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CALOGERO MODEL AND sL(2, R ) ALGEBRA�Cezary Gonera and Piotr Kosi«skiDepartment of Field Theory, University of �ód¹Pomorska 149/153, 90�236 �ód¹, Poland(Re
eived November 10, 1998)The Calogero model with external harmoni
 os
illator potential is dis-
ussed from sL(2,R) algebra point of view. Expli
it formulae for fun
tionswith exponential time behaviour are given; in parti
ular, the integrals ofmotion are 
onstru
ted and their involutivness demonstrated. The super-integrability of the model appears to be a simple 
onsequen
e of the for-malism.PACS numbers: 02.60.Lj In memory of our friend Stanislaw MalinowskiThe Calogero model [1�4℄, although introdu
ed more than a quater of
entury ago, still attra
ts mu
h attention. It has been show to be relatedto many bran
hes of theoreti
al physi
s like the theory of quantum Hall ef-fe
t [5℄, fra
tional statisti
s [6℄, two-dimensional gravity [7℄, two-dimensionalQCD [8℄ and others. Many advan
ed te
hniques has been applied in orderto shed light on the stru
ture of the model: inverse s
attering method [3, 9℄,r-matrix methods [10℄, W -algebra te
hniques [11℄ et
.Many aspe
ts of Calogero model 
an be understood by fairly elementarymethods. For instan
e Baru

hi and Regge [12℄ and Woj
ie
howski [13℄ haveshown that the sL(2,R) algebra plays an important role in the stru
ture ofCalogero model without harmoni
 external potential. In parti
ular, thesuperintegrability of the model [14℄ 
an be easily shown using elementarygroup theory.In the present note we show how the Calogero model with harmoni
term 
an be dealt with in a similar way using sL(2,R) algebra. We 
on-� Supported by KBN grant 2 P03B 076 10.(907)
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t expli
itly fun
tions de�ned over phase spa
e with a very simple (ex-ponential) time dependen
e; in parti
ular, the integrals of motion are givenand their involutivness is shown by refering to the pure (i.e. without har-moni
 term) Calogero model. It follows immediately from our results thatthe model retains the property of superintegrability after in
luding the har-moni
 potential. This latter result is known [3, 15℄ but here is shown to bea straightforward 
onsequen
es of sL(2,R) dynami
al symmetry.Let us re
all the 
onstru
tion of sL(2,R) algebra for the pure Calogeromodel [13℄. To any fun
tion f(q; p) we as
ribe the operator F̂ a
ting in thelinear spa
e of fun
tions de�ned over phase spa
e:ff; gg = F̂ g (1)for any fun
tion g. ObviouslyF̂ = Xi � �f�qi ��pi � �f�pi ��qi� : (2)Let us de�ne the following three fun
tionst+ = �12 0� NXi=1 p2i + g2 NXi;j=1 0 1(qi � qj)21A ;t0 = 12 NXi=1 qipi ;t� = 12 NXi=1 q2i : (3)They obey the sL(2,R) algebra rules (with respe
t to the standard Poissonbra
kets) ft0; t�g = �t� ;ft+; t�g = 2t0 ; (4)or, respe
tively hT̂0; T̂�i = �T̂� ;hT̂+; T̂0i = 2 T̂0 ; (5)
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ording to Eq. (1)T̂+ = NXi=1 pi ��qi + g22 NXi;j=1 1(qi � qj)3 � ��pj � ��pi� ;T̂0 = 12 NXi=1 �pi ��pi � qi ��qi� ;T̂� = NXi=1 qi ��pi : (6)The equations of motion for the Calogero model 
an be written asdfdt = ff;�t+g = T̂+f : (7)Therefore, the integrals of motion are highest-weight ve
tors; they 
an be
hosen to be (half-) integer eigenve
tors of T̂0 thus providing a �nite-dimen-sional irredu
ible representations of sL(2,R). Moreover, elementary grouptheory allows us to give an immediate proof of superintegrability of rationalCalogero model (shown, in somewhat di�erent way, in [14℄). To this endlet us note that it is su�
ient to �nd N independent quantities evolvinglinearly in time (due to the non
ompa
tness of the system no 
ondition forratios of frequen
ies [16℄ are ne
essary). But this is rather trivial: for if fis an integral of motion then T̂�f depends linearly on time provided f is aneigenve
tor of T̂0.The sL(2,R) algebra 
an be slightly extended. Let us add two furtherfun
tions and 
orresponding operatorss+ = NXi=1 pi ; Ŝ+ = � NXi=1 ��qi ;s� = NXi=1 qi ; Ŝ� = NXi=1 ��pi : (8)The elements t0; t�; s� obey the following algebraft0; s�g = �12s� ;ft�; s�g = 0 ;ft�; s�g = s� ;fs�; s+g = N : (9)



