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TRANSFORMATION OF NON-MARKOVIAN KINETICEQUATION FOR TCF TO MARKOVIAN TYPER.M. Yulmetyeva, V.Yu. Shuryginb, and N.R. Khusnutdinovaa Department of Physis, Kazan State Pedagogial UniversityKazan 21, Mezhlauk Str.1, 420021 Russiab Department of Physis, Elabuga State Pedagogial Institute,Elabuga 630, Kazanskaya Str. 89, 423630 Russiae-mail: rmy�dtp.ksu.ras.rue-mail: nail�dtp.ksu.ras.ru(Reeived July 30, 1998)It is shown that the non-Markovian kineti equation of relaxation takeson the Markovian form if the non-Markovity parameter (Phys. Lett. A148,199 (1990)) goes to in�nity.PACS numbers: 05.40+j, 02.50.Ey1. IntrodutionIn the present paper we disuss transformation properties of Zwanzig�Mori type equation for Time Correlation Funtion (TCF) [1,2℄ in a new way.Spei�ally we are dealing with a transformation of general non-Markov ki-neti equation to the Markov struture under relevant behaviour of non-Markovity parameter. This topi is very important for solving many ap-plied problems. In partiular, it may be used for theoretial analysis ofmany spetral funtions whih are experimentally observed by methods ofoptial, vibrational, magneti resonane and slow neutron sattering spe-trosopy. For example, the low-frequeny spetra give valuable informationabout longtime irreversible relaxation of spin density �utuation in the mag-neti resonane theory, and about the density �utuation in the satteringof low energy neutrons, and the �utuation of longitudinal and transversalmoleular �uxes in the transport phenomena in Markov relaxation senario.The low frequeny behaviour of TCF in statistial physis is losely re-lated to the Markovian properties of moleular random proesses. Startingwith the famous paper by Markov [3℄, the theory of Markov random pro-esses forms the basis of a great number of statistial proesses in physis andhemistry (see, e.g., Refs [4�6℄). In physis [7�9℄ the Markov proesses are(881)



882 R.M. Yulmetyev, V.Yu. Shurygin N.R. Khusnutdinovunderstood as proesses without after e�ets. In the theory of random pro-esses the onditional mathematial expetations play a key role in modernrepresentations of the Markov property. In statistial physis [10,11℄ begin-ning with the papers by Prigogine [7℄, van Hove [8℄, Zwanzig [1℄, Mori [2℄,and others, the random proesses are said to be non-Markov if the kinetiequations for distributions, the density matries, the advaned or retardedGreen funtions, and the TCF's ontain ollision integral and the kineti o-e�ients, or the dissipative parameters whih desribe the entire evolutionof the system. It is most onvenient to study the non-Markov properties inthe terms of Green funtions and TCF's sine they express the importantphysial harateristis of a system, suh as the spetrum of olletive ex-itations, the relaxation times, the attenuation onstants, and et., [10, 11℄,and the TCF's are measured by diret methods in spetrosopy [6, 11℄.After the papers by Zwanzig [1℄ and Mori [2℄, it beame lear that thenon-Markovian proesses and the statistial e�ets of marosopi systemsplay a leading role in marosopi systems. It has turned out that the non-Markov proesses re�et the olletive properties of systems and of multipar-tile interations. However, no methods for rigorous quantitative estimationof memory e�ets were available for a long time. The �rst quantitative ri-terion for the numerial estimation of non-Markovian e�ets was introduedin terms of TCF in Refs [12,13℄ only. In the later papers [14,15℄ the notionof the spetrum of non-Markov parameter " and the degree of Markovizationwere de�ned for non-equilibrium proesses in a �uid. These parameters arerelated via TCF to the fundamental harateristis of the system suh asthe memory funtion, the memory lifetime, and the de-Markovization.The aim of this paper is to indiate various ways for transformation ofthe original non-Markov kineti equation of Zwanzig and Mori for TCF'sto the Markov type in response to the non-Markovian parameter " whihwas introdued in Refs [12�17℄. It is emphasized that the non-Markovianparameter " regulates the systems relaxation type. The modi�ation ofkineti equation struture for TCF is due to behaviour of this parameter,so that the transformation of originally non-Markovian kineti equation forTCF to the Markovian one takes plae in spei� domain of " ("!1).The layout of the paper is as follows. In Setion 2 we give the in�-nite hierarhy of onneted kineti equations for TCF's. In Setion 3 wepresent the so-alled �slow-time� van Hove approximation in terms of thenon-Markovity parameter ". Setion 4 ontains an example of transforma-tion of the general equations for TCF at the delta-like behaviour memoryfuntions of the n-th and (n+1)-th levels. In Setion 5 we introdue the ex-ponential majorant of memory funtion. The Tauber theorem and Laurentexpansion of the Laplae image of memory funtion are used in Setion 6.The Setion 7 gives an example of Markov and non-Markov relaxation se-



