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IN GENERAL RELATIVITY:
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In the spirit of the well-known analogy between inviscid fluids and
pseudo-Riemannian manifolds we study spherical singular hypersurfaces
in the static superfluid. Such hypersurfaces turn out to be the interfaces
dividing superfluid into the pairs of spherical domains, examples of which
are “superfluid A—superfluid B” or “impurity—superfluid” phases. It is shown
that these shells form the acoustic lenses which are the sonic counterparts
of the usual optical lenses. The exact equations of motion for the lens
interfaces are obtained. Also some quantum aspects of the theory are con-
sidered. We calculate energy spectra for bound states of acoustic lenses in
dynamical equilibrium taking into account the analogy to a material shell
model of a black hole (we consider the cases of spatial topology of a black
hole and a wormhole type).

PACS numbers: 04.40.Nr, 11.27.+d, 43.35.+d, 67.57.De

It was shown in numerous works that the superfluid phases of 3He (and
perhaps “He) can simulate phenomena encountered in gravitation and the
standard model of elementary particles. Physics of superfluid *He illustrates
concepts in quantum field theory and gravity such as: black holes, surface
gravity, Hawking radiation, horizons, ergoregions, trapped surfaces [1-3] (see
Ref. [4] for an introduction into recent developments), baryogenesis, vortices,
strings, textures, standard electroweak model (see [5,6,11], and references
therein), and so on. This turns out to be possible due to the certain analogy
between inviscid fluids and pseudo-Riemannian manifolds. The simplest way
to show this correspondence is as follows.
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The fundamental equations of dynamics of an inviscid fluid are the Euler
equations
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where @ is the potential of an external force (including gravity), ¢ is the
flow velocity, p and p are, respectively, the fluid density and pressure. If
one assumes the flow to be locally irrotational then we can introduce the
velocity potential ¢, ¥ = —V1. Hence, assuming the barotropic equation of
state p(p), the Euler equation can be rewritten in the form of the Bernoulli
equation [4]
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We can linearize these equations around some background {pg,po, %o} in
order to consider the propagation of small fluctuations (sound waves). We

assume, p = po + ep1 + o(€), p = po + ep1 + o(e), ¥ = o + e + o(e),
with the external potential fixed. Linearizing the Euler equation and taking
into account the linearized continuity equation, we finally obtain the wave
equation describing the propagation of the fluctuation 1/
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This equation can be rewritten as the d’Alembert equation in the curved
background space-time

F(meE)

where p = {0,i}, 2 = {t,Z}, g = det (gu),and the acoustic background
metric is:

ds2 =20 |:—C?dt2 + 04 (da’ — vhdt) (da? — védt)] , (6)
c

where ¢ = \/0p/0p is the local speed of sound. Thus, the vorticity-free flow
of a zero viscosity fluid can be seen to define a Lorentzian signature metric
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on a curved space-time. Of course, the physical space-time is just the usual
flat Minkowski space-time.

The aim of this paper is to study infinitely thin shells in such acoustic
space-times as models of physical objects whose thickness is negligible in
comparison with a circumference radius (e.g., surfaces of phase domains). A
thin shell is thought to be a discontinuity of the second kind (the density has
the delta-like singularity on the shell). Its dynamics is determined by the
Lichnerowicz—Darmois—Israel junction conditions: the first quadratic form
(the metric) is continuous while the second quadratic form (the extrinsic
curvature) has a finite jump across a shell. Geometrically a shell is described
by a three-dimensional closed singular hypersurface embedded in the four-
dimensional space-time which is this way divided into two domains: the
external (X1) and the internal (X) regions of space-time. Since the classic
works [7,8] the theory of singular hypersurfaces has been widely considered
in the literature (see Ref. [9] for details). We describe only some basic
properties of timelike hypersurfaces corresponding to dynamical evolution
of thin shells now. One considers a singular matter layer X' described by
the three-dimensional space-time with the surface stress-energy tensor of a
perfect fluid in the general case

Sap = ouqup + c%(uaub + Ogap), (7)
%

where o and p are, respectively, the surface mass-energy density and pres-
sure, u® is the timelike unit tangent vector, (3)gab is the 3-metric of shell’s
hypersurface (in the acoustic sense (6)), ¢y is the speed of sound in the shell.
We assume the metrics of the fluid space-times outside (X1) and inside (X )
a spherical shell to be flat:

ds? = —cidt? + dr? + r2d2?, (8)

where df2? is the metric of the unit 2-sphere, ¢4 are the constants of the
speed of sound in the space-times X*. These metrics correspond to a spheri-
cal shell dividing different phase domains inside the motionless homogeneous
superfluid (6). It is possible to show that if one uses the shell’s proper time
T then the 3-metric on the shell’s space-time history is

(ds? = —c3dr? + R2d2? (9)

where R(7) is the shell’s radius. It can be seen from Eqs. (8), (9) that
we obtain the composite space-time consisting of three regions, X, X_,
and X/, characterized by proper fundamental constants. The space-time
domains inside and outside a shell (8) are flat and are characterized only
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by the fundamental constants of the speed of sound, whereas the three-
dimensional hypersurface of shell’s history can be curved and in addition to
the constant cy, the “gravitational” constant vy may appear as well. The
energy conservation law for a shell (which is the shell’s interpretation of the
integrability condition S,‘}; . = 0) can be written as

% d (a (3)9) + pd ((3)g> =0, (10)

where (g = \/—det (®g,p) = cxR?sind. In this equation, the first term
corresponds to a change in the shell’s internal energy, the second term
corresponds to the work done by the shell’s internal forces.

