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ACOUSTIC PHASE LENSES IN SUPERFLUID HELIUMAS MODELS OF COMPOSITE SPACE-TIMESIN GENERAL RELATIVITY:CLASSICAL AND QUANTUM FEATURESKonstantin G. Zlosh
hastievDepartment of Theoreti
al Physi
s, Dnepropetrovsk State UniversityNau
hniy lane 13, Dnepropetrovsk 320625, Ukrainee-mail: zlosh�usa.net(Re
eived O
tober 26, 1998)In the spirit of the well-known analogy between invis
id �uids andpseudo-Riemannian manifolds we study spheri
al singular hypersurfa
esin the stati
 super�uid. Su
h hypersurfa
es turn out to be the interfa
esdividing super�uid into the pairs of spheri
al domains, examples of whi
hare �super�uid A�super�uid B� or �impurity�super�uid� phases. It is shownthat these shells form the a
ousti
 lenses whi
h are the soni
 
ounterpartsof the usual opti
al lenses. The exa
t equations of motion for the lensinterfa
es are obtained. Also some quantum aspe
ts of the theory are 
on-sidered. We 
al
ulate energy spe
tra for bound states of a
ousti
 lenses indynami
al equilibrium taking into a

ount the analogy to a material shellmodel of a bla
k hole (we 
onsider the 
ases of spatial topology of a bla
khole and a wormhole type).PACS numbers: 04.40.Nr, 11.27.+d, 43.35.+d, 67.57.DeIt was shown in numerous works that the super�uid phases of 3He (andperhaps 4He) 
an simulate phenomena en
ountered in gravitation and thestandard model of elementary parti
les. Physi
s of super�uid 3He illustrates
on
epts in quantum �eld theory and gravity su
h as: bla
k holes, surfa
egravity, Hawking radiation, horizons, ergoregions, trapped surfa
es [1�3℄ (seeRef. [4℄ for an introdu
tion into re
ent developments), baryogenesis, vorti
es,strings, textures, standard ele
troweak model (see [5, 6, 11℄, and referen
estherein), and so on. This turns out to be possible due to the 
ertain analogybetween invis
id �uids and pseudo-Riemannian manifolds. The simplest wayto show this 
orresponden
e is as follows.(897)



898 K.G. Zlosh
hastievThe fundamental equations of dynami
s of an invis
id �uid are the Eulerequations � ��~v�t + (~v � r)~v� = �rp� �r� ; (1)and the equation of 
ontinuity�~v�t +r � (�~v) = 0 ; (2)where � is the potential of an external for
e (in
luding gravity), ~v is the�ow velo
ity, � and p are, respe
tively, the �uid density and pressure. Ifone assumes the �ow to be lo
ally irrotational then we 
an introdu
e thevelo
ity potential  , ~v = �r . Hen
e, assuming the barotropi
 equation ofstate �(p), the Euler equation 
an be rewritten in the form of the Bernoulliequation [4℄ �� �t + 12(r )2 + pZ0 dp0�(p0) + � = 0 : (3)We 
an linearize these equations around some ba
kground f�0; p0;  0g inorder to 
onsider the propagation of small �u
tuations (sound waves). Weassume, � = �0 + "�1 + o("), p = p0 + "p1 + o("),  =  0 + " 1 + o("),with the external potential �xed. Linearizing the Euler equation and takinginto a

ount the linearized 
ontinuity equation, we �nally obtain the waveequation des
ribing the propagation of the �u
tuation  1� ��t ��0���p �� 1�t + ~v0 � r 1��+r � ��0r 1 � �0~v0 ���p �� 1�t + ~v0 � r 1�� = 0 : (4)This equation 
an be rewritten as the d'Alembert equation in the 
urvedba
kground spa
e-time 1p�g ��x� �p�g g�� � 1�x�� = 0 ; (5)where � = f0; ig, x� = ft; ~xg, g = det (g��),and the a
ousti
 ba
kgroundmetri
 is: ds2 = �0
 h�
2dt2 + Æij(dxi � vi0dt)(dxj � vj0dt)i ; (6)where 
 =p�p=�� is the lo
al speed of sound. Thus, the vorti
ity-free �owof a zero vis
osity �uid 
an be seen to de�ne a Lorentzian signature metri
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urved spa
e-time. Of 
ourse, the physi
al spa
e-time is just the usual�at Minkowski spa
e-time.The aim of this paper is to study in�nitely thin shells in su
h a
ousti
spa
e-times as models of physi
al obje
ts whose thi
kness is negligible in
omparison with a 
ir
umferen
e radius (e.g., surfa
es of phase domains). Athin shell is thought to be a dis
ontinuity of the se
ond kind (the density hasthe delta-like singularity on the shell). Its dynami
s is determined by theLi
hnerowi
z�Darmois�Israel jun
tion 
onditions: the �rst quadrati
 form(the metri
) is 
ontinuous while the se
ond quadrati
 form (the extrinsi

