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1. Introduction

In the present paper we discuss transformation properties of Zwanzig—
Mori type equation for Time Correlation Function (TCF) [1,2] in a new way.
Specifically we are dealing with a transformation of general non-Markov ki-
netic equation to the Markov structure under relevant behaviour of non-
Markovity parameter. This topic is very important for solving many ap-
plied problems. In particular, it may be used for theoretical analysis of
many spectral functions which are experimentally observed by methods of
optical, vibrational, magnetic resonance and slow neutron scattering spec-
troscopy. For example, the low-frequency spectra give valuable information
about longtime irreversible relaxation of spin density fluctuation in the mag-
netic resonance theory, and about the density fluctuation in the scattering
of low energy neutrons, and the fluctuation of longitudinal and transversal
molecular fluxes in the transport phenomena in Markov relaxation scenario.

The low frequency behaviour of TCF in statistical physics is closely re-
lated to the Markovian properties of molecular random processes. Starting
with the famous paper by Markov [3], the theory of Markov random pro-
cesses forms the basis of a great number of statistical processes in physics and
chemistry (see, e.g., Refs [4-6]). In physics [7-9] the Markov processes are
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understood as processes without after effects. In the theory of random pro-
cesses the conditional mathematical expectations play a key role in modern
representations of the Markov property. In statistical physics [10,11] begin-
ning with the papers by Prigogine [7], van Hove [8], Zwanzig [1], Mori [2],
and others, the random processes are said to be non-Markov if the kinetic
equations for distributions, the density matrices, the advanced or retarded
Green functions, and the TCF’s contain collision integral and the kinetic co-
efficients, or the dissipative parameters which describe the entire evolution
of the system. It is most convenient to study the non-Markov properties in
the terms of Green functions and TCF’s since they express the important
physical characteristics of a system, such as the spectrum of collective ex-
citations, the relaxation times, the attenuation constants, and etc., [10,11],
and the TCF’s are measured by direct methods in spectroscopy [6,11].

After the papers by Zwanzig [1] and Mori [2], it became clear that the
non-Markovian processes and the statistical effects of macroscopic systems
play a leading role in macroscopic systems. It has turned out that the non-
Markov processes reflect the collective properties of systems and of multipar-
ticle interactions. However, no methods for rigorous quantitative estimation
of memory effects were available for a long time. The first quantitative cri-
terion for the numerical estimation of non-Markovian effects was introduced
in terms of TCF in Refs [12,13] only. In the later papers [14,15] the notion
of the spectrum of non-Markov parameter € and the degree of Markovization
were defined for non-equilibrium processes in a fluid. These parameters are
related via TCF to the fundamental characteristics of the system such as
the memory function, the memory lifetime, and the de-Markovization.

The aim of this paper is to indicate various ways for transformation of
the original non-Markov kinetic equation of Zwanzig and Mori for TCF’s
to the Markov type in response to the non-Markovian parameter € which
was introduced in Refs [12-17]. It is emphasized that the non-Markovian
parameter ¢ regulates the systems relaxation type. The modification of
kinetic equation structure for TCF is due to behaviour of this parameter,
so that the transformation of originally non-Markovian kinetic equation for
TCF to the Markovian one takes place in specific domain of € (¢ — o0).

The layout of the paper is as follows. In Section 2 we give the infi-
nite hierarchy of connected kinetic equations for TCF’s. In Section 3 we
present the so-called “slow-time” van Hove approximation in terms of the
non-Markovity parameter €. Section 4 contains an example of transforma-
tion of the general equations for TCF at the delta-like behaviour memory
functions of the n-th and (n+ 1)-th levels. In Section 5 we introduce the ex-
ponential majorant of memory function. The Tauber theorem and Laurent
expansion of the Laplace image of memory function are used in Section 6.
The Section 7 gives an example of Markov and non-Markov relaxation sce-
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nario for the molecular variables in NMR. The final Section 8 contains an
assessment of the method and the results as well as an outlook on further
possible developments.