910 C. Gonera, P. Kosi«skiHowever, for the operators Ŝ� the last formula is to be repla
ed by[Ŝ�; Ŝ+℄ = 0 : (10)The algebra of operators T̂0; T̂�; Ŝ� is therefore a semidire
t produ
t ofsL(2,R) with two-dimensional abelian algebra spanned by sL(2,R) dubletŜ�. The Poisson algebra (9) provides a 
entral extension of the latter, theparameter of extension being the number of parti
les N.The representations of the algebra under 
onsideration 
an be easilyobtained. We des
ribe the simplest one 
ontaining all independent inte-grals of motion. Let f00 be the highest-weight ve
tor su
h that T̂of00 =N2 f00; Ŝ+f00 = 0. One 
an take, for example, the translation-invariant inte-gral of motion for the Calogero model given in [17, 18℄f00 = e�g2 NPi;j=1 0 1(qi�qj )2 �2�pi�pj NYk=1 pk : (11)De�ne the ve
torsfmn � T̂m� Ŝn�f00; 0 � m � N � n; 0 � n � N � 1; (12)they span a subspa
e 
arrying an irredu
ible representation of our algebra.It reads T̂�fmn = fm+1n ;Ŝ�fmn = fmn+1 ;T̂0fmn = �N2 �m� n2� fmn ;Ŝ+fmn = �mfm � 1n+ 1 ;T̂+fmn = m (N �m� n+ 1) fm�1n : (13)In parti
ular, it follows from the above formulae that f0n; n = 0; : : : ; N�1 are translation-invariant integrals of motion for Calogero model. They areobviously linearly independent; however, their fun
tional independen
e 
anbe 
he
ked only by dire
t inspe
tion.Also T̂+f1n = (N � n)f0n (14)implies that (N � k)f0kf1n � (N � n)f0nf1k (15)



Calogero Model and sL(2,R) Algebra 911are again integrals of motion. Obviously, only at most N � 1 of them 
anbe independent and, also by dire
t inspe
tion, we verify that this is a
tuallythe 
ase.Let us pass to our main theme � the Calogero model in external har-moni
 os
illator potential. The hamiltonian of the model readsH = 12 0� NXi=1 p2i + g NXi;j=1 0 1(qi � qj)2 + !2 NXi=1 q2i1A : (16)Under the rede�nition t0 ! t0; t� ! !�1t� the sL(2,R) algebra remainsun
hanged. Our hamiltonian 
an be written asH = !(T̂� � T̂+) = �2i!T̂2 : (17)The ! 6= 0 
ase di�ers qualitatively from the ! = 0 one. On the algebrai
level this is re�e
ted in the di�eren
e in spe
tral properties of T̂+ and T̂2.Group theory allows us to �nd easily the fun
tions having simple time be-havior. Let esm;m = �s; : : : ; s be a basis of spin s representation of sL(2,R);the normalization 
onvention adopted is su
h thatT̂+esm = (s�m)(s+m+ 1)esm+1 ;T̂�esm = esm�1 :Then the equations(T̂� � T̂+)�sk = �2ik�sk; k = �s; : : : ; s ;T̂ 2�sk = s(s+ 1)�sk (18)imply �sk = sXm=�s (s+m)!(2s)! 
s+m(s; k)esm ; (19)where the 
oe�
ients 
n(s; k) are de�ned by(x+ i)s+k(x� i)s�k = 2sXn=0 
n(s; k)xn : (20)Now, it is easy to solve the Hamilton equations for �sk:d�skdt = f�sk; !(t� � t+)g = �!(T̂� � T̂+)�sk (21)