It is important to note that the analogy between inviscid fluids and
pseudo-Riemannian manifolds appears to be justified on the kinematical
level only. Thus, the Einstein equations as such have no evident physical
sense within the framework of inviscid fluid dynamics. Only the (acoustic)
metric, the manifold topology, and equations of motion (which are the conse-
quence of the Bianchi identity) have direct physical interpretation. However,
the above-mentioned junction conditions, strictly speaking, are connected
rigidly neither with general relativity nor with the Einstein equations, de-
spite the fact that historically they were first derived in the context of general
relativity. They simply represent the procedure of geometrical matching of
two Riemannian manifolds across a surface of discontinuity of the second
kind, and thus can be assumed independently as equations describing be-
haviour of an interface between two liquid phases. In this connection the
words of the famous mathematician Kolmogorov that “the whole mathemat-
ics (and, therefore, physics, too) can be reformulated as geometry” become
quite relevant. By imposing the junction conditions

(Kt — (K~ = 4mo(2u®uy + O9)

where (K,3)* are the extrinsic curvatures of the spherically symmetric sin-
gular hypersurface [10] with respect to the external and internal acoustic
manifolds X%, we obtain the equation of motion for a shell in the form

ex\/14 (R/cy)? —e_\/14 (R/c_)? = —4nCoR, (11)

where R = dR/dr is the velocity of a shell, ex = sign [ 1+ (R/ci)Q]

(see below), ( = 7x/c3 is the fundamental constant characterizing shell’s
space-time X [11] with the dimensionality [(] = cmg .
From Eq. (11) one can see that we obtain a simple but nontrivial object.

Such a shell is characterized by the proper velocity, the tension and the
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mass-energy density (therefore, an equation of state). One can consider the
‘matter’ on the shell to be highly exotic or ordinary. Once the function
o(R) is known then by means of the conservation law (10) we can obtain
the equation of state p = p(o).

It should also be noted that a sound, passing through the shell-interface (8)
will be refracted, as it happens for light rays in a usual (spherical) lens. Other
analogous phenomena, e.g., the spectral factorization or focusing of sound,
can appear as well.

The equation of motion (11) together with the equation of state (or,
equivalently, with the known function o(R)) and the choice of signs e4
completely determines the motion of superfluid shells (interfaces of acoustic
lenses). Therefore, first of all we must specify 4 and o(R).

Let us say few words about the topological features of the theory. In
general relativity it is well-known [12, 13| that ¢ = +1 if R increases in the
outward normal direction to a shell, and ¢ = —1 if R decreases. Thus,
under the condition ey = ¢ we have the ordinary (black hole type) shell,
and when e, = —e_ we have the traversable wormhole type shell [14]|. The
appropriate cases are represented in the Table T (we assume the surface
density o to be positive), where the shells (i.e., surfaces of the second kind)
corresponding to ordinary lenses are the sonic analogs of the black hole type
shells, and shells corresponding to anomalous lenses are counterparts of the
wormhole type shells [15]. The superscript “1” denotes the case of ordinary
lenses when the notions “outside the shell” and “inside the shell” are reversed
(for anomalous, wormhole, lenses such notions are absent ab initio).

TABLE 1

The classification of acoustic lenses into the ordinary (OL) and anomalous (AL)
ones, the sign “x” denotes the impossibility of the Lichnerowicz—Darmois—Israel’s
junction.

c>0 Ef =€ E4 = —€_
E+:1 E+:71 E+:1 E+:71
e_=1 e_=-1 e_=—1 e_=1
cy >c— OL * * AL
cy =cC_ * * * AL
cy < c_ * OLf * AL

Below we assume the rate of change of the lens size to be small, R< cy.
Otherwise, the disturbances which may occur could be incompatible with
the assumed flatness of the superfluid space-times (8). Following (11), we
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obtain the equation of motion for the lenses in the form

pR?
- = Z(R), (12)
where
ZE(R) = 4n(oR — 26,
po= 24 (26 —1)c;? >0,
_ g0 (OL)

0 = { 1 (AL)> (13)

and we call ¢ the parameter of lens anomaly.
We can specify the class of lenses in the dynamical equilibrium (the other

lenses will be either growing or decreasing in size and this eventually leads to

the vanishing of either of the two phases X*). The Taylor expansion of the
function Z(R) in a small neighborhood of the equilibrium point Ry yields

Z(R)=—-20+¢— %2(R—R0)2+0((R—R0)2), (14)

where € and k are the following constants,
e = 4n(o|p=poRo, k*> = —47¢(0R)" |p=p, -

Eq. (12) can be rewritten as the energy conservation law for the harmonic
oscillator. Performing the shift £ = R — Ry, we obtain

B P? 20 mw2z?