urvature) has a �nite jump a
ross a shell. Geometri
ally a shell is des
ribedby a three-dimensional 
losed singular hypersurfa
e embedded in the four-dimensional spa
e-time whi
h is this way divided into two domains: theexternal (�+) and the internal (��) regions of spa
e-time. Sin
e the 
lassi
works [7,8℄ the theory of singular hypersurfa
es has been widely 
onsideredin the literature (see Ref. [9℄ for details). We des
ribe only some basi
properties of timelike hypersurfa
es 
orresponding to dynami
al evolutionof thin shells now. One 
onsiders a singular matter layer � des
ribed bythe three-dimensional spa
e-time with the surfa
e stress-energy tensor of aperfe
t �uid in the general 
aseSab = �uaub + p
2� (uaub + (3)gab) ; (7)where � and p are, respe
tively, the surfa
e mass-energy density and pres-sure, ua is the timelike unit tangent ve
tor, (3)gab is the 3-metri
 of shell'shypersurfa
e (in the a
ousti
 sense (6)), 
� is the speed of sound in the shell.We assume the metri
s of the �uid spa
e-times outside (�+) and inside (��)a spheri
al shell to be �at:ds2� = �
2�dt2 + dr2 + r2d
2 ; (8)where d
2 is the metri
 of the unit 2-sphere, 
� are the 
onstants of thespeed of sound in the spa
e-times ��. These metri
s 
orrespond to a spheri-
al shell dividing di�erent phase domains inside the motionless homogeneoussuper�uid (6). It is possible to show that if one uses the shell's proper time� then the 3-metri
 on the shell's spa
e-time history is(3)ds2 = �
2�d�2 +R2d
2 ; (9)where R(�) is the shell's radius. It 
an be seen from Eqs. (8), (9) thatwe obtain the 
omposite spa
e-time 
onsisting of three regions, �+, ��,and �, 
hara
terized by proper fundamental 
onstants. The spa
e-timedomains inside and outside a shell (8) are �at and are 
hara
terized only
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hastievby the fundamental 
onstants of the speed of sound, whereas the three-dimensional hypersurfa
e of shell's history 
an be 
urved and in addition tothe 
onstant 
� , the �gravitational� 
onstant 
� may appear as well. Theenergy 
onservation law for a shell (whi
h is the shell's interpretation of theintegrability 
ondition Sab;a = 0) 
an be written as
2� d�� (3)g�+ pd�(3)g� = 0 ; (10)where (3)g = p�det ((3)gab) = 
�R2 sin �. In this equation, the �rst term
orresponds to a 
hange in the shell's internal energy, the se
ond term
orresponds to the work done by the shell's internal for
es.It is important to note that the analogy between invis
id �uids andpseudo-Riemannian manifolds appears to be justi�ed on the kinemati
allevel only. Thus, the Einstein equations as su
h have no evident physi
alsense within the framework of invis
id �uid dynami
s. Only the (a
ousti
)metri
, the manifold topology, and equations of motion (whi
h are the 
onse-quen
e of the Bian
hi identity) have dire
t physi
al interpretation. However,the above-mentioned jun
tion 
onditions, stri
tly speaking, are 
onne
tedrigidly neither with general relativity nor with the Einstein equations, de-spite the fa
t that histori
ally they were �rst derived in the 
ontext of generalrelativity. They simply represent the pro
edure of geometri
al mat
hing oftwo Riemannian manifolds a
ross a surfa
e of dis
ontinuity of the se
ondkind, and thus 
an be assumed independently as equations des
ribing be-haviour of an interfa
e between two liquid phases. In this 
onne
tion thewords of the famous mathemati
ian Kolmogorov that �the whole mathemat-i
s (and, therefore, physi
s, too) 
an be reformulated as geometry� be
omequite relevant. By imposing the jun
tion 
onditions(Kab )+ � (Kab )� = 4��(2uaub + (3)Æab ) ;where (Kab)� are the extrinsi
 