912 C. Gonera, P. Kosi«skigive �sk(t) = e2ik!t�sk(0) : (22)Let us take as ess the integral (11), N = 2s. Writing equation (19) in theform �sk = 2sXn=0 (2s� n)!(2s)! 
2s�n(s; k) ! NXi=1 qi ��pi!n ess ; (23)and using Eqs. (11) and (20) one �nds�sk = 1(2s)!e� g2 NPi;j=1 0 1(qi�qj )2 �2�pi�pj F (q; p;!) ; (24a)F (q; p;!) = PÆ�f1;:::;2sgjÆj=s+k Qi2Æ(pi + i!qi)Qi 62Æ(pi � i!qi) : (24b)The fun
tion �s0k ; s0 < s, 
an be obtained by taking, for example, es0s0 =f02(s�s0). Let us note that f02(s�s0) has the following form: one 
hoosesa subsystem 
onsisting of N 0 = 2s0 parti
les and 
onstru
t the relevantintegral (11); f02(s�s0) is the sum of su
h expressions over all 
hoi
es ofsubsystems of N 0 parti
les. It is readily seen from our 
onstru
tion that�s0k0 ; s � s0, have the same stru
ture.In this way we obtained an expli
it representation of fun
tions whi
hhave a simple time behaviour under the hamiltonian �ow generated by thehamiltonian of Calogero model in external harmoni
 potential.In order to show 
omplete integrability of Calogero model with harmoni
potential it is more 
onvenient to start with ess given by another well-knownformula for pure (! = 0) Calogero model integrals of motioness = Tr(L2s) ; (25)where L is the relevant Lax matrix. Taking k = 0; s = 1; : : : ; N and insertingess as given by Eq. (25) into Eq. (23) we obtain N integrals of motion.�s0 = sXm=0 (2s� 2m)!(2s)! � sm�!2m NXi=1 qi ��pi!2m Tr(L2s) : (26)



Calogero Model and sL(2,R) Algebra 913In order to prove that they are in involution, let us �rst note thates0 '  NXi=1 qi ��pi!sTr(L2s); s = 1; : : : ; N (27)are in involution [19℄. Moreover, we have the following identitye i�4 (T̂++T̂�)T̂0e� i�4 (T̂++T̂�) = i2(T̂� � T̂+) : (28)Therefore �s0 ' e i�4 (T̂++T̂�)es0 : (29)However, !(T̂+ + T̂�) is the operator representing the fun
tion�h = �0�12 NXi=1 p2i + g2 NXi;j=1 0 1(qi � qj)2 � !22 NXi=1 q2i1A ; (30)whi
h is the hamiltonian for Calogero model in inverse harmoni
 potential.Therefore, it follows from Eq. (29) that �s0 is obtained from es0 evolvingduring the time i�4! (whi
h is purely imaginary but this is irrelevant in whatfollows) a

ording to the hamiltonian �ow determined by h. The time evolu-tion is a 
anoni
al transformation whi
h proves that �s0 are also in involution.In order to show that the integrals (26) are independent for s = 1; : : : ; Nit is su�
ient to note that they 
ontain only even powers of momenta andhave the form�s0 = NXi=1 p2si + terms of lower degree in p0s : (31)It is also easy to 
he
k that for g = 0 they redu
e to the following ones�s0(g = 0) = NXi=1(p2i + !2q2i )s; s = 1; : : : ; N : (32)The superintegrability of the model 
an be also shown by our method.This is fairly obvious � we have 
onstru
ted a huge set of fun
tions depend-ing harmoni
ally on time, the ratios of frequen
ies being rational numbers.To 
on
lude we have shown that (super-)integrability of the Calogeromodel with harmoni
 external potential 
an be easily derived from the prop-erties of pure Calogero model by using elementary group theoreti
al te
h-niques.
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