=— 4+ — 1
2m+C,uk+ 2 7 (15)
where
. € 1 k
P =mR =mz, EF=— m=—, w=—.
Cuk Ck N

It should be noted that R € [0, +o0) and z € [—Ry, +00). This circum-
stance is very important for further studies, first of all for analysis of quan-
tum aspects of the theory.

Below we study the quantum mechanical properties of our lenses. One
can perform the standard procedure of quantization. Then the conservation
law (15) gives us the stationary Schrodinger equation for the spatial wave
function ¥ (z)

R d*w 25 mw?

T L tE+ L 2l =0 16
2mdx2+ +Cpk+ 2 7 ' (16)
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or, in the dimensionless form,

4*w
d—yQ‘f’(Q_yQ)!p:Oa (17)

_ w2 (20
YV TH 7 hw Cuk )

Although Eq. (17) is the wave equation for the quantum harmonic os-
cillator the oscillator’s wave functions are not defined on the whole line
(—00,4+00). We have to consider two cases, one of the whole line y €
(—o00,4+00), and the second case of the half-line y € [—Ry\/mw/hk, +00).
The analytic continuation of y to the whole line (—oc, +00) can be correctly
explained only for the AL type shells because they are acoustic wormholes
as it was mentioned above. Such a continuation of the spatial coordinate
appears to be a somewhere artificial but necessary technique. Indeed, in the
wormhole case we have matched the two non-embedded spacetimes, which
both have their own infinitely distant points. Then after the continuation
one can explicitly discriminate these spatial infinities from each other by
virtue of a sign. Thus, besides the parameter 4, the ordinary and anoma-
lous lenses have different topological properties. Below we distinguish these
cases.

(i) Anomalous lenses. In this case physics admits the analytic contin-
uation to y € (—o00,4+00). For bound states the quantum boundary con-
ditions, corresponding to the singular Stourm-Liouville problem, require
U(4+00) = ¥(—o00) = 0, and the normalized solution of Eq. (17) can be
expressed in terms of the Hermite polynomials Hy(y) [17]

where

w(y) = (2"vmn!) % exp (—y%/2) Hu(y) , (18)

where n = 0, 1, 2,.... The discrete values of energy are o = 2n + 1. Taking
into account Eq. (13) we obtain,

2 hk
B, T (2n+1), (19)

Ck(cZ?+¢72) o /6:2_1_012

which is the quantized energy of the equilibrium state of the wormhole type
lens.

(i1) Ordinary lenses. In this case it is necessary to solve the Schroedinger
equation (16) on the half-line

R € [0,400) = y € [-Ro\/mw/hk, +00).
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Performing the transformation z = 4? (which works like the Baker transfor-
mation [16]), we obtain that z € [0,4+00). Then Eq. (17) can be written as
the confluent hypergeometric equation

d%p 3 dp 0—3
°_ T To=0 20
Zd22+<2 Z) PR ’ (20)

where ¥(z) = z'/2e7%/2 p(z). For bound states the quantum boundary con-
ditions require ¥(0) = ¥(+o00) = 0. The confluent hypergeometric functions
¢(z) compatible with the boundary conditions are the Laguerre polynomials

A (2), a > —1 [15,17]. Finally we obtain the normalized wave functions

n!

V2 S —2/2 L(1/2) 2 21
() F(n+1/2)yexp( y°/2) Ly, " (y7) (21)
where 9 =4n+3 and n =0, 1, 2,.... The spectrum of energy is given by
the expression (after taking into account Eq. (13)),
hk
E,=———(4n+3). (22)
24/ — 012

It does not depend explicitly on the shell’s fundamental constant (, as it can
be easily seen, but it involves the constant k related to the specific matter
on a shell. Comparing expressions (19) and (22) we conclude that

(AL) 2 _ m(OL)
E -——— =F . 23

This can be also proved using the relation between the Laguerre and Hermite
polynomials.

In the present paper the classical and the quantum aspects of the spher-
ically symmetric thin shells in the motionless homogeneous superfluid he-
lium were studied. We have considered such singular hypersurfaces as the
traversable interfaces between the pairs of domains, examples of which are
the phases “3He A—2He B”, the mixtures “‘He-3He”, or “the inviscid impu-
rity - He”. It was shown that these shells can give rise to the acoustic lenses
which have to be sonic models of the composite space-times (i.e. the patched
space-time regions characterized by different fundamental constants) in gen-
eral relativity.
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