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CALOGERO MODEL AND sL(2, R ) ALGEBRA�Cezary Gonera and Piotr Kosi«skiDepartment of Field Theory, University of �ód¹Pomorska 149/153, 90�236 �ód¹, Poland(Reeived November 10, 1998)The Calogero model with external harmoni osillator potential is dis-ussed from sL(2,R) algebra point of view. Expliit formulae for funtionswith exponential time behaviour are given; in partiular, the integrals ofmotion are onstruted and their involutivness demonstrated. The super-integrability of the model appears to be a simple onsequene of the for-malism.PACS numbers: 02.60.Lj In memory of our friend Stanislaw MalinowskiThe Calogero model [1�4℄, although introdued more than a quater ofentury ago, still attrats muh attention. It has been show to be relatedto many branhes of theoretial physis like the theory of quantum Hall ef-fet [5℄, frational statistis [6℄, two-dimensional gravity [7℄, two-dimensionalQCD [8℄ and others. Many advaned tehniques has been applied in orderto shed light on the struture of the model: inverse sattering method [3, 9℄,r-matrix methods [10℄, W -algebra tehniques [11℄ et.Many aspets of Calogero model an be understood by fairly elementarymethods. For instane Baruhi and Regge [12℄ and Wojiehowski [13℄ haveshown that the sL(2,R) algebra plays an important role in the struture ofCalogero model without harmoni external potential. In partiular, thesuperintegrability of the model [14℄ an be easily shown using elementarygroup theory.In the present note we show how the Calogero model with harmoniterm an be dealt with in a similar way using sL(2,R) algebra. We on-� Supported by KBN grant 2 P03B 076 10.(907)



908 C. Gonera, P. Kosi«skistrut expliitly funtions de�ned over phase spae with a very simple (ex-ponential) time dependene; in partiular, the integrals of motion are givenand their involutivness is shown by refering to the pure (i.e. without har-moni term) Calogero model. It follows immediately from our results thatthe model retains the property of superintegrability after inluding the har-moni potential. This latter result is known [3, 15℄ but here is shown to bea straightforward onsequenes of sL(2,R) dynamial symmetry.Let us reall the onstrution of sL(2,R) algebra for the pure Calogeromodel [13℄. To any funtion f(q; p) we asribe the operator F̂ ating in thelinear spae of funtions de�ned over phase spae:ff; gg = F̂ g (1)for any funtion g. ObviouslyF̂ = Xi � �f�qi ��pi � �f�pi ��qi� : (2)Let us de�ne the following three funtionst+ = �12 0� NXi=1 p2i + g2 NXi;j=1 0 1(qi � qj)21A ;t0 = 12 NXi=1 qipi ;t� = 12 NXi=1 q2i : (3)They obey the sL(2,R) algebra rules (with respet to the standard Poissonbrakets) ft0; t�g = �t� ;ft+; t�g = 2t0 ; (4)or, respetively hT̂0; T̂�i = �T̂� ;hT̂+; T̂0i = 2 T̂0 ; (5)



Calogero Model and sL(2,R) Algebra 909where, aording to Eq. (1)T̂+ = NXi=1 pi ��qi + g22 NXi;j=1 1(qi � qj)3 � ��pj � ��pi� ;T̂0 = 12 NXi=1 �pi ��pi � qi ��qi� ;T̂� = NXi=1 qi ��pi : (6)The equations of motion for the Calogero model an be written asdfdt = ff;�t+g = T̂+f : (7)Therefore, the integrals of motion are highest-weight vetors; they an behosen to be (half-) integer eigenvetors of T̂0 thus providing a �nite-dimen-sional irreduible representations of sL(2,R). Moreover, elementary grouptheory allows us to give an immediate proof of superintegrability of rationalCalogero model (shown, in somewhat di�erent way, in [14℄). To this endlet us note that it is su�ient to �nd N independent quantities evolvinglinearly in time (due to the nonompatness of the system no ondition forratios of frequenies [16℄ are neessary). But this is rather trivial: for if fis an integral of motion then T̂�f depends linearly on time provided f is aneigenvetor of T̂0.The sL(2,R) algebra an be slightly extended. Let us add two furtherfuntions and orresponding operatorss+ = NXi=1 pi ; Ŝ+ = � NXi=1 ��qi ;s� = NXi=1 qi ; Ŝ� = NXi=1 ��pi : (8)The elements t0; t�; s� obey the following algebraft0; s�g = �12s� ;ft�; s�g = 0 ;ft�; s�g = s� ;fs�; s+g = N : (9)



910 C. Gonera, P. Kosi«skiHowever, for the operators Ŝ� the last formula is to be replaed by[Ŝ�; Ŝ+℄ = 0 : (10)The algebra of operators T̂0; T̂�; Ŝ� is therefore a semidiret produt ofsL(2,R) with two-dimensional abelian algebra spanned by sL(2,R) dubletŜ�. The Poisson algebra (9) provides a entral extension of the latter, theparameter of extension being the number of partiles N.The representations of the algebra under onsideration an be easilyobtained. We desribe the simplest one ontaining all independent inte-grals of motion. Let f00 be the highest-weight vetor suh that T̂of00 =N2 f00; Ŝ+f00 = 0. One an take, for example, the translation-invariant inte-gral of motion for the Calogero model given in [17, 18℄f00 = e�g2 NPi;j=1 0 1(qi�qj )2 �2�pi�pj NYk=1 pk : (11)De�ne the vetorsfmn � T̂m� Ŝn�f00; 0 � m � N � n; 0 � n � N � 1; (12)they span a subspae arrying an irreduible representation of our algebra.It reads T̂�fmn = fm+1n ;Ŝ�fmn = fmn+1 ;T̂0fmn = �N2 �m� n2� fmn ;Ŝ+fmn = �mfm � 1n+ 1 ;T̂+fmn = m (N �m� n+ 1) fm�1n : (13)In partiular, it follows from the above formulae that f0n; n = 0; : : : ; N�1 are translation-invariant integrals of motion for Calogero model. They areobviously linearly independent; however, their funtional independene anbe heked only by diret inspetion.Also T̂+f1n = (N � n)f0n (14)implies that (N � k)f0kf1n � (N � n)f0nf1k (15)



