the 
onditions �1 <n(�)0 ; n(�)1 ; ::: < +1. Then, the fun
tion Mn(t) in the limit t ! 1 hasthe form Mn(t) =X� exp(s�t) 1Xk=0�(�)k f� (�n(�)k )g�1t�(1+n(�)k ); (28)where we sum over all singular points. Using Eq. (27), we obtain the expan-sion of the Lapla
e image in the neighbourhood of the �rst order polefMn+1(s) = fMn+1(s�)+(s�s�)M 0n+1(s�)+ 12! (s�s�)2M 00n+1(s�)+ : : : ; (29)
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 Equation for: : : 889where the prime denotes the derivative with respe
t to the variable s� . Tak-ing into a

ount the division rule for the power series [25℄, we obtain fromEqs (1), (29)fM 0n(s) = 1s� s� n1 +
2n+1fM 0n+1(s�)o�1 � 12
2n+1fM 00n+1(s�)+ s� s�1�
2n+1fM 0n+1(s�) (14 [
2n+1fM 00n+1(s�)℄21 +
2n+1fM 0n+1(s�) (30)� 16
2n+1fM 000n+1(s�)�+ : : : :Then, using the Tauber theorem given by Eq. (28), we have the followingequation instead of Eq. (1)dMn(t)dt = �
2n+1 tZ0 d�Mn+1(�) 1Xl=0 (�1)l� ll! X� 1Xk=0�(�)k n� ��n(�)k �o�1� lXr=0 l!r!(l � r)! (�1)l+r n1+n(�)k on2+n(�)k o: : :nl+1�r+n(�)k o� sr�es� tt��1+n(�)k �+l�r : (31)As it is evident from estimation (25) for the integral 1R0 d�Mn+1(�)� l, theseries over indi
es r and l 
ontain, in fa
t, the power expansion over thesmall parameter "�1n = �n+1=�n ! 0 when "n ! 1. Then, the �rst termonly survives in Eq. (30) and the non-Markovian equation (1) is transformedinto the Markovian one given by Eq. (7).7. Spin relaxation in NMR as an example of the Markovand the non-Markov relaxation s
enarioThe results obtained in Se
tions 3�5 have shown that the integro-di�eren-tial equation of non-Markovian type given Eq. (1) are transformed, in fa
t,to the di�erential Markovian equation (7) in the 
ase, when the statisti
almemory in system is very short and the non-Markovity parameter tends toin�nity "n !1.In the 
on
lusion it is ne
essary to stress that all results obtained arealso 
orre
t in the 
ase, when the system possesses eigen frequen
ies.As it has already been indi
ated that the 
hain of kineti
 equations (1)is in�nite, so the whole spe
trum of non-Markovity parameter "n is required
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ated investigation of relaxation pro
esses under dis
ussion.The point is that, in spite of the �rst level of relaxation is Markovian one("0 ! 1), the ability of non-Markovian behaviour in the deeper levels"n � 1 for n > 0 
ould result in essential 
hanges in experimentally observedspe
tra. The existen
e of non-Markovian behaviour, as an example, in the�rst level ("1 � 1) brings into existen
e the unusual temperature dependen
eof the magneti
 spin relaxation times T1 and T2 su
h as the square root type(T1; T2 � pT ; 1=pT ) in the liqui�ed noble gases and the liquid metals andsemi
ondu
tors [26, 27℄, whereas the spin relaxation itself is the Markovianpro
ess ("0 !1). The temperature dependen
e of the relaxation times T1and T2 is rendered to the usual a
tivation type dependen
e at the transitionin the Markovian relaxation s
enario in the �rst level "1 ! 1. A set ofsimilar parti
ularities as well as other interesting and important singularitiesmake themselves evident in the treatment of the spe
trum of non-Markovityparameter in the stru
ture [12�15℄, the diele
tri
 [13,15,18℄ and the vibration[13, 15℄ relaxation, in the kineti
s of mi
ros
opi
 vorti
es in 
lassi
al liquids[19, 22℄, the hydrodynami
s and the ideal systems [21℄, et
.There is one example of physi
al phenomenon whi
h a

ompanies thetransformation of non-Markovian equation for TCF to the Markovian type.Let us 
onsider the spin relaxation of nu
lear spins in the liquid. A