2. Infinite hierarchy of kinetic equations for TCF’s

The application of the equations of non-Markovian type for the descrip-
tion of irreversible phenomena originated in the famous papers of Zwanzig [1]
and Mori [2|. Following the Zwanzig-Mori assumption, we can derive the
infinite chain of non-Markovian kinetic equations for the time correlation
function My(t). It has the following form when the system did not have the
eigen-frequencies

t
= —Q,EH/dTMnH(T)Mn(t—T) ,n=0,1,2..., (1)
0

dM,(t)
dt

where M), 1(7) are memory functions, reflecting the non-Markovity proper-
ties of the process and statistical molecular memory effects in the system,
22 41 are the general frequency relaxation parameters. The chain given by
Eq. (1) was used many times for the description of the wide range of relax-
ation processes in many-body systems (see, for example, Refs [16-22]).

In the preceding papers [12-15] we have introduced the microscopic non-
Markovity parameter ¢y and the spectrum of this parameter ¢ = {e,} for
the quantitative evaluation of memory effects

5n:7'n/7'n+1,n:0,1,2,... . (2)

Here the relaxation (correlation) times of initial TCF (n = 0) and of various
order memory functions (n > 1) are introduced by relations below

o= R / dt M, (t) = RM,(0) ,
0

M (s) = / dte=" M, (1) (3)
0

where the symbol ® means the real part. Let us note that the relaxation
(correlation) times 7, may be introduced using another, more delicate way
which was considered in Refs [12,13]. In the case of £, ~ 1 the process is
definitely non-Markovian on this level. However, if €, > 1, and € > 1 the
process can be regarded as quasi-Markovian. It will be a Markovian process
in the limit as &, — oo.
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In the last case (¢, — 00) the statistical memory effects will disappear
and the non-Markovian equation of motion (1) will transform into the ordi-
nary Markovian differential equation. The establishment of this fact is the
principal purpose of this article.

3. The modified “slow-time” van Hove approxomation

The transition in equations of type given by Eq. (1) to the Markovian
limit was performed first by Zwanzig [1] and van Hove [8]. If the closed
system consists of two subsystems which are weakly interacting with each
other, then the non-Markovian kinetic equation (1) at the number n takes

the form
t

=—ﬁﬂﬁﬂjﬁm&ﬂwmnu—ﬂ. 4)
0

dMy(t)
dt

Here Ap41 is the constant of the interaction strength, 0,41 is the relaxation
frequency. Following van-Hove (Ref. [8]), let us introduce the so-called “slow-
time” approximation: T = )\iﬂt, with ¢ — 00, A\p+1 — 0 and T =const. If
in this scale we define the equality M, (t) = pu,(T), then, instead of Eq. (4),
we have

T/N, 11
dun (T
Wl - ts [ M@=

0

Taking in Eq. (5) the limit ¢ — 00, A1 — 0 while T' is constant, we can
obtain the Markovian equation

dpn(T)
dr

= ~Tnt10p41n(T) - (6)
Coming back to the usual time ¢, when ¢ — oo, we obtain

M, (1)
dt

= _'YnMn(t)a (7)
Tn = 0721+1>‘721+17—n+1 = 9721+1Tn+1 y Tn41 = §R]TjnJrl(O) .

It is seen from Eqs (3), (7), that the relaxation time of the function M, (t)
is

Tn = “Q;leﬂ;gl ) (8)

then we have
En = 1/72“(2?”1 ~ 1/>\721+1 9)
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for the non-Markovity parameter given by Eq. (2) of nth order. From Eq. (9)
follows, that the van-Hove approximation of weak interaction (A,11 — 0)
means the transition to the Markovian relaxation regime on the nth level,
when the corresponding non-Markovian parameter &, — co. Here, the re-
laxation on the nth order level is caused by the memory effects on the next
(n + 1)th level.

4. §-like behaviour of the memory function

Here, we give an example how the general non-Markovian equation (1) is
transformed into the Markovian one under strong assumptions about prop-
erties of the memory function. Alongside with first derivative in Eq. (1), we
write out the second derivative of both parts of Eq. (1)

T

t
2 My ()42, P, / dT/ 7'My oo (=) Moy 41 (—7') Moy (7).
0 0

d> M, (t)
dt?