Calogero Model and sL(2,R) Algebra 911are again integrals of motion. Obviously, only at most N � 1 of them anbe independent and, also by diret inspetion, we verify that this is atuallythe ase.Let us pass to our main theme � the Calogero model in external har-moni osillator potential. The hamiltonian of the model readsH = 12 0� NXi=1 p2i + g NXi;j=1 0 1(qi � qj)2 + !2 NXi=1 q2i1A : (16)Under the rede�nition t0 ! t0; t� ! !�1t� the sL(2,R) algebra remainsunhanged. Our hamiltonian an be written asH = !(T̂� � T̂+) = �2i!T̂2 : (17)The ! 6= 0 ase di�ers qualitatively from the ! = 0 one. On the algebrailevel this is re�eted in the di�erene in spetral properties of T̂+ and T̂2.Group theory allows us to �nd easily the funtions having simple time be-havior. Let esm;m = �s; : : : ; s be a basis of spin s representation of sL(2,R);the normalization onvention adopted is suh thatT̂+esm = (s�m)(s+m+ 1)esm+1 ;T̂�esm = esm�1 :Then the equations(T̂� � T̂+)�sk = �2ik�sk; k = �s; : : : ; s ;T̂ 2�sk = s(s+ 1)�sk (18)imply �sk = sXm=�s (s+m)!(2s)! s+m(s; k)esm ; (19)where the oe�ients n(s; k) are de�ned by(x+ i)s+k(x� i)s�k = 2sXn=0 n(s; k)xn : (20)Now, it is easy to solve the Hamilton equations for �sk:d�skdt = f�sk; !(t� � t+)g = �!(T̂� � T̂+)�sk (21)



912 C. Gonera, P. Kosi«skigive �sk(t) = e2ik!t�sk(0) : (22)Let us take as ess the integral (11), N = 2s. Writing equation (19) in theform �sk = 2sXn=0 (2s� n)!(2s)! 2s�n(s; k) ! NXi=1 qi ��pi!n ess ; (23)and using Eqs. (11) and (20) one �nds�sk = 1(2s)!e� g2 NPi;j=1 0 1(qi�qj )2 �2�pi�pj F (q; p;!) ; (24a)F (q; p;!) = PÆ�f1;:::;2sgjÆj=s+k Qi2Æ(pi + i!qi)Qi 62Æ(pi � i!qi) : (24b)The funtion �s0k ; s0 < s, an be obtained by taking, for example, es0s0 =f02(s�s0). Let us note that f02(s�s0) has the following form: one hoosesa subsystem onsisting of N 0 = 2s0 partiles and onstrut the relevantintegral (11); f02(s�s0) is the sum of suh expressions over all hoies ofsubsystems of N 0 partiles. It is readily seen from our onstrution that�s0k0 ; s � s0, have the same struture.In this way we obtained an expliit representation of funtions whihhave a simple time behaviour under the hamiltonian �ow generated by thehamiltonian of Calogero model in external harmoni potential.In order to show omplete integrability of Calogero model with harmonipotential it is more onvenient to start with ess given by another well-knownformula for pure (! = 0) Calogero model integrals of motioness = Tr(L2s) ; (25)where L is the relevant Lax matrix. Taking k = 0; s = 1; : : : ; N and insertingess as given by Eq. (25) into Eq. (23) we obtain N integrals of motion.�s0 = sXm=0 (2s� 2m)!(2s)! � sm�!2m NXi=1 qi ��pi!2m Tr(L2s) : (26)



Calogero Model and sL(2,R) Algebra 913In order to prove that they are in involution, let us �rst note thates0 '  NXi=1 qi ��pi!sTr(L2s); s = 1; : : : ; N (27)are in involution [19℄. Moreover, we have the following identitye i�4 (T̂++T̂�)T̂0e� i�4 (T̂++T̂�) = i2(T̂� � T̂+) : (28)Therefore �s0 ' e i�4 (T̂++T̂�)es0 : (29)However, !(T̂+ + T̂�) is the operator representing the funtion�h = �0�12 NXi=1 p2i + g2 NXi;j=1 0 1(qi � qj)2 � !22 NXi=1 q2i1A ; (30)whih is the hamiltonian for Calogero model in inverse harmoni potential.Therefore, it follows from Eq. (29) that �s0 is obtained from es0 evolvingduring the time i�4! (whih is purely imaginary but this is irrelevant in whatfollows) aording to the hamiltonian �ow determined by h. The time evolu-tion is a anonial transformation whih proves that �s0 are also in involution.In order to show that the integrals (26) are independent for s = 1; : : : ; Nit is su�ient to note that they ontain only even powers of momenta andhave the form�s0 = NXi=1 p2si + terms of lower degree in p0s : (31)It is also easy to hek that for g = 0 they redue to the following ones�s0(g = 0) = NXi=1(p2i + !2q2i )s; s = 1; : : : ; N : (32)The superintegrability of the model an be also shown by our method.This is fairly obvious � we have onstruted a huge set of funtions depend-ing harmonially on time, the ratios of frequenies being rational numbers.To onlude we have shown that (super-)integrability of the Calogeromodel with harmoni external potential an be easily derived from the prop-erties of pure Calogero model by using elementary group theoretial teh-niques.
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