ordingto the Abragam [28℄, Kubo and Tomita [29℄, we have the following formulaefor longitudinal T1 and transverse T2 relaxation times in the semi
lassi
allimit T�11 = X�20��0� ;T�12 = X�21��1� ;�2�� = hj[Ŝ�; Ĥ�℄j2i~2hjŜ�j2i ;��� = < 1Z0 dtei!�tf��(t) ;f��(t) = hR���(0)R��(t)ihjR��(0)j2i : (32)Here, Ŝ� is �-
omponent of system's total spin, �2�� is the stati
 momentof spin-latti
e intera
tion, !� is eigen frequen
y of �-
omponent of Ĥ� ofHamiltonian Ĥ = P� Ĥ� whi
h des
ribes the spin relaxation, and f��(t)is the time 
orrelation fun
tion of latti
e (mole
ular) variables of the totalsystem, namely spins + medium mole
ulae. For simpli
ity restri
t ourselvesto the 
ase of intermole
ular intera
tions Ĥ. Then, the latti
e part of oper-
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 Equation for: : : 891ators Ĥ� 
ontains spatial mole
ular 
oordinates. A

ording to Eq. (1), weobtain the following equation for latti
e (mole
ular) variables�f(t)�t = �
2 tZ0 d�M1(t� �)f(�) : (33)The �rst memory fun
tion has a simple form given belowM1(t) = h(~p12(0)~p12(t))(r1F(1; 2; 0)r1F(1; 2; t))ihj~p12(0)j2ihjr1F(1; 2; 0)j2i ; ~p12 = ~p1 � ~p2 ; (34)where ~pi is the momentum and F(1; 2) is the latti
e part of spin-latti
e in-tera
tion whi
h is responsible for spin relaxation. In the denominator wehave taken into a

ount that statisti
al average values over 
oordinates andmomenta are separated and they are easily 
al
ulated by parts. There isno su
h separation in the nominator of the above fra
tion be
ause tempo-ral evolution of 
oordinates and momenta takes pla
e, in general, in thesame temporal s
ale. A

ording to the Bogolubov's idea about hierar
hy ofrelaxation times we have to 
onsider three di�erent 
ases, namely(a) fast momenta relaxation as 
ompared with 
oordinates �relaxation�(latti
e fun
tions F or r1F) �p � �F ; (35)(b) 
oordinated (
ombined) relaxation of momenta and latti
e fun
tions;they relax in the same temporal s
ale�p � �F ; (36)(
) slow relaxation of momenta �p � �F : (37)Then, the kineti
 equations (33), (34) are transformed to the following equa-tions a

ording to three 
ases above
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(a) �f(t)�t = �
2 tZ0 d��(�)f(t� �) ; (38)(b) �f(t)�t = �
2 tZ0 d�M1(t� �)f(�) ; (39)(
) �f(t)�t = �
2 tZ0 d�F(t� �)f(�) ; (40)where we have introdu
ed the normalized TCF's�(t) = h~p(0)~p(t)ihj~p(0)j2i ; F(t) = hrF(0)rF(t)ihjrF(0)j2i :Equation (38) has Markovian type in the longtime range due to the 
ondition(35), be
ause the fun
tion �(t) possesses delta-like singularity as in Eq. (10).Then, the latti
e (mole
ular) fun
tion f(t) has a simple exponential formf(t) � exp(�t=�
) ; �
 � 1Z0 �(t)dt � Ds ; (41)where Ds is the mole
ular self-di�usion 
oe�
ient. For many liquids theparameter Ds obeys the Arrhenius law [28℄Ds(T ) = D0 exp(�E=kT ) ; (42)where �E is the mole
ular a
tivation energy. Therefore, the 
orrelationtime �
 and the rate of spin relaxation have also the dependen
e of usuala
tivation type, as it is seen from Eqs (41), (42).In the 
ases (b) and (
) the situations are 
hanged dramati
ally. Thenumeri
al estimations show that the 
ase (
) has never been experimentallyobserved in real liquids. In the 
ase (b), in fa
t, one assumes the equalityof all 
orrelation times that is �p � �F � �f . Then, it is suitable to des
ribethe 
orrelation by non-Markovian non-linear equation(b) �f(t)�t = �
2 tZ0 d�f(t� �)f(�) : (43)