(10)

In this equation there are three memory functions with indexes n,n + 1

and n + 2. For two higher order memory functions we assume the following
approximation (see Refs [23,24])

My (1) = MP™ (r) + M{"™ (7) (11)

where the first part M ,gsm)(r) accounts for the short-time and the second

one M ,glm)(r) reflects the long-time behaviour of memory.
According to Refs [23,24] it is satisfactory here to represent such a mem-
ory by the expression

My (7) = AF6(7) + & exp(—=7/7") (12)

where A7™ are the short-memory relaxation times, T,lcm are the long-memory
times and ¢ is the dimensionless partition parameter. The equation (12)
should be real as denoting the relaxation time of memory functions

t

Tnt+l = tliglo drMpy1(7) = AJY + fn+1ﬂl£1 ) (13)
0
¢

T2 = tlgloﬂo AT Mpo(1) = A3y + &nsamils - (14)

0
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For the Markov limit we have
§nt1— 0, &2 — 0, 71 — Af’ﬁ—l > Tnt+2 —7 Afzm+2 . (15)

The last expression means that in the limit ¢ — oo, namely when ¢ > 7,41
and t > 7,12, both higher memory functions have delta-like singularity.
Then the memory function M, obeys the Markovian equation

0> M, (t)

ot?

From the foregoing formulae it is seen that the gain in differential equation
order takes into account memory functions of higher orders. As it can be
seen from comparison of Eq. (16) with Egs (6)-(9), the “slow-time” van
Hove approximation is equivalent to the assumption of delta-like behaviour
of higher memory functions in long-time region. It corresponds physically
to short-range memory. The analysis of physical examples shows us that it
is effective only for lowest indexes n; as the number n of kinetic equation
in infinity hierarchy (1) increases then the condition (16) becomes incorrect
(see, for examples Refs [13,14]). Consideration of higher relaxation levels in
Eq. (16) leads to “renormalization” of relaxation time of nth level. Then we
arrive at

= _9721+1Mn(t) + Qr2z+1972z+27'n+17'n+2Mn(t) . (16)

7'7;2 = {'9721+1'Q7%+27n+17n+2 - Q?wl} ) (17)
instead of Eq. (8), and
en = {Tn+1 \/Qg+1(ng+27n+17n+2 - 1)}71 ) (18)

instead of Eq. (9) for the non-Markovity parameter.
If we take into account two exact relations
QQ
EnEnt1 = Q’;—H y TnTn+l1 = 97;42_1 s (19)
n+1

which arise from definitions (1)-(3), then we obtain the Markovian limit for
the non-Markovity parameter ¢, of nth level

lim Ep — 00 , lim Tp — 00 . (20)

Tng2—T, L1 207540 Tng2 T L 20740

Above limits are due to the assumptions (10)-(14). On the other hand,
the “slow-time” van Hove approximation maintains the Markovian limit
(en — 00,7, — 00) in the limit of weak interaction (Ap+1 — 0) only, as
it is seen from Eqgs (8), (9). This means that the assumption of delta-like
behaviour of single memory function of n-th level is lacking in order to ob-
tain the Markovian relaxation. It is sufficient that two neighbouring memory
functions M1 and M, 5 have delta-like behaviour. The simple analysis
above also indicates that the single exponential regime of relaxation does
not provide the Markovian relaxation.
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5. Exponential majorant of the memory function

Let us show now that the Eq. (1) takes on the Markovian form also for
another strong assumption about the properties of the functions M, (¢) and
M,,11(t). Using the property of the time shift operator in Eq. (1), we get

t
[ M (01,0 7) = ROM, () 1)
0
where we introduced the operator R deMnH( )exp(—7d/dt). In

what follows we shall take into consideration that the memory functions M;
are the normalized TCF’s, that is the relations

lim M;(7)=1, lim M;(1)=0,—1 < M;(7) < 1,|M;(7)| < 1for 7 € (0, 00),
T—0 T—00
(22)
are fulfilled for 7 = 0,1,2,...n,n + 1,n + 2,... Let us consider the two
temporal scales

o0

Tn—%/dtM , —/dt|M()|

0

The estimation 7, < T}, is valid due to Eq. (22), where 7, = (22, 7 41) !
Because our analysis presupposes the Markovian regime we can use estima-
tion | My (t)| < exp(—t/m,) for t > 7,. It allows us to use the exponents as
majorant functions for longtime limit ¢ — oo, when t > 7,,7T,. Taking into
consideration the exponential relaxation regime in the limit £ — oo, we can
obtain the following inequality

dm

R Ma(0)] < () M) 23
From Eqs (10) and (11) follows that

4 oo

‘/dTMnH (t—T)‘ < /dTMn+1 Z (Tng1/Tn) " Mp(t) ,  (24)

