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ACOUSTIC PHASE LENSES IN SUPERFLUID HELIUMAS MODELS OF COMPOSITE SPACE-TIMESIN GENERAL RELATIVITY:CLASSICAL AND QUANTUM FEATURESKonstantin G. ZloshhastievDepartment of Theoretial Physis, Dnepropetrovsk State UniversityNauhniy lane 13, Dnepropetrovsk 320625, Ukrainee-mail: zlosh�usa.net(Reeived Otober 26, 1998)In the spirit of the well-known analogy between invisid �uids andpseudo-Riemannian manifolds we study spherial singular hypersurfaesin the stati super�uid. Suh hypersurfaes turn out to be the interfaesdividing super�uid into the pairs of spherial domains, examples of whihare �super�uid A�super�uid B� or �impurity�super�uid� phases. It is shownthat these shells form the aousti lenses whih are the soni ounterpartsof the usual optial lenses. The exat equations of motion for the lensinterfaes are obtained. Also some quantum aspets of the theory are on-sidered. We alulate energy spetra for bound states of aousti lenses indynamial equilibrium taking into aount the analogy to a material shellmodel of a blak hole (we onsider the ases of spatial topology of a blakhole and a wormhole type).PACS numbers: 04.40.Nr, 11.27.+d, 43.35.+d, 67.57.DeIt was shown in numerous works that the super�uid phases of 3He (andperhaps 4He) an simulate phenomena enountered in gravitation and thestandard model of elementary partiles. Physis of super�uid 3He illustratesonepts in quantum �eld theory and gravity suh as: blak holes, surfaegravity, Hawking radiation, horizons, ergoregions, trapped surfaes [1�3℄ (seeRef. [4℄ for an introdution into reent developments), baryogenesis, vorties,strings, textures, standard eletroweak model (see [5, 6, 11℄, and referenestherein), and so on. This turns out to be possible due to the ertain analogybetween invisid �uids and pseudo-Riemannian manifolds. The simplest wayto show this orrespondene is as follows.(897)



898 K.G. ZloshhastievThe fundamental equations of dynamis of an invisid �uid are the Eulerequations � ��~v�t + (~v � r)~v� = �rp� �r� ; (1)and the equation of ontinuity�~v�t +r � (�~v) = 0 ; (2)where � is the potential of an external fore (inluding gravity), ~v is the�ow veloity, � and p are, respetively, the �uid density and pressure. Ifone assumes the �ow to be loally irrotational then we an introdue theveloity potential  , ~v = �r . Hene, assuming the barotropi equation ofstate �(p), the Euler equation an be rewritten in the form of the Bernoulliequation [4℄ �� �t + 12(r )2 + pZ0 dp0�(p0) + � = 0 : (3)We an linearize these equations around some bakground f�0; p0;  0g inorder to onsider the propagation of small �utuations (sound waves). Weassume, � = �0 + "�1 + o("), p = p0 + "p1 + o("),  =  0 + " 1 + o("),with the external potential �xed. Linearizing the Euler equation and takinginto aount the linearized ontinuity equation, we �nally obtain the waveequation desribing the propagation of the �utuation  1� ��t ��0���p �� 1�t + ~v0 � r 1��+r � ��0r 1 � �0~v0 ���p �� 1�t + ~v0 � r 1�� = 0 : (4)This equation an be rewritten as the d'Alembert equation in the urvedbakground spae-time 1p�g ��x� �p�g g�� � 1�x�� = 0 ; (5)where � = f0; ig, x� = ft; ~xg, g = det (g��),and the aousti bakgroundmetri is: ds2 = �0 h�2dt2 + Æij(dxi � vi0dt)(dxj � vj0dt)i ; (6)where  =p�p=�� is the loal speed of sound. Thus, the vortiity-free �owof a zero visosity �uid an be seen to de�ne a Lorentzian signature metri