Transformation of Non-Markovian Kineti Equation for: : : 883nario for the moleular variables in NMR. The �nal Setion 8 ontains anassessment of the method and the results as well as an outlook on furtherpossible developments.2. In�nite hierarhy of kineti equations for TCF'sThe appliation of the equations of non-Markovian type for the desrip-tion of irreversible phenomena originated in the famous papers of Zwanzig [1℄and Mori [2℄. Following the Zwanzig-Mori assumption, we an derive thein�nite hain of non-Markovian kineti equations for the time orrelationfuntion M0(t). It has the following form when the system did not have theeigen-frequeniesdMn(t)dt = �
2n+1 tZ0 d�Mn+1(�)Mn(t� �) ; n = 0; 1; 2 : : : ; (1)where Mn+1(�) are memory funtions, re�eting the non-Markovity proper-ties of the proess and statistial moleular memory e�ets in the system,
2n+1 are the general frequeny relaxation parameters. The hain given byEq. (1) was used many times for the desription of the wide range of relax-ation proesses in many-body systems (see, for example, Refs [16�22℄).In the preeding papers [12�15℄ we have introdued the mirosopi non-Markovity parameter "0 and the spetrum of this parameter " = f"ng forthe quantitative evaluation of memory e�ets"n = �n=�n+1 ; n = 0; 1; 2; : : : : (2)Here the relaxation (orrelation) times of initial TCF (n = 0) and of variousorder memory funtions (n > 1) are introdued by relations below�n = < 1Z0 dtMn(t) = <fMn(0) ;fMn(s) = 1Z0 dte�stMn(t) ; (3)where the symbol < means the real part. Let us note that the relaxation(orrelation) times �n may be introdued using another, more deliate waywhih was onsidered in Refs [12, 13℄. In the ase of "n � 1 the proess isde�nitely non-Markovian on this level. However, if "n > 1, and " � 1 theproess an be regarded as quasi-Markovian. It will be a Markovian proessin the limit as "n !1.



884 R.M. Yulmetyev, V.Yu. Shurygin N.R. KhusnutdinovIn the last ase ("n ! 1) the statistial memory e�ets will disappearand the non-Markovian equation of motion (1) will transform into the ordi-nary Markovian di�erential equation. The establishment of this fat is theprinipal purpose of this artile.3. The modi�ed �slow-time� van Hove approxomationThe transition in equations of type given by Eq. (1) to the Markovianlimit was performed �rst by Zwanzig [1℄ and van Hove [8℄. If the losedsystem onsists of two subsystems whih are weakly interating with eahother, then the non-Markovian kineti equation (1) at the number n takesthe form dMn(t)dt = ��2n+1�2n+1 tZ0 d�Mn+1(�)Mn(t� �) : (4)Here �n+1 is the onstant of the interation strength, �n+1 is the relaxationfrequeny. Following van-Hove (Ref. [8℄), let us introdue the so-alled �slow-time� approximation: T = �2n+1t, with t ! 1; �n+1 ! 0 and T =onst. Ifin this sale we de�ne the equality Mn(t) = �n(T ), then, instead of Eq. (4),we have d�n(T )dT = ��2n+1 T=�2n+1Z0 d�Mn+1(�)�n(T � �2n+1�) : (5)Taking in Eq. (5) the limit t ! 1; �n+1 ! 0 while T is onstant, we anobtain the Markovian equationd�n(T )dT = ��n+1�2n+1�n(T ) : (6)Coming bak to the usual time t, when t!1, we obtaindMn(t)dt = �nMn(t); (7)n = �2n+1�2n+1�n+1 = 
2n+1�n+1 ; �n+1 = <fMn+1(0) :It is seen from Eqs (3), (7), that the relaxation time of the funtion Mn(t)is �n = 
�2n+1��1n+1 ; (8)then we have "n = 1=�2n+1
2n+1 � 1=�2n+1 (9)