0 m=0

where we used the assumption (23) for the (n+1)-th order memory function
given below

o

‘/dTTmMnJrl(T)‘ < mlm" /dTMn+1( ) . (25)
0 0
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Going then to the limit ¢ — oo in the Eq. (24), we arrive at the following
inequality

t (e’
| / dr Mo 1 (7)Mo (¢ = 7)] < / dr Moy (1)1 = e~ My (1) . (26)
0 0

The inequalities (23)—(26) are valid only for longtime regime ¢ — oo and
t > 7, T,. The non Markovity parameter €, = 7,,/7p+1 has been introduced
in above estimations. We obtain the Markovian kinetic equation for M, ()
in the form given by Eq. (7) in the case when &, — oc.

Therefore, the estimations obtained above show that the Markovian re-
laxation regime in kinetic equation for TCF M, (¢) depends on the variable
€n. 1t becomes Markovian in the limit €, — oco only.

6. Laurent expansion of the Laplace image

Let us consider now the transformation of the type of non-linear kinetic
equation (1) using the Laurent expansion of the Laplace image M,(s) in
case of g, — 0.

If a function My, (t) in the limit ¢ — oo is described by an exponen-
tial function, the Laplace image M, (s) may possess poles-like singularities.
Let us use now the Tauber theorem about the restitution of the arbitrary
function f(¢) when t — oo by the properties of its Laplace image [25]. Let
us assume, that the function M, (s) possesses a finite number of singular
points (s,) and it has the following form of the Laurent expansion in the
neighbourhood of these points

— . w N
Ma(s) = ul (s — s0)™ (27)
k=0

where n,(cy) are the integer numbers which satisfy the conditions —oco <

n(()y),ng”),... < 4o00. Then, the function M, (¢) in the limit ¢ — oo has
the form

= Py 1o (L™
Ma(t) =Y exp(sut) S u {1 (—n)y 1o (), (28)
v k=0

where we sum over all singular points. Using Eq. (27), we obtain the expan-
sion of the Laplace image in the neighbourhood of the first order pole

— — 1

M y1(s) = Mpy1(sy)+ (s — SV)M;z-H (sv)+ 5(3 - SV)QMrILI-q-l(sV) +...5 (29)
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where the prime denotes the derivative with respect to the variable s,. Tak-
ing into account the division rule for the power series [25], we obtain from
Eqgs (1), (29)

! 1 2 ! R Y
My(s) = —— {1+ @2 M (s) ) = 5220000 (s)
L {1 [93+1~7I{+1(5u)]2 (30)
L= Q0 My (s0) (41425, My 4 (s0)

1 —
- gﬂzﬂ 7I¢”+1(3u)}+--- :

Then, using the Tauber theorem given by Eq. (28), we have the following
equation instead of Eq. (1)

t

00 NI 00 .
Dol - gz, [artunn) . SIS S {0 (<)}
0 1=0 ' v k=0
Lo v v v
xgiﬂ(l_r)!(—l)l”{1+n,(€)}{2+n,(€)}...{l+1—r+n,(€)}
% Szes,,tt*(lenl(:))Jrlfr. (31)

oo
As it is evident from estimation (25) for the integral [ drM,1(7)7!, the
0

series over indices r and [ contain, in fact, the power expansion over the
small parameter ¢,' = 7,,1/7, — 0 when &, — co. Then, the first term
only survives in Eq. (30) and the non-Markovian equation (1) is transformed
into the Markovian one given by Eq. (7).

7. Spin relaxation in NMR as an example of the Markov
and the non-Markov relaxation scenario

The results obtained in Sections 3-5 have shown that the integro-differen-
tial equation of non-Markovian type given Eq. (1) are transformed, in fact,
to the differential Markovian equation (7) in the case, when the statistical
memory in system is very short and the non-Markovity parameter tends to
infinity &, — oco.

