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CALOGERO MODEL AND sL(2,[R) ALGEBRA*
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The Calogero model with external harmonic oscillator potential is dis-
cussed from sL(2,R) algebra point of view. Explicit formulae for functions
with exponential time behaviour are given; in particular, the integrals of
motion are constructed and their involutivness demonstrated. The super-
integrability of the model appears to be a simple consequence of the for-
malism.

PACS numbers: 02.60.Lj

In memory of our friend Stanislaw Malinowski

The Calogero model [1-4], although introduced more than a quater of
century ago, still attracts much attention. It has been show to be related
to many branches of theoretical physics like the theory of quantum Hall ef-
fect [5], fractional statistics [6], two-dimensional gravity |7], two-dimensional
QCD [8] and others. Many advanced techniques has been applied in order
to shed light on the structure of the model: inverse scattering method |3, 9],
r-matrix methods [10], W-algebra techniques [11] etc.

Many aspects of Calogero model can be understood by fairly elementary
methods. For instance Barucchi and Regge [12] and Wojciechowski [13] have
shown that the sL(2,R) algebra plays an important role in the structure of
Calogero model without harmonic external potential. In particular, the
superintegrability of the model [14] can be easily shown using elementary
group theory.

In the present note we show how the Calogero model with harmonic
term can be dealt with in a similar way using sL(2,R) algebra. We con-

* Supported by KBN grant 2 P03B 076 10.

(907)



908 C. GONERA, P. KOSINSKI

struct explicitly functions defined over phase space with a very simple (ex-
ponential) time dependence; in particular, the integrals of motion are given
and their involutivness is shown by refering to the pure (i.e. without har-
monic term) Calogero model. It follows immediately from our results that
the model retains the property of superintegrability after including the har-
monic potential. This latter result is known [3, 15] but here is shown to be
a straightforward consequences of sL(2,R) dynamical symmetry.

Let us recall the construction of sL(2,R) algebra for the pure Calogero
model [13]. To any function f(g,p) we ascribe the operator F' acting in the
linear space of functions defined over phase space:

{f.g} = Fg (1)

for any function g. Obviously
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Let us define the following three functions
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They obey the sL(2,R) algebra rules (with respect to the standard Poisson
brackets)

{thti} = iti;
{t-i-at—} = 2, (4)

or, respectively
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where, according to Eq. (1)
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The equations of motion for the Calogero model can be written as

Vo (ftay =1us. @
Therefore, the integrals of motion are highest-weight vectors; they can be
chosen to be (half-) integer eigenvectors of Tj thus providing a finite-dimen-
sional irreducible representations of sL(2,R). Moreover, elementary group
theory allows us to give an immediate proof of superintegrability of rational
Calogero model (shown, in somewhat different way, in [14]). To this end
let us note that it is sufficient to find N independent quantities evolving
linearly in time (due to the noncompactness of the system no condition for
ratios of frequencies [16] are necessary). But this is rather trivial: for if f
is an integral of motion then T f depends linearly on time provided f is an
eigenvector of Ty.

The sL(2,R) algebra can be slightly extended. Let us add two further
functions and corresponding operators

N N5
3+:sz' , S+:_Z(9_(]-’
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The elements tg,t+, s+ obey the following algebra
1
{to,s+} = E554,

{tx,s+} = 0,
{tiasqi} = S+,
{s—.s4} = N. (9)



910 C. GONERA, P. KOSINSKI

However, for the operators S, the last formula is to be replaced by

[S_,5,] = 0. (10)

The algebra of operators TO,Ti, S, is therefore a semidirect product of
sL(2,R) with two-dimensional abelian algebra spanned by sL(2,R) dublet
S.. The Poisson algebra (9) provides a central extension of the latter, the
parameter of extension being the number of particles N.

The representations of the algebra under consideration can be easily
obtained. We describe the simplest one containing all independent inte-
grals of motion. Let fop be the highest-weight vector such that T, ofoo =
5 N foo, S+f 00 = 0. One can take, for example, the translation-invariant inte-
gral of motion for the Calogero model given in [17, 18]

Tg JXV: (a;—a;)2 q) 31’23?
foo = e =t T ! Hpk (11)
Define the vectors
Jom =T™8" foo, 0<m < N-mn, 0<n <N —1; (12)

they span a subspace carrying an irreducible representation of our algebra.
It reads

Tffmn = fm+1na
Sffmn = fmn+1a

N N 0

TOfmn = <E_m_§) fmna

§+fmn = —mfm—1n+1,

Tifmn = m(N—m—-n+1) fru_1n. (13)
In particular, it follows from the above formulae that fo,,n =0,..., N —

1 are translation-invariant integrals of motion for Calogero model. They are
obviously linearly independent; however, their functional independence can
be checked only by direct inspection.