Transformation of Non-Markovian Kineti Equation for: : : 885for the non-Markovity parameter given by Eq. (2) of nth order. From Eq. (9)follows, that the van-Hove approximation of weak interation (�n+1 ! 0)means the transition to the Markovian relaxation regime on the nth level,when the orresponding non-Markovian parameter "n ! 1. Here, the re-laxation on the nth order level is aused by the memory e�ets on the next(n+ 1)th level.4. Æ-like behaviour of the memory funtionHere, we give an example how the general non-Markovian equation (1) istransformed into the Markovian one under strong assumptions about prop-erties of the memory funtion. Alongside with �rst derivative in Eq. (1), wewrite out the seond derivative of both parts of Eq. (1)d2Mn(t)dt2 =�
2n+1Mn(t)+
2n+1
2n+2 tZ0 d� �Z0 d� 0Mn+2(t��)Mn+1(��� 0)Mn(� 0):(10)In this equation there are three memory funtions with indexes n; n + 1and n+ 2. For two higher order memory funtions we assume the followingapproximation (see Refs [23, 24℄)Mk(�) = M (sm)k (�) +M (lm)k (�) ; (11)where the �rst part M (sm)k (�) aounts for the short-time and the seondone M (lm)k (�) re�ets the long-time behaviour of memory.Aording to Refs [23,24℄ it is satisfatory here to represent suh a mem-ory by the expressionMk(�) =4smk Æ(�) + �k exp(��=� lmk ) ; (12)where 4smk are the short-memory relaxation times, � lmk are the long-memorytimes and � is the dimensionless partition parameter. The equation (12)should be real as denoting the relaxation time of memory funtions�n+1 = limt!1 tZ0 d�Mn+1(�) = 4smn+1 + �n+1� lmn+1 ; (13)�n+2 = limt!1 tZ0 d�Mn+2(�) = 4smn+2 + �n+2� lmn+2 : (14)



886 R.M. Yulmetyev, V.Yu. Shurygin N.R. KhusnutdinovFor the Markov limit we have�n+1 ! 0 ; �n+2 ! 0 ; �n+1 !4smn+1 ; �n+2 !4smn+2 : (15)The last expression means that in the limit t!1, namely when t� �n+1and t � �n+2, both higher memory funtions have delta-like singularity.Then the memory funtion Mn obeys the Markovian equation�2Mn(t)�t2 = �
2n+1Mn(t) +
2n+1
2n+2�n+1�n+2Mn(t) : (16)From the foregoing formulae it is seen that the gain in di�erential equationorder takes into aount memory funtions of higher orders. As it an beseen from omparison of Eq. (16) with Eqs (6)�(9), the �slow-time� vanHove approximation is equivalent to the assumption of delta-like behaviourof higher memory funtions in long-time region. It orresponds physiallyto short-range memory. The analysis of physial examples shows us that itis e�etive only for lowest indexes n; as the number n of kineti equationin in�nity hierarhy (1) inreases then the ondition (16) beomes inorret(see, for examples Refs [13,14℄). Consideration of higher relaxation levels inEq. (16) leads to �renormalization� of relaxation time of nth level. Then wearrive at ��2n = f
2n+1
2n+2�n+1�n+2 �
2n+1g ; (17)instead of Eq. (8), and"n = f�n+1q
2n+1(
2n+2�n+1�n+2 � 1)g�1 ; (18)instead of Eq. (9) for the non-Markovity parameter.If we take into aount two exat relations"n"n+1 = 
2n+2
2n+1 ; �n�n+1 = 
�2n+1 ; (19)whih arise from de�nitions (1)�(3), then we obtain the Markovian limit forthe non-Markovity parameter "n of nth levellim�n+2!��1n+1
�2n+2+0 "n !1 ; lim�n+2!��1n+1
�2n+2+0 �n !1 : (20)Above limits are due to the assumptions (10)�(14). On the other hand,the �slow-time� van Hove approximation maintains the Markovian limit("n ! 1; �n ! 1) in the limit of weak interation (�n+1 ! 0) only, asit is seen from Eqs (8), (9). This means that the assumption of delta-likebehaviour of single memory funtion of n-th level is laking in order to ob-tain the Markovian relaxation. It is su�ient that two neighbouring memoryfuntions Mn+1 and Mn+2 have delta-like behaviour. The simple analysisabove also indiates that the single exponential regime of relaxation doesnot provide the Markovian relaxation.