Aousti Phase Lenses in Super�uid Helium as : : : 899on a urved spae-time. Of ourse, the physial spae-time is just the usual�at Minkowski spae-time.The aim of this paper is to study in�nitely thin shells in suh aoustispae-times as models of physial objets whose thikness is negligible inomparison with a irumferene radius (e.g., surfaes of phase domains). Athin shell is thought to be a disontinuity of the seond kind (the density hasthe delta-like singularity on the shell). Its dynamis is determined by theLihnerowiz�Darmois�Israel juntion onditions: the �rst quadrati form(the metri) is ontinuous while the seond quadrati form (the extrinsiurvature) has a �nite jump aross a shell. Geometrially a shell is desribedby a three-dimensional losed singular hypersurfae embedded in the four-dimensional spae-time whih is this way divided into two domains: theexternal (�+) and the internal (��) regions of spae-time. Sine the lassiworks [7,8℄ the theory of singular hypersurfaes has been widely onsideredin the literature (see Ref. [9℄ for details). We desribe only some basiproperties of timelike hypersurfaes orresponding to dynamial evolutionof thin shells now. One onsiders a singular matter layer � desribed bythe three-dimensional spae-time with the surfae stress-energy tensor of aperfet �uid in the general aseSab = �uaub + p2� (uaub + (3)gab) ; (7)where � and p are, respetively, the surfae mass-energy density and pres-sure, ua is the timelike unit tangent vetor, (3)gab is the 3-metri of shell'shypersurfae (in the aousti sense (6)), � is the speed of sound in the shell.We assume the metris of the �uid spae-times outside (�+) and inside (��)a spherial shell to be �at:ds2� = �2�dt2 + dr2 + r2d
2 ; (8)where d
2 is the metri of the unit 2-sphere, � are the onstants of thespeed of sound in the spae-times ��. These metris orrespond to a spheri-al shell dividing di�erent phase domains inside the motionless homogeneoussuper�uid (6). It is possible to show that if one uses the shell's proper time� then the 3-metri on the shell's spae-time history is(3)ds2 = �2�d�2 +R2d
2 ; (9)where R(�) is the shell's radius. It an be seen from Eqs. (8), (9) thatwe obtain the omposite spae-time onsisting of three regions, �+, ��,and �, haraterized by proper fundamental onstants. The spae-timedomains inside and outside a shell (8) are �at and are haraterized only



900 K.G. Zloshhastievby the fundamental onstants of the speed of sound, whereas the three-dimensional hypersurfae of shell's history an be urved and in addition tothe onstant � , the �gravitational� onstant � may appear as well. Theenergy onservation law for a shell (whih is the shell's interpretation of theintegrability ondition Sab;a = 0) an be written as2� d�� (3)g�+ pd�(3)g� = 0 ; (10)where (3)g = p�det ((3)gab) = �R2 sin �. In this equation, the �rst termorresponds to a hange in the shell's internal energy, the seond termorresponds to the work done by the shell's internal fores.It is important to note that the analogy between invisid �uids andpseudo-Riemannian manifolds appears to be justi�ed on the kinematiallevel only. Thus, the Einstein equations as suh have no evident physialsense within the framework of invisid �uid dynamis. Only the (aousti)metri, the manifold topology, and equations of motion (whih are the onse-quene of the Bianhi identity) have diret physial interpretation. However,the above-mentioned juntion onditions, stritly speaking, are onnetedrigidly neither with general relativity nor with the Einstein equations, de-spite the fat that historially they were �rst derived in the ontext of generalrelativity. They simply represent the proedure of geometrial mathing oftwo Riemannian manifolds aross a surfae of disontinuity of the seondkind, and thus an be assumed independently as equations desribing be-haviour of an interfae between two liquid phases. In this onnetion thewords of the famous mathematiian Kolmogorov that �the whole mathemat-is (and, therefore, physis, too) an be reformulated as geometry� beomequite relevant. By imposing the juntion onditions(Kab )+ � (Kab )� = 4��(2uaub + (3)Æab ) ;where (Kab)� are the extrinsi urvatures of the spherially symmetri sin-gular hypersurfae [10℄ with respet to the external and internal aoustimanifolds ��, we obtain the equation of motion for a shell in the form"+q1 + ( _R=+)2 � "�q1 + ( _R=�)2 = �4���R ; (11)where _R = dR=d� is the veloity of a shell, "� = sign �q1 + ( _R=�)2�(see below), � = �=2� is the fundamental onstant haraterizing shell'sspae-time � [11℄ with the dimensionality [�℄ = m g�1.From Eq. (11) one an see that we obtain a simple but nontrivial objet.Suh a shell is haraterized by the proper veloity, the tension and the