Also

T—I—fln = (N_n)fOn (14)
implies that
(N = k) forfin — (N = n) fonf1k (15)
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are again integrals of motion. Obviously, only at most N — 1 of them can
be independent and, also by direct inspection, we verify that this is actually
the case.

Let us pass to our main theme — the Calogero model in external har-
monic oscillator potential. The hamiltonian of the model reads

N
H = Zp,+gz +w22qz . (16)

1,j=1

Under the redefinition ¢y — #g,t+ — wT'ty the sL(2,R) algebra remains
unchanged. Our hamiltonian can be written as

H= w(l- -Ty) =—2iwT;. (17)

The w # 0 case differs qualitatively from the w = 0 one. On the algebraic
level this is reflected in the difference in spectral properties of T4 and T5.
Group theory allows us to find easily the functions having simple time be-
havior. Let ef,,m = —s,...,s be a basis of spin s representation of sL(2,R);
the normalization convention adopted is such that

Trel, = (s —m)(s+m+1)efys

T e, =e,
Then the equations
(T —T\)g5 = —2ik¢, k= —s,...,s,
T2¢;, = s(s+1)¢j, (18)
imply
=3 ke, (19)

(2s)!

m=—s

where the coefficients ¢, (s, k) are defined by

2s
(z+0) @ — i) " = enls, k)2 (20)
n=0

Now, it is easy to solve the Hamilton equations for ¢;:

d¢k = (¢, w(t —ty)} = —w(T_ — Ty (21)
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give
gr(t) = e¥rg1(0). (22)

Let us take as e? the integral (11), N = 2s. Writing equation (19) in the
form

s > (25 —n)! ANEPAY s
¢y = Z 2s)! c2s—n (8, k) ‘UZQZa_Z €s s (23)
n=0 i=1
and using Egs. (11) and (20) one finds
% ’ 62
. 3p;9p;
b=y o Y F(qp;w), (242)
Flgpw) = > Tl +iwg) [1(pi — iwgi) - (24b)
S\C(s{ﬁ”f/z} 1€0 [1°4)

The function qﬁzl, s’ < s, can be obtained by taking, for example, ej: =
Joa(s—sy-  Let us note that fog,_s) has the following form: one chooses
a subsystem consisting of N’ = 2s' particles and construct the relevant
integral (11); fog(s—s) is the sum of such expressions over all choices of
subsystems of N’ particles. It is readily seen from our construction that
qﬁzl,, s < s', have the same structure.

In this way we obtained an explicit representation of functions which
have a simple time behaviour under the hamiltonian flow generated by the
hamiltonian of Calogero model in external harmonic potential.

In order to show complete integrability of Calogero model with harmonic
potential it is more convenient to start with e] given by another well-known
formula for pure (w = 0) Calogero model integrals of motion

e = Te(L2), (25)
where L is the relevant Lax matrix. Taking £k =0,s = 1,..., N and inserting
e as given by Eq. (25) into Eq. (23) we obtain N integrals of motion.

2m
4 = %7@8&? (2)em (Zqz apz) TP (20

i=1



Calogero Model and sL(2,R) Algebra 913

In order to prove that they are in involution, let us first note that
N 9 5
ey ~ (Zq—) T (L*),s =1,...,N (27)
i=1

are in involution [19]. Moreover, we have the following identity

e T (AT ) o= F(T4T) %(T, —T,). (28)
Therefore
gy = eTTHHT-)ep (29)

However, w(T+ + T_) is the operator representing the function

| N g N | 2
Y A aa g S o) BN

which is the hamiltonian for Calogero model in inverse harmonic potential.
Therefore, it follows from Eq. (29) that ¢§ is obtained from ef evolving
during the time i—’; (which is purely imaginary but this is irrelevant in what
follows) according to the hamiltonian flow determined by h. The time evolu-
tion is a canonical transformation which proves that ¢f are also in involution.

In order to show that the integrals (26) are independent for s =1,..., N
it is sufficient to note that they contain only even powers of momenta and
have the form

N
by = Zp?s + terms of lower degree in p's. (31)
i=1

It is also easy to check that for ¢ = 0 they reduce to the following ones

N

#lg=0) = > (] +w’¢})’,s=1,...,N. (32)
i=1

The superintegrability of the model can be also shown by our method.
This is fairly obvious — we have constructed a huge set of functions depend-
ing harmonically on time, the ratios of frequencies being rational numbers.

To conclude we have shown that (super-)integrability of the Calogero
model with harmonic external potential can be easily derived from the prop-
erties of pure Calogero model by using elementary group theoretical tech-
niques.
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