Transformation of Non-Markovian Kineti Equation for: : : 8875. Exponential majorant of the memory funtionLet us show now that the Eq. (1) takes on the Markovian form also foranother strong assumption about the properties of the funtions Mn(t) andMn+1(t). Using the property of the time shift operator in Eq. (1), we gettZ0 d�Mn+1(�)Mn(t� �) = bR(t)Mn(t) ; (21)where we introdued the operator bR(t) = tR0 d�Mn+1(�) exp(��d=dt). Inwhat follows we shall take into onsideration that the memory funtions Miare the normalized TCF's, that is the relationslim�!0Mi(�)=1; lim�!1Mi(�)=0;�1 �Mi(�) � 1; jMi(�)j � 1for � 2 (0;1);(22)are ful�lled for i = 0; 1; 2; : : : n; n + 1; n + 2; : : : Let us onsider the twotemporal sales �n = < 1Z0 dtMn(t) ; Tn = 1Z0 dtjMn(t)j :The estimation �n � Tn is valid due to Eq. (22), where �n = (
2n+1�n+1)�1.Beause our analysis presupposes the Markovian regime we an use estima-tion jMn(t)j � exp(�t=�n) for t � �n. It allows us to use the exponents asmajorant funtions for longtime limit t!1, when t� �n; Tn. Taking intoonsideration the exponential relaxation regime in the limit t!1, we anobtain the following inequality����< dmdtmMn(t)���� � (�n)�mMn(t) : (23)From Eqs (10) and (11) follows that��� tZ0 d�Mn+1(�)Mn(t� �)��� � tZ0 d�Mn+1(�) 1Xm=0(�n+1=�n)mMn(t) ; (24)where we used the assumption (23) for the (n+1)-th order memory funtiongiven below ��� tZ0 d��mMn+1(�)��� � m!�mn+1 1Z0 d�Mn+1(�) : (25)



888 R.M. Yulmetyev, V.Yu. Shurygin N.R. KhusnutdinovGoing then to the limit t ! 1 in the Eq. (24), we arrive at the followinginequality��� tZ0 d�Mn+1(�)Mn(t� �)��� � 1Z0 d�Mn+1(�)(1 � "�1n )�1Mn(t) : (26)The inequalities (23)�(26) are valid only for longtime regime t ! 1 andt� �n; Tn. The non Markovity parameter "n = �n=�n+1 has been introduedin above estimations. We obtain the Markovian kineti equation for Mn(t)in the form given by Eq. (7) in the ase when "n !1.Therefore, the estimations obtained above show that the Markovian re-laxation regime in kineti equation for TCF Mn(t) depends on the variable"n. It beomes Markovian in the limit "n !1 only.6. Laurent expansion of the Laplae imageLet us onsider now the transformation of the type of non-linear kinetiequation (1) using the Laurent expansion of the Laplae image fMn(s) inase of "n !1.If a funtion Mn(t) in the limit t ! 1 is desribed by an exponen-tial funtion, the Laplae image fMn(s) may possess poles-like singularities.Let us use now the Tauber theorem about the restitution of the arbitraryfuntion f(t) when t ! 1 by the properties of its Laplae image [25℄. Letus assume, that the funtion fMn(s) possesses a �nite number of singularpoints (s�) and it has the following form of the Laurent expansion in theneighbourhood of these pointsfMn(s) = 1Xk=0 �(�)k (s� s�)n(�)k ; (27)where n(�)k are the integer numbers whih satisfy the onditions �1 <n(�)0 ; n(�)1 ; ::: < +1. Then, the funtion Mn(t) in the limit t ! 1 hasthe form Mn(t) =X� exp(s�t) 1Xk=0�(�)k f� (�n(�)k )g�1t�(1+n(�)k ); (28)where we sum over all singular points. Using Eq. (27), we obtain the expan-sion of the Laplae image in the neighbourhood of the �rst order polefMn+1(s) = fMn+1(s�)+(s�s�)M 0n+1(s�)+ 12! (s�s�)2M 00n+1(s�)+ : : : ; (29)