Transformation of Non-Markovian Kineti
 Equation for: : : 893Applying the Lapla
e transformation~f(p) = 1Z0 dte�ptf(t) ;to the above equation [30℄, we obtain the solution~f(p) = 12
2 n�p�pp2 + 4
2o ; f(t) = 1
tJ1(2
t);with f(0) = 1 ; (44)where J1 is the Bessel fun
tion of the �rst kind.The solution given by Eq. (44) leads to unusual behaviour of 
orrelationtime �
 = limp!0 ~f(p) = 
�1 : (45)This relation gives the weak temperature dependen
e of the square root kind�
 � T�1=2 ; �
 � T 1=2 for well-known me
hanisms of relaxation, namelyquadrupole intera
tion of nu
lear spins in liquid metals, semi
ondu
tors andlique�ed inert gases, and the quasimole
ular spin-rotational intera
tion inthe liquid xenon-129. Su
h dependen
es have been experimentally observed,in fa
t, in a number of liquids (see Ref. [27℄).The transformation of NMR parameters T1 and T2 from a
tivation tem-perature dependen
e to square root one is very interesting be
ause it meansthe transformation of Markovian ("� 1) s
enario of relaxation to the non-Markovian (" � 1) relaxation of latti
e variables. That is why the non-Markovian phenomena, in prin
iple, are easily experimentally observed inthe temperature dependen
e of NMR parameters.In this way, the analysis of the spe
trum of non-Markovity parameter fora variety of systems and pro
esses allows us to extend signi�
antly the exist-ing presentations of the non-equilibrium phenomena in physi
s of 
ondensedmatter. 8. Con
luding remarks and 
on
lusionIn the framework of the theory of statisti
al spe
trum of non-Markovityparameter f"ng, suggested by authors in Refs [12�15℄ we have shown thatthe transformation of general non-Markovian equation for TCF in a leveln to the Markovian type is derived in the limit "n ! 1 for point n ofthe spe
trum. We found the 
onne
tion of parameter "n with the so-
alled�slow-time� van Hove approximation. However, the last approximation isin
onvenient for joint analysis the Markovian e�e
ts in all kineti
 equationsof in�nite hierar
hy for TCF.



894 R.M. Yulmetyev, V.Yu. Shurygin N.R. KhusnutdinovThe spe
trum of non-Markovian parameter "n gives a ba
kground foranalysis of statisti
al memory phenomena. In parti
ular, our analysis hasshown that both approa
hes namely, the van Hove approximation and thespe
trum f"ng in the Markovian limit lead to simple, exponential form ofTCF. However, the exponential form itself does not provide yet the Marko-vian regime of relaxation. The simulation of two higher memory's fun
tionsby using delta-like fun
tions show that the transformation in the Markovregime leads to "n !1.The notion of the spe
trum of non-Markovity parameter f"ng revealsitself in the statisti
al memory. On the example of NMR spin relaxationin liquids, we have shown that transition to the non-Markovian s
enario ofrelaxation of mole
ular variables from the Markovian one gives signi�
antphysi
al 
onsequen
es. The dependen
e of NMR relaxation rate on the tem-perature is 
hanged from 
onventional a
tivation type to square root form.The last dependen
e has been experimentally established in the series ofphysi
al systems su
h as liquid metals and semi
ondu
tors, lique�ed inertgases, et
.Furthermore, the spe
trum f"ng allows to avoid the obsta
les whi
h are
onne
ted with traditional perturbation pro
edure over power of intera
tion.The strength of intera
tion, in prin
iple, does not play a noti
eable role.The non-Markovity parameter permits to investigate wide s
ope of problemswhi
h are 
oupled with temporal kineti
s of ma
ros
opi
 systems.We wish to thank Hovard M. Lee and Andrzej Staruszkiewi
z for a very
areful reading of the manus
ript and valuable 
omments. The work of R.Y.and V.S. was in part supported by the RHSF (grant No 97-06-08048) andCompetitive Center of Fundamental Resear
hes at St. Petersburg University(grant No 97-0-14.0-12). REFERENCES[1℄ R. Zwanzig, Phys. Rev. 124, 1338 (1961).[2℄ H. Mori, Prog. Theor. Phys. 33, 423 (1965); 34, 399 (1965).[3℄ A.A. Markov, Pro
. Phys. Math. So
. Kazan Univ. 15, 135 (1906).[4℄ P. Résibois, M. De Leener, Classi
al Kineti
 Theory of Fluids, Wiley, NewYork 1977.[5℄ L.D. Landau, G. Plaszek, Phys. Zs. Sowjetun. 5, 172 (1934).[6℄ W. Co�ey , M. Evans, P. Grigolini, Mole
ular Di�usion and Spe
tra, A. WileyInt. Publ., John Wiley & Sons, New York, Chi
hester, Brisbane, Toronto,Singapore, 1984.