In the conclusion it is necessary to stress that all results obtained are
also correct in the case, when the system possesses eigen frequencies.

As it has already been indicated that the chain of kinetic equations (1)
is infinite, so the whole spectrum of non-Markovity parameter &, is required
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for more sophisticated investigation of relaxation processes under discussion.
The point is that, in spite of the first level of relaxation is Markovian one
(eg = o0), the ability of non-Markovian behaviour in the deeper levels
gn ~ 1 for n > 0 could result in essential changes in experimentally observed
spectra. The existence of non-Markovian behaviour, as an example, in the
first level (e ~ 1) brings into existence the unusual temperature dependence
of the magnetic spin relaxation times T} and 75 such as the square root type
(Ty, Ty ~ VT,1/\/T) in the liquified noble gases and the liquid metals and
semiconductors [26,27], whereas the spin relaxation itself is the Markovian
process (69 — o0). The temperature dependence of the relaxation times T;
and T5 is rendered to the usual activation type dependence at the transition
in the Markovian relaxation scenario in the first level &1 — oc. A set of
similar particularities as well as other interesting and important singularities
make themselves evident in the treatment of the spectrum of non-Markovity
parameter in the structure [12-15|, the dielectric [13,15,18] and the vibration
[13,15] relaxation, in the kinetics of microscopic vortices in classical liquids
[19,22], the hydrodynamics and the ideal systems [21], etc.

There is one example of physical phenomenon which accompanies the
transformation of non-Markovian equation for TCF to the Markovian type.
Let us consider the spin relaxation of nuclear spins in the liquid. According
to the Abragam [28], Kubo and Tomita [29], we have the following formulae
for longitudinal 77 and transverse T, relaxation times in the semiclassical

limit
Tl_1 = 20(2)57'05,
T{l = ZO’%BTlg,
> _ (IS Hl®)

Uaﬂ = =

12(|S4 %)
Taf = %/dteiwﬁtfaﬂ(t),
0

(R0 Ras(®)
focﬁ(t) - <|Ro¢5(0)|2> . (32)

Here, S, is a-component of system’s total spin, 03/3 is the static moment

of spin-lattice interaction, wg is eigen frequency of S-component of ?:15 of
Hamiltonian H = 3 s Hp which describes the spin relaxation, and fas(t)
is the time correlation function of lattice (molecular) variables of the total
system, namely spins + medium moleculae. For simplicity restrict ourselves
to the case of intermolecular interactions . Then, the lattice part of oper-
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ators 7:1/3 contains spatial molecular coordinates. According to Eq. (1), we
obtain the following equation for lattice (molecular) variables

t
—81(;?) = —QQ/dTMl(t —7)f(1) . (33)
0

The first memory function has a simple form given below

(P12(0)p12(#)) (V1 F(1,2,0) V1 F(1,2;8)) .
(1P12(0)[2)(|V1F(1,2;0)[?) ’

My (t) =

where p; is the momentum and F(1,2) is the lattice part of spin-lattice in-
teraction which is responsible for spin relaxation. In the denominator we
have taken into account that statistical average values over coordinates and
momenta are separated and they are easily calculated by parts. There is
no such separation in the nominator of the above fraction because tempo-
ral evolution of coordinates and momenta takes place, in general, in the
same temporal scale. According to the Bogolubov’s idea about hierarchy of
relaxation times we have to consider three different cases, namely

a) fast momenta relaxation as compared with coordinates “relaxation
fast t laxati pared with dinates “relaxation”
(lattice functions F or V1.F)

Tp L TF; (35)

(b) coordinated (combined) relaxation of momenta and lattice functions;
they relax in the same temporal scale

Tp ~ TF; (36)

(c) slow relaxation of momenta

Ty > TF. (37)

Then, the kinetic equations (33), (34) are transformed to the following equa-
tions according to three cases above
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t

(a) o0 g / drr(D)f(t—7) | (39)
0
t

(b) ag—ff) _ / dr My (¢ — 1) F(7) | (39)
0

(©) PO — @ [arra-n10). (40)
0

where we have introduced the normalized TCF’s

(VE(O)VE(H))
() = ol F(t) = e
(IVF(0)?)
Equation (38) has Markovian type in the longtime range due to the condition
(35), because the function 7(¢) possesses delta-like singularity as in Eq. (10).
Then, the lattice (molecular) function f(¢) has a simple exponential form