Transformation of Non-Markovian Kineti Equation for: : : 889where the prime denotes the derivative with respet to the variable s� . Tak-ing into aount the division rule for the power series [25℄, we obtain fromEqs (1), (29)fM 0n(s) = 1s� s� n1 +
2n+1fM 0n+1(s�)o�1 � 12
2n+1fM 00n+1(s�)+ s� s�1�
2n+1fM 0n+1(s�) (14 [
2n+1fM 00n+1(s�)℄21 +
2n+1fM 0n+1(s�) (30)� 16
2n+1fM 000n+1(s�)�+ : : : :Then, using the Tauber theorem given by Eq. (28), we have the followingequation instead of Eq. (1)dMn(t)dt = �
2n+1 tZ0 d�Mn+1(�) 1Xl=0 (�1)l� ll! X� 1Xk=0�(�)k n� ��n(�)k �o�1� lXr=0 l!r!(l � r)! (�1)l+r n1+n(�)k on2+n(�)k o: : :nl+1�r+n(�)k o� sr�es� tt��1+n(�)k �+l�r : (31)As it is evident from estimation (25) for the integral 1R0 d�Mn+1(�)� l, theseries over indies r and l ontain, in fat, the power expansion over thesmall parameter "�1n = �n+1=�n ! 0 when "n ! 1. Then, the �rst termonly survives in Eq. (30) and the non-Markovian equation (1) is transformedinto the Markovian one given by Eq. (7).7. Spin relaxation in NMR as an example of the Markovand the non-Markov relaxation senarioThe results obtained in Setions 3�5 have shown that the integro-di�eren-tial equation of non-Markovian type given Eq. (1) are transformed, in fat,to the di�erential Markovian equation (7) in the ase, when the statistialmemory in system is very short and the non-Markovity parameter tends toin�nity "n !1.In the onlusion it is neessary to stress that all results obtained arealso orret in the ase, when the system possesses eigen frequenies.As it has already been indiated that the hain of kineti equations (1)is in�nite, so the whole spetrum of non-Markovity parameter "n is required



890 R.M. Yulmetyev, V.Yu. Shurygin N.R. Khusnutdinovfor more sophistiated investigation of relaxation proesses under disussion.The point is that, in spite of the �rst level of relaxation is Markovian one("0 ! 1), the ability of non-Markovian behaviour in the deeper levels"n � 1 for n > 0 ould result in essential hanges in experimentally observedspetra. The existene of non-Markovian behaviour, as an example, in the�rst level ("1 � 1) brings into existene the unusual temperature dependeneof the magneti spin relaxation times T1 and T2 suh as the square root type(T1; T2 � pT ; 1=pT ) in the liqui�ed noble gases and the liquid metals andsemiondutors [26, 27℄, whereas the spin relaxation itself is the Markovianproess ("0 !1). The temperature dependene of the relaxation times T1and T2 is rendered to the usual ativation type dependene at the transitionin the Markovian relaxation senario in the �rst level "1 ! 1. A set ofsimilar partiularities as well as other interesting and important singularitiesmake themselves evident in the treatment of the spetrum of non-Markovityparameter in the struture [12�15℄, the dieletri [13,15,18℄ and the vibration[13, 15℄ relaxation, in the kinetis of mirosopi vorties in lassial liquids[19, 22℄, the hydrodynamis and the ideal systems [21℄, et.There is one example of physial phenomenon whih aompanies thetransformation of non-Markovian equation for TCF to the Markovian type.Let us onsider the spin relaxation of nulear spins in the liquid. Aordingto the Abragam [28℄, Kubo and Tomita [29℄, we have the following formulaefor longitudinal T1 and transverse T2 relaxation times in the semilassiallimit T�11 = X�20��0� ;T�12 = X�21��1� ;�2�� = hj[Ŝ�; Ĥ�℄j2i~2hjŜ�j2i ;��� = < 1Z0 dtei!�tf��(t) ;f��(t) = hR���(0)R��(t)ihjR��(0)j2i : (32)Here, Ŝ� is �-omponent of system's total spin, �2�� is the stati momentof spin-lattie interation, !� is eigen frequeny of �-omponent of Ĥ� ofHamiltonian Ĥ = P� Ĥ� whih desribes the spin relaxation, and f��(t)is the time orrelation funtion of lattie (moleular) variables of the totalsystem, namely spins + medium moleulae. For simpliity restrit ourselvesto the ase of intermoleular interations Ĥ. Then, the lattie part of oper-