Transformation of Non-Markovian Kineti
 Equation for: : : 895[7℄ I. Prigogine, Non-Equilibrium Statisti
al Me
hani
s, Inters
ien
e, NewYork/London 1964.[8℄ L. van Hove, Physi
a, 21, 901 (1955); 22, 343 (1956); 23, 441 (1957).[9℄ S.A. Ri
e, P. Gray, The Statisti
al Me
hani
s of Simple Liquids, N.Y. Inters
.Publ., 1965.[10℄ N.N. Bogolyubov, N.N. Bogolyubov Jr., Introdu
tion to Quantum Statisti
alMe
hani
s, Nauka, Mos
ow 1984.[11℄ Statisti
al Me
hani
s : New Con
epts, New Problems, New Appli
ation. Pro
.VIth IUPAP Conf. Stat. Me
hani
s, Ed. Ri
e S.A., Freed H.F., Light J.C.,Chi
ago : Univ. of Chi
ago Press, 1972.[12℄ V.Yu. Shurygin, R.M. Yulmetyev, V.V. Vorobjev, Phys. Lett. A148, 199(1990).[13℄ V.Yu. Shurygin, R.M. Yulmetyev, Zh. Eksp. Teor. Fiz. 99, 144 (1991).[14℄ V.Yu. Shurygin, R.M. Yulmetyev, Zh. Eksp. Teor. Fiz. 102, 852 (1992).[15℄ V.Yu. Shurygin, R.M. Yulmetyev, Phys. Lett. A174, 433 (1993).[16℄ M.W. Evans, P. Grigolini, G.P. Parravi
ini (Editors), Memory Fun
tion Ap-proa
hes to Sto
hasti
 Problems in Condensed Matter, Adv. Chem. Phys.LXII, 542 (1985).[17℄ V.Yu. Shurygin, R.M. Yulmetyev, Phys. Lett. A135, 311 (1989); 141 (1989).[18℄ V.I. Arkhipov, Pis'ma v ZETF 53, 608 (1991) [Sov. Phys. JETP Lett. 53, 631(1991)℄.[19℄ R.M. Yulmetyev, R.I. Galeev, V.Yu. Shurygin, Phys. Lett. A202, 258 (1995).[20℄ R.I. Galeev, V.Yu. Shurygin, R.M. Yulmetyev, Ukr. Fiz. Zh. 36, 396 (1991).[21℄ R.M. Yulmetyev, N.R. Khusnutdinov, J. Phys. A27, 5363 (1994).[22℄ R.M. Yulmetyev, R.I. Galeev, T.R. Yulmetyev, Physi
a, A212, 26 (1994).[23℄ A. Fulinski, A
ta Phys. Pol. B26, 1131 (1995); B27, 767 (1996).[24℄ A. Fulinski, Phys. Rev. E50, 2668 (1994); E52, 4523 (1995).[25℄ V.A. Ditkin, A.P. Prudnikov, Operation Cal
ulations, Higher S
hool, Mos
ow1975; A.I. Markushevi
h, Teoriya Analiti
heskikh Funkzii, Mos
ow�Leningrad1950) (in Russian).[26℄ R.M. Yulmetyev, Teor. Mat. Fiz., 30, 265 (1977) (in Russian).[27℄ R.M. Yulmetyev, A
ta Phys. Pol. A65, 25, 33 (1984).[28℄ A. Abragam, The Prin
iples of Nu
lear Magnetism, University Press, Ox-ford/London 1961.[29℄ R. Kubo, K. Tomita, J. Phys. So
. Japan, 9, 888 (1954).[30℄ I.S. Gradstein, I.M. Ryzik, The Tables of the Integrals, Summs, Series andMultipli
ations, GIFML Publ., Mos
ow 1962 (in Russian).