Aousti Phase Lenses in Super�uid Helium as : : : 901mass-energy density (therefore, an equation of state). One an onsider the`matter' on the shell to be highly exoti or ordinary. One the funtion�(R) is known then by means of the onservation law (10) we an obtainthe equation of state p = p(�).It should also be noted that a sound, passing through the shell-interfae (8)will be refrated, as it happens for light rays in a usual (spherial) lens. Otheranalogous phenomena, e.g., the spetral fatorization or fousing of sound,an appear as well.The equation of motion (11) together with the equation of state (or,equivalently, with the known funtion �(R)) and the hoie of signs "�ompletely determines the motion of super�uid shells (interfaes of aoustilenses). Therefore, �rst of all we must speify "� and �(R).Let us say few words about the topologial features of the theory. Ingeneral relativity it is well-known [12, 13℄ that " = +1 if R inreases in theoutward normal diretion to a shell, and " = �1 if R dereases. Thus,under the ondition "+ = "� we have the ordinary (blak hole type) shell,and when "+ = �"� we have the traversable wormhole type shell [14℄. Theappropriate ases are represented in the Table I (we assume the surfaedensity � to be positive), where the shells (i.e., surfaes of the seond kind)orresponding to ordinary lenses are the soni analogs of the blak hole typeshells, and shells orresponding to anomalous lenses are ounterparts of thewormhole type shells [15℄. The supersript �y� denotes the ase of ordinarylenses when the notions �outside the shell� and �inside the shell� are reversed(for anomalous, wormhole, lenses suh notions are absent ab initio).TABLE IThe lassi�ation of aousti lenses into the ordinary (OL) and anomalous (AL)ones, the sign �?� denotes the impossibility of the Lihnerowiz�Darmois�Israel'sjuntion. � > 0 "+ = "� "+ = �"�"+=1"�=1 "+=�1"�=�1 "+=1"�=�1 "+=�1"�=1+ > � OL ? ? AL+ = � ? ? ? AL+ < � ? OLy ? ALBelow we assume the rate of hange of the lens size to be small, _R� �.Otherwise, the disturbanes whih may our ould be inompatible withthe assumed �atness of the super�uid spae-times (8). Following (11), we



902 K.G. Zloshhastievobtain the equation of motion for the lenses in the form� _R22 = �(R) ; (12)where �(R) = 4���R � 2Æ ;� = �2� + (2Æ � 1)�2+ > 0 ;Æ = � 01 (OL)(AL) ; (13)and we all Æ the parameter of lens anomaly.We an speify the lass of lenses in the dynamial equilibrium (the otherlenses will be either growing or dereasing in size and this eventually leads tothe vanishing of either of the two phases ��). The Taylor expansion of thefuntion �(R) in a small neighborhood of the equilibrium point R0 yields�(R) = �2Æ + "� k22 (R �R0)2 + o ((R �R0)2) ; (14)where " and k are the following onstants," = 4���jR=R0R0; k2 = �4��(�R)00jR=R0 :Eq. (12) an be rewritten as the energy onservation law for the harmoniosillator. Performing the shift x = R�R0, we obtainE = P 22m + 2Æ��k + m!2x22 ; (15)where P = m _R = m _x; E = "��k ; m = 1�k ; ! = kp� :It should be noted that R 2 [0; +1) and x 2 [�R0; +1). This irum-stane is very important for further studies, �rst of all for analysis of quan-tum aspets of the theory.Below we study the quantum mehanial properties of our lenses. Onean perform the standard proedure of quantization. Then the onservationlaw (15) gives us the stationary Shrödinger equation for the spatial wavefuntion 	(x) � ~22m d2	dx2 + ��E + 2Æ��k + m!22 x2�	 = 0; (16)