Transformation of Non-Markovian Kineti Equation for: : : 891ators Ĥ� ontains spatial moleular oordinates. Aording to Eq. (1), weobtain the following equation for lattie (moleular) variables�f(t)�t = �
2 tZ0 d�M1(t� �)f(�) : (33)The �rst memory funtion has a simple form given belowM1(t) = h(~p12(0)~p12(t))(r1F(1; 2; 0)r1F(1; 2; t))ihj~p12(0)j2ihjr1F(1; 2; 0)j2i ; ~p12 = ~p1 � ~p2 ; (34)where ~pi is the momentum and F(1; 2) is the lattie part of spin-lattie in-teration whih is responsible for spin relaxation. In the denominator wehave taken into aount that statistial average values over oordinates andmomenta are separated and they are easily alulated by parts. There isno suh separation in the nominator of the above fration beause tempo-ral evolution of oordinates and momenta takes plae, in general, in thesame temporal sale. Aording to the Bogolubov's idea about hierarhy ofrelaxation times we have to onsider three di�erent ases, namely(a) fast momenta relaxation as ompared with oordinates �relaxation�(lattie funtions F or r1F) �p � �F ; (35)(b) oordinated (ombined) relaxation of momenta and lattie funtions;they relax in the same temporal sale�p � �F ; (36)() slow relaxation of momenta �p � �F : (37)Then, the kineti equations (33), (34) are transformed to the following equa-tions aording to three ases above
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(a) �f(t)�t = �
2 tZ0 d��(�)f(t� �) ; (38)(b) �f(t)�t = �
2 tZ0 d�M1(t� �)f(�) ; (39)() �f(t)�t = �
2 tZ0 d�F(t� �)f(�) ; (40)where we have introdued the normalized TCF's�(t) = h~p(0)~p(t)ihj~p(0)j2i ; F(t) = hrF(0)rF(t)ihjrF(0)j2i :Equation (38) has Markovian type in the longtime range due to the ondition(35), beause the funtion �(t) possesses delta-like singularity as in Eq. (10).Then, the lattie (moleular) funtion f(t) has a simple exponential formf(t) � exp(�t=�) ; � � 1Z0 �(t)dt � Ds ; (41)where Ds is the moleular self-di�usion oe�ient. For many liquids theparameter Ds obeys the Arrhenius law [28℄Ds(T ) = D0 exp(�E=kT ) ; (42)where �E is the moleular ativation energy. Therefore, the orrelationtime � and the rate of spin relaxation have also the dependene of usualativation type, as it is seen from Eqs (41), (42).In the ases (b) and () the situations are hanged dramatially. Thenumerial estimations show that the ase () has never been experimentallyobserved in real liquids. In the ase (b), in fat, one assumes the equalityof all orrelation times that is �p � �F � �f . Then, it is suitable to desribethe orrelation by non-Markovian non-linear equation(b) �f(t)�t = �
2 tZ0 d�f(t� �)f(�) : (43)



Transformation of Non-Markovian Kineti Equation for: : : 893Applying the Laplae transformation~f(p) = 1Z0 dte�ptf(t) ;to the above equation [30℄, we obtain the solution~f(p) = 12
2 n�p�pp2 + 4
2o ; f(t) = 1
tJ1(2
t);with f(0) = 1 ; (44)where J1 is the Bessel funtion of the �rst kind.The solution given by Eq. (44) leads to unusual behaviour of orrelationtime � = limp!0 ~f(p) = 
�1 : (45)This relation gives the weak temperature dependene of the square root kind� � T�1=2 ; � � T 1=2 for well-known mehanisms of relaxation, namelyquadrupole interation of nulear spins in liquid metals, semiondutors andlique�ed inert gases, and the quasimoleular spin-rotational interation inthe liquid xenon-129. Suh dependenes have been experimentally observed,in fat, in a number of liquids (see Ref. [27℄).The transformation of NMR parameters T1 and T2 from ativation tem-perature dependene to square root one is very interesting beause it meansthe transformation of Markovian ("� 1) senario of relaxation to the non-Markovian (" � 1) relaxation of lattie variables. That is why the non-Markovian phenomena, in priniple, are easily experimentally observed inthe temperature dependene of NMR parameters.In this way, the analysis of the spetrum of non-Markovity parameter fora variety of systems and proesses allows us to extend signi�antly the exist-ing presentations of the non-equilibrium phenomena in physis of ondensedmatter. 8. Conluding remarks and onlusionIn the framework of the theory of statistial spetrum of non-Markovityparameter f"ng, suggested by authors in Refs [12�15℄ we have shown thatthe transformation of general non-Markovian equation for TCF in a leveln to the Markovian type is derived in the limit "n ! 1 for point n ofthe spetrum. We found the onnetion of parameter "n with the so-alled�slow-time� van Hove approximation. However, the last approximation isinonvenient for joint analysis the Markovian e�ets in all kineti equationsof in�nite hierarhy for TCF.
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