F(8) ~ exp(—t/7e) , 7o ~ / r(t)dt ~ D, (41)
0

where Dg is the molecular self-diffusion coefficient. For many liquids the
parameter Dg obeys the Arrhenius law [28]

Dy(T) = Dy exp(AE/KT) (42)

where AF is the molecular activation energy. Therefore, the correlation
time 7, and the rate of spin relaxation have also the dependence of usual
activation type, as it is seen from Eqgs (41), (42).

In the cases (b) and (c) the situations are changed dramatically. The
numerical estimations show that the case (¢) has never been experimentally
observed in real liquids. In the case (b), in fact, one assumes the equality
of all correlation times that is 7, ~ 77 ~ 7¢. Then, it is suitable to describe
the correlation by non-Markovian non-linear equation

(b) 8](;_5:) = —QQ/de(t— ) f(1) . (43)

0
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Applying the Laplace transformation

o0

f(p) = / dte P f (1) |

0

to the above equation [30], we obtain the solution

. 1 1
f(p) = 202 {—Pi vV p? +4(22} , ft) = ﬁJl(QQt)aWith f(0) =1, (44)
where J; is the Bessel function of the first kind.
The solution given by Eq. (44) leads to unusual behaviour of correlation
time

T, = lim f(p) =0, (45)
p—0

This relation gives the weak temperature dependence of the square root kind
Te ~ T2 7. ~ T2 for well-known mechanisms of relaxation, namely
quadrupole interaction of nuclear spins in liquid metals, semiconductors and
liquefied inert gases, and the quasimolecular spin-rotational interaction in
the liquid xenon-129. Such dependences have been experimentally observed,
in fact, in a number of liquids (see Ref. [27]).

The transformation of NMR parameters 77 and T5 from activation tem-
perature dependence to square root one is very interesting because it means
the transformation of Markovian (¢ > 1) scenario of relaxation to the non-
Markovian (¢ ~ 1) relaxation of lattice variables. That is why the non-
Markovian phenomena, in principle, are easily experimentally observed in
the temperature dependence of NMR parameters.

In this way, the analysis of the spectrum of non-Markovity parameter for
a variety of systems and processes allows us to extend significantly the exist-
ing presentations of the non-equilibrium phenomena in physics of condensed
matter.

8. Concluding remarks and conclusion

In the framework of the theory of statistical spectrum of non-Markovity
parameter {e,}, suggested by authors in Refs [12-15] we have shown that
the transformation of general non-Markovian equation for TCF in a level
n to the Markovian type is derived in the limit ¢, — oo for point n of
the spectrum. We found the connection of parameter &, with the so-called
“slow-time” van Hove approximation. However, the last approximation is
inconvenient for joint analysis the Markovian effects in all kinetic equations
of infinite hierarchy for TCF.
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The spectrum of non-Markovian parameter e, gives a background for
analysis of statistical memory phenomena. In particular, our analysis has
shown that both approaches namely, the van Hove approximation and the
spectrum {e,} in the Markovian limit lead to simple, exponential form of
TCF. However, the exponential form itself does not provide yet the Marko-
vian regime of relaxation. The simulation of two higher memory’s functions
by using delta-like functions show that the transformation in the Markov
regime leads to €, — 00.

The notion of the spectrum of non-Markovity parameter {e,} reveals
itself in the statistical memory. On the example of NMR spin relaxation
in liquids, we have shown that transition to the non-Markovian scenario of
relaxation of molecular variables from the Markovian one gives significant
physical consequences. The dependence of NMR relaxation rate on the tem-
perature is changed from conventional activation type to square root form.
The last dependence has been experimentally established in the series of
physical systems such as liquid metals and semiconductors, liquefied inert
gases, etc.

Furthermore, the spectrum {e,} allows to avoid the obstacles which are
connected with traditional perturbation procedure over power of interaction.
The strength of interaction, in principle, does not play a noticeable role.
The non-Markovity parameter permits to investigate wide scope of problems
which are coupled with temporal kinetics of macroscopic systems.
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