Aousti Phase Lenses in Super�uid Helium as : : : 903or, in the dimensionless form,d2	dy2 + �%� y2�	 = 0; (17)where y =rm!~ x; % = 2~! �E � 2Æ��k� :Although Eq. (17) is the wave equation for the quantum harmoni os-illator the osillator's wave funtions are not de�ned on the whole line(�1;+1): We have to onsider two ases, one of the whole line y 2(�1;+1); and the seond ase of the half-line y 2 [�R0pm!=~; +1).The analyti ontinuation of y to the whole line (�1;+1) an be orretlyexplained only for the AL type shells beause they are aousti wormholesas it was mentioned above. Suh a ontinuation of the spatial oordinateappears to be a somewhere arti�ial but neessary tehnique. Indeed, in thewormhole ase we have mathed the two non-embedded spaetimes, whihboth have their own in�nitely distant points. Then after the ontinuationone an expliitly disriminate these spatial in�nities from eah other byvirtue of a sign. Thus, besides the parameter Æ, the ordinary and anoma-lous lenses have di�erent topologial properties. Below we distinguish theseases.(i) Anomalous lenses. In this ase physis admits the analyti ontin-uation to y 2 (�1;+1). For bound states the quantum boundary on-ditions, orresponding to the singular Stourm-Liouville problem, require	(+1) = 	(�1) = 0, and the normalized solution of Eq. (17) an beexpressed in terms of the Hermite polynomials Hn(y) [17℄	(y) = �2np�n!��1=2 exp (�y2=2)Hn(y) ; (18)where n = 0; 1; 2; ::: . The disrete values of energy are % = 2n+ 1: Takinginto aount Eq. (13) we obtain,En = 2�k(�2� + �2+ ) + ~k2q�2� + �2+ (2n+ 1) ; (19)whih is the quantized energy of the equilibrium state of the wormhole typelens.(ii) Ordinary lenses. In this ase it is neessary to solve the Shröedingerequation (16) on the half-lineR 2 [0;+1) ) y 2 [�R0pm!=~; +1) :



904 K.G. ZloshhastievPerforming the transformation z = y2 (whih works like the Baker transfor-mation [16℄), we obtain that z 2 [0;+1). Then Eq. (17) an be written asthe on�uent hypergeometri equationz d2'dz2 +�32 � z� d'dz + %� 34 ' = 0 ; (20)where 	(z) = z1=2e�z=2 '(z). For bound states the quantum boundary on-ditions require 	(0) = 	(+1) = 0. The on�uent hypergeometri funtions'(z) ompatible with the boundary onditions are the Laguerre polynomialsL(�)n (z), � > �1 [15, 17℄. Finally we obtain the normalized wave funtions	(y) =s n!� (n+ 1=2)y exp (�y2=2)L(1=2)n (y2) ; (21)where % = 4n+ 3 and n = 0; 1; 2; ::: . The spetrum of energy is given bythe expression (after taking into aount Eq. (13)),En = ~k2q�2� � �2+ (4n+ 3) : (22)It does not depend expliitly on the shell's fundamental onstant �, as it anbe easily seen, but it involves the onstant k related to the spei� matteron a shell. Comparing expressions (19) and (22) we onlude thatE(AL)2n+1 � 2�k(�2� + �2+ ) = E(OL)n : (23)This an be also proved using the relation between the Laguerre and Hermitepolynomials.In the present paper the lassial and the quantum aspets of the spher-ially symmetri thin shells in the motionless homogeneous super�uid he-lium were studied. We have onsidered suh singular hypersurfaes as thetraversable interfaes between the pairs of domains, examples of whih arethe phases �3He A�3He B�, the mixtures �4He�3He�, or �the invisid impu-rity - He�. It was shown that these shells an give rise to the aousti lenseswhih have to be soni models of the omposite spae-times (i.e. the pathedspae-time regions haraterized by di�erent fundamental onstants) in gen-eral relativity.
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