urvatures of the spheri
ally symmetri
 sin-gular hypersurfa
e [10℄ with respe
t to the external and internal a
ousti
manifolds ��, we obtain the equation of motion for a shell in the form"+q1 + ( _R=
+)2 � "�q1 + ( _R=
�)2 = �4���R ; (11)where _R = dR=d� is the velo
ity of a shell, "� = sign �q1 + ( _R=
�)2�(see below), � = 
�=
2� is the fundamental 
onstant 
hara
terizing shell'sspa
e-time � [11℄ with the dimensionality [�℄ = 
m g�1.From Eq. (11) one 
an see that we obtain a simple but nontrivial obje
t.Su
h a shell is 
hara
terized by the proper velo
ity, the tension and the
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 Phase Lenses in Super�uid Helium as : : : 901mass-energy density (therefore, an equation of state). One 
an 
onsider the`matter' on the shell to be highly exoti
 or ordinary. On
e the fun
tion�(R) is known then by means of the 
onservation law (10) we 
an obtainthe equation of state p = p(�).It should also be noted that a sound, passing through the shell-interfa
e (8)will be refra
ted, as it happens for light rays in a usual (spheri
al) lens. Otheranalogous phenomena, e.g., the spe
tral fa
torization or fo
using of sound,
an appear as well.The equation of motion (11) together with the equation of state (or,equivalently, with the known fun
tion �(R)) and the 
hoi
e of signs "�
ompletely determines the motion of super�uid shells (interfa
es of a
ousti
lenses). Therefore, �rst of all we must spe
ify "� and �(R).Let us say few words about the topologi
al features of the theory. Ingeneral relativity it is well-known [12, 13℄ that " = +1 if R in
reases in theoutward normal dire
tion to a shell, and " = �1 if R de
reases. Thus,under the 
ondition "+ = "� we have the ordinary (bla
k hole type) shell,and when "+ = �"� we have the traversable wormhole type shell [14℄. Theappropriate 
ases are represented in the Table I (we assume the surfa
edensity � to be positive), where the shells (i.e., surfa
es of the se
ond kind)
orresponding to ordinary lenses are the soni
 analogs of the bla
k hole typeshells, and shells 
orresponding to anomalous lenses are 
ounterparts of thewormhole type shells [15℄. The supers
ript �y� denotes the 
ase of ordinarylenses when the notions �outside the shell� and �inside the shell� are reversed(for anomalous, wormhole, lenses su
h notions are absent ab initio).TABLE IThe 
lassi�
ation of a
ousti
 lenses into the ordinary (OL) and anomalous (AL)ones, the sign �?� denotes the impossibility of the Li
hnerowi
z�Darmois�Israel'sjun
tion. � > 0 "+ = "� "+ = �"�"+=1"�=1 "+=�1"�=�1 "+=1"�=�1 "+=�1"�=1
+ > 
� OL ? ? AL
+ = 
� ? ? ? AL
+ < 
� ? OLy ? ALBelow we assume the rate of 
hange of the lens size to be small, _R� 
�.Otherwise, the disturban
es whi
h may o

ur 
ould be in
ompatible withthe assumed �atness of the super�uid spa
e-times (8). Following (11), we
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hastievobtain the equation of motion for the lenses in the form� _R22 = �(R) ; (12)where �(R) = 4���R � 2Æ ;� = 
�2� + (2Æ � 1)
�2+ > 0 ;Æ = � 01 (OL)(AL) ; (13)and we 
all Æ the parameter of lens anomaly.We 
an spe
ify the 
lass of lenses in the dynami
al equilibrium (the otherlenses will be either growing or de
reasing in size and this eventually leads tothe vanishing of either of the two phases ��). The Taylor expansion of thefun
tion �(R) in a small neighborhood of the equilibrium point R0 yields�(R) = �2Æ + "� k22 (R �R0)2 + o ((R �R0)2) ; (14)where " and k are the following 
onstants," = 4���jR=R0R0; k2 = �4��(�R)00jR=R0 :Eq. (12) 
an be rewritten as the energy 
onservation law for the harmoni
os
illator. Performing the shift x = R�R0, we obtainE = P 22m + 2Æ��k + m!2x22 ; (15)where P = m _R = m _x; E = "��k ; m = 1�k ; ! = kp� :It should be noted that R 2 [0; +1) and x 2 [�R0; +1). This 
ir
um-stan
e is very important for further studies, �rst of all for analysis of quan-tum aspe
ts of the theory.Below we study the quantum me
hani
al properties of our lenses. One
an perform the standard pro
edure of quantization. Then the 
onservationlaw (15) gives us the stationary S
hrödinger equation for the spatial wavefun
tion 	(x) � ~22m d2	dx2 + ��E + 2Æ��k + m!22 x2�	 = 0; (16)
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 Phase Lenses in Super�uid Helium as : : : 903or, in the dimensionless form,d2	dy2 + �%� y2�	 = 0; (17)where y =rm!~ x; % = 2~! �E � 2Æ��k� :Although Eq. (17) is the wave equation for the quantum harmoni
 os-
illator the os
illator's wave fun
tions are not de�ned on the whole line(�1;+1): We have to 
onsider two 
ases, one of the whole line y 2(�1;+1); and the se
ond 
ase of the half-line y 2 [�R0pm!=~; +1).The analyti
 
ontinuation of y to the whole line (�1;+1) 
an be 
orre
tlyexplained only for the AL type shells be
ause they are a
ousti
 wormholesas it was mentioned above. Su
h a 
ontinuation of the spatial 
oordinateappears to be a somewhere arti�
ial but ne
essary te
hnique. Indeed, in thewormhole 
ase we have mat
hed the two non-embedded spa
etimes, whi
hboth have their own in�nitely distant points. Then after the 
ontinuationone 
an expli
itly dis
riminate these spatial in�nities from ea
h other byvirtue of a sign. Thus, besides the parameter Æ, the ordinary and anoma-lous lenses have di�erent topologi
al properties. Below we distinguish these
ases.(i) Anomalous lenses. In this 
ase physi
s admits the analyti
 
ontin-uation to y 2 (�1;+1). For bound states the quantum boundary 
on-ditions, 
orresponding to the singular Stourm-Liouville problem, require	(+1) = 	(�1) = 0, and the normalized solution of Eq. (17) 
an beexpressed in terms of the Hermite polynomials Hn(y) [17℄	(y) = �2np�n!��1=2 exp (�y2=2)Hn(y) ; (18)where n = 0; 1; 2; ::: . The dis
rete values of energy are % = 2n+ 1: Takinginto a

ount Eq. (13) we obtain,En = 2�k(
�2� + 
�2+ ) + ~k2q
�2� + 
�2+ (2n+ 1) ; (19)whi
h is the quantized energy of the equilibrium state of the wormhole typelens.(ii) Ordinary lenses. In this 
ase it is ne
essary to solve the S
hröedingerequation (16) on the half-lineR 2 [0;+1) ) y 2 [�R0pm!=~; +1) :
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hastievPerforming the transformation z = y2 (whi
h works like the Baker transfor-mation [16℄), we obtain that z 2 [0;+1). Then Eq. (17) 
an be written asthe 
on�uent hypergeometri
 equationz d2'dz2 +�32 � z� d'dz + %� 34 ' = 0 ; (20)where 	(z) = z1=2e�z=2 '(z). For bound states the quantum boundary 
on-ditions require 	(0) = 	(+1) = 0. The 
on�uent hypergeometri
 fun
tions'(z) 
ompatible with the boundary 
onditions are the Laguerre polynomialsL(�)n (z), � > �1 [15, 17℄. Finally we obtain the normalized wave fun
tions	(y) =s n!� (n+ 1=2)y exp (�y2=2)L(1=2)n (y2) ; (21)where % = 4n+ 3 and n = 0; 1; 2; ::: . The spe
trum of energy is given bythe expression (after taking into a

ount Eq. (13)),En = ~k2q
�2� � 
�2+ (4n+ 3) : (22)It does not depend expli
itly on the shell's fundamental 
onstant �, as it 
anbe easily seen, but it involves the 
onstant k related to the spe
i�
 matteron a shell. Comparing expressions (19) and (22) we 
on
lude thatE(AL)2n+1 � 2�k(
�2� + 
�2+ ) = E(OL)n : (23)This 
an be also proved using the relation between the Laguerre and Hermitepolynomials.In the present paper the 
lassi
al and the quantum aspe
ts of the spher-i
ally symmetri
 thin shells in the motionless homogeneous super�uid he-lium were studied. We have 
onsidered su
h singular hypersurfa
es as thetraversable interfa
es between the pairs of domains, examples of whi
h arethe phases �3He A�3He B�, the mixtures �4He�3He�, or �the invis
id impu-rity - He�. It was shown that these shells 
an give rise to the a
ousti
 lenseswhi
h have to be soni
 models of the 
omposite spa
e-times (i.e. the pat
hedspa
e-time regions 
hara
terized by di�erent fundamental 
onstants) in gen-eral relativity.
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